]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
5d4ca3b11ae2b10d2a07305755bb6ff94fdb04bb
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
227 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
228
229 static int intel_lr_context_pin(struct intel_context *ctx,
230                                 struct intel_engine_cs *engine);
231 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
232                                            struct drm_i915_gem_object *default_ctx_obj);
233
234
235 /**
236  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237  * @dev: DRM device.
238  * @enable_execlists: value of i915.enable_execlists module parameter.
239  *
240  * Only certain platforms support Execlists (the prerequisites being
241  * support for Logical Ring Contexts and Aliasing PPGTT or better).
242  *
243  * Return: 1 if Execlists is supported and has to be enabled.
244  */
245 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246 {
247         WARN_ON(i915.enable_ppgtt == -1);
248
249         /* On platforms with execlist available, vGPU will only
250          * support execlist mode, no ring buffer mode.
251          */
252         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253                 return 1;
254
255         if (INTEL_INFO(dev)->gen >= 9)
256                 return 1;
257
258         if (enable_execlists == 0)
259                 return 0;
260
261         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262             i915.use_mmio_flip >= 0)
263                 return 1;
264
265         return 0;
266 }
267
268 static void
269 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
270 {
271         struct drm_device *dev = engine->dev;
272
273         if (IS_GEN8(dev) || IS_GEN9(dev))
274                 engine->idle_lite_restore_wa = ~0;
275
276         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
277                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
278                                         (engine->id == VCS || engine->id == VCS2);
279
280         engine->ctx_desc_template = GEN8_CTX_VALID;
281         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
282                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
283         if (IS_GEN8(dev))
284                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287         /* TODO: WaDisableLiteRestore when we start using semaphore
288          * signalling between Command Streamers */
289         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293         if (engine->disable_lite_restore_wa)
294                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 }
296
297 /**
298  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299  *                                        descriptor for a pinned context
300  *
301  * @ctx: Context to work on
302  * @ring: Engine the descriptor will be used with
303  *
304  * The context descriptor encodes various attributes of a context,
305  * including its GTT address and some flags. Because it's fairly
306  * expensive to calculate, we'll just do it once and cache the result,
307  * which remains valid until the context is unpinned.
308  *
309  * This is what a descriptor looks like, from LSB to MSB:
310  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
311  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
312  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
313  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
314  */
315 static void
316 intel_lr_context_descriptor_update(struct intel_context *ctx,
317                                    struct intel_engine_cs *engine)
318 {
319         uint64_t lrca, desc;
320
321         lrca = ctx->engine[engine->id].lrc_vma->node.start +
322                LRC_PPHWSP_PN * PAGE_SIZE;
323
324         desc = engine->ctx_desc_template;                          /* bits  0-11 */
325         desc |= lrca;                                      /* bits 12-31 */
326         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
327
328         ctx->engine[engine->id].lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332                                      struct intel_engine_cs *engine)
333 {
334         return ctx->engine[engine->id].lrc_desc;
335 }
336
337 /**
338  * intel_execlists_ctx_id() - get the Execlists Context ID
339  * @ctx: Context to get the ID for
340  * @ring: Engine to get the ID for
341  *
342  * Do not confuse with ctx->id! Unfortunately we have a name overload
343  * here: the old context ID we pass to userspace as a handler so that
344  * they can refer to a context, and the new context ID we pass to the
345  * ELSP so that the GPU can inform us of the context status via
346  * interrupts.
347  *
348  * The context ID is a portion of the context descriptor, so we can
349  * just extract the required part from the cached descriptor.
350  *
351  * Return: 20-bits globally unique context ID.
352  */
353 u32 intel_execlists_ctx_id(struct intel_context *ctx,
354                            struct intel_engine_cs *engine)
355 {
356         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
357 }
358
359 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360                                  struct drm_i915_gem_request *rq1)
361 {
362
363         struct intel_engine_cs *engine = rq0->engine;
364         struct drm_device *dev = engine->dev;
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         uint64_t desc[2];
367
368         if (rq1) {
369                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
370                 rq1->elsp_submitted++;
371         } else {
372                 desc[1] = 0;
373         }
374
375         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
376         rq0->elsp_submitted++;
377
378         /* You must always write both descriptors in the order below. */
379         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
381
382         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
383         /* The context is automatically loaded after the following */
384         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
385
386         /* ELSP is a wo register, use another nearby reg for posting */
387         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
388 }
389
390 static void
391 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392 {
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397 }
398
399 static void execlists_update_context(struct drm_i915_gem_request *rq)
400 {
401         struct intel_engine_cs *engine = rq->engine;
402         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
403         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
404
405         reg_state[CTX_RING_TAIL+1] = rq->tail;
406
407         /* True 32b PPGTT with dynamic page allocation: update PDP
408          * registers and point the unallocated PDPs to scratch page.
409          * PML4 is allocated during ppgtt init, so this is not needed
410          * in 48-bit mode.
411          */
412         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413                 execlists_update_context_pdps(ppgtt, reg_state);
414 }
415
416 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417                                       struct drm_i915_gem_request *rq1)
418 {
419         struct drm_i915_private *dev_priv = rq0->i915;
420
421         /* BUG_ON(!irqs_disabled());  */
422
423         execlists_update_context(rq0);
424
425         if (rq1)
426                 execlists_update_context(rq1);
427
428         spin_lock(&dev_priv->uncore.lock);
429         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
430
431         execlists_elsp_write(rq0, rq1);
432
433         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
434         spin_unlock(&dev_priv->uncore.lock);
435 }
436
437 static void execlists_context_unqueue(struct intel_engine_cs *engine)
438 {
439         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
440         struct drm_i915_gem_request *cursor, *tmp;
441
442         assert_spin_locked(&engine->execlist_lock);
443
444         /*
445          * If irqs are not active generate a warning as batches that finish
446          * without the irqs may get lost and a GPU Hang may occur.
447          */
448         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
449
450         /* Try to read in pairs */
451         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
452                                  execlist_link) {
453                 if (!req0) {
454                         req0 = cursor;
455                 } else if (req0->ctx == cursor->ctx) {
456                         /* Same ctx: ignore first request, as second request
457                          * will update tail past first request's workload */
458                         cursor->elsp_submitted = req0->elsp_submitted;
459                         list_move_tail(&req0->execlist_link,
460                                        &engine->execlist_retired_req_list);
461                         req0 = cursor;
462                 } else {
463                         req1 = cursor;
464                         WARN_ON(req1->elsp_submitted);
465                         break;
466                 }
467         }
468
469         if (unlikely(!req0))
470                 return;
471
472         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
473                 /*
474                  * WaIdleLiteRestore: make sure we never cause a lite restore
475                  * with HEAD==TAIL.
476                  *
477                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
478                  * resubmit the request. See gen8_emit_request() for where we
479                  * prepare the padding after the end of the request.
480                  */
481                 struct intel_ringbuffer *ringbuf;
482
483                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
484                 req0->tail += 8;
485                 req0->tail &= ringbuf->size - 1;
486         }
487
488         execlists_submit_requests(req0, req1);
489 }
490
491 static unsigned int
492 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
493 {
494         struct drm_i915_gem_request *head_req;
495
496         assert_spin_locked(&engine->execlist_lock);
497
498         head_req = list_first_entry_or_null(&engine->execlist_queue,
499                                             struct drm_i915_gem_request,
500                                             execlist_link);
501
502         if (!head_req)
503                 return 0;
504
505         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
506                 return 0;
507
508         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
509
510         if (--head_req->elsp_submitted > 0)
511                 return 0;
512
513         list_move_tail(&head_req->execlist_link,
514                        &engine->execlist_retired_req_list);
515
516         return 1;
517 }
518
519 static u32
520 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521                    u32 *context_id)
522 {
523         struct drm_i915_private *dev_priv = engine->dev->dev_private;
524         u32 status;
525
526         read_pointer %= GEN8_CSB_ENTRIES;
527
528         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529
530         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531                 return 0;
532
533         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534                                                               read_pointer));
535
536         return status;
537 }
538
539 /**
540  * intel_lrc_irq_handler() - handle Context Switch interrupts
541  * @ring: Engine Command Streamer to handle.
542  *
543  * Check the unread Context Status Buffers and manage the submission of new
544  * contexts to the ELSP accordingly.
545  */
546 void intel_lrc_irq_handler(struct intel_engine_cs *engine)
547 {
548         struct drm_i915_private *dev_priv = engine->dev->dev_private;
549         u32 status_pointer;
550         unsigned int read_pointer, write_pointer;
551         u32 csb[GEN8_CSB_ENTRIES][2];
552         unsigned int csb_read = 0, i;
553         unsigned int submit_contexts = 0;
554
555         spin_lock(&dev_priv->uncore.lock);
556         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
557
558         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
559
560         read_pointer = engine->next_context_status_buffer;
561         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
562         if (read_pointer > write_pointer)
563                 write_pointer += GEN8_CSB_ENTRIES;
564
565         while (read_pointer < write_pointer) {
566                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
567                         break;
568                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
569                                                       &csb[csb_read][1]);
570                 csb_read++;
571         }
572
573         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574
575         /* Update the read pointer to the old write pointer. Manual ringbuffer
576          * management ftw </sarcasm> */
577         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
578                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579                                     engine->next_context_status_buffer << 8));
580
581         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
582         spin_unlock(&dev_priv->uncore.lock);
583
584         spin_lock(&engine->execlist_lock);
585
586         for (i = 0; i < csb_read; i++) {
587                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
588                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
589                                 if (execlists_check_remove_request(engine, csb[i][1]))
590                                         WARN(1, "Lite Restored request removed from queue\n");
591                         } else
592                                 WARN(1, "Preemption without Lite Restore\n");
593                 }
594
595                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
596                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
597                         submit_contexts +=
598                                 execlists_check_remove_request(engine, csb[i][1]);
599         }
600
601         if (submit_contexts) {
602                 if (!engine->disable_lite_restore_wa ||
603                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
604                         execlists_context_unqueue(engine);
605         }
606
607         spin_unlock(&engine->execlist_lock);
608
609         if (unlikely(submit_contexts > 2))
610                 DRM_ERROR("More than two context complete events?\n");
611 }
612
613 static void execlists_context_queue(struct drm_i915_gem_request *request)
614 {
615         struct intel_engine_cs *engine = request->engine;
616         struct drm_i915_gem_request *cursor;
617         int num_elements = 0;
618
619         if (request->ctx != request->i915->kernel_context)
620                 intel_lr_context_pin(request->ctx, engine);
621
622         i915_gem_request_reference(request);
623
624         spin_lock_irq(&engine->execlist_lock);
625
626         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
627                 if (++num_elements > 2)
628                         break;
629
630         if (num_elements > 2) {
631                 struct drm_i915_gem_request *tail_req;
632
633                 tail_req = list_last_entry(&engine->execlist_queue,
634                                            struct drm_i915_gem_request,
635                                            execlist_link);
636
637                 if (request->ctx == tail_req->ctx) {
638                         WARN(tail_req->elsp_submitted != 0,
639                                 "More than 2 already-submitted reqs queued\n");
640                         list_move_tail(&tail_req->execlist_link,
641                                        &engine->execlist_retired_req_list);
642                 }
643         }
644
645         list_add_tail(&request->execlist_link, &engine->execlist_queue);
646         if (num_elements == 0)
647                 execlists_context_unqueue(engine);
648
649         spin_unlock_irq(&engine->execlist_lock);
650 }
651
652 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
653 {
654         struct intel_engine_cs *engine = req->engine;
655         uint32_t flush_domains;
656         int ret;
657
658         flush_domains = 0;
659         if (engine->gpu_caches_dirty)
660                 flush_domains = I915_GEM_GPU_DOMAINS;
661
662         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
663         if (ret)
664                 return ret;
665
666         engine->gpu_caches_dirty = false;
667         return 0;
668 }
669
670 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
671                                  struct list_head *vmas)
672 {
673         const unsigned other_rings = ~intel_engine_flag(req->engine);
674         struct i915_vma *vma;
675         uint32_t flush_domains = 0;
676         bool flush_chipset = false;
677         int ret;
678
679         list_for_each_entry(vma, vmas, exec_list) {
680                 struct drm_i915_gem_object *obj = vma->obj;
681
682                 if (obj->active & other_rings) {
683                         ret = i915_gem_object_sync(obj, req->engine, &req);
684                         if (ret)
685                                 return ret;
686                 }
687
688                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
689                         flush_chipset |= i915_gem_clflush_object(obj, false);
690
691                 flush_domains |= obj->base.write_domain;
692         }
693
694         if (flush_domains & I915_GEM_DOMAIN_GTT)
695                 wmb();
696
697         /* Unconditionally invalidate gpu caches and ensure that we do flush
698          * any residual writes from the previous batch.
699          */
700         return logical_ring_invalidate_all_caches(req);
701 }
702
703 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
704 {
705         int ret = 0;
706
707         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
708
709         if (i915.enable_guc_submission) {
710                 /*
711                  * Check that the GuC has space for the request before
712                  * going any further, as the i915_add_request() call
713                  * later on mustn't fail ...
714                  */
715                 struct intel_guc *guc = &request->i915->guc;
716
717                 ret = i915_guc_wq_check_space(guc->execbuf_client);
718                 if (ret)
719                         return ret;
720         }
721
722         if (request->ctx != request->i915->kernel_context)
723                 ret = intel_lr_context_pin(request->ctx, request->engine);
724
725         return ret;
726 }
727
728 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
729                                        int bytes)
730 {
731         struct intel_ringbuffer *ringbuf = req->ringbuf;
732         struct intel_engine_cs *engine = req->engine;
733         struct drm_i915_gem_request *target;
734         unsigned space;
735         int ret;
736
737         if (intel_ring_space(ringbuf) >= bytes)
738                 return 0;
739
740         /* The whole point of reserving space is to not wait! */
741         WARN_ON(ringbuf->reserved_in_use);
742
743         list_for_each_entry(target, &engine->request_list, list) {
744                 /*
745                  * The request queue is per-engine, so can contain requests
746                  * from multiple ringbuffers. Here, we must ignore any that
747                  * aren't from the ringbuffer we're considering.
748                  */
749                 if (target->ringbuf != ringbuf)
750                         continue;
751
752                 /* Would completion of this request free enough space? */
753                 space = __intel_ring_space(target->postfix, ringbuf->tail,
754                                            ringbuf->size);
755                 if (space >= bytes)
756                         break;
757         }
758
759         if (WARN_ON(&target->list == &engine->request_list))
760                 return -ENOSPC;
761
762         ret = i915_wait_request(target);
763         if (ret)
764                 return ret;
765
766         ringbuf->space = space;
767         return 0;
768 }
769
770 /*
771  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
772  * @request: Request to advance the logical ringbuffer of.
773  *
774  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
775  * really happens during submission is that the context and current tail will be placed
776  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
777  * point, the tail *inside* the context is updated and the ELSP written to.
778  */
779 static int
780 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
781 {
782         struct intel_ringbuffer *ringbuf = request->ringbuf;
783         struct drm_i915_private *dev_priv = request->i915;
784         struct intel_engine_cs *engine = request->engine;
785
786         intel_logical_ring_advance(ringbuf);
787         request->tail = ringbuf->tail;
788
789         /*
790          * Here we add two extra NOOPs as padding to avoid
791          * lite restore of a context with HEAD==TAIL.
792          *
793          * Caller must reserve WA_TAIL_DWORDS for us!
794          */
795         intel_logical_ring_emit(ringbuf, MI_NOOP);
796         intel_logical_ring_emit(ringbuf, MI_NOOP);
797         intel_logical_ring_advance(ringbuf);
798
799         if (intel_engine_stopped(engine))
800                 return 0;
801
802         if (engine->last_context != request->ctx) {
803                 if (engine->last_context)
804                         intel_lr_context_unpin(engine->last_context, engine);
805                 if (request->ctx != request->i915->kernel_context) {
806                         intel_lr_context_pin(request->ctx, engine);
807                         engine->last_context = request->ctx;
808                 } else {
809                         engine->last_context = NULL;
810                 }
811         }
812
813         if (dev_priv->guc.execbuf_client)
814                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
815         else
816                 execlists_context_queue(request);
817
818         return 0;
819 }
820
821 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
822 {
823         uint32_t __iomem *virt;
824         int rem = ringbuf->size - ringbuf->tail;
825
826         virt = ringbuf->virtual_start + ringbuf->tail;
827         rem /= 4;
828         while (rem--)
829                 iowrite32(MI_NOOP, virt++);
830
831         ringbuf->tail = 0;
832         intel_ring_update_space(ringbuf);
833 }
834
835 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
836 {
837         struct intel_ringbuffer *ringbuf = req->ringbuf;
838         int remain_usable = ringbuf->effective_size - ringbuf->tail;
839         int remain_actual = ringbuf->size - ringbuf->tail;
840         int ret, total_bytes, wait_bytes = 0;
841         bool need_wrap = false;
842
843         if (ringbuf->reserved_in_use)
844                 total_bytes = bytes;
845         else
846                 total_bytes = bytes + ringbuf->reserved_size;
847
848         if (unlikely(bytes > remain_usable)) {
849                 /*
850                  * Not enough space for the basic request. So need to flush
851                  * out the remainder and then wait for base + reserved.
852                  */
853                 wait_bytes = remain_actual + total_bytes;
854                 need_wrap = true;
855         } else {
856                 if (unlikely(total_bytes > remain_usable)) {
857                         /*
858                          * The base request will fit but the reserved space
859                          * falls off the end. So only need to to wait for the
860                          * reserved size after flushing out the remainder.
861                          */
862                         wait_bytes = remain_actual + ringbuf->reserved_size;
863                         need_wrap = true;
864                 } else if (total_bytes > ringbuf->space) {
865                         /* No wrapping required, just waiting. */
866                         wait_bytes = total_bytes;
867                 }
868         }
869
870         if (wait_bytes) {
871                 ret = logical_ring_wait_for_space(req, wait_bytes);
872                 if (unlikely(ret))
873                         return ret;
874
875                 if (need_wrap)
876                         __wrap_ring_buffer(ringbuf);
877         }
878
879         return 0;
880 }
881
882 /**
883  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
884  *
885  * @req: The request to start some new work for
886  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
887  *
888  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
889  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
890  * and also preallocates a request (every workload submission is still mediated through
891  * requests, same as it did with legacy ringbuffer submission).
892  *
893  * Return: non-zero if the ringbuffer is not ready to be written to.
894  */
895 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
896 {
897         struct drm_i915_private *dev_priv;
898         int ret;
899
900         WARN_ON(req == NULL);
901         dev_priv = req->i915;
902
903         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
904                                    dev_priv->mm.interruptible);
905         if (ret)
906                 return ret;
907
908         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
909         if (ret)
910                 return ret;
911
912         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
913         return 0;
914 }
915
916 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
917 {
918         /*
919          * The first call merely notes the reserve request and is common for
920          * all back ends. The subsequent localised _begin() call actually
921          * ensures that the reservation is available. Without the begin, if
922          * the request creator immediately submitted the request without
923          * adding any commands to it then there might not actually be
924          * sufficient room for the submission commands.
925          */
926         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
927
928         return intel_logical_ring_begin(request, 0);
929 }
930
931 /**
932  * execlists_submission() - submit a batchbuffer for execution, Execlists style
933  * @dev: DRM device.
934  * @file: DRM file.
935  * @ring: Engine Command Streamer to submit to.
936  * @ctx: Context to employ for this submission.
937  * @args: execbuffer call arguments.
938  * @vmas: list of vmas.
939  * @batch_obj: the batchbuffer to submit.
940  * @exec_start: batchbuffer start virtual address pointer.
941  * @dispatch_flags: translated execbuffer call flags.
942  *
943  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
944  * away the submission details of the execbuffer ioctl call.
945  *
946  * Return: non-zero if the submission fails.
947  */
948 int intel_execlists_submission(struct i915_execbuffer_params *params,
949                                struct drm_i915_gem_execbuffer2 *args,
950                                struct list_head *vmas)
951 {
952         struct drm_device       *dev = params->dev;
953         struct intel_engine_cs *engine = params->engine;
954         struct drm_i915_private *dev_priv = dev->dev_private;
955         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
956         u64 exec_start;
957         int instp_mode;
958         u32 instp_mask;
959         int ret;
960
961         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
962         instp_mask = I915_EXEC_CONSTANTS_MASK;
963         switch (instp_mode) {
964         case I915_EXEC_CONSTANTS_REL_GENERAL:
965         case I915_EXEC_CONSTANTS_ABSOLUTE:
966         case I915_EXEC_CONSTANTS_REL_SURFACE:
967                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
968                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
969                         return -EINVAL;
970                 }
971
972                 if (instp_mode != dev_priv->relative_constants_mode) {
973                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
974                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
975                                 return -EINVAL;
976                         }
977
978                         /* The HW changed the meaning on this bit on gen6 */
979                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
980                 }
981                 break;
982         default:
983                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
984                 return -EINVAL;
985         }
986
987         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
988                 DRM_DEBUG("sol reset is gen7 only\n");
989                 return -EINVAL;
990         }
991
992         ret = execlists_move_to_gpu(params->request, vmas);
993         if (ret)
994                 return ret;
995
996         if (engine == &dev_priv->engine[RCS] &&
997             instp_mode != dev_priv->relative_constants_mode) {
998                 ret = intel_logical_ring_begin(params->request, 4);
999                 if (ret)
1000                         return ret;
1001
1002                 intel_logical_ring_emit(ringbuf, MI_NOOP);
1003                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1004                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1005                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1006                 intel_logical_ring_advance(ringbuf);
1007
1008                 dev_priv->relative_constants_mode = instp_mode;
1009         }
1010
1011         exec_start = params->batch_obj_vm_offset +
1012                      args->batch_start_offset;
1013
1014         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1015         if (ret)
1016                 return ret;
1017
1018         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1019
1020         i915_gem_execbuffer_move_to_active(vmas, params->request);
1021         i915_gem_execbuffer_retire_commands(params);
1022
1023         return 0;
1024 }
1025
1026 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1027 {
1028         struct drm_i915_gem_request *req, *tmp;
1029         struct list_head retired_list;
1030
1031         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1032         if (list_empty(&engine->execlist_retired_req_list))
1033                 return;
1034
1035         INIT_LIST_HEAD(&retired_list);
1036         spin_lock_irq(&engine->execlist_lock);
1037         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1038         spin_unlock_irq(&engine->execlist_lock);
1039
1040         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1041                 struct intel_context *ctx = req->ctx;
1042                 struct drm_i915_gem_object *ctx_obj =
1043                                 ctx->engine[engine->id].state;
1044
1045                 if (ctx_obj && (ctx != req->i915->kernel_context))
1046                         intel_lr_context_unpin(ctx, engine);
1047
1048                 list_del(&req->execlist_link);
1049                 i915_gem_request_unreference(req);
1050         }
1051 }
1052
1053 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1054 {
1055         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1056         int ret;
1057
1058         if (!intel_engine_initialized(engine))
1059                 return;
1060
1061         ret = intel_engine_idle(engine);
1062         if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1063                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1064                           engine->name, ret);
1065
1066         /* TODO: Is this correct with Execlists enabled? */
1067         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1068         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1069                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1070                 return;
1071         }
1072         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1073 }
1074
1075 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1076 {
1077         struct intel_engine_cs *engine = req->engine;
1078         int ret;
1079
1080         if (!engine->gpu_caches_dirty)
1081                 return 0;
1082
1083         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1084         if (ret)
1085                 return ret;
1086
1087         engine->gpu_caches_dirty = false;
1088         return 0;
1089 }
1090
1091 static int intel_lr_context_do_pin(struct intel_context *ctx,
1092                                    struct intel_engine_cs *engine)
1093 {
1094         struct drm_device *dev = engine->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1097         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1098         struct page *lrc_state_page;
1099         uint32_t *lrc_reg_state;
1100         int ret;
1101
1102         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1103
1104         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1105                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1106         if (ret)
1107                 return ret;
1108
1109         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1110         if (WARN_ON(!lrc_state_page)) {
1111                 ret = -ENODEV;
1112                 goto unpin_ctx_obj;
1113         }
1114
1115         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1116         if (ret)
1117                 goto unpin_ctx_obj;
1118
1119         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1120         intel_lr_context_descriptor_update(ctx, engine);
1121         lrc_reg_state = kmap(lrc_state_page);
1122         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1123         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1124         ctx_obj->dirty = true;
1125
1126         /* Invalidate GuC TLB. */
1127         if (i915.enable_guc_submission)
1128                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1129
1130         return ret;
1131
1132 unpin_ctx_obj:
1133         i915_gem_object_ggtt_unpin(ctx_obj);
1134
1135         return ret;
1136 }
1137
1138 static int intel_lr_context_pin(struct intel_context *ctx,
1139                                 struct intel_engine_cs *engine)
1140 {
1141         int ret = 0;
1142
1143         if (ctx->engine[engine->id].pin_count++ == 0) {
1144                 ret = intel_lr_context_do_pin(ctx, engine);
1145                 if (ret)
1146                         goto reset_pin_count;
1147
1148                 i915_gem_context_reference(ctx);
1149         }
1150         return ret;
1151
1152 reset_pin_count:
1153         ctx->engine[engine->id].pin_count = 0;
1154         return ret;
1155 }
1156
1157 void intel_lr_context_unpin(struct intel_context *ctx,
1158                             struct intel_engine_cs *engine)
1159 {
1160         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1161
1162         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1163         if (--ctx->engine[engine->id].pin_count == 0) {
1164                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1165                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1166                 i915_gem_object_ggtt_unpin(ctx_obj);
1167                 ctx->engine[engine->id].lrc_vma = NULL;
1168                 ctx->engine[engine->id].lrc_desc = 0;
1169                 ctx->engine[engine->id].lrc_reg_state = NULL;
1170
1171                 i915_gem_context_unreference(ctx);
1172         }
1173 }
1174
1175 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1176 {
1177         int ret, i;
1178         struct intel_engine_cs *engine = req->engine;
1179         struct intel_ringbuffer *ringbuf = req->ringbuf;
1180         struct drm_device *dev = engine->dev;
1181         struct drm_i915_private *dev_priv = dev->dev_private;
1182         struct i915_workarounds *w = &dev_priv->workarounds;
1183
1184         if (w->count == 0)
1185                 return 0;
1186
1187         engine->gpu_caches_dirty = true;
1188         ret = logical_ring_flush_all_caches(req);
1189         if (ret)
1190                 return ret;
1191
1192         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1193         if (ret)
1194                 return ret;
1195
1196         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1197         for (i = 0; i < w->count; i++) {
1198                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1199                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1200         }
1201         intel_logical_ring_emit(ringbuf, MI_NOOP);
1202
1203         intel_logical_ring_advance(ringbuf);
1204
1205         engine->gpu_caches_dirty = true;
1206         ret = logical_ring_flush_all_caches(req);
1207         if (ret)
1208                 return ret;
1209
1210         return 0;
1211 }
1212
1213 #define wa_ctx_emit(batch, index, cmd)                                  \
1214         do {                                                            \
1215                 int __index = (index)++;                                \
1216                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1217                         return -ENOSPC;                                 \
1218                 }                                                       \
1219                 batch[__index] = (cmd);                                 \
1220         } while (0)
1221
1222 #define wa_ctx_emit_reg(batch, index, reg) \
1223         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1224
1225 /*
1226  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1227  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1228  * but there is a slight complication as this is applied in WA batch where the
1229  * values are only initialized once so we cannot take register value at the
1230  * beginning and reuse it further; hence we save its value to memory, upload a
1231  * constant value with bit21 set and then we restore it back with the saved value.
1232  * To simplify the WA, a constant value is formed by using the default value
1233  * of this register. This shouldn't be a problem because we are only modifying
1234  * it for a short period and this batch in non-premptible. We can ofcourse
1235  * use additional instructions that read the actual value of the register
1236  * at that time and set our bit of interest but it makes the WA complicated.
1237  *
1238  * This WA is also required for Gen9 so extracting as a function avoids
1239  * code duplication.
1240  */
1241 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1242                                                 uint32_t *const batch,
1243                                                 uint32_t index)
1244 {
1245         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1246
1247         /*
1248          * WaDisableLSQCROPERFforOCL:skl
1249          * This WA is implemented in skl_init_clock_gating() but since
1250          * this batch updates GEN8_L3SQCREG4 with default value we need to
1251          * set this bit here to retain the WA during flush.
1252          */
1253         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1254                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1255
1256         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1257                                    MI_SRM_LRM_GLOBAL_GTT));
1258         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1259         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1260         wa_ctx_emit(batch, index, 0);
1261
1262         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1263         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1264         wa_ctx_emit(batch, index, l3sqc4_flush);
1265
1266         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1267         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1268                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1269         wa_ctx_emit(batch, index, 0);
1270         wa_ctx_emit(batch, index, 0);
1271         wa_ctx_emit(batch, index, 0);
1272         wa_ctx_emit(batch, index, 0);
1273
1274         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1275                                    MI_SRM_LRM_GLOBAL_GTT));
1276         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1277         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1278         wa_ctx_emit(batch, index, 0);
1279
1280         return index;
1281 }
1282
1283 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1284                                     uint32_t offset,
1285                                     uint32_t start_alignment)
1286 {
1287         return wa_ctx->offset = ALIGN(offset, start_alignment);
1288 }
1289
1290 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1291                              uint32_t offset,
1292                              uint32_t size_alignment)
1293 {
1294         wa_ctx->size = offset - wa_ctx->offset;
1295
1296         WARN(wa_ctx->size % size_alignment,
1297              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1298              wa_ctx->size, size_alignment);
1299         return 0;
1300 }
1301
1302 /**
1303  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1304  *
1305  * @ring: only applicable for RCS
1306  * @wa_ctx: structure representing wa_ctx
1307  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1308  *    with the offset value received as input.
1309  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1310  * @batch: page in which WA are loaded
1311  * @offset: This field specifies the start of the batch, it should be
1312  *  cache-aligned otherwise it is adjusted accordingly.
1313  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1314  *  initialized at the beginning and shared across all contexts but this field
1315  *  helps us to have multiple batches at different offsets and select them based
1316  *  on a criteria. At the moment this batch always start at the beginning of the page
1317  *  and at this point we don't have multiple wa_ctx batch buffers.
1318  *
1319  *  The number of WA applied are not known at the beginning; we use this field
1320  *  to return the no of DWORDS written.
1321  *
1322  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1323  *  so it adds NOOPs as padding to make it cacheline aligned.
1324  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1325  *  makes a complete batch buffer.
1326  *
1327  * Return: non-zero if we exceed the PAGE_SIZE limit.
1328  */
1329
1330 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1331                                     struct i915_wa_ctx_bb *wa_ctx,
1332                                     uint32_t *const batch,
1333                                     uint32_t *offset)
1334 {
1335         uint32_t scratch_addr;
1336         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1337
1338         /* WaDisableCtxRestoreArbitration:bdw,chv */
1339         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1340
1341         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1342         if (IS_BROADWELL(engine->dev)) {
1343                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1344                 if (rc < 0)
1345                         return rc;
1346                 index = rc;
1347         }
1348
1349         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1350         /* Actual scratch location is at 128 bytes offset */
1351         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1352
1353         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1354         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1355                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1356                                    PIPE_CONTROL_CS_STALL |
1357                                    PIPE_CONTROL_QW_WRITE));
1358         wa_ctx_emit(batch, index, scratch_addr);
1359         wa_ctx_emit(batch, index, 0);
1360         wa_ctx_emit(batch, index, 0);
1361         wa_ctx_emit(batch, index, 0);
1362
1363         /* Pad to end of cacheline */
1364         while (index % CACHELINE_DWORDS)
1365                 wa_ctx_emit(batch, index, MI_NOOP);
1366
1367         /*
1368          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1369          * execution depends on the length specified in terms of cache lines
1370          * in the register CTX_RCS_INDIRECT_CTX
1371          */
1372
1373         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1374 }
1375
1376 /**
1377  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1378  *
1379  * @ring: only applicable for RCS
1380  * @wa_ctx: structure representing wa_ctx
1381  *  offset: specifies start of the batch, should be cache-aligned.
1382  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1383  * @batch: page in which WA are loaded
1384  * @offset: This field specifies the start of this batch.
1385  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1386  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1387  *
1388  *   The number of DWORDS written are returned using this field.
1389  *
1390  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1391  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1392  */
1393 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1394                                struct i915_wa_ctx_bb *wa_ctx,
1395                                uint32_t *const batch,
1396                                uint32_t *offset)
1397 {
1398         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1399
1400         /* WaDisableCtxRestoreArbitration:bdw,chv */
1401         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1402
1403         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1404
1405         return wa_ctx_end(wa_ctx, *offset = index, 1);
1406 }
1407
1408 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1409                                     struct i915_wa_ctx_bb *wa_ctx,
1410                                     uint32_t *const batch,
1411                                     uint32_t *offset)
1412 {
1413         int ret;
1414         struct drm_device *dev = engine->dev;
1415         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1416
1417         /* WaDisableCtxRestoreArbitration:skl,bxt */
1418         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1419             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1420                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1421
1422         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1423         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1424         if (ret < 0)
1425                 return ret;
1426         index = ret;
1427
1428         /* Pad to end of cacheline */
1429         while (index % CACHELINE_DWORDS)
1430                 wa_ctx_emit(batch, index, MI_NOOP);
1431
1432         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1433 }
1434
1435 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1436                                struct i915_wa_ctx_bb *wa_ctx,
1437                                uint32_t *const batch,
1438                                uint32_t *offset)
1439 {
1440         struct drm_device *dev = engine->dev;
1441         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1442
1443         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1444         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1445             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1446                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1447                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1448                 wa_ctx_emit(batch, index,
1449                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1450                 wa_ctx_emit(batch, index, MI_NOOP);
1451         }
1452
1453         /* WaDisableCtxRestoreArbitration:skl,bxt */
1454         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1455             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1456                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1457
1458         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1459
1460         return wa_ctx_end(wa_ctx, *offset = index, 1);
1461 }
1462
1463 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1464 {
1465         int ret;
1466
1467         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1468                                                    PAGE_ALIGN(size));
1469         if (!engine->wa_ctx.obj) {
1470                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1471                 return -ENOMEM;
1472         }
1473
1474         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1475         if (ret) {
1476                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1477                                  ret);
1478                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1479                 return ret;
1480         }
1481
1482         return 0;
1483 }
1484
1485 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1486 {
1487         if (engine->wa_ctx.obj) {
1488                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1489                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1490                 engine->wa_ctx.obj = NULL;
1491         }
1492 }
1493
1494 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1495 {
1496         int ret;
1497         uint32_t *batch;
1498         uint32_t offset;
1499         struct page *page;
1500         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1501
1502         WARN_ON(engine->id != RCS);
1503
1504         /* update this when WA for higher Gen are added */
1505         if (INTEL_INFO(engine->dev)->gen > 9) {
1506                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1507                           INTEL_INFO(engine->dev)->gen);
1508                 return 0;
1509         }
1510
1511         /* some WA perform writes to scratch page, ensure it is valid */
1512         if (engine->scratch.obj == NULL) {
1513                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1514                 return -EINVAL;
1515         }
1516
1517         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1518         if (ret) {
1519                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1520                 return ret;
1521         }
1522
1523         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1524         batch = kmap_atomic(page);
1525         offset = 0;
1526
1527         if (INTEL_INFO(engine->dev)->gen == 8) {
1528                 ret = gen8_init_indirectctx_bb(engine,
1529                                                &wa_ctx->indirect_ctx,
1530                                                batch,
1531                                                &offset);
1532                 if (ret)
1533                         goto out;
1534
1535                 ret = gen8_init_perctx_bb(engine,
1536                                           &wa_ctx->per_ctx,
1537                                           batch,
1538                                           &offset);
1539                 if (ret)
1540                         goto out;
1541         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1542                 ret = gen9_init_indirectctx_bb(engine,
1543                                                &wa_ctx->indirect_ctx,
1544                                                batch,
1545                                                &offset);
1546                 if (ret)
1547                         goto out;
1548
1549                 ret = gen9_init_perctx_bb(engine,
1550                                           &wa_ctx->per_ctx,
1551                                           batch,
1552                                           &offset);
1553                 if (ret)
1554                         goto out;
1555         }
1556
1557 out:
1558         kunmap_atomic(batch);
1559         if (ret)
1560                 lrc_destroy_wa_ctx_obj(engine);
1561
1562         return ret;
1563 }
1564
1565 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1566 {
1567         struct drm_device *dev = engine->dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         unsigned int next_context_status_buffer_hw;
1570
1571         lrc_setup_hardware_status_page(engine,
1572                                        dev_priv->kernel_context->engine[engine->id].state);
1573
1574         I915_WRITE_IMR(engine,
1575                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1576         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1577
1578         I915_WRITE(RING_MODE_GEN7(engine),
1579                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1580                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1581         POSTING_READ(RING_MODE_GEN7(engine));
1582
1583         /*
1584          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1585          * zero, we need to read the write pointer from hardware and use its
1586          * value because "this register is power context save restored".
1587          * Effectively, these states have been observed:
1588          *
1589          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1590          * BDW  | CSB regs not reset       | CSB regs reset       |
1591          * CHT  | CSB regs not reset       | CSB regs not reset   |
1592          * SKL  |         ?                |         ?            |
1593          * BXT  |         ?                |         ?            |
1594          */
1595         next_context_status_buffer_hw =
1596                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1597
1598         /*
1599          * When the CSB registers are reset (also after power-up / gpu reset),
1600          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1601          * this special case, so the first element read is CSB[0].
1602          */
1603         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1604                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1605
1606         engine->next_context_status_buffer = next_context_status_buffer_hw;
1607         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1608
1609         intel_engine_init_hangcheck(engine);
1610
1611         return 0;
1612 }
1613
1614 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1615 {
1616         struct drm_device *dev = engine->dev;
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         int ret;
1619
1620         ret = gen8_init_common_ring(engine);
1621         if (ret)
1622                 return ret;
1623
1624         /* We need to disable the AsyncFlip performance optimisations in order
1625          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1626          * programmed to '1' on all products.
1627          *
1628          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1629          */
1630         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1631
1632         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1633
1634         return init_workarounds_ring(engine);
1635 }
1636
1637 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1638 {
1639         int ret;
1640
1641         ret = gen8_init_common_ring(engine);
1642         if (ret)
1643                 return ret;
1644
1645         return init_workarounds_ring(engine);
1646 }
1647
1648 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1649 {
1650         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1651         struct intel_engine_cs *engine = req->engine;
1652         struct intel_ringbuffer *ringbuf = req->ringbuf;
1653         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1654         int i, ret;
1655
1656         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1657         if (ret)
1658                 return ret;
1659
1660         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1661         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1662                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1663
1664                 intel_logical_ring_emit_reg(ringbuf,
1665                                             GEN8_RING_PDP_UDW(engine, i));
1666                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1667                 intel_logical_ring_emit_reg(ringbuf,
1668                                             GEN8_RING_PDP_LDW(engine, i));
1669                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1670         }
1671
1672         intel_logical_ring_emit(ringbuf, MI_NOOP);
1673         intel_logical_ring_advance(ringbuf);
1674
1675         return 0;
1676 }
1677
1678 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1679                               u64 offset, unsigned dispatch_flags)
1680 {
1681         struct intel_ringbuffer *ringbuf = req->ringbuf;
1682         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1683         int ret;
1684
1685         /* Don't rely in hw updating PDPs, specially in lite-restore.
1686          * Ideally, we should set Force PD Restore in ctx descriptor,
1687          * but we can't. Force Restore would be a second option, but
1688          * it is unsafe in case of lite-restore (because the ctx is
1689          * not idle). PML4 is allocated during ppgtt init so this is
1690          * not needed in 48-bit.*/
1691         if (req->ctx->ppgtt &&
1692             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1693                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1694                     !intel_vgpu_active(req->i915->dev)) {
1695                         ret = intel_logical_ring_emit_pdps(req);
1696                         if (ret)
1697                                 return ret;
1698                 }
1699
1700                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1701         }
1702
1703         ret = intel_logical_ring_begin(req, 4);
1704         if (ret)
1705                 return ret;
1706
1707         /* FIXME(BDW): Address space and security selectors. */
1708         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1709                                 (ppgtt<<8) |
1710                                 (dispatch_flags & I915_DISPATCH_RS ?
1711                                  MI_BATCH_RESOURCE_STREAMER : 0));
1712         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1713         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1714         intel_logical_ring_emit(ringbuf, MI_NOOP);
1715         intel_logical_ring_advance(ringbuf);
1716
1717         return 0;
1718 }
1719
1720 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1721 {
1722         struct drm_device *dev = engine->dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724         unsigned long flags;
1725
1726         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1727                 return false;
1728
1729         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1730         if (engine->irq_refcount++ == 0) {
1731                 I915_WRITE_IMR(engine,
1732                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1733                 POSTING_READ(RING_IMR(engine->mmio_base));
1734         }
1735         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1736
1737         return true;
1738 }
1739
1740 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1741 {
1742         struct drm_device *dev = engine->dev;
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         unsigned long flags;
1745
1746         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1747         if (--engine->irq_refcount == 0) {
1748                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1749                 POSTING_READ(RING_IMR(engine->mmio_base));
1750         }
1751         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752 }
1753
1754 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1755                            u32 invalidate_domains,
1756                            u32 unused)
1757 {
1758         struct intel_ringbuffer *ringbuf = request->ringbuf;
1759         struct intel_engine_cs *engine = ringbuf->engine;
1760         struct drm_device *dev = engine->dev;
1761         struct drm_i915_private *dev_priv = dev->dev_private;
1762         uint32_t cmd;
1763         int ret;
1764
1765         ret = intel_logical_ring_begin(request, 4);
1766         if (ret)
1767                 return ret;
1768
1769         cmd = MI_FLUSH_DW + 1;
1770
1771         /* We always require a command barrier so that subsequent
1772          * commands, such as breadcrumb interrupts, are strictly ordered
1773          * wrt the contents of the write cache being flushed to memory
1774          * (and thus being coherent from the CPU).
1775          */
1776         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1777
1778         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1779                 cmd |= MI_INVALIDATE_TLB;
1780                 if (engine == &dev_priv->engine[VCS])
1781                         cmd |= MI_INVALIDATE_BSD;
1782         }
1783
1784         intel_logical_ring_emit(ringbuf, cmd);
1785         intel_logical_ring_emit(ringbuf,
1786                                 I915_GEM_HWS_SCRATCH_ADDR |
1787                                 MI_FLUSH_DW_USE_GTT);
1788         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1789         intel_logical_ring_emit(ringbuf, 0); /* value */
1790         intel_logical_ring_advance(ringbuf);
1791
1792         return 0;
1793 }
1794
1795 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1796                                   u32 invalidate_domains,
1797                                   u32 flush_domains)
1798 {
1799         struct intel_ringbuffer *ringbuf = request->ringbuf;
1800         struct intel_engine_cs *engine = ringbuf->engine;
1801         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1802         bool vf_flush_wa = false;
1803         u32 flags = 0;
1804         int ret;
1805
1806         flags |= PIPE_CONTROL_CS_STALL;
1807
1808         if (flush_domains) {
1809                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1810                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1811                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1812                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1813         }
1814
1815         if (invalidate_domains) {
1816                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1817                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1818                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1819                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1820                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1821                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1822                 flags |= PIPE_CONTROL_QW_WRITE;
1823                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1824
1825                 /*
1826                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1827                  * pipe control.
1828                  */
1829                 if (IS_GEN9(engine->dev))
1830                         vf_flush_wa = true;
1831         }
1832
1833         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1834         if (ret)
1835                 return ret;
1836
1837         if (vf_flush_wa) {
1838                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1839                 intel_logical_ring_emit(ringbuf, 0);
1840                 intel_logical_ring_emit(ringbuf, 0);
1841                 intel_logical_ring_emit(ringbuf, 0);
1842                 intel_logical_ring_emit(ringbuf, 0);
1843                 intel_logical_ring_emit(ringbuf, 0);
1844         }
1845
1846         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1847         intel_logical_ring_emit(ringbuf, flags);
1848         intel_logical_ring_emit(ringbuf, scratch_addr);
1849         intel_logical_ring_emit(ringbuf, 0);
1850         intel_logical_ring_emit(ringbuf, 0);
1851         intel_logical_ring_emit(ringbuf, 0);
1852         intel_logical_ring_advance(ringbuf);
1853
1854         return 0;
1855 }
1856
1857 static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1858 {
1859         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1860 }
1861
1862 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1863 {
1864         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1865 }
1866
1867 static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
1868                            bool lazy_coherency)
1869 {
1870
1871         /*
1872          * On BXT A steppings there is a HW coherency issue whereby the
1873          * MI_STORE_DATA_IMM storing the completed request's seqno
1874          * occasionally doesn't invalidate the CPU cache. Work around this by
1875          * clflushing the corresponding cacheline whenever the caller wants
1876          * the coherency to be guaranteed. Note that this cacheline is known
1877          * to be clean at this point, since we only write it in
1878          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1879          * this clflush in practice becomes an invalidate operation.
1880          */
1881
1882         if (!lazy_coherency)
1883                 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1884
1885         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1886 }
1887
1888 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1889 {
1890         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1891
1892         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1893         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1894 }
1895
1896 /*
1897  * Reserve space for 2 NOOPs at the end of each request to be
1898  * used as a workaround for not being allowed to do lite
1899  * restore with HEAD==TAIL (WaIdleLiteRestore).
1900  */
1901 #define WA_TAIL_DWORDS 2
1902
1903 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1904 {
1905         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1906 }
1907
1908 static int gen8_emit_request(struct drm_i915_gem_request *request)
1909 {
1910         struct intel_ringbuffer *ringbuf = request->ringbuf;
1911         int ret;
1912
1913         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1914         if (ret)
1915                 return ret;
1916
1917         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1918         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1919
1920         intel_logical_ring_emit(ringbuf,
1921                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1922         intel_logical_ring_emit(ringbuf,
1923                                 hws_seqno_address(request->engine) |
1924                                 MI_FLUSH_DW_USE_GTT);
1925         intel_logical_ring_emit(ringbuf, 0);
1926         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1927         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1928         intel_logical_ring_emit(ringbuf, MI_NOOP);
1929         return intel_logical_ring_advance_and_submit(request);
1930 }
1931
1932 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1933 {
1934         struct intel_ringbuffer *ringbuf = request->ringbuf;
1935         int ret;
1936
1937         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1938         if (ret)
1939                 return ret;
1940
1941         /* w/a for post sync ops following a GPGPU operation we
1942          * need a prior CS_STALL, which is emitted by the flush
1943          * following the batch.
1944          */
1945         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1946         intel_logical_ring_emit(ringbuf,
1947                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1948                                  PIPE_CONTROL_CS_STALL |
1949                                  PIPE_CONTROL_QW_WRITE));
1950         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1951         intel_logical_ring_emit(ringbuf, 0);
1952         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1953         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1954         return intel_logical_ring_advance_and_submit(request);
1955 }
1956
1957 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1958 {
1959         struct render_state so;
1960         int ret;
1961
1962         ret = i915_gem_render_state_prepare(req->engine, &so);
1963         if (ret)
1964                 return ret;
1965
1966         if (so.rodata == NULL)
1967                 return 0;
1968
1969         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1970                                        I915_DISPATCH_SECURE);
1971         if (ret)
1972                 goto out;
1973
1974         ret = req->engine->emit_bb_start(req,
1975                                        (so.ggtt_offset + so.aux_batch_offset),
1976                                        I915_DISPATCH_SECURE);
1977         if (ret)
1978                 goto out;
1979
1980         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1981
1982 out:
1983         i915_gem_render_state_fini(&so);
1984         return ret;
1985 }
1986
1987 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1988 {
1989         int ret;
1990
1991         ret = intel_logical_ring_workarounds_emit(req);
1992         if (ret)
1993                 return ret;
1994
1995         ret = intel_rcs_context_init_mocs(req);
1996         /*
1997          * Failing to program the MOCS is non-fatal.The system will not
1998          * run at peak performance. So generate an error and carry on.
1999          */
2000         if (ret)
2001                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2002
2003         return intel_lr_context_render_state_init(req);
2004 }
2005
2006 /**
2007  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2008  *
2009  * @ring: Engine Command Streamer.
2010  *
2011  */
2012 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2013 {
2014         struct drm_i915_private *dev_priv;
2015
2016         if (!intel_engine_initialized(engine))
2017                 return;
2018
2019         dev_priv = engine->dev->dev_private;
2020
2021         if (engine->buffer) {
2022                 intel_logical_ring_stop(engine);
2023                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2024         }
2025
2026         if (engine->cleanup)
2027                 engine->cleanup(engine);
2028
2029         i915_cmd_parser_fini_ring(engine);
2030         i915_gem_batch_pool_fini(&engine->batch_pool);
2031
2032         if (engine->status_page.obj) {
2033                 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2034                 engine->status_page.obj = NULL;
2035         }
2036
2037         engine->idle_lite_restore_wa = 0;
2038         engine->disable_lite_restore_wa = false;
2039         engine->ctx_desc_template = 0;
2040
2041         lrc_destroy_wa_ctx_obj(engine);
2042         engine->dev = NULL;
2043 }
2044
2045 static void
2046 logical_ring_default_vfuncs(struct drm_device *dev,
2047                             struct intel_engine_cs *engine)
2048 {
2049         /* Default vfuncs which can be overriden by each engine. */
2050         engine->init_hw = gen8_init_common_ring;
2051         engine->emit_request = gen8_emit_request;
2052         engine->emit_flush = gen8_emit_flush;
2053         engine->irq_get = gen8_logical_ring_get_irq;
2054         engine->irq_put = gen8_logical_ring_put_irq;
2055         engine->emit_bb_start = gen8_emit_bb_start;
2056         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2057                 engine->get_seqno = bxt_a_get_seqno;
2058                 engine->set_seqno = bxt_a_set_seqno;
2059         } else {
2060                 engine->get_seqno = gen8_get_seqno;
2061                 engine->set_seqno = gen8_set_seqno;
2062         }
2063 }
2064
2065 static inline void
2066 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2067 {
2068         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2069         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2070 }
2071
2072 static int
2073 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2074 {
2075         struct intel_context *dctx = to_i915(dev)->kernel_context;
2076         int ret;
2077
2078         /* Intentionally left blank. */
2079         engine->buffer = NULL;
2080
2081         engine->dev = dev;
2082         INIT_LIST_HEAD(&engine->active_list);
2083         INIT_LIST_HEAD(&engine->request_list);
2084         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2085         init_waitqueue_head(&engine->irq_queue);
2086
2087         INIT_LIST_HEAD(&engine->buffers);
2088         INIT_LIST_HEAD(&engine->execlist_queue);
2089         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2090         spin_lock_init(&engine->execlist_lock);
2091
2092         logical_ring_init_platform_invariants(engine);
2093
2094         ret = i915_cmd_parser_init_ring(engine);
2095         if (ret)
2096                 goto error;
2097
2098         ret = intel_lr_context_deferred_alloc(dctx, engine);
2099         if (ret)
2100                 goto error;
2101
2102         /* As this is the default context, always pin it */
2103         ret = intel_lr_context_do_pin(dctx, engine);
2104         if (ret) {
2105                 DRM_ERROR(
2106                         "Failed to pin and map ringbuffer %s: %d\n",
2107                         engine->name, ret);
2108                 goto error;
2109         }
2110
2111         return 0;
2112
2113 error:
2114         intel_logical_ring_cleanup(engine);
2115         return ret;
2116 }
2117
2118 static int logical_render_ring_init(struct drm_device *dev)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2122         int ret;
2123
2124         engine->name = "render ring";
2125         engine->id = RCS;
2126         engine->exec_id = I915_EXEC_RENDER;
2127         engine->guc_id = GUC_RENDER_ENGINE;
2128         engine->mmio_base = RENDER_RING_BASE;
2129
2130         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2131         if (HAS_L3_DPF(dev))
2132                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2133
2134         logical_ring_default_vfuncs(dev, engine);
2135
2136         /* Override some for render ring. */
2137         if (INTEL_INFO(dev)->gen >= 9)
2138                 engine->init_hw = gen9_init_render_ring;
2139         else
2140                 engine->init_hw = gen8_init_render_ring;
2141         engine->init_context = gen8_init_rcs_context;
2142         engine->cleanup = intel_fini_pipe_control;
2143         engine->emit_flush = gen8_emit_flush_render;
2144         engine->emit_request = gen8_emit_request_render;
2145
2146         engine->dev = dev;
2147
2148         ret = intel_init_pipe_control(engine);
2149         if (ret)
2150                 return ret;
2151
2152         ret = intel_init_workaround_bb(engine);
2153         if (ret) {
2154                 /*
2155                  * We continue even if we fail to initialize WA batch
2156                  * because we only expect rare glitches but nothing
2157                  * critical to prevent us from using GPU
2158                  */
2159                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2160                           ret);
2161         }
2162
2163         ret = logical_ring_init(dev, engine);
2164         if (ret) {
2165                 lrc_destroy_wa_ctx_obj(engine);
2166         }
2167
2168         return ret;
2169 }
2170
2171 static int logical_bsd_ring_init(struct drm_device *dev)
2172 {
2173         struct drm_i915_private *dev_priv = dev->dev_private;
2174         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2175
2176         engine->name = "bsd ring";
2177         engine->id = VCS;
2178         engine->exec_id = I915_EXEC_BSD;
2179         engine->guc_id = GUC_VIDEO_ENGINE;
2180         engine->mmio_base = GEN6_BSD_RING_BASE;
2181
2182         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2183         logical_ring_default_vfuncs(dev, engine);
2184
2185         return logical_ring_init(dev, engine);
2186 }
2187
2188 static int logical_bsd2_ring_init(struct drm_device *dev)
2189 {
2190         struct drm_i915_private *dev_priv = dev->dev_private;
2191         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2192
2193         engine->name = "bsd2 ring";
2194         engine->id = VCS2;
2195         engine->exec_id = I915_EXEC_BSD;
2196         engine->guc_id = GUC_VIDEO_ENGINE2;
2197         engine->mmio_base = GEN8_BSD2_RING_BASE;
2198
2199         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2200         logical_ring_default_vfuncs(dev, engine);
2201
2202         return logical_ring_init(dev, engine);
2203 }
2204
2205 static int logical_blt_ring_init(struct drm_device *dev)
2206 {
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2209
2210         engine->name = "blitter ring";
2211         engine->id = BCS;
2212         engine->exec_id = I915_EXEC_BLT;
2213         engine->guc_id = GUC_BLITTER_ENGINE;
2214         engine->mmio_base = BLT_RING_BASE;
2215
2216         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2217         logical_ring_default_vfuncs(dev, engine);
2218
2219         return logical_ring_init(dev, engine);
2220 }
2221
2222 static int logical_vebox_ring_init(struct drm_device *dev)
2223 {
2224         struct drm_i915_private *dev_priv = dev->dev_private;
2225         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2226
2227         engine->name = "video enhancement ring";
2228         engine->id = VECS;
2229         engine->exec_id = I915_EXEC_VEBOX;
2230         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2231         engine->mmio_base = VEBOX_RING_BASE;
2232
2233         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2234         logical_ring_default_vfuncs(dev, engine);
2235
2236         return logical_ring_init(dev, engine);
2237 }
2238
2239 /**
2240  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2241  * @dev: DRM device.
2242  *
2243  * This function inits the engines for an Execlists submission style (the equivalent in the
2244  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2245  * those engines that are present in the hardware.
2246  *
2247  * Return: non-zero if the initialization failed.
2248  */
2249 int intel_logical_rings_init(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         int ret;
2253
2254         ret = logical_render_ring_init(dev);
2255         if (ret)
2256                 return ret;
2257
2258         if (HAS_BSD(dev)) {
2259                 ret = logical_bsd_ring_init(dev);
2260                 if (ret)
2261                         goto cleanup_render_ring;
2262         }
2263
2264         if (HAS_BLT(dev)) {
2265                 ret = logical_blt_ring_init(dev);
2266                 if (ret)
2267                         goto cleanup_bsd_ring;
2268         }
2269
2270         if (HAS_VEBOX(dev)) {
2271                 ret = logical_vebox_ring_init(dev);
2272                 if (ret)
2273                         goto cleanup_blt_ring;
2274         }
2275
2276         if (HAS_BSD2(dev)) {
2277                 ret = logical_bsd2_ring_init(dev);
2278                 if (ret)
2279                         goto cleanup_vebox_ring;
2280         }
2281
2282         return 0;
2283
2284 cleanup_vebox_ring:
2285         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2286 cleanup_blt_ring:
2287         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2288 cleanup_bsd_ring:
2289         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2290 cleanup_render_ring:
2291         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2292
2293         return ret;
2294 }
2295
2296 static u32
2297 make_rpcs(struct drm_device *dev)
2298 {
2299         u32 rpcs = 0;
2300
2301         /*
2302          * No explicit RPCS request is needed to ensure full
2303          * slice/subslice/EU enablement prior to Gen9.
2304         */
2305         if (INTEL_INFO(dev)->gen < 9)
2306                 return 0;
2307
2308         /*
2309          * Starting in Gen9, render power gating can leave
2310          * slice/subslice/EU in a partially enabled state. We
2311          * must make an explicit request through RPCS for full
2312          * enablement.
2313         */
2314         if (INTEL_INFO(dev)->has_slice_pg) {
2315                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2316                 rpcs |= INTEL_INFO(dev)->slice_total <<
2317                         GEN8_RPCS_S_CNT_SHIFT;
2318                 rpcs |= GEN8_RPCS_ENABLE;
2319         }
2320
2321         if (INTEL_INFO(dev)->has_subslice_pg) {
2322                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2323                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2324                         GEN8_RPCS_SS_CNT_SHIFT;
2325                 rpcs |= GEN8_RPCS_ENABLE;
2326         }
2327
2328         if (INTEL_INFO(dev)->has_eu_pg) {
2329                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2330                         GEN8_RPCS_EU_MIN_SHIFT;
2331                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2332                         GEN8_RPCS_EU_MAX_SHIFT;
2333                 rpcs |= GEN8_RPCS_ENABLE;
2334         }
2335
2336         return rpcs;
2337 }
2338
2339 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2340 {
2341         u32 indirect_ctx_offset;
2342
2343         switch (INTEL_INFO(engine->dev)->gen) {
2344         default:
2345                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2346                 /* fall through */
2347         case 9:
2348                 indirect_ctx_offset =
2349                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2350                 break;
2351         case 8:
2352                 indirect_ctx_offset =
2353                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2354                 break;
2355         }
2356
2357         return indirect_ctx_offset;
2358 }
2359
2360 static int
2361 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2362                     struct intel_engine_cs *engine,
2363                     struct intel_ringbuffer *ringbuf)
2364 {
2365         struct drm_device *dev = engine->dev;
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2368         struct page *page;
2369         uint32_t *reg_state;
2370         int ret;
2371
2372         if (!ppgtt)
2373                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2374
2375         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2376         if (ret) {
2377                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2378                 return ret;
2379         }
2380
2381         ret = i915_gem_object_get_pages(ctx_obj);
2382         if (ret) {
2383                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2384                 return ret;
2385         }
2386
2387         i915_gem_object_pin_pages(ctx_obj);
2388
2389         /* The second page of the context object contains some fields which must
2390          * be set up prior to the first execution. */
2391         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2392         reg_state = kmap_atomic(page);
2393
2394         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2395          * commands followed by (reg, value) pairs. The values we are setting here are
2396          * only for the first context restore: on a subsequent save, the GPU will
2397          * recreate this batchbuffer with new values (including all the missing
2398          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2399         reg_state[CTX_LRI_HEADER_0] =
2400                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2401         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2402                        RING_CONTEXT_CONTROL(engine),
2403                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2404                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2405                                           (HAS_RESOURCE_STREAMER(dev) ?
2406                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2407         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2408                        0);
2409         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2410                        0);
2411         /* Ring buffer start address is not known until the buffer is pinned.
2412          * It is written to the context image in execlists_update_context()
2413          */
2414         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2415                        RING_START(engine->mmio_base), 0);
2416         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2417                        RING_CTL(engine->mmio_base),
2418                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2419         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2420                        RING_BBADDR_UDW(engine->mmio_base), 0);
2421         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2422                        RING_BBADDR(engine->mmio_base), 0);
2423         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2424                        RING_BBSTATE(engine->mmio_base),
2425                        RING_BB_PPGTT);
2426         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2427                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2428         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2429                        RING_SBBADDR(engine->mmio_base), 0);
2430         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2431                        RING_SBBSTATE(engine->mmio_base), 0);
2432         if (engine->id == RCS) {
2433                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2434                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2435                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2436                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2437                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2438                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2439                 if (engine->wa_ctx.obj) {
2440                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2441                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2442
2443                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2444                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2445                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2446
2447                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2448                                 intel_lr_indirect_ctx_offset(engine) << 6;
2449
2450                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2451                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2452                                 0x01;
2453                 }
2454         }
2455         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2456         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2457                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2458         /* PDP values well be assigned later if needed */
2459         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2460                        0);
2461         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2462                        0);
2463         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2464                        0);
2465         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2466                        0);
2467         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2468                        0);
2469         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2470                        0);
2471         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2472                        0);
2473         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2474                        0);
2475
2476         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2477                 /* 64b PPGTT (48bit canonical)
2478                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2479                  * other PDP Descriptors are ignored.
2480                  */
2481                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2482         } else {
2483                 /* 32b PPGTT
2484                  * PDP*_DESCRIPTOR contains the base address of space supported.
2485                  * With dynamic page allocation, PDPs may not be allocated at
2486                  * this point. Point the unallocated PDPs to the scratch page
2487                  */
2488                 execlists_update_context_pdps(ppgtt, reg_state);
2489         }
2490
2491         if (engine->id == RCS) {
2492                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2493                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2494                                make_rpcs(dev));
2495         }
2496
2497         kunmap_atomic(reg_state);
2498         i915_gem_object_unpin_pages(ctx_obj);
2499
2500         return 0;
2501 }
2502
2503 /**
2504  * intel_lr_context_free() - free the LRC specific bits of a context
2505  * @ctx: the LR context to free.
2506  *
2507  * The real context freeing is done in i915_gem_context_free: this only
2508  * takes care of the bits that are LRC related: the per-engine backing
2509  * objects and the logical ringbuffer.
2510  */
2511 void intel_lr_context_free(struct intel_context *ctx)
2512 {
2513         int i;
2514
2515         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2516                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2517                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2518
2519                 if (!ctx_obj)
2520                         continue;
2521
2522                 if (ctx == ctx->i915->kernel_context) {
2523                         intel_unpin_ringbuffer_obj(ringbuf);
2524                         i915_gem_object_ggtt_unpin(ctx_obj);
2525                 }
2526
2527                 WARN_ON(ctx->engine[i].pin_count);
2528                 intel_ringbuffer_free(ringbuf);
2529                 drm_gem_object_unreference(&ctx_obj->base);
2530         }
2531 }
2532
2533 /**
2534  * intel_lr_context_size() - return the size of the context for an engine
2535  * @ring: which engine to find the context size for
2536  *
2537  * Each engine may require a different amount of space for a context image,
2538  * so when allocating (or copying) an image, this function can be used to
2539  * find the right size for the specific engine.
2540  *
2541  * Return: size (in bytes) of an engine-specific context image
2542  *
2543  * Note: this size includes the HWSP, which is part of the context image
2544  * in LRC mode, but does not include the "shared data page" used with
2545  * GuC submission. The caller should account for this if using the GuC.
2546  */
2547 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2548 {
2549         int ret = 0;
2550
2551         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2552
2553         switch (engine->id) {
2554         case RCS:
2555                 if (INTEL_INFO(engine->dev)->gen >= 9)
2556                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2557                 else
2558                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2559                 break;
2560         case VCS:
2561         case BCS:
2562         case VECS:
2563         case VCS2:
2564                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2565                 break;
2566         }
2567
2568         return ret;
2569 }
2570
2571 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2572                                            struct drm_i915_gem_object *default_ctx_obj)
2573 {
2574         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2575         struct page *page;
2576
2577         /* The HWSP is part of the default context object in LRC mode. */
2578         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2579                         + LRC_PPHWSP_PN * PAGE_SIZE;
2580         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2581         engine->status_page.page_addr = kmap(page);
2582         engine->status_page.obj = default_ctx_obj;
2583
2584         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2585                         (u32)engine->status_page.gfx_addr);
2586         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2587 }
2588
2589 /**
2590  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2591  * @ctx: LR context to create.
2592  * @ring: engine to be used with the context.
2593  *
2594  * This function can be called more than once, with different engines, if we plan
2595  * to use the context with them. The context backing objects and the ringbuffers
2596  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2597  * the creation is a deferred call: it's better to make sure first that we need to use
2598  * a given ring with the context.
2599  *
2600  * Return: non-zero on error.
2601  */
2602
2603 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2604                                     struct intel_engine_cs *engine)
2605 {
2606         struct drm_device *dev = engine->dev;
2607         struct drm_i915_gem_object *ctx_obj;
2608         uint32_t context_size;
2609         struct intel_ringbuffer *ringbuf;
2610         int ret;
2611
2612         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2613         WARN_ON(ctx->engine[engine->id].state);
2614
2615         context_size = round_up(intel_lr_context_size(engine), 4096);
2616
2617         /* One extra page as the sharing data between driver and GuC */
2618         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2619
2620         ctx_obj = i915_gem_alloc_object(dev, context_size);
2621         if (!ctx_obj) {
2622                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2623                 return -ENOMEM;
2624         }
2625
2626         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2627         if (IS_ERR(ringbuf)) {
2628                 ret = PTR_ERR(ringbuf);
2629                 goto error_deref_obj;
2630         }
2631
2632         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2633         if (ret) {
2634                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2635                 goto error_ringbuf;
2636         }
2637
2638         ctx->engine[engine->id].ringbuf = ringbuf;
2639         ctx->engine[engine->id].state = ctx_obj;
2640
2641         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2642                 struct drm_i915_gem_request *req;
2643
2644                 req = i915_gem_request_alloc(engine, ctx);
2645                 if (IS_ERR(req)) {
2646                         ret = PTR_ERR(req);
2647                         DRM_ERROR("ring create req: %d\n", ret);
2648                         goto error_ringbuf;
2649                 }
2650
2651                 ret = engine->init_context(req);
2652                 if (ret) {
2653                         DRM_ERROR("ring init context: %d\n",
2654                                 ret);
2655                         i915_gem_request_cancel(req);
2656                         goto error_ringbuf;
2657                 }
2658                 i915_add_request_no_flush(req);
2659         }
2660         return 0;
2661
2662 error_ringbuf:
2663         intel_ringbuffer_free(ringbuf);
2664 error_deref_obj:
2665         drm_gem_object_unreference(&ctx_obj->base);
2666         ctx->engine[engine->id].ringbuf = NULL;
2667         ctx->engine[engine->id].state = NULL;
2668         return ret;
2669 }
2670
2671 void intel_lr_context_reset(struct drm_device *dev,
2672                         struct intel_context *ctx)
2673 {
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         struct intel_engine_cs *engine;
2676
2677         for_each_engine(engine, dev_priv) {
2678                 struct drm_i915_gem_object *ctx_obj =
2679                                 ctx->engine[engine->id].state;
2680                 struct intel_ringbuffer *ringbuf =
2681                                 ctx->engine[engine->id].ringbuf;
2682                 uint32_t *reg_state;
2683                 struct page *page;
2684
2685                 if (!ctx_obj)
2686                         continue;
2687
2688                 if (i915_gem_object_get_pages(ctx_obj)) {
2689                         WARN(1, "Failed get_pages for context obj\n");
2690                         continue;
2691                 }
2692                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2693                 reg_state = kmap_atomic(page);
2694
2695                 reg_state[CTX_RING_HEAD+1] = 0;
2696                 reg_state[CTX_RING_TAIL+1] = 0;
2697
2698                 kunmap_atomic(reg_state);
2699
2700                 ringbuf->head = 0;
2701                 ringbuf->tail = 0;
2702         }
2703 }