]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
448c68e691943fd4be35b64be8aff94c1ed8cc17
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
227 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
228
229 static int intel_lr_context_pin(struct intel_context *ctx,
230                                 struct intel_engine_cs *engine);
231 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
232                 struct drm_i915_gem_object *default_ctx_obj);
233
234
235 /**
236  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237  * @dev: DRM device.
238  * @enable_execlists: value of i915.enable_execlists module parameter.
239  *
240  * Only certain platforms support Execlists (the prerequisites being
241  * support for Logical Ring Contexts and Aliasing PPGTT or better).
242  *
243  * Return: 1 if Execlists is supported and has to be enabled.
244  */
245 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246 {
247         WARN_ON(i915.enable_ppgtt == -1);
248
249         /* On platforms with execlist available, vGPU will only
250          * support execlist mode, no ring buffer mode.
251          */
252         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253                 return 1;
254
255         if (INTEL_INFO(dev)->gen >= 9)
256                 return 1;
257
258         if (enable_execlists == 0)
259                 return 0;
260
261         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262             i915.use_mmio_flip >= 0)
263                 return 1;
264
265         return 0;
266 }
267
268 static void
269 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
270 {
271         struct drm_device *dev = ring->dev;
272
273         if (IS_GEN8(dev) || IS_GEN9(dev))
274                 ring->idle_lite_restore_wa = ~0;
275
276         ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
277                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
278                                         (ring->id == VCS || ring->id == VCS2);
279
280         ring->ctx_desc_template = GEN8_CTX_VALID;
281         ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
282                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
283         if (IS_GEN8(dev))
284                 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285         ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287         /* TODO: WaDisableLiteRestore when we start using semaphore
288          * signalling between Command Streamers */
289         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293         if (ring->disable_lite_restore_wa)
294                 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 }
296
297 /**
298  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299  *                                        descriptor for a pinned context
300  *
301  * @ctx: Context to work on
302  * @ring: Engine the descriptor will be used with
303  *
304  * The context descriptor encodes various attributes of a context,
305  * including its GTT address and some flags. Because it's fairly
306  * expensive to calculate, we'll just do it once and cache the result,
307  * which remains valid until the context is unpinned.
308  *
309  * This is what a descriptor looks like, from LSB to MSB:
310  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
311  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
312  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
313  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
314  */
315 static void
316 intel_lr_context_descriptor_update(struct intel_context *ctx,
317                                    struct intel_engine_cs *ring)
318 {
319         uint64_t lrca, desc;
320
321         lrca = ctx->engine[ring->id].lrc_vma->node.start +
322                LRC_PPHWSP_PN * PAGE_SIZE;
323
324         desc = ring->ctx_desc_template;                    /* bits  0-11 */
325         desc |= lrca;                                      /* bits 12-31 */
326         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
327
328         ctx->engine[ring->id].lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332                                      struct intel_engine_cs *ring)
333 {
334         return ctx->engine[ring->id].lrc_desc;
335 }
336
337 /**
338  * intel_execlists_ctx_id() - get the Execlists Context ID
339  * @ctx: Context to get the ID for
340  * @ring: Engine to get the ID for
341  *
342  * Do not confuse with ctx->id! Unfortunately we have a name overload
343  * here: the old context ID we pass to userspace as a handler so that
344  * they can refer to a context, and the new context ID we pass to the
345  * ELSP so that the GPU can inform us of the context status via
346  * interrupts.
347  *
348  * The context ID is a portion of the context descriptor, so we can
349  * just extract the required part from the cached descriptor.
350  *
351  * Return: 20-bits globally unique context ID.
352  */
353 u32 intel_execlists_ctx_id(struct intel_context *ctx,
354                            struct intel_engine_cs *ring)
355 {
356         return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
357 }
358
359 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360                                  struct drm_i915_gem_request *rq1)
361 {
362
363         struct intel_engine_cs *engine = rq0->ring;
364         struct drm_device *dev = engine->dev;
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         uint64_t desc[2];
367
368         if (rq1) {
369                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
370                 rq1->elsp_submitted++;
371         } else {
372                 desc[1] = 0;
373         }
374
375         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
376         rq0->elsp_submitted++;
377
378         /* You must always write both descriptors in the order below. */
379         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
381
382         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
383         /* The context is automatically loaded after the following */
384         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
385
386         /* ELSP is a wo register, use another nearby reg for posting */
387         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
388 }
389
390 static void
391 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392 {
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397 }
398
399 static void execlists_update_context(struct drm_i915_gem_request *rq)
400 {
401         struct intel_engine_cs *engine = rq->ring;
402         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
403         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
404
405         reg_state[CTX_RING_TAIL+1] = rq->tail;
406
407         /* True 32b PPGTT with dynamic page allocation: update PDP
408          * registers and point the unallocated PDPs to scratch page.
409          * PML4 is allocated during ppgtt init, so this is not needed
410          * in 48-bit mode.
411          */
412         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413                 execlists_update_context_pdps(ppgtt, reg_state);
414 }
415
416 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417                                       struct drm_i915_gem_request *rq1)
418 {
419         execlists_update_context(rq0);
420
421         if (rq1)
422                 execlists_update_context(rq1);
423
424         execlists_elsp_write(rq0, rq1);
425 }
426
427 static void execlists_context_unqueue__locked(struct intel_engine_cs *ring)
428 {
429         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
430         struct drm_i915_gem_request *cursor, *tmp;
431
432         assert_spin_locked(&ring->execlist_lock);
433
434         /*
435          * If irqs are not active generate a warning as batches that finish
436          * without the irqs may get lost and a GPU Hang may occur.
437          */
438         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
439
440         /* Try to read in pairs */
441         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442                                  execlist_link) {
443                 if (!req0) {
444                         req0 = cursor;
445                 } else if (req0->ctx == cursor->ctx) {
446                         /* Same ctx: ignore first request, as second request
447                          * will update tail past first request's workload */
448                         cursor->elsp_submitted = req0->elsp_submitted;
449                         list_move_tail(&req0->execlist_link,
450                                        &ring->execlist_retired_req_list);
451                         req0 = cursor;
452                 } else {
453                         req1 = cursor;
454                         WARN_ON(req1->elsp_submitted);
455                         break;
456                 }
457         }
458
459         if (unlikely(!req0))
460                 return;
461
462         if (req0->elsp_submitted & ring->idle_lite_restore_wa) {
463                 /*
464                  * WaIdleLiteRestore: make sure we never cause a lite restore
465                  * with HEAD==TAIL.
466                  *
467                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
468                  * resubmit the request. See gen8_emit_request() for where we
469                  * prepare the padding after the end of the request.
470                  */
471                 struct intel_ringbuffer *ringbuf;
472
473                 ringbuf = req0->ctx->engine[ring->id].ringbuf;
474                 req0->tail += 8;
475                 req0->tail &= ringbuf->size - 1;
476         }
477
478         execlists_submit_requests(req0, req1);
479 }
480
481 static void execlists_context_unqueue(struct intel_engine_cs *ring)
482 {
483         struct drm_i915_private *dev_priv = ring->dev->dev_private;
484
485         spin_lock(&dev_priv->uncore.lock);
486         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
487
488         execlists_context_unqueue__locked(ring);
489
490         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
491         spin_unlock(&dev_priv->uncore.lock);
492 }
493
494 static unsigned int
495 execlists_check_remove_request(struct intel_engine_cs *ring, u32 request_id)
496 {
497         struct drm_i915_gem_request *head_req;
498
499         assert_spin_locked(&ring->execlist_lock);
500
501         head_req = list_first_entry_or_null(&ring->execlist_queue,
502                                             struct drm_i915_gem_request,
503                                             execlist_link);
504
505         if (!head_req)
506                 return 0;
507
508         if (unlikely(intel_execlists_ctx_id(head_req->ctx, ring) != request_id))
509                 return 0;
510
511         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
512
513         if (--head_req->elsp_submitted > 0)
514                 return 0;
515
516         list_move_tail(&head_req->execlist_link,
517                        &ring->execlist_retired_req_list);
518
519         return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *ring, unsigned int read_pointer,
524                    u32 *context_id)
525 {
526         struct drm_i915_private *dev_priv = ring->dev->dev_private;
527         u32 status;
528
529         read_pointer %= GEN8_CSB_ENTRIES;
530
531         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
532
533         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534                 return 0;
535
536         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(ring,
537                                                               read_pointer));
538
539         return status;
540 }
541
542 /**
543  * intel_lrc_irq_handler() - handle Context Switch interrupts
544  * @ring: Engine Command Streamer to handle.
545  *
546  * Check the unread Context Status Buffers and manage the submission of new
547  * contexts to the ELSP accordingly.
548  */
549 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
550 {
551         struct drm_i915_private *dev_priv = ring->dev->dev_private;
552         u32 status_pointer;
553         unsigned int read_pointer, write_pointer;
554         u32 status = 0;
555         u32 status_id;
556         unsigned int submit_contexts = 0;
557
558         spin_lock(&ring->execlist_lock);
559
560         spin_lock(&dev_priv->uncore.lock);
561         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
562
563         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(ring));
564
565         read_pointer = ring->next_context_status_buffer;
566         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
567         if (read_pointer > write_pointer)
568                 write_pointer += GEN8_CSB_ENTRIES;
569
570         while (read_pointer < write_pointer) {
571                 status = get_context_status(ring, ++read_pointer, &status_id);
572
573                 if (unlikely(status & GEN8_CTX_STATUS_PREEMPTED)) {
574                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
575                                 if (execlists_check_remove_request(ring, status_id))
576                                         WARN(1, "Lite Restored request removed from queue\n");
577                         } else
578                                 WARN(1, "Preemption without Lite Restore\n");
579                 }
580
581                 if (status & (GEN8_CTX_STATUS_ACTIVE_IDLE |
582                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
583                         submit_contexts +=
584                                 execlists_check_remove_request(ring, status_id);
585         }
586
587         if (submit_contexts) {
588                 if (!ring->disable_lite_restore_wa ||
589                     (status & GEN8_CTX_STATUS_ACTIVE_IDLE))
590                         execlists_context_unqueue__locked(ring);
591         }
592
593         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
594
595         /* Update the read pointer to the old write pointer. Manual ringbuffer
596          * management ftw </sarcasm> */
597         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(ring),
598                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
599                                     ring->next_context_status_buffer << 8));
600
601         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
602         spin_unlock(&dev_priv->uncore.lock);
603
604         spin_unlock(&ring->execlist_lock);
605
606         if (unlikely(submit_contexts > 2))
607                 DRM_ERROR("More than two context complete events?\n");
608 }
609
610 static void execlists_context_queue(struct drm_i915_gem_request *request)
611 {
612         struct intel_engine_cs *engine = request->ring;
613         struct drm_i915_gem_request *cursor;
614         int num_elements = 0;
615
616         if (request->ctx != request->i915->kernel_context)
617                 intel_lr_context_pin(request->ctx, engine);
618
619         i915_gem_request_reference(request);
620
621         spin_lock_irq(&engine->execlist_lock);
622
623         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624                 if (++num_elements > 2)
625                         break;
626
627         if (num_elements > 2) {
628                 struct drm_i915_gem_request *tail_req;
629
630                 tail_req = list_last_entry(&engine->execlist_queue,
631                                            struct drm_i915_gem_request,
632                                            execlist_link);
633
634                 if (request->ctx == tail_req->ctx) {
635                         WARN(tail_req->elsp_submitted != 0,
636                                 "More than 2 already-submitted reqs queued\n");
637                         list_move_tail(&tail_req->execlist_link,
638                                        &engine->execlist_retired_req_list);
639                 }
640         }
641
642         list_add_tail(&request->execlist_link, &engine->execlist_queue);
643         if (num_elements == 0)
644                 execlists_context_unqueue(engine);
645
646         spin_unlock_irq(&engine->execlist_lock);
647 }
648
649 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
650 {
651         struct intel_engine_cs *engine = req->ring;
652         uint32_t flush_domains;
653         int ret;
654
655         flush_domains = 0;
656         if (engine->gpu_caches_dirty)
657                 flush_domains = I915_GEM_GPU_DOMAINS;
658
659         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
660         if (ret)
661                 return ret;
662
663         engine->gpu_caches_dirty = false;
664         return 0;
665 }
666
667 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
668                                  struct list_head *vmas)
669 {
670         const unsigned other_rings = ~intel_ring_flag(req->ring);
671         struct i915_vma *vma;
672         uint32_t flush_domains = 0;
673         bool flush_chipset = false;
674         int ret;
675
676         list_for_each_entry(vma, vmas, exec_list) {
677                 struct drm_i915_gem_object *obj = vma->obj;
678
679                 if (obj->active & other_rings) {
680                         ret = i915_gem_object_sync(obj, req->ring, &req);
681                         if (ret)
682                                 return ret;
683                 }
684
685                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
686                         flush_chipset |= i915_gem_clflush_object(obj, false);
687
688                 flush_domains |= obj->base.write_domain;
689         }
690
691         if (flush_domains & I915_GEM_DOMAIN_GTT)
692                 wmb();
693
694         /* Unconditionally invalidate gpu caches and ensure that we do flush
695          * any residual writes from the previous batch.
696          */
697         return logical_ring_invalidate_all_caches(req);
698 }
699
700 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
701 {
702         int ret = 0;
703
704         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
705
706         if (i915.enable_guc_submission) {
707                 /*
708                  * Check that the GuC has space for the request before
709                  * going any further, as the i915_add_request() call
710                  * later on mustn't fail ...
711                  */
712                 struct intel_guc *guc = &request->i915->guc;
713
714                 ret = i915_guc_wq_check_space(guc->execbuf_client);
715                 if (ret)
716                         return ret;
717         }
718
719         if (request->ctx != request->i915->kernel_context)
720                 ret = intel_lr_context_pin(request->ctx, request->ring);
721
722         return ret;
723 }
724
725 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
726                                        int bytes)
727 {
728         struct intel_ringbuffer *ringbuf = req->ringbuf;
729         struct intel_engine_cs *engine = req->ring;
730         struct drm_i915_gem_request *target;
731         unsigned space;
732         int ret;
733
734         if (intel_ring_space(ringbuf) >= bytes)
735                 return 0;
736
737         /* The whole point of reserving space is to not wait! */
738         WARN_ON(ringbuf->reserved_in_use);
739
740         list_for_each_entry(target, &engine->request_list, list) {
741                 /*
742                  * The request queue is per-engine, so can contain requests
743                  * from multiple ringbuffers. Here, we must ignore any that
744                  * aren't from the ringbuffer we're considering.
745                  */
746                 if (target->ringbuf != ringbuf)
747                         continue;
748
749                 /* Would completion of this request free enough space? */
750                 space = __intel_ring_space(target->postfix, ringbuf->tail,
751                                            ringbuf->size);
752                 if (space >= bytes)
753                         break;
754         }
755
756         if (WARN_ON(&target->list == &engine->request_list))
757                 return -ENOSPC;
758
759         ret = i915_wait_request(target);
760         if (ret)
761                 return ret;
762
763         ringbuf->space = space;
764         return 0;
765 }
766
767 /*
768  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
769  * @request: Request to advance the logical ringbuffer of.
770  *
771  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
772  * really happens during submission is that the context and current tail will be placed
773  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
774  * point, the tail *inside* the context is updated and the ELSP written to.
775  */
776 static int
777 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
778 {
779         struct intel_ringbuffer *ringbuf = request->ringbuf;
780         struct drm_i915_private *dev_priv = request->i915;
781         struct intel_engine_cs *engine = request->ring;
782
783         intel_logical_ring_advance(ringbuf);
784         request->tail = ringbuf->tail;
785
786         /*
787          * Here we add two extra NOOPs as padding to avoid
788          * lite restore of a context with HEAD==TAIL.
789          *
790          * Caller must reserve WA_TAIL_DWORDS for us!
791          */
792         intel_logical_ring_emit(ringbuf, MI_NOOP);
793         intel_logical_ring_emit(ringbuf, MI_NOOP);
794         intel_logical_ring_advance(ringbuf);
795
796         if (intel_ring_stopped(engine))
797                 return 0;
798
799         if (engine->last_context != request->ctx) {
800                 if (engine->last_context)
801                         intel_lr_context_unpin(engine->last_context, engine);
802                 if (request->ctx != request->i915->kernel_context) {
803                         intel_lr_context_pin(request->ctx, engine);
804                         engine->last_context = request->ctx;
805                 } else {
806                         engine->last_context = NULL;
807                 }
808         }
809
810         if (dev_priv->guc.execbuf_client)
811                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
812         else
813                 execlists_context_queue(request);
814
815         return 0;
816 }
817
818 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
819 {
820         uint32_t __iomem *virt;
821         int rem = ringbuf->size - ringbuf->tail;
822
823         virt = ringbuf->virtual_start + ringbuf->tail;
824         rem /= 4;
825         while (rem--)
826                 iowrite32(MI_NOOP, virt++);
827
828         ringbuf->tail = 0;
829         intel_ring_update_space(ringbuf);
830 }
831
832 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
833 {
834         struct intel_ringbuffer *ringbuf = req->ringbuf;
835         int remain_usable = ringbuf->effective_size - ringbuf->tail;
836         int remain_actual = ringbuf->size - ringbuf->tail;
837         int ret, total_bytes, wait_bytes = 0;
838         bool need_wrap = false;
839
840         if (ringbuf->reserved_in_use)
841                 total_bytes = bytes;
842         else
843                 total_bytes = bytes + ringbuf->reserved_size;
844
845         if (unlikely(bytes > remain_usable)) {
846                 /*
847                  * Not enough space for the basic request. So need to flush
848                  * out the remainder and then wait for base + reserved.
849                  */
850                 wait_bytes = remain_actual + total_bytes;
851                 need_wrap = true;
852         } else {
853                 if (unlikely(total_bytes > remain_usable)) {
854                         /*
855                          * The base request will fit but the reserved space
856                          * falls off the end. So only need to to wait for the
857                          * reserved size after flushing out the remainder.
858                          */
859                         wait_bytes = remain_actual + ringbuf->reserved_size;
860                         need_wrap = true;
861                 } else if (total_bytes > ringbuf->space) {
862                         /* No wrapping required, just waiting. */
863                         wait_bytes = total_bytes;
864                 }
865         }
866
867         if (wait_bytes) {
868                 ret = logical_ring_wait_for_space(req, wait_bytes);
869                 if (unlikely(ret))
870                         return ret;
871
872                 if (need_wrap)
873                         __wrap_ring_buffer(ringbuf);
874         }
875
876         return 0;
877 }
878
879 /**
880  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
881  *
882  * @req: The request to start some new work for
883  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
884  *
885  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
886  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
887  * and also preallocates a request (every workload submission is still mediated through
888  * requests, same as it did with legacy ringbuffer submission).
889  *
890  * Return: non-zero if the ringbuffer is not ready to be written to.
891  */
892 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
893 {
894         struct drm_i915_private *dev_priv;
895         int ret;
896
897         WARN_ON(req == NULL);
898         dev_priv = req->ring->dev->dev_private;
899
900         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901                                    dev_priv->mm.interruptible);
902         if (ret)
903                 return ret;
904
905         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
906         if (ret)
907                 return ret;
908
909         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
910         return 0;
911 }
912
913 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
914 {
915         /*
916          * The first call merely notes the reserve request and is common for
917          * all back ends. The subsequent localised _begin() call actually
918          * ensures that the reservation is available. Without the begin, if
919          * the request creator immediately submitted the request without
920          * adding any commands to it then there might not actually be
921          * sufficient room for the submission commands.
922          */
923         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
924
925         return intel_logical_ring_begin(request, 0);
926 }
927
928 /**
929  * execlists_submission() - submit a batchbuffer for execution, Execlists style
930  * @dev: DRM device.
931  * @file: DRM file.
932  * @ring: Engine Command Streamer to submit to.
933  * @ctx: Context to employ for this submission.
934  * @args: execbuffer call arguments.
935  * @vmas: list of vmas.
936  * @batch_obj: the batchbuffer to submit.
937  * @exec_start: batchbuffer start virtual address pointer.
938  * @dispatch_flags: translated execbuffer call flags.
939  *
940  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
941  * away the submission details of the execbuffer ioctl call.
942  *
943  * Return: non-zero if the submission fails.
944  */
945 int intel_execlists_submission(struct i915_execbuffer_params *params,
946                                struct drm_i915_gem_execbuffer2 *args,
947                                struct list_head *vmas)
948 {
949         struct drm_device       *dev = params->dev;
950         struct intel_engine_cs *engine = params->ring;
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
953         u64 exec_start;
954         int instp_mode;
955         u32 instp_mask;
956         int ret;
957
958         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
959         instp_mask = I915_EXEC_CONSTANTS_MASK;
960         switch (instp_mode) {
961         case I915_EXEC_CONSTANTS_REL_GENERAL:
962         case I915_EXEC_CONSTANTS_ABSOLUTE:
963         case I915_EXEC_CONSTANTS_REL_SURFACE:
964                 if (instp_mode != 0 && engine != &dev_priv->ring[RCS]) {
965                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
966                         return -EINVAL;
967                 }
968
969                 if (instp_mode != dev_priv->relative_constants_mode) {
970                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
971                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
972                                 return -EINVAL;
973                         }
974
975                         /* The HW changed the meaning on this bit on gen6 */
976                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
977                 }
978                 break;
979         default:
980                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
981                 return -EINVAL;
982         }
983
984         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
985                 DRM_DEBUG("sol reset is gen7 only\n");
986                 return -EINVAL;
987         }
988
989         ret = execlists_move_to_gpu(params->request, vmas);
990         if (ret)
991                 return ret;
992
993         if (engine == &dev_priv->ring[RCS] &&
994             instp_mode != dev_priv->relative_constants_mode) {
995                 ret = intel_logical_ring_begin(params->request, 4);
996                 if (ret)
997                         return ret;
998
999                 intel_logical_ring_emit(ringbuf, MI_NOOP);
1000                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1001                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1002                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1003                 intel_logical_ring_advance(ringbuf);
1004
1005                 dev_priv->relative_constants_mode = instp_mode;
1006         }
1007
1008         exec_start = params->batch_obj_vm_offset +
1009                      args->batch_start_offset;
1010
1011         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1012         if (ret)
1013                 return ret;
1014
1015         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1016
1017         i915_gem_execbuffer_move_to_active(vmas, params->request);
1018         i915_gem_execbuffer_retire_commands(params);
1019
1020         return 0;
1021 }
1022
1023 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
1024 {
1025         struct drm_i915_gem_request *req, *tmp;
1026         struct list_head retired_list;
1027
1028         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1029         if (list_empty(&ring->execlist_retired_req_list))
1030                 return;
1031
1032         INIT_LIST_HEAD(&retired_list);
1033         spin_lock_irq(&ring->execlist_lock);
1034         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1035         spin_unlock_irq(&ring->execlist_lock);
1036
1037         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1038                 struct intel_context *ctx = req->ctx;
1039                 struct drm_i915_gem_object *ctx_obj =
1040                                 ctx->engine[ring->id].state;
1041
1042                 if (ctx_obj && (ctx != req->i915->kernel_context))
1043                         intel_lr_context_unpin(ctx, ring);
1044
1045                 list_del(&req->execlist_link);
1046                 i915_gem_request_unreference(req);
1047         }
1048 }
1049
1050 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1051 {
1052         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1053         int ret;
1054
1055         if (!intel_ring_initialized(ring))
1056                 return;
1057
1058         ret = intel_ring_idle(ring);
1059         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1060                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1061                           ring->name, ret);
1062
1063         /* TODO: Is this correct with Execlists enabled? */
1064         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1065         if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1066                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1067                 return;
1068         }
1069         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1070 }
1071
1072 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1073 {
1074         struct intel_engine_cs *engine = req->ring;
1075         int ret;
1076
1077         if (!engine->gpu_caches_dirty)
1078                 return 0;
1079
1080         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1081         if (ret)
1082                 return ret;
1083
1084         engine->gpu_caches_dirty = false;
1085         return 0;
1086 }
1087
1088 static int intel_lr_context_do_pin(struct intel_context *ctx,
1089                                    struct intel_engine_cs *ring)
1090 {
1091         struct drm_device *dev = ring->dev;
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1094         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1095         struct page *lrc_state_page;
1096         uint32_t *lrc_reg_state;
1097         int ret;
1098
1099         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1100
1101         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1102                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1103         if (ret)
1104                 return ret;
1105
1106         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1107         if (WARN_ON(!lrc_state_page)) {
1108                 ret = -ENODEV;
1109                 goto unpin_ctx_obj;
1110         }
1111
1112         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1113         if (ret)
1114                 goto unpin_ctx_obj;
1115
1116         ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1117         intel_lr_context_descriptor_update(ctx, ring);
1118         lrc_reg_state = kmap(lrc_state_page);
1119         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1120         ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1121         ctx_obj->dirty = true;
1122
1123         /* Invalidate GuC TLB. */
1124         if (i915.enable_guc_submission)
1125                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1126
1127         return ret;
1128
1129 unpin_ctx_obj:
1130         i915_gem_object_ggtt_unpin(ctx_obj);
1131
1132         return ret;
1133 }
1134
1135 static int intel_lr_context_pin(struct intel_context *ctx,
1136                                 struct intel_engine_cs *engine)
1137 {
1138         int ret = 0;
1139
1140         if (ctx->engine[engine->id].pin_count++ == 0) {
1141                 ret = intel_lr_context_do_pin(ctx, engine);
1142                 if (ret)
1143                         goto reset_pin_count;
1144
1145                 i915_gem_context_reference(ctx);
1146         }
1147         return ret;
1148
1149 reset_pin_count:
1150         ctx->engine[engine->id].pin_count = 0;
1151         return ret;
1152 }
1153
1154 void intel_lr_context_unpin(struct intel_context *ctx,
1155                             struct intel_engine_cs *engine)
1156 {
1157         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1158
1159         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1160         if (--ctx->engine[engine->id].pin_count == 0) {
1161                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1162                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1163                 i915_gem_object_ggtt_unpin(ctx_obj);
1164                 ctx->engine[engine->id].lrc_vma = NULL;
1165                 ctx->engine[engine->id].lrc_desc = 0;
1166                 ctx->engine[engine->id].lrc_reg_state = NULL;
1167
1168                 i915_gem_context_unreference(ctx);
1169         }
1170 }
1171
1172 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1173 {
1174         int ret, i;
1175         struct intel_engine_cs *engine = req->ring;
1176         struct intel_ringbuffer *ringbuf = req->ringbuf;
1177         struct drm_device *dev = engine->dev;
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179         struct i915_workarounds *w = &dev_priv->workarounds;
1180
1181         if (w->count == 0)
1182                 return 0;
1183
1184         engine->gpu_caches_dirty = true;
1185         ret = logical_ring_flush_all_caches(req);
1186         if (ret)
1187                 return ret;
1188
1189         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1190         if (ret)
1191                 return ret;
1192
1193         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1194         for (i = 0; i < w->count; i++) {
1195                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1196                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1197         }
1198         intel_logical_ring_emit(ringbuf, MI_NOOP);
1199
1200         intel_logical_ring_advance(ringbuf);
1201
1202         engine->gpu_caches_dirty = true;
1203         ret = logical_ring_flush_all_caches(req);
1204         if (ret)
1205                 return ret;
1206
1207         return 0;
1208 }
1209
1210 #define wa_ctx_emit(batch, index, cmd)                                  \
1211         do {                                                            \
1212                 int __index = (index)++;                                \
1213                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1214                         return -ENOSPC;                                 \
1215                 }                                                       \
1216                 batch[__index] = (cmd);                                 \
1217         } while (0)
1218
1219 #define wa_ctx_emit_reg(batch, index, reg) \
1220         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1221
1222 /*
1223  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1224  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1225  * but there is a slight complication as this is applied in WA batch where the
1226  * values are only initialized once so we cannot take register value at the
1227  * beginning and reuse it further; hence we save its value to memory, upload a
1228  * constant value with bit21 set and then we restore it back with the saved value.
1229  * To simplify the WA, a constant value is formed by using the default value
1230  * of this register. This shouldn't be a problem because we are only modifying
1231  * it for a short period and this batch in non-premptible. We can ofcourse
1232  * use additional instructions that read the actual value of the register
1233  * at that time and set our bit of interest but it makes the WA complicated.
1234  *
1235  * This WA is also required for Gen9 so extracting as a function avoids
1236  * code duplication.
1237  */
1238 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1239                                                 uint32_t *const batch,
1240                                                 uint32_t index)
1241 {
1242         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1243
1244         /*
1245          * WaDisableLSQCROPERFforOCL:skl
1246          * This WA is implemented in skl_init_clock_gating() but since
1247          * this batch updates GEN8_L3SQCREG4 with default value we need to
1248          * set this bit here to retain the WA during flush.
1249          */
1250         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1251                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1252
1253         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1254                                    MI_SRM_LRM_GLOBAL_GTT));
1255         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1256         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1257         wa_ctx_emit(batch, index, 0);
1258
1259         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1260         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1261         wa_ctx_emit(batch, index, l3sqc4_flush);
1262
1263         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1264         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1265                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1266         wa_ctx_emit(batch, index, 0);
1267         wa_ctx_emit(batch, index, 0);
1268         wa_ctx_emit(batch, index, 0);
1269         wa_ctx_emit(batch, index, 0);
1270
1271         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1272                                    MI_SRM_LRM_GLOBAL_GTT));
1273         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1274         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1275         wa_ctx_emit(batch, index, 0);
1276
1277         return index;
1278 }
1279
1280 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1281                                     uint32_t offset,
1282                                     uint32_t start_alignment)
1283 {
1284         return wa_ctx->offset = ALIGN(offset, start_alignment);
1285 }
1286
1287 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1288                              uint32_t offset,
1289                              uint32_t size_alignment)
1290 {
1291         wa_ctx->size = offset - wa_ctx->offset;
1292
1293         WARN(wa_ctx->size % size_alignment,
1294              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1295              wa_ctx->size, size_alignment);
1296         return 0;
1297 }
1298
1299 /**
1300  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1301  *
1302  * @ring: only applicable for RCS
1303  * @wa_ctx: structure representing wa_ctx
1304  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1305  *    with the offset value received as input.
1306  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1307  * @batch: page in which WA are loaded
1308  * @offset: This field specifies the start of the batch, it should be
1309  *  cache-aligned otherwise it is adjusted accordingly.
1310  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1311  *  initialized at the beginning and shared across all contexts but this field
1312  *  helps us to have multiple batches at different offsets and select them based
1313  *  on a criteria. At the moment this batch always start at the beginning of the page
1314  *  and at this point we don't have multiple wa_ctx batch buffers.
1315  *
1316  *  The number of WA applied are not known at the beginning; we use this field
1317  *  to return the no of DWORDS written.
1318  *
1319  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1320  *  so it adds NOOPs as padding to make it cacheline aligned.
1321  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1322  *  makes a complete batch buffer.
1323  *
1324  * Return: non-zero if we exceed the PAGE_SIZE limit.
1325  */
1326
1327 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1328                                     struct i915_wa_ctx_bb *wa_ctx,
1329                                     uint32_t *const batch,
1330                                     uint32_t *offset)
1331 {
1332         uint32_t scratch_addr;
1333         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1334
1335         /* WaDisableCtxRestoreArbitration:bdw,chv */
1336         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1337
1338         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1339         if (IS_BROADWELL(ring->dev)) {
1340                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1341                 if (rc < 0)
1342                         return rc;
1343                 index = rc;
1344         }
1345
1346         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1347         /* Actual scratch location is at 128 bytes offset */
1348         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1349
1350         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1351         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1352                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1353                                    PIPE_CONTROL_CS_STALL |
1354                                    PIPE_CONTROL_QW_WRITE));
1355         wa_ctx_emit(batch, index, scratch_addr);
1356         wa_ctx_emit(batch, index, 0);
1357         wa_ctx_emit(batch, index, 0);
1358         wa_ctx_emit(batch, index, 0);
1359
1360         /* Pad to end of cacheline */
1361         while (index % CACHELINE_DWORDS)
1362                 wa_ctx_emit(batch, index, MI_NOOP);
1363
1364         /*
1365          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1366          * execution depends on the length specified in terms of cache lines
1367          * in the register CTX_RCS_INDIRECT_CTX
1368          */
1369
1370         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1371 }
1372
1373 /**
1374  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1375  *
1376  * @ring: only applicable for RCS
1377  * @wa_ctx: structure representing wa_ctx
1378  *  offset: specifies start of the batch, should be cache-aligned.
1379  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1380  * @batch: page in which WA are loaded
1381  * @offset: This field specifies the start of this batch.
1382  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1383  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1384  *
1385  *   The number of DWORDS written are returned using this field.
1386  *
1387  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1388  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1389  */
1390 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1391                                struct i915_wa_ctx_bb *wa_ctx,
1392                                uint32_t *const batch,
1393                                uint32_t *offset)
1394 {
1395         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1396
1397         /* WaDisableCtxRestoreArbitration:bdw,chv */
1398         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1399
1400         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1401
1402         return wa_ctx_end(wa_ctx, *offset = index, 1);
1403 }
1404
1405 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1406                                     struct i915_wa_ctx_bb *wa_ctx,
1407                                     uint32_t *const batch,
1408                                     uint32_t *offset)
1409 {
1410         int ret;
1411         struct drm_device *dev = ring->dev;
1412         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1413
1414         /* WaDisableCtxRestoreArbitration:skl,bxt */
1415         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1416             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1417                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1418
1419         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1420         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1421         if (ret < 0)
1422                 return ret;
1423         index = ret;
1424
1425         /* Pad to end of cacheline */
1426         while (index % CACHELINE_DWORDS)
1427                 wa_ctx_emit(batch, index, MI_NOOP);
1428
1429         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1430 }
1431
1432 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1433                                struct i915_wa_ctx_bb *wa_ctx,
1434                                uint32_t *const batch,
1435                                uint32_t *offset)
1436 {
1437         struct drm_device *dev = ring->dev;
1438         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1439
1440         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1441         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1442             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1443                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1444                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1445                 wa_ctx_emit(batch, index,
1446                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1447                 wa_ctx_emit(batch, index, MI_NOOP);
1448         }
1449
1450         /* WaDisableCtxRestoreArbitration:skl,bxt */
1451         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1452             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1453                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1454
1455         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1456
1457         return wa_ctx_end(wa_ctx, *offset = index, 1);
1458 }
1459
1460 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1461 {
1462         int ret;
1463
1464         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1465         if (!ring->wa_ctx.obj) {
1466                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1467                 return -ENOMEM;
1468         }
1469
1470         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1471         if (ret) {
1472                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1473                                  ret);
1474                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1475                 return ret;
1476         }
1477
1478         return 0;
1479 }
1480
1481 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1482 {
1483         if (ring->wa_ctx.obj) {
1484                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1485                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1486                 ring->wa_ctx.obj = NULL;
1487         }
1488 }
1489
1490 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1491 {
1492         int ret;
1493         uint32_t *batch;
1494         uint32_t offset;
1495         struct page *page;
1496         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1497
1498         WARN_ON(ring->id != RCS);
1499
1500         /* update this when WA for higher Gen are added */
1501         if (INTEL_INFO(ring->dev)->gen > 9) {
1502                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1503                           INTEL_INFO(ring->dev)->gen);
1504                 return 0;
1505         }
1506
1507         /* some WA perform writes to scratch page, ensure it is valid */
1508         if (ring->scratch.obj == NULL) {
1509                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1510                 return -EINVAL;
1511         }
1512
1513         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1514         if (ret) {
1515                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1516                 return ret;
1517         }
1518
1519         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1520         batch = kmap_atomic(page);
1521         offset = 0;
1522
1523         if (INTEL_INFO(ring->dev)->gen == 8) {
1524                 ret = gen8_init_indirectctx_bb(ring,
1525                                                &wa_ctx->indirect_ctx,
1526                                                batch,
1527                                                &offset);
1528                 if (ret)
1529                         goto out;
1530
1531                 ret = gen8_init_perctx_bb(ring,
1532                                           &wa_ctx->per_ctx,
1533                                           batch,
1534                                           &offset);
1535                 if (ret)
1536                         goto out;
1537         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1538                 ret = gen9_init_indirectctx_bb(ring,
1539                                                &wa_ctx->indirect_ctx,
1540                                                batch,
1541                                                &offset);
1542                 if (ret)
1543                         goto out;
1544
1545                 ret = gen9_init_perctx_bb(ring,
1546                                           &wa_ctx->per_ctx,
1547                                           batch,
1548                                           &offset);
1549                 if (ret)
1550                         goto out;
1551         }
1552
1553 out:
1554         kunmap_atomic(batch);
1555         if (ret)
1556                 lrc_destroy_wa_ctx_obj(ring);
1557
1558         return ret;
1559 }
1560
1561 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1562 {
1563         struct drm_device *dev = ring->dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         unsigned int next_context_status_buffer_hw;
1566
1567         lrc_setup_hardware_status_page(ring,
1568                                 dev_priv->kernel_context->engine[ring->id].state);
1569
1570         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1571         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1572
1573         I915_WRITE(RING_MODE_GEN7(ring),
1574                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1575                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1576         POSTING_READ(RING_MODE_GEN7(ring));
1577
1578         /*
1579          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1580          * zero, we need to read the write pointer from hardware and use its
1581          * value because "this register is power context save restored".
1582          * Effectively, these states have been observed:
1583          *
1584          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1585          * BDW  | CSB regs not reset       | CSB regs reset       |
1586          * CHT  | CSB regs not reset       | CSB regs not reset   |
1587          * SKL  |         ?                |         ?            |
1588          * BXT  |         ?                |         ?            |
1589          */
1590         next_context_status_buffer_hw =
1591                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1592
1593         /*
1594          * When the CSB registers are reset (also after power-up / gpu reset),
1595          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1596          * this special case, so the first element read is CSB[0].
1597          */
1598         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1599                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1600
1601         ring->next_context_status_buffer = next_context_status_buffer_hw;
1602         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1603
1604         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1605
1606         return 0;
1607 }
1608
1609 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1610 {
1611         struct drm_device *dev = ring->dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         int ret;
1614
1615         ret = gen8_init_common_ring(ring);
1616         if (ret)
1617                 return ret;
1618
1619         /* We need to disable the AsyncFlip performance optimisations in order
1620          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1621          * programmed to '1' on all products.
1622          *
1623          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1624          */
1625         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1626
1627         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1628
1629         return init_workarounds_ring(ring);
1630 }
1631
1632 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1633 {
1634         int ret;
1635
1636         ret = gen8_init_common_ring(ring);
1637         if (ret)
1638                 return ret;
1639
1640         return init_workarounds_ring(ring);
1641 }
1642
1643 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1644 {
1645         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1646         struct intel_engine_cs *engine = req->ring;
1647         struct intel_ringbuffer *ringbuf = req->ringbuf;
1648         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1649         int i, ret;
1650
1651         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1652         if (ret)
1653                 return ret;
1654
1655         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1656         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1657                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1658
1659                 intel_logical_ring_emit_reg(ringbuf,
1660                                             GEN8_RING_PDP_UDW(engine, i));
1661                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1662                 intel_logical_ring_emit_reg(ringbuf,
1663                                             GEN8_RING_PDP_LDW(engine, i));
1664                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1665         }
1666
1667         intel_logical_ring_emit(ringbuf, MI_NOOP);
1668         intel_logical_ring_advance(ringbuf);
1669
1670         return 0;
1671 }
1672
1673 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1674                               u64 offset, unsigned dispatch_flags)
1675 {
1676         struct intel_ringbuffer *ringbuf = req->ringbuf;
1677         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1678         int ret;
1679
1680         /* Don't rely in hw updating PDPs, specially in lite-restore.
1681          * Ideally, we should set Force PD Restore in ctx descriptor,
1682          * but we can't. Force Restore would be a second option, but
1683          * it is unsafe in case of lite-restore (because the ctx is
1684          * not idle). PML4 is allocated during ppgtt init so this is
1685          * not needed in 48-bit.*/
1686         if (req->ctx->ppgtt &&
1687             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1688                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1689                     !intel_vgpu_active(req->i915->dev)) {
1690                         ret = intel_logical_ring_emit_pdps(req);
1691                         if (ret)
1692                                 return ret;
1693                 }
1694
1695                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1696         }
1697
1698         ret = intel_logical_ring_begin(req, 4);
1699         if (ret)
1700                 return ret;
1701
1702         /* FIXME(BDW): Address space and security selectors. */
1703         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1704                                 (ppgtt<<8) |
1705                                 (dispatch_flags & I915_DISPATCH_RS ?
1706                                  MI_BATCH_RESOURCE_STREAMER : 0));
1707         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1708         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1709         intel_logical_ring_emit(ringbuf, MI_NOOP);
1710         intel_logical_ring_advance(ringbuf);
1711
1712         return 0;
1713 }
1714
1715 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1716 {
1717         struct drm_device *dev = ring->dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         unsigned long flags;
1720
1721         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1722                 return false;
1723
1724         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1725         if (ring->irq_refcount++ == 0) {
1726                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1727                 POSTING_READ(RING_IMR(ring->mmio_base));
1728         }
1729         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730
1731         return true;
1732 }
1733
1734 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1735 {
1736         struct drm_device *dev = ring->dev;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         unsigned long flags;
1739
1740         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741         if (--ring->irq_refcount == 0) {
1742                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1743                 POSTING_READ(RING_IMR(ring->mmio_base));
1744         }
1745         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746 }
1747
1748 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1749                            u32 invalidate_domains,
1750                            u32 unused)
1751 {
1752         struct intel_ringbuffer *ringbuf = request->ringbuf;
1753         struct intel_engine_cs *engine = ringbuf->ring;
1754         struct drm_device *dev = engine->dev;
1755         struct drm_i915_private *dev_priv = dev->dev_private;
1756         uint32_t cmd;
1757         int ret;
1758
1759         ret = intel_logical_ring_begin(request, 4);
1760         if (ret)
1761                 return ret;
1762
1763         cmd = MI_FLUSH_DW + 1;
1764
1765         /* We always require a command barrier so that subsequent
1766          * commands, such as breadcrumb interrupts, are strictly ordered
1767          * wrt the contents of the write cache being flushed to memory
1768          * (and thus being coherent from the CPU).
1769          */
1770         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1771
1772         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1773                 cmd |= MI_INVALIDATE_TLB;
1774                 if (engine == &dev_priv->ring[VCS])
1775                         cmd |= MI_INVALIDATE_BSD;
1776         }
1777
1778         intel_logical_ring_emit(ringbuf, cmd);
1779         intel_logical_ring_emit(ringbuf,
1780                                 I915_GEM_HWS_SCRATCH_ADDR |
1781                                 MI_FLUSH_DW_USE_GTT);
1782         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1783         intel_logical_ring_emit(ringbuf, 0); /* value */
1784         intel_logical_ring_advance(ringbuf);
1785
1786         return 0;
1787 }
1788
1789 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1790                                   u32 invalidate_domains,
1791                                   u32 flush_domains)
1792 {
1793         struct intel_ringbuffer *ringbuf = request->ringbuf;
1794         struct intel_engine_cs *engine = ringbuf->ring;
1795         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1796         bool vf_flush_wa = false;
1797         u32 flags = 0;
1798         int ret;
1799
1800         flags |= PIPE_CONTROL_CS_STALL;
1801
1802         if (flush_domains) {
1803                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1804                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1805                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1806                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1807         }
1808
1809         if (invalidate_domains) {
1810                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1811                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1812                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1813                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1814                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1815                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1816                 flags |= PIPE_CONTROL_QW_WRITE;
1817                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1818
1819                 /*
1820                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1821                  * pipe control.
1822                  */
1823                 if (IS_GEN9(engine->dev))
1824                         vf_flush_wa = true;
1825         }
1826
1827         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1828         if (ret)
1829                 return ret;
1830
1831         if (vf_flush_wa) {
1832                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1833                 intel_logical_ring_emit(ringbuf, 0);
1834                 intel_logical_ring_emit(ringbuf, 0);
1835                 intel_logical_ring_emit(ringbuf, 0);
1836                 intel_logical_ring_emit(ringbuf, 0);
1837                 intel_logical_ring_emit(ringbuf, 0);
1838         }
1839
1840         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1841         intel_logical_ring_emit(ringbuf, flags);
1842         intel_logical_ring_emit(ringbuf, scratch_addr);
1843         intel_logical_ring_emit(ringbuf, 0);
1844         intel_logical_ring_emit(ringbuf, 0);
1845         intel_logical_ring_emit(ringbuf, 0);
1846         intel_logical_ring_advance(ringbuf);
1847
1848         return 0;
1849 }
1850
1851 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1852 {
1853         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1854 }
1855
1856 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1857 {
1858         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1859 }
1860
1861 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1862 {
1863
1864         /*
1865          * On BXT A steppings there is a HW coherency issue whereby the
1866          * MI_STORE_DATA_IMM storing the completed request's seqno
1867          * occasionally doesn't invalidate the CPU cache. Work around this by
1868          * clflushing the corresponding cacheline whenever the caller wants
1869          * the coherency to be guaranteed. Note that this cacheline is known
1870          * to be clean at this point, since we only write it in
1871          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1872          * this clflush in practice becomes an invalidate operation.
1873          */
1874
1875         if (!lazy_coherency)
1876                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1877
1878         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1879 }
1880
1881 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1882 {
1883         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1884
1885         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1886         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1887 }
1888
1889 /*
1890  * Reserve space for 2 NOOPs at the end of each request to be
1891  * used as a workaround for not being allowed to do lite
1892  * restore with HEAD==TAIL (WaIdleLiteRestore).
1893  */
1894 #define WA_TAIL_DWORDS 2
1895
1896 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1897 {
1898         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1899 }
1900
1901 static int gen8_emit_request(struct drm_i915_gem_request *request)
1902 {
1903         struct intel_ringbuffer *ringbuf = request->ringbuf;
1904         int ret;
1905
1906         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1907         if (ret)
1908                 return ret;
1909
1910         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1911         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1912
1913         intel_logical_ring_emit(ringbuf,
1914                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1915         intel_logical_ring_emit(ringbuf,
1916                                 hws_seqno_address(request->ring) |
1917                                 MI_FLUSH_DW_USE_GTT);
1918         intel_logical_ring_emit(ringbuf, 0);
1919         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1920         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1921         intel_logical_ring_emit(ringbuf, MI_NOOP);
1922         return intel_logical_ring_advance_and_submit(request);
1923 }
1924
1925 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1926 {
1927         struct intel_ringbuffer *ringbuf = request->ringbuf;
1928         int ret;
1929
1930         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1931         if (ret)
1932                 return ret;
1933
1934         /* w/a for post sync ops following a GPGPU operation we
1935          * need a prior CS_STALL, which is emitted by the flush
1936          * following the batch.
1937          */
1938         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1939         intel_logical_ring_emit(ringbuf,
1940                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1941                                  PIPE_CONTROL_CS_STALL |
1942                                  PIPE_CONTROL_QW_WRITE));
1943         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1944         intel_logical_ring_emit(ringbuf, 0);
1945         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1946         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1947         return intel_logical_ring_advance_and_submit(request);
1948 }
1949
1950 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1951 {
1952         struct render_state so;
1953         int ret;
1954
1955         ret = i915_gem_render_state_prepare(req->ring, &so);
1956         if (ret)
1957                 return ret;
1958
1959         if (so.rodata == NULL)
1960                 return 0;
1961
1962         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1963                                        I915_DISPATCH_SECURE);
1964         if (ret)
1965                 goto out;
1966
1967         ret = req->ring->emit_bb_start(req,
1968                                        (so.ggtt_offset + so.aux_batch_offset),
1969                                        I915_DISPATCH_SECURE);
1970         if (ret)
1971                 goto out;
1972
1973         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1974
1975 out:
1976         i915_gem_render_state_fini(&so);
1977         return ret;
1978 }
1979
1980 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1981 {
1982         int ret;
1983
1984         ret = intel_logical_ring_workarounds_emit(req);
1985         if (ret)
1986                 return ret;
1987
1988         ret = intel_rcs_context_init_mocs(req);
1989         /*
1990          * Failing to program the MOCS is non-fatal.The system will not
1991          * run at peak performance. So generate an error and carry on.
1992          */
1993         if (ret)
1994                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1995
1996         return intel_lr_context_render_state_init(req);
1997 }
1998
1999 /**
2000  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2001  *
2002  * @ring: Engine Command Streamer.
2003  *
2004  */
2005 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
2006 {
2007         struct drm_i915_private *dev_priv;
2008
2009         if (!intel_ring_initialized(ring))
2010                 return;
2011
2012         dev_priv = ring->dev->dev_private;
2013
2014         if (ring->buffer) {
2015                 intel_logical_ring_stop(ring);
2016                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
2017         }
2018
2019         if (ring->cleanup)
2020                 ring->cleanup(ring);
2021
2022         i915_cmd_parser_fini_ring(ring);
2023         i915_gem_batch_pool_fini(&ring->batch_pool);
2024
2025         if (ring->status_page.obj) {
2026                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
2027                 ring->status_page.obj = NULL;
2028         }
2029
2030         ring->idle_lite_restore_wa = 0;
2031         ring->disable_lite_restore_wa = false;
2032         ring->ctx_desc_template = 0;
2033
2034         lrc_destroy_wa_ctx_obj(ring);
2035         ring->dev = NULL;
2036 }
2037
2038 static void
2039 logical_ring_default_vfuncs(struct drm_device *dev,
2040                             struct intel_engine_cs *ring)
2041 {
2042         /* Default vfuncs which can be overriden by each engine. */
2043         ring->init_hw = gen8_init_common_ring;
2044         ring->emit_request = gen8_emit_request;
2045         ring->emit_flush = gen8_emit_flush;
2046         ring->irq_get = gen8_logical_ring_get_irq;
2047         ring->irq_put = gen8_logical_ring_put_irq;
2048         ring->emit_bb_start = gen8_emit_bb_start;
2049         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2050                 ring->get_seqno = bxt_a_get_seqno;
2051                 ring->set_seqno = bxt_a_set_seqno;
2052         } else {
2053                 ring->get_seqno = gen8_get_seqno;
2054                 ring->set_seqno = gen8_set_seqno;
2055         }
2056 }
2057
2058 static inline void
2059 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2060 {
2061         ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2062         ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2063 }
2064
2065 static int
2066 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2067 {
2068         struct intel_context *dctx = to_i915(dev)->kernel_context;
2069         int ret;
2070
2071         /* Intentionally left blank. */
2072         ring->buffer = NULL;
2073
2074         ring->dev = dev;
2075         INIT_LIST_HEAD(&ring->active_list);
2076         INIT_LIST_HEAD(&ring->request_list);
2077         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2078         init_waitqueue_head(&ring->irq_queue);
2079
2080         INIT_LIST_HEAD(&ring->buffers);
2081         INIT_LIST_HEAD(&ring->execlist_queue);
2082         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2083         spin_lock_init(&ring->execlist_lock);
2084
2085         logical_ring_init_platform_invariants(ring);
2086
2087         ret = i915_cmd_parser_init_ring(ring);
2088         if (ret)
2089                 goto error;
2090
2091         ret = intel_lr_context_deferred_alloc(dctx, ring);
2092         if (ret)
2093                 goto error;
2094
2095         /* As this is the default context, always pin it */
2096         ret = intel_lr_context_do_pin(dctx, ring);
2097         if (ret) {
2098                 DRM_ERROR(
2099                         "Failed to pin and map ringbuffer %s: %d\n",
2100                         ring->name, ret);
2101                 goto error;
2102         }
2103
2104         return 0;
2105
2106 error:
2107         intel_logical_ring_cleanup(ring);
2108         return ret;
2109 }
2110
2111 static int logical_render_ring_init(struct drm_device *dev)
2112 {
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114         struct intel_engine_cs *engine = &dev_priv->ring[RCS];
2115         int ret;
2116
2117         engine->name = "render ring";
2118         engine->id = RCS;
2119         engine->exec_id = I915_EXEC_RENDER;
2120         engine->guc_id = GUC_RENDER_ENGINE;
2121         engine->mmio_base = RENDER_RING_BASE;
2122
2123         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2124         if (HAS_L3_DPF(dev))
2125                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2126
2127         logical_ring_default_vfuncs(dev, engine);
2128
2129         /* Override some for render ring. */
2130         if (INTEL_INFO(dev)->gen >= 9)
2131                 engine->init_hw = gen9_init_render_ring;
2132         else
2133                 engine->init_hw = gen8_init_render_ring;
2134         engine->init_context = gen8_init_rcs_context;
2135         engine->cleanup = intel_fini_pipe_control;
2136         engine->emit_flush = gen8_emit_flush_render;
2137         engine->emit_request = gen8_emit_request_render;
2138
2139         engine->dev = dev;
2140
2141         ret = intel_init_pipe_control(engine);
2142         if (ret)
2143                 return ret;
2144
2145         ret = intel_init_workaround_bb(engine);
2146         if (ret) {
2147                 /*
2148                  * We continue even if we fail to initialize WA batch
2149                  * because we only expect rare glitches but nothing
2150                  * critical to prevent us from using GPU
2151                  */
2152                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2153                           ret);
2154         }
2155
2156         ret = logical_ring_init(dev, engine);
2157         if (ret) {
2158                 lrc_destroy_wa_ctx_obj(engine);
2159         }
2160
2161         return ret;
2162 }
2163
2164 static int logical_bsd_ring_init(struct drm_device *dev)
2165 {
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         struct intel_engine_cs *engine = &dev_priv->ring[VCS];
2168
2169         engine->name = "bsd ring";
2170         engine->id = VCS;
2171         engine->exec_id = I915_EXEC_BSD;
2172         engine->guc_id = GUC_VIDEO_ENGINE;
2173         engine->mmio_base = GEN6_BSD_RING_BASE;
2174
2175         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2176         logical_ring_default_vfuncs(dev, engine);
2177
2178         return logical_ring_init(dev, engine);
2179 }
2180
2181 static int logical_bsd2_ring_init(struct drm_device *dev)
2182 {
2183         struct drm_i915_private *dev_priv = dev->dev_private;
2184         struct intel_engine_cs *engine = &dev_priv->ring[VCS2];
2185
2186         engine->name = "bsd2 ring";
2187         engine->id = VCS2;
2188         engine->exec_id = I915_EXEC_BSD;
2189         engine->guc_id = GUC_VIDEO_ENGINE2;
2190         engine->mmio_base = GEN8_BSD2_RING_BASE;
2191
2192         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2193         logical_ring_default_vfuncs(dev, engine);
2194
2195         return logical_ring_init(dev, engine);
2196 }
2197
2198 static int logical_blt_ring_init(struct drm_device *dev)
2199 {
2200         struct drm_i915_private *dev_priv = dev->dev_private;
2201         struct intel_engine_cs *engine = &dev_priv->ring[BCS];
2202
2203         engine->name = "blitter ring";
2204         engine->id = BCS;
2205         engine->exec_id = I915_EXEC_BLT;
2206         engine->guc_id = GUC_BLITTER_ENGINE;
2207         engine->mmio_base = BLT_RING_BASE;
2208
2209         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2210         logical_ring_default_vfuncs(dev, engine);
2211
2212         return logical_ring_init(dev, engine);
2213 }
2214
2215 static int logical_vebox_ring_init(struct drm_device *dev)
2216 {
2217         struct drm_i915_private *dev_priv = dev->dev_private;
2218         struct intel_engine_cs *engine = &dev_priv->ring[VECS];
2219
2220         engine->name = "video enhancement ring";
2221         engine->id = VECS;
2222         engine->exec_id = I915_EXEC_VEBOX;
2223         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2224         engine->mmio_base = VEBOX_RING_BASE;
2225
2226         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2227         logical_ring_default_vfuncs(dev, engine);
2228
2229         return logical_ring_init(dev, engine);
2230 }
2231
2232 /**
2233  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2234  * @dev: DRM device.
2235  *
2236  * This function inits the engines for an Execlists submission style (the equivalent in the
2237  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2238  * those engines that are present in the hardware.
2239  *
2240  * Return: non-zero if the initialization failed.
2241  */
2242 int intel_logical_rings_init(struct drm_device *dev)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         int ret;
2246
2247         ret = logical_render_ring_init(dev);
2248         if (ret)
2249                 return ret;
2250
2251         if (HAS_BSD(dev)) {
2252                 ret = logical_bsd_ring_init(dev);
2253                 if (ret)
2254                         goto cleanup_render_ring;
2255         }
2256
2257         if (HAS_BLT(dev)) {
2258                 ret = logical_blt_ring_init(dev);
2259                 if (ret)
2260                         goto cleanup_bsd_ring;
2261         }
2262
2263         if (HAS_VEBOX(dev)) {
2264                 ret = logical_vebox_ring_init(dev);
2265                 if (ret)
2266                         goto cleanup_blt_ring;
2267         }
2268
2269         if (HAS_BSD2(dev)) {
2270                 ret = logical_bsd2_ring_init(dev);
2271                 if (ret)
2272                         goto cleanup_vebox_ring;
2273         }
2274
2275         return 0;
2276
2277 cleanup_vebox_ring:
2278         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2279 cleanup_blt_ring:
2280         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2281 cleanup_bsd_ring:
2282         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2283 cleanup_render_ring:
2284         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2285
2286         return ret;
2287 }
2288
2289 static u32
2290 make_rpcs(struct drm_device *dev)
2291 {
2292         u32 rpcs = 0;
2293
2294         /*
2295          * No explicit RPCS request is needed to ensure full
2296          * slice/subslice/EU enablement prior to Gen9.
2297         */
2298         if (INTEL_INFO(dev)->gen < 9)
2299                 return 0;
2300
2301         /*
2302          * Starting in Gen9, render power gating can leave
2303          * slice/subslice/EU in a partially enabled state. We
2304          * must make an explicit request through RPCS for full
2305          * enablement.
2306         */
2307         if (INTEL_INFO(dev)->has_slice_pg) {
2308                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2309                 rpcs |= INTEL_INFO(dev)->slice_total <<
2310                         GEN8_RPCS_S_CNT_SHIFT;
2311                 rpcs |= GEN8_RPCS_ENABLE;
2312         }
2313
2314         if (INTEL_INFO(dev)->has_subslice_pg) {
2315                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2316                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2317                         GEN8_RPCS_SS_CNT_SHIFT;
2318                 rpcs |= GEN8_RPCS_ENABLE;
2319         }
2320
2321         if (INTEL_INFO(dev)->has_eu_pg) {
2322                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2323                         GEN8_RPCS_EU_MIN_SHIFT;
2324                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2325                         GEN8_RPCS_EU_MAX_SHIFT;
2326                 rpcs |= GEN8_RPCS_ENABLE;
2327         }
2328
2329         return rpcs;
2330 }
2331
2332 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *ring)
2333 {
2334         u32 indirect_ctx_offset;
2335
2336         switch (INTEL_INFO(ring->dev)->gen) {
2337         default:
2338                 MISSING_CASE(INTEL_INFO(ring->dev)->gen);
2339                 /* fall through */
2340         case 9:
2341                 indirect_ctx_offset =
2342                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2343                 break;
2344         case 8:
2345                 indirect_ctx_offset =
2346                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2347                 break;
2348         }
2349
2350         return indirect_ctx_offset;
2351 }
2352
2353 static int
2354 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2355                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2356 {
2357         struct drm_device *dev = ring->dev;
2358         struct drm_i915_private *dev_priv = dev->dev_private;
2359         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2360         struct page *page;
2361         uint32_t *reg_state;
2362         int ret;
2363
2364         if (!ppgtt)
2365                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2366
2367         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2368         if (ret) {
2369                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2370                 return ret;
2371         }
2372
2373         ret = i915_gem_object_get_pages(ctx_obj);
2374         if (ret) {
2375                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2376                 return ret;
2377         }
2378
2379         i915_gem_object_pin_pages(ctx_obj);
2380
2381         /* The second page of the context object contains some fields which must
2382          * be set up prior to the first execution. */
2383         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2384         reg_state = kmap_atomic(page);
2385
2386         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2387          * commands followed by (reg, value) pairs. The values we are setting here are
2388          * only for the first context restore: on a subsequent save, the GPU will
2389          * recreate this batchbuffer with new values (including all the missing
2390          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2391         reg_state[CTX_LRI_HEADER_0] =
2392                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2393         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2394                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2395                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2396                                           (HAS_RESOURCE_STREAMER(dev) ?
2397                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2398         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2399         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2400         /* Ring buffer start address is not known until the buffer is pinned.
2401          * It is written to the context image in execlists_update_context()
2402          */
2403         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2404         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2405                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2406         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2407         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2408         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2409                        RING_BB_PPGTT);
2410         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2411         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2412         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2413         if (ring->id == RCS) {
2414                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2415                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2416                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2417                 if (ring->wa_ctx.obj) {
2418                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2419                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2420
2421                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2422                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2423                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2424
2425                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2426                                 intel_lr_indirect_ctx_offset(ring) << 6;
2427
2428                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2429                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2430                                 0x01;
2431                 }
2432         }
2433         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2434         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2435         /* PDP values well be assigned later if needed */
2436         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2437         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2438         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2439         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2440         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2441         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2442         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2443         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2444
2445         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2446                 /* 64b PPGTT (48bit canonical)
2447                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2448                  * other PDP Descriptors are ignored.
2449                  */
2450                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2451         } else {
2452                 /* 32b PPGTT
2453                  * PDP*_DESCRIPTOR contains the base address of space supported.
2454                  * With dynamic page allocation, PDPs may not be allocated at
2455                  * this point. Point the unallocated PDPs to the scratch page
2456                  */
2457                 execlists_update_context_pdps(ppgtt, reg_state);
2458         }
2459
2460         if (ring->id == RCS) {
2461                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2462                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2463                                make_rpcs(dev));
2464         }
2465
2466         kunmap_atomic(reg_state);
2467         i915_gem_object_unpin_pages(ctx_obj);
2468
2469         return 0;
2470 }
2471
2472 /**
2473  * intel_lr_context_free() - free the LRC specific bits of a context
2474  * @ctx: the LR context to free.
2475  *
2476  * The real context freeing is done in i915_gem_context_free: this only
2477  * takes care of the bits that are LRC related: the per-engine backing
2478  * objects and the logical ringbuffer.
2479  */
2480 void intel_lr_context_free(struct intel_context *ctx)
2481 {
2482         int i;
2483
2484         for (i = I915_NUM_RINGS; --i >= 0; ) {
2485                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2486                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2487
2488                 if (!ctx_obj)
2489                         continue;
2490
2491                 if (ctx == ctx->i915->kernel_context) {
2492                         intel_unpin_ringbuffer_obj(ringbuf);
2493                         i915_gem_object_ggtt_unpin(ctx_obj);
2494                 }
2495
2496                 WARN_ON(ctx->engine[i].pin_count);
2497                 intel_ringbuffer_free(ringbuf);
2498                 drm_gem_object_unreference(&ctx_obj->base);
2499         }
2500 }
2501
2502 /**
2503  * intel_lr_context_size() - return the size of the context for an engine
2504  * @ring: which engine to find the context size for
2505  *
2506  * Each engine may require a different amount of space for a context image,
2507  * so when allocating (or copying) an image, this function can be used to
2508  * find the right size for the specific engine.
2509  *
2510  * Return: size (in bytes) of an engine-specific context image
2511  *
2512  * Note: this size includes the HWSP, which is part of the context image
2513  * in LRC mode, but does not include the "shared data page" used with
2514  * GuC submission. The caller should account for this if using the GuC.
2515  */
2516 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2517 {
2518         int ret = 0;
2519
2520         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2521
2522         switch (ring->id) {
2523         case RCS:
2524                 if (INTEL_INFO(ring->dev)->gen >= 9)
2525                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2526                 else
2527                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2528                 break;
2529         case VCS:
2530         case BCS:
2531         case VECS:
2532         case VCS2:
2533                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2534                 break;
2535         }
2536
2537         return ret;
2538 }
2539
2540 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2541                 struct drm_i915_gem_object *default_ctx_obj)
2542 {
2543         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2544         struct page *page;
2545
2546         /* The HWSP is part of the default context object in LRC mode. */
2547         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2548                         + LRC_PPHWSP_PN * PAGE_SIZE;
2549         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2550         ring->status_page.page_addr = kmap(page);
2551         ring->status_page.obj = default_ctx_obj;
2552
2553         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2554                         (u32)ring->status_page.gfx_addr);
2555         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2556 }
2557
2558 /**
2559  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2560  * @ctx: LR context to create.
2561  * @ring: engine to be used with the context.
2562  *
2563  * This function can be called more than once, with different engines, if we plan
2564  * to use the context with them. The context backing objects and the ringbuffers
2565  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2566  * the creation is a deferred call: it's better to make sure first that we need to use
2567  * a given ring with the context.
2568  *
2569  * Return: non-zero on error.
2570  */
2571
2572 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2573                                     struct intel_engine_cs *ring)
2574 {
2575         struct drm_device *dev = ring->dev;
2576         struct drm_i915_gem_object *ctx_obj;
2577         uint32_t context_size;
2578         struct intel_ringbuffer *ringbuf;
2579         int ret;
2580
2581         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2582         WARN_ON(ctx->engine[ring->id].state);
2583
2584         context_size = round_up(intel_lr_context_size(ring), 4096);
2585
2586         /* One extra page as the sharing data between driver and GuC */
2587         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2588
2589         ctx_obj = i915_gem_alloc_object(dev, context_size);
2590         if (!ctx_obj) {
2591                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2592                 return -ENOMEM;
2593         }
2594
2595         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2596         if (IS_ERR(ringbuf)) {
2597                 ret = PTR_ERR(ringbuf);
2598                 goto error_deref_obj;
2599         }
2600
2601         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2602         if (ret) {
2603                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2604                 goto error_ringbuf;
2605         }
2606
2607         ctx->engine[ring->id].ringbuf = ringbuf;
2608         ctx->engine[ring->id].state = ctx_obj;
2609
2610         if (ctx != ctx->i915->kernel_context && ring->init_context) {
2611                 struct drm_i915_gem_request *req;
2612
2613                 req = i915_gem_request_alloc(ring, ctx);
2614                 if (IS_ERR(req)) {
2615                         ret = PTR_ERR(req);
2616                         DRM_ERROR("ring create req: %d\n", ret);
2617                         goto error_ringbuf;
2618                 }
2619
2620                 ret = ring->init_context(req);
2621                 if (ret) {
2622                         DRM_ERROR("ring init context: %d\n",
2623                                 ret);
2624                         i915_gem_request_cancel(req);
2625                         goto error_ringbuf;
2626                 }
2627                 i915_add_request_no_flush(req);
2628         }
2629         return 0;
2630
2631 error_ringbuf:
2632         intel_ringbuffer_free(ringbuf);
2633 error_deref_obj:
2634         drm_gem_object_unreference(&ctx_obj->base);
2635         ctx->engine[ring->id].ringbuf = NULL;
2636         ctx->engine[ring->id].state = NULL;
2637         return ret;
2638 }
2639
2640 void intel_lr_context_reset(struct drm_device *dev,
2641                         struct intel_context *ctx)
2642 {
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         struct intel_engine_cs *engine;
2645         int i;
2646
2647         for_each_ring(engine, dev_priv, i) {
2648                 struct drm_i915_gem_object *ctx_obj =
2649                                 ctx->engine[engine->id].state;
2650                 struct intel_ringbuffer *ringbuf =
2651                                 ctx->engine[engine->id].ringbuf;
2652                 uint32_t *reg_state;
2653                 struct page *page;
2654
2655                 if (!ctx_obj)
2656                         continue;
2657
2658                 if (i915_gem_object_get_pages(ctx_obj)) {
2659                         WARN(1, "Failed get_pages for context obj\n");
2660                         continue;
2661                 }
2662                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2663                 reg_state = kmap_atomic(page);
2664
2665                 reg_state[CTX_RING_HEAD+1] = 0;
2666                 reg_state[CTX_RING_TAIL+1] = 0;
2667
2668                 kunmap_atomic(reg_state);
2669
2670                 ringbuf->head = 0;
2671                 ringbuf->tail = 0;
2672         }
2673 }