]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge tag 'mvebu-fixes-4.13-3' of git://git.infradead.org/linux-mvebu into fixes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL             (1 << 0x2)
142 #define RING_EXECLIST1_VALID            (1 << 0x3)
143 #define RING_EXECLIST0_VALID            (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157           GEN8_CTX_STATUS_PREEMPTED | \
158           GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0                0x01
161 #define CTX_CONTEXT_CONTROL             0x02
162 #define CTX_RING_HEAD                   0x04
163 #define CTX_RING_TAIL                   0x06
164 #define CTX_RING_BUFFER_START           0x08
165 #define CTX_RING_BUFFER_CONTROL         0x0a
166 #define CTX_BB_HEAD_U                   0x0c
167 #define CTX_BB_HEAD_L                   0x0e
168 #define CTX_BB_STATE                    0x10
169 #define CTX_SECOND_BB_HEAD_U            0x12
170 #define CTX_SECOND_BB_HEAD_L            0x14
171 #define CTX_SECOND_BB_STATE             0x16
172 #define CTX_BB_PER_CTX_PTR              0x18
173 #define CTX_RCS_INDIRECT_CTX            0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
175 #define CTX_LRI_HEADER_1                0x21
176 #define CTX_CTX_TIMESTAMP               0x22
177 #define CTX_PDP3_UDW                    0x24
178 #define CTX_PDP3_LDW                    0x26
179 #define CTX_PDP2_UDW                    0x28
180 #define CTX_PDP2_LDW                    0x2a
181 #define CTX_PDP1_UDW                    0x2c
182 #define CTX_PDP1_LDW                    0x2e
183 #define CTX_PDP0_UDW                    0x30
184 #define CTX_PDP0_LDW                    0x32
185 #define CTX_LRI_HEADER_2                0x41
186 #define CTX_R_PWR_CLK_STATE             0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191         (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT       0x19
208
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
212 #define WA_TAIL_DWORDS 2
213
214 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215                                             struct intel_engine_cs *engine);
216 static void execlists_init_reg_state(u32 *reg_state,
217                                      struct i915_gem_context *ctx,
218                                      struct intel_engine_cs *engine,
219                                      struct intel_ring *ring);
220
221 /**
222  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223  * @dev_priv: i915 device private
224  * @enable_execlists: value of i915.enable_execlists module parameter.
225  *
226  * Only certain platforms support Execlists (the prerequisites being
227  * support for Logical Ring Contexts and Aliasing PPGTT or better).
228  *
229  * Return: 1 if Execlists is supported and has to be enabled.
230  */
231 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232 {
233         /* On platforms with execlist available, vGPU will only
234          * support execlist mode, no ring buffer mode.
235          */
236         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237                 return 1;
238
239         if (INTEL_GEN(dev_priv) >= 9)
240                 return 1;
241
242         if (enable_execlists == 0)
243                 return 0;
244
245         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246             USES_PPGTT(dev_priv) &&
247             i915.use_mmio_flip >= 0)
248                 return 1;
249
250         return 0;
251 }
252
253 /**
254  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255  *                                        descriptor for a pinned context
256  * @ctx: Context to work on
257  * @engine: Engine the descriptor will be used with
258  *
259  * The context descriptor encodes various attributes of a context,
260  * including its GTT address and some flags. Because it's fairly
261  * expensive to calculate, we'll just do it once and cache the result,
262  * which remains valid until the context is unpinned.
263  *
264  * This is what a descriptor looks like, from LSB to MSB::
265  *
266  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
268  *      bits 32-52:    ctx ID, a globally unique tag
269  *      bits 53-54:    mbz, reserved for use by hardware
270  *      bits 55-63:    group ID, currently unused and set to 0
271  */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274                                    struct intel_engine_cs *engine)
275 {
276         struct intel_context *ce = &ctx->engine[engine->id];
277         u64 desc;
278
279         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280
281         desc = ctx->desc_template;                              /* bits  0-11 */
282         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
283                                                                 /* bits 12-31 */
284         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
285
286         ce->lrc_desc = desc;
287 }
288
289 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
290                                      struct intel_engine_cs *engine)
291 {
292         return ctx->engine[engine->id].lrc_desc;
293 }
294
295 static inline void
296 execlists_context_status_change(struct drm_i915_gem_request *rq,
297                                 unsigned long status)
298 {
299         /*
300          * Only used when GVT-g is enabled now. When GVT-g is disabled,
301          * The compiler should eliminate this function as dead-code.
302          */
303         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
304                 return;
305
306         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
307                                    status, rq);
308 }
309
310 static void
311 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
312 {
313         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
314         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
315         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
316         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
317 }
318
319 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
320 {
321         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
322         struct i915_hw_ppgtt *ppgtt =
323                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
324         u32 *reg_state = ce->lrc_reg_state;
325
326         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
327
328         /* True 32b PPGTT with dynamic page allocation: update PDP
329          * registers and point the unallocated PDPs to scratch page.
330          * PML4 is allocated during ppgtt init, so this is not needed
331          * in 48-bit mode.
332          */
333         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
334                 execlists_update_context_pdps(ppgtt, reg_state);
335
336         return ce->lrc_desc;
337 }
338
339 static void execlists_submit_ports(struct intel_engine_cs *engine)
340 {
341         struct execlist_port *port = engine->execlist_port;
342         u32 __iomem *elsp =
343                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
344         unsigned int n;
345
346         for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
347                 struct drm_i915_gem_request *rq;
348                 unsigned int count;
349                 u64 desc;
350
351                 rq = port_unpack(&port[n], &count);
352                 if (rq) {
353                         GEM_BUG_ON(count > !n);
354                         if (!count++)
355                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
356                         port_set(&port[n], port_pack(rq, count));
357                         desc = execlists_update_context(rq);
358                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
359                 } else {
360                         GEM_BUG_ON(!n);
361                         desc = 0;
362                 }
363
364                 writel(upper_32_bits(desc), elsp);
365                 writel(lower_32_bits(desc), elsp);
366         }
367 }
368
369 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
370 {
371         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
372                 i915_gem_context_force_single_submission(ctx));
373 }
374
375 static bool can_merge_ctx(const struct i915_gem_context *prev,
376                           const struct i915_gem_context *next)
377 {
378         if (prev != next)
379                 return false;
380
381         if (ctx_single_port_submission(prev))
382                 return false;
383
384         return true;
385 }
386
387 static void port_assign(struct execlist_port *port,
388                         struct drm_i915_gem_request *rq)
389 {
390         GEM_BUG_ON(rq == port_request(port));
391
392         if (port_isset(port))
393                 i915_gem_request_put(port_request(port));
394
395         port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
396 }
397
398 static void execlists_dequeue(struct intel_engine_cs *engine)
399 {
400         struct drm_i915_gem_request *last;
401         struct execlist_port *port = engine->execlist_port;
402         struct rb_node *rb;
403         bool submit = false;
404
405         last = port_request(port);
406         if (last)
407                 /* WaIdleLiteRestore:bdw,skl
408                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409                  * as we resubmit the request. See gen8_emit_breadcrumb()
410                  * for where we prepare the padding after the end of the
411                  * request.
412                  */
413                 last->tail = last->wa_tail;
414
415         GEM_BUG_ON(port_isset(&port[1]));
416
417         /* Hardware submission is through 2 ports. Conceptually each port
418          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419          * static for a context, and unique to each, so we only execute
420          * requests belonging to a single context from each ring. RING_HEAD
421          * is maintained by the CS in the context image, it marks the place
422          * where it got up to last time, and through RING_TAIL we tell the CS
423          * where we want to execute up to this time.
424          *
425          * In this list the requests are in order of execution. Consecutive
426          * requests from the same context are adjacent in the ringbuffer. We
427          * can combine these requests into a single RING_TAIL update:
428          *
429          *              RING_HEAD...req1...req2
430          *                                    ^- RING_TAIL
431          * since to execute req2 the CS must first execute req1.
432          *
433          * Our goal then is to point each port to the end of a consecutive
434          * sequence of requests as being the most optimal (fewest wake ups
435          * and context switches) submission.
436          */
437
438         spin_lock_irq(&engine->timeline->lock);
439         rb = engine->execlist_first;
440         GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
441         while (rb) {
442                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
443                 struct drm_i915_gem_request *rq, *rn;
444
445                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
446                         /*
447                          * Can we combine this request with the current port?
448                          * It has to be the same context/ringbuffer and not
449                          * have any exceptions (e.g. GVT saying never to
450                          * combine contexts).
451                          *
452                          * If we can combine the requests, we can execute both
453                          * by updating the RING_TAIL to point to the end of the
454                          * second request, and so we never need to tell the
455                          * hardware about the first.
456                          */
457                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
458                                 /*
459                                  * If we are on the second port and cannot
460                                  * combine this request with the last, then we
461                                  * are done.
462                                  */
463                                 if (port != engine->execlist_port) {
464                                         __list_del_many(&p->requests,
465                                                         &rq->priotree.link);
466                                         goto done;
467                                 }
468
469                                 /*
470                                  * If GVT overrides us we only ever submit
471                                  * port[0], leaving port[1] empty. Note that we
472                                  * also have to be careful that we don't queue
473                                  * the same context (even though a different
474                                  * request) to the second port.
475                                  */
476                                 if (ctx_single_port_submission(last->ctx) ||
477                                     ctx_single_port_submission(rq->ctx)) {
478                                         __list_del_many(&p->requests,
479                                                         &rq->priotree.link);
480                                         goto done;
481                                 }
482
483                                 GEM_BUG_ON(last->ctx == rq->ctx);
484
485                                 if (submit)
486                                         port_assign(port, last);
487                                 port++;
488                         }
489
490                         INIT_LIST_HEAD(&rq->priotree.link);
491                         rq->priotree.priority = INT_MAX;
492
493                         __i915_gem_request_submit(rq);
494                         trace_i915_gem_request_in(rq, port_index(port, engine));
495                         last = rq;
496                         submit = true;
497                 }
498
499                 rb = rb_next(rb);
500                 rb_erase(&p->node, &engine->execlist_queue);
501                 INIT_LIST_HEAD(&p->requests);
502                 if (p->priority != I915_PRIORITY_NORMAL)
503                         kmem_cache_free(engine->i915->priorities, p);
504         }
505 done:
506         engine->execlist_first = rb;
507         if (submit)
508                 port_assign(port, last);
509         spin_unlock_irq(&engine->timeline->lock);
510
511         if (submit)
512                 execlists_submit_ports(engine);
513 }
514
515 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
516 {
517         const struct execlist_port *port = engine->execlist_port;
518
519         return port_count(&port[0]) + port_count(&port[1]) < 2;
520 }
521
522 /*
523  * Check the unread Context Status Buffers and manage the submission of new
524  * contexts to the ELSP accordingly.
525  */
526 static void intel_lrc_irq_handler(unsigned long data)
527 {
528         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
529         struct execlist_port *port = engine->execlist_port;
530         struct drm_i915_private *dev_priv = engine->i915;
531
532         /* We can skip acquiring intel_runtime_pm_get() here as it was taken
533          * on our behalf by the request (see i915_gem_mark_busy()) and it will
534          * not be relinquished until the device is idle (see
535          * i915_gem_idle_work_handler()). As a precaution, we make sure
536          * that all ELSP are drained i.e. we have processed the CSB,
537          * before allowing ourselves to idle and calling intel_runtime_pm_put().
538          */
539         GEM_BUG_ON(!dev_priv->gt.awake);
540
541         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542
543         /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
544          * imposing the cost of a locked atomic transaction when submitting a
545          * new request (outside of the context-switch interrupt).
546          */
547         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
548                 u32 __iomem *csb_mmio =
549                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
550                 u32 __iomem *buf =
551                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
552                 unsigned int head, tail;
553
554                 /* The write will be ordered by the uncached read (itself
555                  * a memory barrier), so we do not need another in the form
556                  * of a locked instruction. The race between the interrupt
557                  * handler and the split test/clear is harmless as we order
558                  * our clear before the CSB read. If the interrupt arrived
559                  * first between the test and the clear, we read the updated
560                  * CSB and clear the bit. If the interrupt arrives as we read
561                  * the CSB or later (i.e. after we had cleared the bit) the bit
562                  * is set and we do a new loop.
563                  */
564                 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
565                 head = readl(csb_mmio);
566                 tail = GEN8_CSB_WRITE_PTR(head);
567                 head = GEN8_CSB_READ_PTR(head);
568                 while (head != tail) {
569                         struct drm_i915_gem_request *rq;
570                         unsigned int status;
571                         unsigned int count;
572
573                         if (++head == GEN8_CSB_ENTRIES)
574                                 head = 0;
575
576                         /* We are flying near dragons again.
577                          *
578                          * We hold a reference to the request in execlist_port[]
579                          * but no more than that. We are operating in softirq
580                          * context and so cannot hold any mutex or sleep. That
581                          * prevents us stopping the requests we are processing
582                          * in port[] from being retired simultaneously (the
583                          * breadcrumb will be complete before we see the
584                          * context-switch). As we only hold the reference to the
585                          * request, any pointer chasing underneath the request
586                          * is subject to a potential use-after-free. Thus we
587                          * store all of the bookkeeping within port[] as
588                          * required, and avoid using unguarded pointers beneath
589                          * request itself. The same applies to the atomic
590                          * status notifier.
591                          */
592
593                         status = readl(buf + 2 * head);
594                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
595                                 continue;
596
597                         /* Check the context/desc id for this event matches */
598                         GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
599                                          port->context_id);
600
601                         rq = port_unpack(port, &count);
602                         GEM_BUG_ON(count == 0);
603                         if (--count == 0) {
604                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
605                                 GEM_BUG_ON(!i915_gem_request_completed(rq));
606                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
607
608                                 trace_i915_gem_request_out(rq);
609                                 i915_gem_request_put(rq);
610
611                                 port[0] = port[1];
612                                 memset(&port[1], 0, sizeof(port[1]));
613                         } else {
614                                 port_set(port, port_pack(rq, count));
615                         }
616
617                         /* After the final element, the hw should be idle */
618                         GEM_BUG_ON(port_count(port) == 0 &&
619                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
620                 }
621
622                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
623                        csb_mmio);
624         }
625
626         if (execlists_elsp_ready(engine))
627                 execlists_dequeue(engine);
628
629         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
630 }
631
632 static bool
633 insert_request(struct intel_engine_cs *engine,
634                struct i915_priotree *pt,
635                int prio)
636 {
637         struct i915_priolist *p;
638         struct rb_node **parent, *rb;
639         bool first = true;
640
641         if (unlikely(engine->no_priolist))
642                 prio = I915_PRIORITY_NORMAL;
643
644 find_priolist:
645         /* most positive priority is scheduled first, equal priorities fifo */
646         rb = NULL;
647         parent = &engine->execlist_queue.rb_node;
648         while (*parent) {
649                 rb = *parent;
650                 p = rb_entry(rb, typeof(*p), node);
651                 if (prio > p->priority) {
652                         parent = &rb->rb_left;
653                 } else if (prio < p->priority) {
654                         parent = &rb->rb_right;
655                         first = false;
656                 } else {
657                         list_add_tail(&pt->link, &p->requests);
658                         return false;
659                 }
660         }
661
662         if (prio == I915_PRIORITY_NORMAL) {
663                 p = &engine->default_priolist;
664         } else {
665                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
666                 /* Convert an allocation failure to a priority bump */
667                 if (unlikely(!p)) {
668                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
669
670                         /* To maintain ordering with all rendering, after an
671                          * allocation failure we have to disable all scheduling.
672                          * Requests will then be executed in fifo, and schedule
673                          * will ensure that dependencies are emitted in fifo.
674                          * There will be still some reordering with existing
675                          * requests, so if userspace lied about their
676                          * dependencies that reordering may be visible.
677                          */
678                         engine->no_priolist = true;
679                         goto find_priolist;
680                 }
681         }
682
683         p->priority = prio;
684         rb_link_node(&p->node, rb, parent);
685         rb_insert_color(&p->node, &engine->execlist_queue);
686
687         INIT_LIST_HEAD(&p->requests);
688         list_add_tail(&pt->link, &p->requests);
689
690         if (first)
691                 engine->execlist_first = &p->node;
692
693         return first;
694 }
695
696 static void execlists_submit_request(struct drm_i915_gem_request *request)
697 {
698         struct intel_engine_cs *engine = request->engine;
699         unsigned long flags;
700
701         /* Will be called from irq-context when using foreign fences. */
702         spin_lock_irqsave(&engine->timeline->lock, flags);
703
704         if (insert_request(engine,
705                            &request->priotree,
706                            request->priotree.priority)) {
707                 if (execlists_elsp_ready(engine))
708                         tasklet_hi_schedule(&engine->irq_tasklet);
709         }
710
711         GEM_BUG_ON(!engine->execlist_first);
712         GEM_BUG_ON(list_empty(&request->priotree.link));
713
714         spin_unlock_irqrestore(&engine->timeline->lock, flags);
715 }
716
717 static struct intel_engine_cs *
718 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
719 {
720         struct intel_engine_cs *engine =
721                 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
722
723         GEM_BUG_ON(!locked);
724
725         if (engine != locked) {
726                 spin_unlock(&locked->timeline->lock);
727                 spin_lock(&engine->timeline->lock);
728         }
729
730         return engine;
731 }
732
733 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
734 {
735         struct intel_engine_cs *engine;
736         struct i915_dependency *dep, *p;
737         struct i915_dependency stack;
738         LIST_HEAD(dfs);
739
740         if (prio <= READ_ONCE(request->priotree.priority))
741                 return;
742
743         /* Need BKL in order to use the temporary link inside i915_dependency */
744         lockdep_assert_held(&request->i915->drm.struct_mutex);
745
746         stack.signaler = &request->priotree;
747         list_add(&stack.dfs_link, &dfs);
748
749         /* Recursively bump all dependent priorities to match the new request.
750          *
751          * A naive approach would be to use recursion:
752          * static void update_priorities(struct i915_priotree *pt, prio) {
753          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
754          *              update_priorities(dep->signal, prio)
755          *      insert_request(pt);
756          * }
757          * but that may have unlimited recursion depth and so runs a very
758          * real risk of overunning the kernel stack. Instead, we build
759          * a flat list of all dependencies starting with the current request.
760          * As we walk the list of dependencies, we add all of its dependencies
761          * to the end of the list (this may include an already visited
762          * request) and continue to walk onwards onto the new dependencies. The
763          * end result is a topological list of requests in reverse order, the
764          * last element in the list is the request we must execute first.
765          */
766         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
767                 struct i915_priotree *pt = dep->signaler;
768
769                 /* Within an engine, there can be no cycle, but we may
770                  * refer to the same dependency chain multiple times
771                  * (redundant dependencies are not eliminated) and across
772                  * engines.
773                  */
774                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
775                         GEM_BUG_ON(p->signaler->priority < pt->priority);
776                         if (prio > READ_ONCE(p->signaler->priority))
777                                 list_move_tail(&p->dfs_link, &dfs);
778                 }
779
780                 list_safe_reset_next(dep, p, dfs_link);
781         }
782
783         /* If we didn't need to bump any existing priorities, and we haven't
784          * yet submitted this request (i.e. there is no potential race with
785          * execlists_submit_request()), we can set our own priority and skip
786          * acquiring the engine locks.
787          */
788         if (request->priotree.priority == INT_MIN) {
789                 GEM_BUG_ON(!list_empty(&request->priotree.link));
790                 request->priotree.priority = prio;
791                 if (stack.dfs_link.next == stack.dfs_link.prev)
792                         return;
793                 __list_del_entry(&stack.dfs_link);
794         }
795
796         engine = request->engine;
797         spin_lock_irq(&engine->timeline->lock);
798
799         /* Fifo and depth-first replacement ensure our deps execute before us */
800         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
801                 struct i915_priotree *pt = dep->signaler;
802
803                 INIT_LIST_HEAD(&dep->dfs_link);
804
805                 engine = pt_lock_engine(pt, engine);
806
807                 if (prio <= pt->priority)
808                         continue;
809
810                 pt->priority = prio;
811                 if (!list_empty(&pt->link)) {
812                         __list_del_entry(&pt->link);
813                         insert_request(engine, pt, prio);
814                 }
815         }
816
817         spin_unlock_irq(&engine->timeline->lock);
818
819         /* XXX Do we need to preempt to make room for us and our deps? */
820 }
821
822 static struct intel_ring *
823 execlists_context_pin(struct intel_engine_cs *engine,
824                       struct i915_gem_context *ctx)
825 {
826         struct intel_context *ce = &ctx->engine[engine->id];
827         unsigned int flags;
828         void *vaddr;
829         int ret;
830
831         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
832
833         if (likely(ce->pin_count++))
834                 goto out;
835         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
836
837         if (!ce->state) {
838                 ret = execlists_context_deferred_alloc(ctx, engine);
839                 if (ret)
840                         goto err;
841         }
842         GEM_BUG_ON(!ce->state);
843
844         flags = PIN_GLOBAL | PIN_HIGH;
845         if (ctx->ggtt_offset_bias)
846                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
847
848         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
849         if (ret)
850                 goto err;
851
852         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
853         if (IS_ERR(vaddr)) {
854                 ret = PTR_ERR(vaddr);
855                 goto unpin_vma;
856         }
857
858         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
859         if (ret)
860                 goto unpin_map;
861
862         intel_lr_context_descriptor_update(ctx, engine);
863
864         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
865         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
866                 i915_ggtt_offset(ce->ring->vma);
867
868         ce->state->obj->mm.dirty = true;
869
870         i915_gem_context_get(ctx);
871 out:
872         return ce->ring;
873
874 unpin_map:
875         i915_gem_object_unpin_map(ce->state->obj);
876 unpin_vma:
877         __i915_vma_unpin(ce->state);
878 err:
879         ce->pin_count = 0;
880         return ERR_PTR(ret);
881 }
882
883 static void execlists_context_unpin(struct intel_engine_cs *engine,
884                                     struct i915_gem_context *ctx)
885 {
886         struct intel_context *ce = &ctx->engine[engine->id];
887
888         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
889         GEM_BUG_ON(ce->pin_count == 0);
890
891         if (--ce->pin_count)
892                 return;
893
894         intel_ring_unpin(ce->ring);
895
896         i915_gem_object_unpin_map(ce->state->obj);
897         i915_vma_unpin(ce->state);
898
899         i915_gem_context_put(ctx);
900 }
901
902 static int execlists_request_alloc(struct drm_i915_gem_request *request)
903 {
904         struct intel_engine_cs *engine = request->engine;
905         struct intel_context *ce = &request->ctx->engine[engine->id];
906         u32 *cs;
907         int ret;
908
909         GEM_BUG_ON(!ce->pin_count);
910
911         /* Flush enough space to reduce the likelihood of waiting after
912          * we start building the request - in which case we will just
913          * have to repeat work.
914          */
915         request->reserved_space += EXECLISTS_REQUEST_SIZE;
916
917         if (i915.enable_guc_submission) {
918                 /*
919                  * Check that the GuC has space for the request before
920                  * going any further, as the i915_add_request() call
921                  * later on mustn't fail ...
922                  */
923                 ret = i915_guc_wq_reserve(request);
924                 if (ret)
925                         goto err;
926         }
927
928         cs = intel_ring_begin(request, 0);
929         if (IS_ERR(cs)) {
930                 ret = PTR_ERR(cs);
931                 goto err_unreserve;
932         }
933
934         if (!ce->initialised) {
935                 ret = engine->init_context(request);
936                 if (ret)
937                         goto err_unreserve;
938
939                 ce->initialised = true;
940         }
941
942         /* Note that after this point, we have committed to using
943          * this request as it is being used to both track the
944          * state of engine initialisation and liveness of the
945          * golden renderstate above. Think twice before you try
946          * to cancel/unwind this request now.
947          */
948
949         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
950         return 0;
951
952 err_unreserve:
953         if (i915.enable_guc_submission)
954                 i915_guc_wq_unreserve(request);
955 err:
956         return ret;
957 }
958
959 /*
960  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
961  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
962  * but there is a slight complication as this is applied in WA batch where the
963  * values are only initialized once so we cannot take register value at the
964  * beginning and reuse it further; hence we save its value to memory, upload a
965  * constant value with bit21 set and then we restore it back with the saved value.
966  * To simplify the WA, a constant value is formed by using the default value
967  * of this register. This shouldn't be a problem because we are only modifying
968  * it for a short period and this batch in non-premptible. We can ofcourse
969  * use additional instructions that read the actual value of the register
970  * at that time and set our bit of interest but it makes the WA complicated.
971  *
972  * This WA is also required for Gen9 so extracting as a function avoids
973  * code duplication.
974  */
975 static u32 *
976 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
977 {
978         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
979         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
980         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
981         *batch++ = 0;
982
983         *batch++ = MI_LOAD_REGISTER_IMM(1);
984         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
985         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
986
987         batch = gen8_emit_pipe_control(batch,
988                                        PIPE_CONTROL_CS_STALL |
989                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
990                                        0);
991
992         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
993         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
994         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
995         *batch++ = 0;
996
997         return batch;
998 }
999
1000 /*
1001  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1002  * initialized at the beginning and shared across all contexts but this field
1003  * helps us to have multiple batches at different offsets and select them based
1004  * on a criteria. At the moment this batch always start at the beginning of the page
1005  * and at this point we don't have multiple wa_ctx batch buffers.
1006  *
1007  * The number of WA applied are not known at the beginning; we use this field
1008  * to return the no of DWORDS written.
1009  *
1010  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1011  * so it adds NOOPs as padding to make it cacheline aligned.
1012  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1013  * makes a complete batch buffer.
1014  */
1015 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1016 {
1017         /* WaDisableCtxRestoreArbitration:bdw,chv */
1018         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1019
1020         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1021         if (IS_BROADWELL(engine->i915))
1022                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1023
1024         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1025         /* Actual scratch location is at 128 bytes offset */
1026         batch = gen8_emit_pipe_control(batch,
1027                                        PIPE_CONTROL_FLUSH_L3 |
1028                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1029                                        PIPE_CONTROL_CS_STALL |
1030                                        PIPE_CONTROL_QW_WRITE,
1031                                        i915_ggtt_offset(engine->scratch) +
1032                                        2 * CACHELINE_BYTES);
1033
1034         /* Pad to end of cacheline */
1035         while ((unsigned long)batch % CACHELINE_BYTES)
1036                 *batch++ = MI_NOOP;
1037
1038         /*
1039          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1040          * execution depends on the length specified in terms of cache lines
1041          * in the register CTX_RCS_INDIRECT_CTX
1042          */
1043
1044         return batch;
1045 }
1046
1047 /*
1048  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1049  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1050  *
1051  *  The number of DWORDS written are returned using this field.
1052  *
1053  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1054  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1055  */
1056 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057 {
1058         /* WaDisableCtxRestoreArbitration:bdw,chv */
1059         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1060         *batch++ = MI_BATCH_BUFFER_END;
1061
1062         return batch;
1063 }
1064
1065 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1066 {
1067         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1068         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1069
1070         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1071         *batch++ = MI_LOAD_REGISTER_IMM(1);
1072         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1073         *batch++ = _MASKED_BIT_DISABLE(
1074                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1075         *batch++ = MI_NOOP;
1076
1077         /* WaClearSlmSpaceAtContextSwitch:kbl */
1078         /* Actual scratch location is at 128 bytes offset */
1079         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1080                 batch = gen8_emit_pipe_control(batch,
1081                                                PIPE_CONTROL_FLUSH_L3 |
1082                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1083                                                PIPE_CONTROL_CS_STALL |
1084                                                PIPE_CONTROL_QW_WRITE,
1085                                                i915_ggtt_offset(engine->scratch)
1086                                                + 2 * CACHELINE_BYTES);
1087         }
1088
1089         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1090         if (HAS_POOLED_EU(engine->i915)) {
1091                 /*
1092                  * EU pool configuration is setup along with golden context
1093                  * during context initialization. This value depends on
1094                  * device type (2x6 or 3x6) and needs to be updated based
1095                  * on which subslice is disabled especially for 2x6
1096                  * devices, however it is safe to load default
1097                  * configuration of 3x6 device instead of masking off
1098                  * corresponding bits because HW ignores bits of a disabled
1099                  * subslice and drops down to appropriate config. Please
1100                  * see render_state_setup() in i915_gem_render_state.c for
1101                  * possible configurations, to avoid duplication they are
1102                  * not shown here again.
1103                  */
1104                 *batch++ = GEN9_MEDIA_POOL_STATE;
1105                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1106                 *batch++ = 0x00777000;
1107                 *batch++ = 0;
1108                 *batch++ = 0;
1109                 *batch++ = 0;
1110         }
1111
1112         /* Pad to end of cacheline */
1113         while ((unsigned long)batch % CACHELINE_BYTES)
1114                 *batch++ = MI_NOOP;
1115
1116         return batch;
1117 }
1118
1119 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1120 {
1121         *batch++ = MI_BATCH_BUFFER_END;
1122
1123         return batch;
1124 }
1125
1126 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1127
1128 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1129 {
1130         struct drm_i915_gem_object *obj;
1131         struct i915_vma *vma;
1132         int err;
1133
1134         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1135         if (IS_ERR(obj))
1136                 return PTR_ERR(obj);
1137
1138         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1139         if (IS_ERR(vma)) {
1140                 err = PTR_ERR(vma);
1141                 goto err;
1142         }
1143
1144         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1145         if (err)
1146                 goto err;
1147
1148         engine->wa_ctx.vma = vma;
1149         return 0;
1150
1151 err:
1152         i915_gem_object_put(obj);
1153         return err;
1154 }
1155
1156 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1157 {
1158         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1159 }
1160
1161 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1162
1163 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1164 {
1165         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1166         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1167                                             &wa_ctx->per_ctx };
1168         wa_bb_func_t wa_bb_fn[2];
1169         struct page *page;
1170         void *batch, *batch_ptr;
1171         unsigned int i;
1172         int ret;
1173
1174         if (WARN_ON(engine->id != RCS || !engine->scratch))
1175                 return -EINVAL;
1176
1177         switch (INTEL_GEN(engine->i915)) {
1178         case 9:
1179                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1180                 wa_bb_fn[1] = gen9_init_perctx_bb;
1181                 break;
1182         case 8:
1183                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1184                 wa_bb_fn[1] = gen8_init_perctx_bb;
1185                 break;
1186         default:
1187                 MISSING_CASE(INTEL_GEN(engine->i915));
1188                 return 0;
1189         }
1190
1191         ret = lrc_setup_wa_ctx(engine);
1192         if (ret) {
1193                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1194                 return ret;
1195         }
1196
1197         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1198         batch = batch_ptr = kmap_atomic(page);
1199
1200         /*
1201          * Emit the two workaround batch buffers, recording the offset from the
1202          * start of the workaround batch buffer object for each and their
1203          * respective sizes.
1204          */
1205         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1206                 wa_bb[i]->offset = batch_ptr - batch;
1207                 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1208                         ret = -EINVAL;
1209                         break;
1210                 }
1211                 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1212                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1213         }
1214
1215         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1216
1217         kunmap_atomic(batch);
1218         if (ret)
1219                 lrc_destroy_wa_ctx(engine);
1220
1221         return ret;
1222 }
1223
1224 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1225 {
1226         struct drm_i915_private *dev_priv = engine->i915;
1227         struct execlist_port *port = engine->execlist_port;
1228         unsigned int n;
1229         bool submit;
1230         int ret;
1231
1232         ret = intel_mocs_init_engine(engine);
1233         if (ret)
1234                 return ret;
1235
1236         intel_engine_reset_breadcrumbs(engine);
1237         intel_engine_init_hangcheck(engine);
1238
1239         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1240         I915_WRITE(RING_MODE_GEN7(engine),
1241                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1242         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1243                    engine->status_page.ggtt_offset);
1244         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1245
1246         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1247
1248         /* After a GPU reset, we may have requests to replay */
1249         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1250
1251         submit = false;
1252         for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1253                 if (!port_isset(&port[n]))
1254                         break;
1255
1256                 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1257                                  engine->name, n,
1258                                  port_request(&port[n])->global_seqno);
1259
1260                 /* Discard the current inflight count */
1261                 port_set(&port[n], port_request(&port[n]));
1262                 submit = true;
1263         }
1264
1265         if (submit && !i915.enable_guc_submission)
1266                 execlists_submit_ports(engine);
1267
1268         return 0;
1269 }
1270
1271 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1272 {
1273         struct drm_i915_private *dev_priv = engine->i915;
1274         int ret;
1275
1276         ret = gen8_init_common_ring(engine);
1277         if (ret)
1278                 return ret;
1279
1280         /* We need to disable the AsyncFlip performance optimisations in order
1281          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1282          * programmed to '1' on all products.
1283          *
1284          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1285          */
1286         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1287
1288         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1289
1290         return init_workarounds_ring(engine);
1291 }
1292
1293 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1294 {
1295         int ret;
1296
1297         ret = gen8_init_common_ring(engine);
1298         if (ret)
1299                 return ret;
1300
1301         return init_workarounds_ring(engine);
1302 }
1303
1304 static void reset_common_ring(struct intel_engine_cs *engine,
1305                               struct drm_i915_gem_request *request)
1306 {
1307         struct execlist_port *port = engine->execlist_port;
1308         struct intel_context *ce;
1309
1310         /* If the request was innocent, we leave the request in the ELSP
1311          * and will try to replay it on restarting. The context image may
1312          * have been corrupted by the reset, in which case we may have
1313          * to service a new GPU hang, but more likely we can continue on
1314          * without impact.
1315          *
1316          * If the request was guilty, we presume the context is corrupt
1317          * and have to at least restore the RING register in the context
1318          * image back to the expected values to skip over the guilty request.
1319          */
1320         if (!request || request->fence.error != -EIO)
1321                 return;
1322
1323         /* We want a simple context + ring to execute the breadcrumb update.
1324          * We cannot rely on the context being intact across the GPU hang,
1325          * so clear it and rebuild just what we need for the breadcrumb.
1326          * All pending requests for this context will be zapped, and any
1327          * future request will be after userspace has had the opportunity
1328          * to recreate its own state.
1329          */
1330         ce = &request->ctx->engine[engine->id];
1331         execlists_init_reg_state(ce->lrc_reg_state,
1332                                  request->ctx, engine, ce->ring);
1333
1334         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1335         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1336                 i915_ggtt_offset(ce->ring->vma);
1337         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1338
1339         request->ring->head = request->postfix;
1340         intel_ring_update_space(request->ring);
1341
1342         /* Catch up with any missed context-switch interrupts */
1343         if (request->ctx != port_request(port)->ctx) {
1344                 i915_gem_request_put(port_request(port));
1345                 port[0] = port[1];
1346                 memset(&port[1], 0, sizeof(port[1]));
1347         }
1348
1349         GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1350
1351         /* Reset WaIdleLiteRestore:bdw,skl as well */
1352         request->tail =
1353                 intel_ring_wrap(request->ring,
1354                                 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1355         assert_ring_tail_valid(request->ring, request->tail);
1356 }
1357
1358 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1359 {
1360         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1361         struct intel_engine_cs *engine = req->engine;
1362         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1363         u32 *cs;
1364         int i;
1365
1366         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1367         if (IS_ERR(cs))
1368                 return PTR_ERR(cs);
1369
1370         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1371         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1372                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1373
1374                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1375                 *cs++ = upper_32_bits(pd_daddr);
1376                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1377                 *cs++ = lower_32_bits(pd_daddr);
1378         }
1379
1380         *cs++ = MI_NOOP;
1381         intel_ring_advance(req, cs);
1382
1383         return 0;
1384 }
1385
1386 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1387                               u64 offset, u32 len,
1388                               const unsigned int flags)
1389 {
1390         u32 *cs;
1391         int ret;
1392
1393         /* Don't rely in hw updating PDPs, specially in lite-restore.
1394          * Ideally, we should set Force PD Restore in ctx descriptor,
1395          * but we can't. Force Restore would be a second option, but
1396          * it is unsafe in case of lite-restore (because the ctx is
1397          * not idle). PML4 is allocated during ppgtt init so this is
1398          * not needed in 48-bit.*/
1399         if (req->ctx->ppgtt &&
1400             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1401             !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1402             !intel_vgpu_active(req->i915)) {
1403                 ret = intel_logical_ring_emit_pdps(req);
1404                 if (ret)
1405                         return ret;
1406
1407                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1408         }
1409
1410         cs = intel_ring_begin(req, 4);
1411         if (IS_ERR(cs))
1412                 return PTR_ERR(cs);
1413
1414         /* FIXME(BDW): Address space and security selectors. */
1415         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1416                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1417                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1418         *cs++ = lower_32_bits(offset);
1419         *cs++ = upper_32_bits(offset);
1420         *cs++ = MI_NOOP;
1421         intel_ring_advance(req, cs);
1422
1423         return 0;
1424 }
1425
1426 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1427 {
1428         struct drm_i915_private *dev_priv = engine->i915;
1429         I915_WRITE_IMR(engine,
1430                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1431         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1432 }
1433
1434 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1435 {
1436         struct drm_i915_private *dev_priv = engine->i915;
1437         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1438 }
1439
1440 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1441 {
1442         u32 cmd, *cs;
1443
1444         cs = intel_ring_begin(request, 4);
1445         if (IS_ERR(cs))
1446                 return PTR_ERR(cs);
1447
1448         cmd = MI_FLUSH_DW + 1;
1449
1450         /* We always require a command barrier so that subsequent
1451          * commands, such as breadcrumb interrupts, are strictly ordered
1452          * wrt the contents of the write cache being flushed to memory
1453          * (and thus being coherent from the CPU).
1454          */
1455         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1456
1457         if (mode & EMIT_INVALIDATE) {
1458                 cmd |= MI_INVALIDATE_TLB;
1459                 if (request->engine->id == VCS)
1460                         cmd |= MI_INVALIDATE_BSD;
1461         }
1462
1463         *cs++ = cmd;
1464         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1465         *cs++ = 0; /* upper addr */
1466         *cs++ = 0; /* value */
1467         intel_ring_advance(request, cs);
1468
1469         return 0;
1470 }
1471
1472 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1473                                   u32 mode)
1474 {
1475         struct intel_engine_cs *engine = request->engine;
1476         u32 scratch_addr =
1477                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1478         bool vf_flush_wa = false, dc_flush_wa = false;
1479         u32 *cs, flags = 0;
1480         int len;
1481
1482         flags |= PIPE_CONTROL_CS_STALL;
1483
1484         if (mode & EMIT_FLUSH) {
1485                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1486                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1487                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1488                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1489         }
1490
1491         if (mode & EMIT_INVALIDATE) {
1492                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1493                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1494                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1495                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1496                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1497                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1498                 flags |= PIPE_CONTROL_QW_WRITE;
1499                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1500
1501                 /*
1502                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1503                  * pipe control.
1504                  */
1505                 if (IS_GEN9(request->i915))
1506                         vf_flush_wa = true;
1507
1508                 /* WaForGAMHang:kbl */
1509                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1510                         dc_flush_wa = true;
1511         }
1512
1513         len = 6;
1514
1515         if (vf_flush_wa)
1516                 len += 6;
1517
1518         if (dc_flush_wa)
1519                 len += 12;
1520
1521         cs = intel_ring_begin(request, len);
1522         if (IS_ERR(cs))
1523                 return PTR_ERR(cs);
1524
1525         if (vf_flush_wa)
1526                 cs = gen8_emit_pipe_control(cs, 0, 0);
1527
1528         if (dc_flush_wa)
1529                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1530                                             0);
1531
1532         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1533
1534         if (dc_flush_wa)
1535                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1536
1537         intel_ring_advance(request, cs);
1538
1539         return 0;
1540 }
1541
1542 /*
1543  * Reserve space for 2 NOOPs at the end of each request to be
1544  * used as a workaround for not being allowed to do lite
1545  * restore with HEAD==TAIL (WaIdleLiteRestore).
1546  */
1547 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1548 {
1549         *cs++ = MI_NOOP;
1550         *cs++ = MI_NOOP;
1551         request->wa_tail = intel_ring_offset(request, cs);
1552 }
1553
1554 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1555 {
1556         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1557         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1558
1559         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1560         *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1561         *cs++ = 0;
1562         *cs++ = request->global_seqno;
1563         *cs++ = MI_USER_INTERRUPT;
1564         *cs++ = MI_NOOP;
1565         request->tail = intel_ring_offset(request, cs);
1566         assert_ring_tail_valid(request->ring, request->tail);
1567
1568         gen8_emit_wa_tail(request, cs);
1569 }
1570
1571 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1572
1573 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1574                                         u32 *cs)
1575 {
1576         /* We're using qword write, seqno should be aligned to 8 bytes. */
1577         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1578
1579         /* w/a for post sync ops following a GPGPU operation we
1580          * need a prior CS_STALL, which is emitted by the flush
1581          * following the batch.
1582          */
1583         *cs++ = GFX_OP_PIPE_CONTROL(6);
1584         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1585                 PIPE_CONTROL_QW_WRITE;
1586         *cs++ = intel_hws_seqno_address(request->engine);
1587         *cs++ = 0;
1588         *cs++ = request->global_seqno;
1589         /* We're thrashing one dword of HWS. */
1590         *cs++ = 0;
1591         *cs++ = MI_USER_INTERRUPT;
1592         *cs++ = MI_NOOP;
1593         request->tail = intel_ring_offset(request, cs);
1594         assert_ring_tail_valid(request->ring, request->tail);
1595
1596         gen8_emit_wa_tail(request, cs);
1597 }
1598
1599 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1600
1601 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1602 {
1603         int ret;
1604
1605         ret = intel_ring_workarounds_emit(req);
1606         if (ret)
1607                 return ret;
1608
1609         ret = intel_rcs_context_init_mocs(req);
1610         /*
1611          * Failing to program the MOCS is non-fatal.The system will not
1612          * run at peak performance. So generate an error and carry on.
1613          */
1614         if (ret)
1615                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1616
1617         return i915_gem_render_state_emit(req);
1618 }
1619
1620 /**
1621  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1622  * @engine: Engine Command Streamer.
1623  */
1624 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1625 {
1626         struct drm_i915_private *dev_priv;
1627
1628         /*
1629          * Tasklet cannot be active at this point due intel_mark_active/idle
1630          * so this is just for documentation.
1631          */
1632         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1633                 tasklet_kill(&engine->irq_tasklet);
1634
1635         dev_priv = engine->i915;
1636
1637         if (engine->buffer) {
1638                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1639         }
1640
1641         if (engine->cleanup)
1642                 engine->cleanup(engine);
1643
1644         if (engine->status_page.vma) {
1645                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1646                 engine->status_page.vma = NULL;
1647         }
1648
1649         intel_engine_cleanup_common(engine);
1650
1651         lrc_destroy_wa_ctx(engine);
1652         engine->i915 = NULL;
1653         dev_priv->engine[engine->id] = NULL;
1654         kfree(engine);
1655 }
1656
1657 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1658 {
1659         engine->submit_request = execlists_submit_request;
1660         engine->schedule = execlists_schedule;
1661         engine->irq_tasklet.func = intel_lrc_irq_handler;
1662 }
1663
1664 static void
1665 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1666 {
1667         /* Default vfuncs which can be overriden by each engine. */
1668         engine->init_hw = gen8_init_common_ring;
1669         engine->reset_hw = reset_common_ring;
1670
1671         engine->context_pin = execlists_context_pin;
1672         engine->context_unpin = execlists_context_unpin;
1673
1674         engine->request_alloc = execlists_request_alloc;
1675
1676         engine->emit_flush = gen8_emit_flush;
1677         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1678         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1679
1680         engine->set_default_submission = execlists_set_default_submission;
1681
1682         engine->irq_enable = gen8_logical_ring_enable_irq;
1683         engine->irq_disable = gen8_logical_ring_disable_irq;
1684         engine->emit_bb_start = gen8_emit_bb_start;
1685 }
1686
1687 static inline void
1688 logical_ring_default_irqs(struct intel_engine_cs *engine)
1689 {
1690         unsigned shift = engine->irq_shift;
1691         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1692         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1693 }
1694
1695 static int
1696 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1697 {
1698         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1699         void *hws;
1700
1701         /* The HWSP is part of the default context object in LRC mode. */
1702         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1703         if (IS_ERR(hws))
1704                 return PTR_ERR(hws);
1705
1706         engine->status_page.page_addr = hws + hws_offset;
1707         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1708         engine->status_page.vma = vma;
1709
1710         return 0;
1711 }
1712
1713 static void
1714 logical_ring_setup(struct intel_engine_cs *engine)
1715 {
1716         struct drm_i915_private *dev_priv = engine->i915;
1717         enum forcewake_domains fw_domains;
1718
1719         intel_engine_setup_common(engine);
1720
1721         /* Intentionally left blank. */
1722         engine->buffer = NULL;
1723
1724         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1725                                                     RING_ELSP(engine),
1726                                                     FW_REG_WRITE);
1727
1728         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1729                                                      RING_CONTEXT_STATUS_PTR(engine),
1730                                                      FW_REG_READ | FW_REG_WRITE);
1731
1732         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1733                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1734                                                      FW_REG_READ);
1735
1736         engine->fw_domains = fw_domains;
1737
1738         tasklet_init(&engine->irq_tasklet,
1739                      intel_lrc_irq_handler, (unsigned long)engine);
1740
1741         logical_ring_default_vfuncs(engine);
1742         logical_ring_default_irqs(engine);
1743 }
1744
1745 static int
1746 logical_ring_init(struct intel_engine_cs *engine)
1747 {
1748         struct i915_gem_context *dctx = engine->i915->kernel_context;
1749         int ret;
1750
1751         ret = intel_engine_init_common(engine);
1752         if (ret)
1753                 goto error;
1754
1755         /* And setup the hardware status page. */
1756         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1757         if (ret) {
1758                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1759                 goto error;
1760         }
1761
1762         return 0;
1763
1764 error:
1765         intel_logical_ring_cleanup(engine);
1766         return ret;
1767 }
1768
1769 int logical_render_ring_init(struct intel_engine_cs *engine)
1770 {
1771         struct drm_i915_private *dev_priv = engine->i915;
1772         int ret;
1773
1774         logical_ring_setup(engine);
1775
1776         if (HAS_L3_DPF(dev_priv))
1777                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1778
1779         /* Override some for render ring. */
1780         if (INTEL_GEN(dev_priv) >= 9)
1781                 engine->init_hw = gen9_init_render_ring;
1782         else
1783                 engine->init_hw = gen8_init_render_ring;
1784         engine->init_context = gen8_init_rcs_context;
1785         engine->emit_flush = gen8_emit_flush_render;
1786         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1787         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1788
1789         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1790         if (ret)
1791                 return ret;
1792
1793         ret = intel_init_workaround_bb(engine);
1794         if (ret) {
1795                 /*
1796                  * We continue even if we fail to initialize WA batch
1797                  * because we only expect rare glitches but nothing
1798                  * critical to prevent us from using GPU
1799                  */
1800                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1801                           ret);
1802         }
1803
1804         return logical_ring_init(engine);
1805 }
1806
1807 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1808 {
1809         logical_ring_setup(engine);
1810
1811         return logical_ring_init(engine);
1812 }
1813
1814 static u32
1815 make_rpcs(struct drm_i915_private *dev_priv)
1816 {
1817         u32 rpcs = 0;
1818
1819         /*
1820          * No explicit RPCS request is needed to ensure full
1821          * slice/subslice/EU enablement prior to Gen9.
1822         */
1823         if (INTEL_GEN(dev_priv) < 9)
1824                 return 0;
1825
1826         /*
1827          * Starting in Gen9, render power gating can leave
1828          * slice/subslice/EU in a partially enabled state. We
1829          * must make an explicit request through RPCS for full
1830          * enablement.
1831         */
1832         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1833                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1834                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1835                         GEN8_RPCS_S_CNT_SHIFT;
1836                 rpcs |= GEN8_RPCS_ENABLE;
1837         }
1838
1839         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1840                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1841                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1842                         GEN8_RPCS_SS_CNT_SHIFT;
1843                 rpcs |= GEN8_RPCS_ENABLE;
1844         }
1845
1846         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1847                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1848                         GEN8_RPCS_EU_MIN_SHIFT;
1849                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1850                         GEN8_RPCS_EU_MAX_SHIFT;
1851                 rpcs |= GEN8_RPCS_ENABLE;
1852         }
1853
1854         return rpcs;
1855 }
1856
1857 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1858 {
1859         u32 indirect_ctx_offset;
1860
1861         switch (INTEL_GEN(engine->i915)) {
1862         default:
1863                 MISSING_CASE(INTEL_GEN(engine->i915));
1864                 /* fall through */
1865         case 10:
1866                 indirect_ctx_offset =
1867                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1868                 break;
1869         case 9:
1870                 indirect_ctx_offset =
1871                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1872                 break;
1873         case 8:
1874                 indirect_ctx_offset =
1875                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1876                 break;
1877         }
1878
1879         return indirect_ctx_offset;
1880 }
1881
1882 static void execlists_init_reg_state(u32 *regs,
1883                                      struct i915_gem_context *ctx,
1884                                      struct intel_engine_cs *engine,
1885                                      struct intel_ring *ring)
1886 {
1887         struct drm_i915_private *dev_priv = engine->i915;
1888         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1889         u32 base = engine->mmio_base;
1890         bool rcs = engine->id == RCS;
1891
1892         /* A context is actually a big batch buffer with several
1893          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1894          * values we are setting here are only for the first context restore:
1895          * on a subsequent save, the GPU will recreate this batchbuffer with new
1896          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1897          * we are not initializing here).
1898          */
1899         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1900                                  MI_LRI_FORCE_POSTED;
1901
1902         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1903                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1904                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1905                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
1906                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
1907         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1908         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1909         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1910         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1911                 RING_CTL_SIZE(ring->size) | RING_VALID);
1912         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1913         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1914         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1915         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1916         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1917         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1918         if (rcs) {
1919                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1920                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1921                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1922                         RING_INDIRECT_CTX_OFFSET(base), 0);
1923
1924                 if (engine->wa_ctx.vma) {
1925                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1926                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1927
1928                         regs[CTX_RCS_INDIRECT_CTX + 1] =
1929                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1930                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1931
1932                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1933                                 intel_lr_indirect_ctx_offset(engine) << 6;
1934
1935                         regs[CTX_BB_PER_CTX_PTR + 1] =
1936                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1937                 }
1938         }
1939
1940         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1941
1942         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1943         /* PDP values well be assigned later if needed */
1944         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1945         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1946         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1947         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1948         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1949         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1950         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1951         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1952
1953         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1954                 /* 64b PPGTT (48bit canonical)
1955                  * PDP0_DESCRIPTOR contains the base address to PML4 and
1956                  * other PDP Descriptors are ignored.
1957                  */
1958                 ASSIGN_CTX_PML4(ppgtt, regs);
1959         }
1960
1961         if (rcs) {
1962                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1963                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1964                         make_rpcs(dev_priv));
1965
1966                 i915_oa_init_reg_state(engine, ctx, regs);
1967         }
1968 }
1969
1970 static int
1971 populate_lr_context(struct i915_gem_context *ctx,
1972                     struct drm_i915_gem_object *ctx_obj,
1973                     struct intel_engine_cs *engine,
1974                     struct intel_ring *ring)
1975 {
1976         void *vaddr;
1977         int ret;
1978
1979         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1980         if (ret) {
1981                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1982                 return ret;
1983         }
1984
1985         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1986         if (IS_ERR(vaddr)) {
1987                 ret = PTR_ERR(vaddr);
1988                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1989                 return ret;
1990         }
1991         ctx_obj->mm.dirty = true;
1992
1993         /* The second page of the context object contains some fields which must
1994          * be set up prior to the first execution. */
1995
1996         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1997                                  ctx, engine, ring);
1998
1999         i915_gem_object_unpin_map(ctx_obj);
2000
2001         return 0;
2002 }
2003
2004 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2005                                             struct intel_engine_cs *engine)
2006 {
2007         struct drm_i915_gem_object *ctx_obj;
2008         struct intel_context *ce = &ctx->engine[engine->id];
2009         struct i915_vma *vma;
2010         uint32_t context_size;
2011         struct intel_ring *ring;
2012         int ret;
2013
2014         WARN_ON(ce->state);
2015
2016         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2017
2018         /* One extra page as the sharing data between driver and GuC */
2019         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2020
2021         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2022         if (IS_ERR(ctx_obj)) {
2023                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2024                 return PTR_ERR(ctx_obj);
2025         }
2026
2027         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2028         if (IS_ERR(vma)) {
2029                 ret = PTR_ERR(vma);
2030                 goto error_deref_obj;
2031         }
2032
2033         ring = intel_engine_create_ring(engine, ctx->ring_size);
2034         if (IS_ERR(ring)) {
2035                 ret = PTR_ERR(ring);
2036                 goto error_deref_obj;
2037         }
2038
2039         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2040         if (ret) {
2041                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2042                 goto error_ring_free;
2043         }
2044
2045         ce->ring = ring;
2046         ce->state = vma;
2047         ce->initialised |= engine->init_context == NULL;
2048
2049         return 0;
2050
2051 error_ring_free:
2052         intel_ring_free(ring);
2053 error_deref_obj:
2054         i915_gem_object_put(ctx_obj);
2055         return ret;
2056 }
2057
2058 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2059 {
2060         struct intel_engine_cs *engine;
2061         struct i915_gem_context *ctx;
2062         enum intel_engine_id id;
2063
2064         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2065          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2066          * that stored in context. As we only write new commands from
2067          * ce->ring->tail onwards, everything before that is junk. If the GPU
2068          * starts reading from its RING_HEAD from the context, it may try to
2069          * execute that junk and die.
2070          *
2071          * So to avoid that we reset the context images upon resume. For
2072          * simplicity, we just zero everything out.
2073          */
2074         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2075                 for_each_engine(engine, dev_priv, id) {
2076                         struct intel_context *ce = &ctx->engine[engine->id];
2077                         u32 *reg;
2078
2079                         if (!ce->state)
2080                                 continue;
2081
2082                         reg = i915_gem_object_pin_map(ce->state->obj,
2083                                                       I915_MAP_WB);
2084                         if (WARN_ON(IS_ERR(reg)))
2085                                 continue;
2086
2087                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2088                         reg[CTX_RING_HEAD+1] = 0;
2089                         reg[CTX_RING_TAIL+1] = 0;
2090
2091                         ce->state->obj->mm.dirty = true;
2092                         i915_gem_object_unpin_map(ce->state->obj);
2093
2094                         intel_ring_reset(ce->ring, 0);
2095                 }
2096         }
2097 }