]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
7c636b3db156320dd5c078e5d27bfe1bb0fa4c42
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
227 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
228
229 static int intel_lr_context_pin(struct intel_context *ctx,
230                                 struct intel_engine_cs *engine);
231 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
232                                            struct drm_i915_gem_object *default_ctx_obj);
233
234
235 /**
236  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237  * @dev: DRM device.
238  * @enable_execlists: value of i915.enable_execlists module parameter.
239  *
240  * Only certain platforms support Execlists (the prerequisites being
241  * support for Logical Ring Contexts and Aliasing PPGTT or better).
242  *
243  * Return: 1 if Execlists is supported and has to be enabled.
244  */
245 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246 {
247         WARN_ON(i915.enable_ppgtt == -1);
248
249         /* On platforms with execlist available, vGPU will only
250          * support execlist mode, no ring buffer mode.
251          */
252         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253                 return 1;
254
255         if (INTEL_INFO(dev)->gen >= 9)
256                 return 1;
257
258         if (enable_execlists == 0)
259                 return 0;
260
261         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262             i915.use_mmio_flip >= 0)
263                 return 1;
264
265         return 0;
266 }
267
268 static void
269 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
270 {
271         struct drm_device *dev = engine->dev;
272
273         if (IS_GEN8(dev) || IS_GEN9(dev))
274                 engine->idle_lite_restore_wa = ~0;
275
276         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
277                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
278                                         (engine->id == VCS || engine->id == VCS2);
279
280         engine->ctx_desc_template = GEN8_CTX_VALID;
281         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
282                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
283         if (IS_GEN8(dev))
284                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287         /* TODO: WaDisableLiteRestore when we start using semaphore
288          * signalling between Command Streamers */
289         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293         if (engine->disable_lite_restore_wa)
294                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 }
296
297 /**
298  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299  *                                        descriptor for a pinned context
300  *
301  * @ctx: Context to work on
302  * @ring: Engine the descriptor will be used with
303  *
304  * The context descriptor encodes various attributes of a context,
305  * including its GTT address and some flags. Because it's fairly
306  * expensive to calculate, we'll just do it once and cache the result,
307  * which remains valid until the context is unpinned.
308  *
309  * This is what a descriptor looks like, from LSB to MSB:
310  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
311  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
312  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
313  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
314  */
315 static void
316 intel_lr_context_descriptor_update(struct intel_context *ctx,
317                                    struct intel_engine_cs *engine)
318 {
319         uint64_t lrca, desc;
320
321         lrca = ctx->engine[engine->id].lrc_vma->node.start +
322                LRC_PPHWSP_PN * PAGE_SIZE;
323
324         desc = engine->ctx_desc_template;                          /* bits  0-11 */
325         desc |= lrca;                                      /* bits 12-31 */
326         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
327
328         ctx->engine[engine->id].lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332                                      struct intel_engine_cs *engine)
333 {
334         return ctx->engine[engine->id].lrc_desc;
335 }
336
337 /**
338  * intel_execlists_ctx_id() - get the Execlists Context ID
339  * @ctx: Context to get the ID for
340  * @ring: Engine to get the ID for
341  *
342  * Do not confuse with ctx->id! Unfortunately we have a name overload
343  * here: the old context ID we pass to userspace as a handler so that
344  * they can refer to a context, and the new context ID we pass to the
345  * ELSP so that the GPU can inform us of the context status via
346  * interrupts.
347  *
348  * The context ID is a portion of the context descriptor, so we can
349  * just extract the required part from the cached descriptor.
350  *
351  * Return: 20-bits globally unique context ID.
352  */
353 u32 intel_execlists_ctx_id(struct intel_context *ctx,
354                            struct intel_engine_cs *engine)
355 {
356         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
357 }
358
359 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360                                  struct drm_i915_gem_request *rq1)
361 {
362
363         struct intel_engine_cs *engine = rq0->engine;
364         struct drm_device *dev = engine->dev;
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         uint64_t desc[2];
367
368         if (rq1) {
369                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
370                 rq1->elsp_submitted++;
371         } else {
372                 desc[1] = 0;
373         }
374
375         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
376         rq0->elsp_submitted++;
377
378         /* You must always write both descriptors in the order below. */
379         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
381
382         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
383         /* The context is automatically loaded after the following */
384         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
385
386         /* ELSP is a wo register, use another nearby reg for posting */
387         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
388 }
389
390 static void
391 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392 {
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397 }
398
399 static void execlists_update_context(struct drm_i915_gem_request *rq)
400 {
401         struct intel_engine_cs *engine = rq->engine;
402         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
403         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
404
405         reg_state[CTX_RING_TAIL+1] = rq->tail;
406
407         /* True 32b PPGTT with dynamic page allocation: update PDP
408          * registers and point the unallocated PDPs to scratch page.
409          * PML4 is allocated during ppgtt init, so this is not needed
410          * in 48-bit mode.
411          */
412         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413                 execlists_update_context_pdps(ppgtt, reg_state);
414 }
415
416 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417                                       struct drm_i915_gem_request *rq1)
418 {
419         execlists_update_context(rq0);
420
421         if (rq1)
422                 execlists_update_context(rq1);
423
424         execlists_elsp_write(rq0, rq1);
425 }
426
427 static void execlists_context_unqueue__locked(struct intel_engine_cs *engine)
428 {
429         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
430         struct drm_i915_gem_request *cursor, *tmp;
431
432         assert_spin_locked(&engine->execlist_lock);
433
434         /*
435          * If irqs are not active generate a warning as batches that finish
436          * without the irqs may get lost and a GPU Hang may occur.
437          */
438         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
439
440         /* Try to read in pairs */
441         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
442                                  execlist_link) {
443                 if (!req0) {
444                         req0 = cursor;
445                 } else if (req0->ctx == cursor->ctx) {
446                         /* Same ctx: ignore first request, as second request
447                          * will update tail past first request's workload */
448                         cursor->elsp_submitted = req0->elsp_submitted;
449                         list_move_tail(&req0->execlist_link,
450                                        &engine->execlist_retired_req_list);
451                         req0 = cursor;
452                 } else {
453                         req1 = cursor;
454                         WARN_ON(req1->elsp_submitted);
455                         break;
456                 }
457         }
458
459         if (unlikely(!req0))
460                 return;
461
462         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
463                 /*
464                  * WaIdleLiteRestore: make sure we never cause a lite restore
465                  * with HEAD==TAIL.
466                  *
467                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
468                  * resubmit the request. See gen8_emit_request() for where we
469                  * prepare the padding after the end of the request.
470                  */
471                 struct intel_ringbuffer *ringbuf;
472
473                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
474                 req0->tail += 8;
475                 req0->tail &= ringbuf->size - 1;
476         }
477
478         execlists_submit_requests(req0, req1);
479 }
480
481 static void execlists_context_unqueue(struct intel_engine_cs *engine)
482 {
483         struct drm_i915_private *dev_priv = engine->dev->dev_private;
484
485         spin_lock(&dev_priv->uncore.lock);
486         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
487
488         execlists_context_unqueue__locked(engine);
489
490         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
491         spin_unlock(&dev_priv->uncore.lock);
492 }
493
494 static unsigned int
495 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
496 {
497         struct drm_i915_gem_request *head_req;
498
499         assert_spin_locked(&engine->execlist_lock);
500
501         head_req = list_first_entry_or_null(&engine->execlist_queue,
502                                             struct drm_i915_gem_request,
503                                             execlist_link);
504
505         if (!head_req)
506                 return 0;
507
508         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
509                 return 0;
510
511         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
512
513         if (--head_req->elsp_submitted > 0)
514                 return 0;
515
516         list_move_tail(&head_req->execlist_link,
517                        &engine->execlist_retired_req_list);
518
519         return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524                    u32 *context_id)
525 {
526         struct drm_i915_private *dev_priv = engine->dev->dev_private;
527         u32 status;
528
529         read_pointer %= GEN8_CSB_ENTRIES;
530
531         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534                 return 0;
535
536         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537                                                               read_pointer));
538
539         return status;
540 }
541
542 /**
543  * intel_lrc_irq_handler() - handle Context Switch interrupts
544  * @ring: Engine Command Streamer to handle.
545  *
546  * Check the unread Context Status Buffers and manage the submission of new
547  * contexts to the ELSP accordingly.
548  */
549 void intel_lrc_irq_handler(struct intel_engine_cs *engine)
550 {
551         struct drm_i915_private *dev_priv = engine->dev->dev_private;
552         u32 status_pointer;
553         unsigned int read_pointer, write_pointer;
554         u32 status = 0;
555         u32 status_id;
556         unsigned int submit_contexts = 0;
557
558         spin_lock(&engine->execlist_lock);
559
560         spin_lock(&dev_priv->uncore.lock);
561         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
562
563         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
564
565         read_pointer = engine->next_context_status_buffer;
566         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
567         if (read_pointer > write_pointer)
568                 write_pointer += GEN8_CSB_ENTRIES;
569
570         while (read_pointer < write_pointer) {
571                 status = get_context_status(engine, ++read_pointer,
572                                             &status_id);
573
574                 if (unlikely(status & GEN8_CTX_STATUS_PREEMPTED)) {
575                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
576                                 if (execlists_check_remove_request(engine, status_id))
577                                         WARN(1, "Lite Restored request removed from queue\n");
578                         } else
579                                 WARN(1, "Preemption without Lite Restore\n");
580                 }
581
582                 if (status & (GEN8_CTX_STATUS_ACTIVE_IDLE |
583                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
584                         submit_contexts +=
585                                 execlists_check_remove_request(engine,
586                                                                status_id);
587         }
588
589         if (submit_contexts) {
590                 if (!engine->disable_lite_restore_wa ||
591                     (status & GEN8_CTX_STATUS_ACTIVE_IDLE))
592                         execlists_context_unqueue__locked(engine);
593         }
594
595         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
596
597         /* Update the read pointer to the old write pointer. Manual ringbuffer
598          * management ftw </sarcasm> */
599         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
600                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
601                                     engine->next_context_status_buffer << 8));
602
603         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
604         spin_unlock(&dev_priv->uncore.lock);
605
606         spin_unlock(&engine->execlist_lock);
607
608         if (unlikely(submit_contexts > 2))
609                 DRM_ERROR("More than two context complete events?\n");
610 }
611
612 static void execlists_context_queue(struct drm_i915_gem_request *request)
613 {
614         struct intel_engine_cs *engine = request->engine;
615         struct drm_i915_gem_request *cursor;
616         int num_elements = 0;
617
618         if (request->ctx != request->i915->kernel_context)
619                 intel_lr_context_pin(request->ctx, engine);
620
621         i915_gem_request_reference(request);
622
623         spin_lock_irq(&engine->execlist_lock);
624
625         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
626                 if (++num_elements > 2)
627                         break;
628
629         if (num_elements > 2) {
630                 struct drm_i915_gem_request *tail_req;
631
632                 tail_req = list_last_entry(&engine->execlist_queue,
633                                            struct drm_i915_gem_request,
634                                            execlist_link);
635
636                 if (request->ctx == tail_req->ctx) {
637                         WARN(tail_req->elsp_submitted != 0,
638                                 "More than 2 already-submitted reqs queued\n");
639                         list_move_tail(&tail_req->execlist_link,
640                                        &engine->execlist_retired_req_list);
641                 }
642         }
643
644         list_add_tail(&request->execlist_link, &engine->execlist_queue);
645         if (num_elements == 0)
646                 execlists_context_unqueue(engine);
647
648         spin_unlock_irq(&engine->execlist_lock);
649 }
650
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653         struct intel_engine_cs *engine = req->engine;
654         uint32_t flush_domains;
655         int ret;
656
657         flush_domains = 0;
658         if (engine->gpu_caches_dirty)
659                 flush_domains = I915_GEM_GPU_DOMAINS;
660
661         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662         if (ret)
663                 return ret;
664
665         engine->gpu_caches_dirty = false;
666         return 0;
667 }
668
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670                                  struct list_head *vmas)
671 {
672         const unsigned other_rings = ~intel_engine_flag(req->engine);
673         struct i915_vma *vma;
674         uint32_t flush_domains = 0;
675         bool flush_chipset = false;
676         int ret;
677
678         list_for_each_entry(vma, vmas, exec_list) {
679                 struct drm_i915_gem_object *obj = vma->obj;
680
681                 if (obj->active & other_rings) {
682                         ret = i915_gem_object_sync(obj, req->engine, &req);
683                         if (ret)
684                                 return ret;
685                 }
686
687                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688                         flush_chipset |= i915_gem_clflush_object(obj, false);
689
690                 flush_domains |= obj->base.write_domain;
691         }
692
693         if (flush_domains & I915_GEM_DOMAIN_GTT)
694                 wmb();
695
696         /* Unconditionally invalidate gpu caches and ensure that we do flush
697          * any residual writes from the previous batch.
698          */
699         return logical_ring_invalidate_all_caches(req);
700 }
701
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704         int ret = 0;
705
706         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
707
708         if (i915.enable_guc_submission) {
709                 /*
710                  * Check that the GuC has space for the request before
711                  * going any further, as the i915_add_request() call
712                  * later on mustn't fail ...
713                  */
714                 struct intel_guc *guc = &request->i915->guc;
715
716                 ret = i915_guc_wq_check_space(guc->execbuf_client);
717                 if (ret)
718                         return ret;
719         }
720
721         if (request->ctx != request->i915->kernel_context)
722                 ret = intel_lr_context_pin(request->ctx, request->engine);
723
724         return ret;
725 }
726
727 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
728                                        int bytes)
729 {
730         struct intel_ringbuffer *ringbuf = req->ringbuf;
731         struct intel_engine_cs *engine = req->engine;
732         struct drm_i915_gem_request *target;
733         unsigned space;
734         int ret;
735
736         if (intel_ring_space(ringbuf) >= bytes)
737                 return 0;
738
739         /* The whole point of reserving space is to not wait! */
740         WARN_ON(ringbuf->reserved_in_use);
741
742         list_for_each_entry(target, &engine->request_list, list) {
743                 /*
744                  * The request queue is per-engine, so can contain requests
745                  * from multiple ringbuffers. Here, we must ignore any that
746                  * aren't from the ringbuffer we're considering.
747                  */
748                 if (target->ringbuf != ringbuf)
749                         continue;
750
751                 /* Would completion of this request free enough space? */
752                 space = __intel_ring_space(target->postfix, ringbuf->tail,
753                                            ringbuf->size);
754                 if (space >= bytes)
755                         break;
756         }
757
758         if (WARN_ON(&target->list == &engine->request_list))
759                 return -ENOSPC;
760
761         ret = i915_wait_request(target);
762         if (ret)
763                 return ret;
764
765         ringbuf->space = space;
766         return 0;
767 }
768
769 /*
770  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
771  * @request: Request to advance the logical ringbuffer of.
772  *
773  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
774  * really happens during submission is that the context and current tail will be placed
775  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
776  * point, the tail *inside* the context is updated and the ELSP written to.
777  */
778 static int
779 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
780 {
781         struct intel_ringbuffer *ringbuf = request->ringbuf;
782         struct drm_i915_private *dev_priv = request->i915;
783         struct intel_engine_cs *engine = request->engine;
784
785         intel_logical_ring_advance(ringbuf);
786         request->tail = ringbuf->tail;
787
788         /*
789          * Here we add two extra NOOPs as padding to avoid
790          * lite restore of a context with HEAD==TAIL.
791          *
792          * Caller must reserve WA_TAIL_DWORDS for us!
793          */
794         intel_logical_ring_emit(ringbuf, MI_NOOP);
795         intel_logical_ring_emit(ringbuf, MI_NOOP);
796         intel_logical_ring_advance(ringbuf);
797
798         if (intel_engine_stopped(engine))
799                 return 0;
800
801         if (engine->last_context != request->ctx) {
802                 if (engine->last_context)
803                         intel_lr_context_unpin(engine->last_context, engine);
804                 if (request->ctx != request->i915->kernel_context) {
805                         intel_lr_context_pin(request->ctx, engine);
806                         engine->last_context = request->ctx;
807                 } else {
808                         engine->last_context = NULL;
809                 }
810         }
811
812         if (dev_priv->guc.execbuf_client)
813                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
814         else
815                 execlists_context_queue(request);
816
817         return 0;
818 }
819
820 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
821 {
822         uint32_t __iomem *virt;
823         int rem = ringbuf->size - ringbuf->tail;
824
825         virt = ringbuf->virtual_start + ringbuf->tail;
826         rem /= 4;
827         while (rem--)
828                 iowrite32(MI_NOOP, virt++);
829
830         ringbuf->tail = 0;
831         intel_ring_update_space(ringbuf);
832 }
833
834 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
835 {
836         struct intel_ringbuffer *ringbuf = req->ringbuf;
837         int remain_usable = ringbuf->effective_size - ringbuf->tail;
838         int remain_actual = ringbuf->size - ringbuf->tail;
839         int ret, total_bytes, wait_bytes = 0;
840         bool need_wrap = false;
841
842         if (ringbuf->reserved_in_use)
843                 total_bytes = bytes;
844         else
845                 total_bytes = bytes + ringbuf->reserved_size;
846
847         if (unlikely(bytes > remain_usable)) {
848                 /*
849                  * Not enough space for the basic request. So need to flush
850                  * out the remainder and then wait for base + reserved.
851                  */
852                 wait_bytes = remain_actual + total_bytes;
853                 need_wrap = true;
854         } else {
855                 if (unlikely(total_bytes > remain_usable)) {
856                         /*
857                          * The base request will fit but the reserved space
858                          * falls off the end. So only need to to wait for the
859                          * reserved size after flushing out the remainder.
860                          */
861                         wait_bytes = remain_actual + ringbuf->reserved_size;
862                         need_wrap = true;
863                 } else if (total_bytes > ringbuf->space) {
864                         /* No wrapping required, just waiting. */
865                         wait_bytes = total_bytes;
866                 }
867         }
868
869         if (wait_bytes) {
870                 ret = logical_ring_wait_for_space(req, wait_bytes);
871                 if (unlikely(ret))
872                         return ret;
873
874                 if (need_wrap)
875                         __wrap_ring_buffer(ringbuf);
876         }
877
878         return 0;
879 }
880
881 /**
882  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
883  *
884  * @req: The request to start some new work for
885  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
886  *
887  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
888  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
889  * and also preallocates a request (every workload submission is still mediated through
890  * requests, same as it did with legacy ringbuffer submission).
891  *
892  * Return: non-zero if the ringbuffer is not ready to be written to.
893  */
894 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
895 {
896         struct drm_i915_private *dev_priv;
897         int ret;
898
899         WARN_ON(req == NULL);
900         dev_priv = req->i915;
901
902         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
903                                    dev_priv->mm.interruptible);
904         if (ret)
905                 return ret;
906
907         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
908         if (ret)
909                 return ret;
910
911         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
912         return 0;
913 }
914
915 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
916 {
917         /*
918          * The first call merely notes the reserve request and is common for
919          * all back ends. The subsequent localised _begin() call actually
920          * ensures that the reservation is available. Without the begin, if
921          * the request creator immediately submitted the request without
922          * adding any commands to it then there might not actually be
923          * sufficient room for the submission commands.
924          */
925         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
926
927         return intel_logical_ring_begin(request, 0);
928 }
929
930 /**
931  * execlists_submission() - submit a batchbuffer for execution, Execlists style
932  * @dev: DRM device.
933  * @file: DRM file.
934  * @ring: Engine Command Streamer to submit to.
935  * @ctx: Context to employ for this submission.
936  * @args: execbuffer call arguments.
937  * @vmas: list of vmas.
938  * @batch_obj: the batchbuffer to submit.
939  * @exec_start: batchbuffer start virtual address pointer.
940  * @dispatch_flags: translated execbuffer call flags.
941  *
942  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
943  * away the submission details of the execbuffer ioctl call.
944  *
945  * Return: non-zero if the submission fails.
946  */
947 int intel_execlists_submission(struct i915_execbuffer_params *params,
948                                struct drm_i915_gem_execbuffer2 *args,
949                                struct list_head *vmas)
950 {
951         struct drm_device       *dev = params->dev;
952         struct intel_engine_cs *engine = params->engine;
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
955         u64 exec_start;
956         int instp_mode;
957         u32 instp_mask;
958         int ret;
959
960         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
961         instp_mask = I915_EXEC_CONSTANTS_MASK;
962         switch (instp_mode) {
963         case I915_EXEC_CONSTANTS_REL_GENERAL:
964         case I915_EXEC_CONSTANTS_ABSOLUTE:
965         case I915_EXEC_CONSTANTS_REL_SURFACE:
966                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
967                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
968                         return -EINVAL;
969                 }
970
971                 if (instp_mode != dev_priv->relative_constants_mode) {
972                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
973                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
974                                 return -EINVAL;
975                         }
976
977                         /* The HW changed the meaning on this bit on gen6 */
978                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
979                 }
980                 break;
981         default:
982                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
983                 return -EINVAL;
984         }
985
986         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
987                 DRM_DEBUG("sol reset is gen7 only\n");
988                 return -EINVAL;
989         }
990
991         ret = execlists_move_to_gpu(params->request, vmas);
992         if (ret)
993                 return ret;
994
995         if (engine == &dev_priv->engine[RCS] &&
996             instp_mode != dev_priv->relative_constants_mode) {
997                 ret = intel_logical_ring_begin(params->request, 4);
998                 if (ret)
999                         return ret;
1000
1001                 intel_logical_ring_emit(ringbuf, MI_NOOP);
1002                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1003                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1004                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1005                 intel_logical_ring_advance(ringbuf);
1006
1007                 dev_priv->relative_constants_mode = instp_mode;
1008         }
1009
1010         exec_start = params->batch_obj_vm_offset +
1011                      args->batch_start_offset;
1012
1013         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1014         if (ret)
1015                 return ret;
1016
1017         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1018
1019         i915_gem_execbuffer_move_to_active(vmas, params->request);
1020         i915_gem_execbuffer_retire_commands(params);
1021
1022         return 0;
1023 }
1024
1025 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1026 {
1027         struct drm_i915_gem_request *req, *tmp;
1028         struct list_head retired_list;
1029
1030         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1031         if (list_empty(&engine->execlist_retired_req_list))
1032                 return;
1033
1034         INIT_LIST_HEAD(&retired_list);
1035         spin_lock_irq(&engine->execlist_lock);
1036         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1037         spin_unlock_irq(&engine->execlist_lock);
1038
1039         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1040                 struct intel_context *ctx = req->ctx;
1041                 struct drm_i915_gem_object *ctx_obj =
1042                                 ctx->engine[engine->id].state;
1043
1044                 if (ctx_obj && (ctx != req->i915->kernel_context))
1045                         intel_lr_context_unpin(ctx, engine);
1046
1047                 list_del(&req->execlist_link);
1048                 i915_gem_request_unreference(req);
1049         }
1050 }
1051
1052 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1053 {
1054         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1055         int ret;
1056
1057         if (!intel_engine_initialized(engine))
1058                 return;
1059
1060         ret = intel_engine_idle(engine);
1061         if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1062                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1063                           engine->name, ret);
1064
1065         /* TODO: Is this correct with Execlists enabled? */
1066         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1067         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1068                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1069                 return;
1070         }
1071         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1072 }
1073
1074 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1075 {
1076         struct intel_engine_cs *engine = req->engine;
1077         int ret;
1078
1079         if (!engine->gpu_caches_dirty)
1080                 return 0;
1081
1082         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1083         if (ret)
1084                 return ret;
1085
1086         engine->gpu_caches_dirty = false;
1087         return 0;
1088 }
1089
1090 static int intel_lr_context_do_pin(struct intel_context *ctx,
1091                                    struct intel_engine_cs *engine)
1092 {
1093         struct drm_device *dev = engine->dev;
1094         struct drm_i915_private *dev_priv = dev->dev_private;
1095         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1096         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1097         struct page *lrc_state_page;
1098         uint32_t *lrc_reg_state;
1099         int ret;
1100
1101         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1102
1103         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1104                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1105         if (ret)
1106                 return ret;
1107
1108         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1109         if (WARN_ON(!lrc_state_page)) {
1110                 ret = -ENODEV;
1111                 goto unpin_ctx_obj;
1112         }
1113
1114         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1115         if (ret)
1116                 goto unpin_ctx_obj;
1117
1118         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1119         intel_lr_context_descriptor_update(ctx, engine);
1120         lrc_reg_state = kmap(lrc_state_page);
1121         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1122         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1123         ctx_obj->dirty = true;
1124
1125         /* Invalidate GuC TLB. */
1126         if (i915.enable_guc_submission)
1127                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1128
1129         return ret;
1130
1131 unpin_ctx_obj:
1132         i915_gem_object_ggtt_unpin(ctx_obj);
1133
1134         return ret;
1135 }
1136
1137 static int intel_lr_context_pin(struct intel_context *ctx,
1138                                 struct intel_engine_cs *engine)
1139 {
1140         int ret = 0;
1141
1142         if (ctx->engine[engine->id].pin_count++ == 0) {
1143                 ret = intel_lr_context_do_pin(ctx, engine);
1144                 if (ret)
1145                         goto reset_pin_count;
1146
1147                 i915_gem_context_reference(ctx);
1148         }
1149         return ret;
1150
1151 reset_pin_count:
1152         ctx->engine[engine->id].pin_count = 0;
1153         return ret;
1154 }
1155
1156 void intel_lr_context_unpin(struct intel_context *ctx,
1157                             struct intel_engine_cs *engine)
1158 {
1159         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1160
1161         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1162         if (--ctx->engine[engine->id].pin_count == 0) {
1163                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1164                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1165                 i915_gem_object_ggtt_unpin(ctx_obj);
1166                 ctx->engine[engine->id].lrc_vma = NULL;
1167                 ctx->engine[engine->id].lrc_desc = 0;
1168                 ctx->engine[engine->id].lrc_reg_state = NULL;
1169
1170                 i915_gem_context_unreference(ctx);
1171         }
1172 }
1173
1174 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1175 {
1176         int ret, i;
1177         struct intel_engine_cs *engine = req->engine;
1178         struct intel_ringbuffer *ringbuf = req->ringbuf;
1179         struct drm_device *dev = engine->dev;
1180         struct drm_i915_private *dev_priv = dev->dev_private;
1181         struct i915_workarounds *w = &dev_priv->workarounds;
1182
1183         if (w->count == 0)
1184                 return 0;
1185
1186         engine->gpu_caches_dirty = true;
1187         ret = logical_ring_flush_all_caches(req);
1188         if (ret)
1189                 return ret;
1190
1191         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1192         if (ret)
1193                 return ret;
1194
1195         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1196         for (i = 0; i < w->count; i++) {
1197                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1198                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1199         }
1200         intel_logical_ring_emit(ringbuf, MI_NOOP);
1201
1202         intel_logical_ring_advance(ringbuf);
1203
1204         engine->gpu_caches_dirty = true;
1205         ret = logical_ring_flush_all_caches(req);
1206         if (ret)
1207                 return ret;
1208
1209         return 0;
1210 }
1211
1212 #define wa_ctx_emit(batch, index, cmd)                                  \
1213         do {                                                            \
1214                 int __index = (index)++;                                \
1215                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1216                         return -ENOSPC;                                 \
1217                 }                                                       \
1218                 batch[__index] = (cmd);                                 \
1219         } while (0)
1220
1221 #define wa_ctx_emit_reg(batch, index, reg) \
1222         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1223
1224 /*
1225  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1226  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1227  * but there is a slight complication as this is applied in WA batch where the
1228  * values are only initialized once so we cannot take register value at the
1229  * beginning and reuse it further; hence we save its value to memory, upload a
1230  * constant value with bit21 set and then we restore it back with the saved value.
1231  * To simplify the WA, a constant value is formed by using the default value
1232  * of this register. This shouldn't be a problem because we are only modifying
1233  * it for a short period and this batch in non-premptible. We can ofcourse
1234  * use additional instructions that read the actual value of the register
1235  * at that time and set our bit of interest but it makes the WA complicated.
1236  *
1237  * This WA is also required for Gen9 so extracting as a function avoids
1238  * code duplication.
1239  */
1240 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1241                                                 uint32_t *const batch,
1242                                                 uint32_t index)
1243 {
1244         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1245
1246         /*
1247          * WaDisableLSQCROPERFforOCL:skl
1248          * This WA is implemented in skl_init_clock_gating() but since
1249          * this batch updates GEN8_L3SQCREG4 with default value we need to
1250          * set this bit here to retain the WA during flush.
1251          */
1252         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1253                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1254
1255         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1256                                    MI_SRM_LRM_GLOBAL_GTT));
1257         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1258         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1259         wa_ctx_emit(batch, index, 0);
1260
1261         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1262         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1263         wa_ctx_emit(batch, index, l3sqc4_flush);
1264
1265         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1267                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1268         wa_ctx_emit(batch, index, 0);
1269         wa_ctx_emit(batch, index, 0);
1270         wa_ctx_emit(batch, index, 0);
1271         wa_ctx_emit(batch, index, 0);
1272
1273         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1274                                    MI_SRM_LRM_GLOBAL_GTT));
1275         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1276         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1277         wa_ctx_emit(batch, index, 0);
1278
1279         return index;
1280 }
1281
1282 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1283                                     uint32_t offset,
1284                                     uint32_t start_alignment)
1285 {
1286         return wa_ctx->offset = ALIGN(offset, start_alignment);
1287 }
1288
1289 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1290                              uint32_t offset,
1291                              uint32_t size_alignment)
1292 {
1293         wa_ctx->size = offset - wa_ctx->offset;
1294
1295         WARN(wa_ctx->size % size_alignment,
1296              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1297              wa_ctx->size, size_alignment);
1298         return 0;
1299 }
1300
1301 /**
1302  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1303  *
1304  * @ring: only applicable for RCS
1305  * @wa_ctx: structure representing wa_ctx
1306  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1307  *    with the offset value received as input.
1308  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1309  * @batch: page in which WA are loaded
1310  * @offset: This field specifies the start of the batch, it should be
1311  *  cache-aligned otherwise it is adjusted accordingly.
1312  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1313  *  initialized at the beginning and shared across all contexts but this field
1314  *  helps us to have multiple batches at different offsets and select them based
1315  *  on a criteria. At the moment this batch always start at the beginning of the page
1316  *  and at this point we don't have multiple wa_ctx batch buffers.
1317  *
1318  *  The number of WA applied are not known at the beginning; we use this field
1319  *  to return the no of DWORDS written.
1320  *
1321  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1322  *  so it adds NOOPs as padding to make it cacheline aligned.
1323  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1324  *  makes a complete batch buffer.
1325  *
1326  * Return: non-zero if we exceed the PAGE_SIZE limit.
1327  */
1328
1329 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1330                                     struct i915_wa_ctx_bb *wa_ctx,
1331                                     uint32_t *const batch,
1332                                     uint32_t *offset)
1333 {
1334         uint32_t scratch_addr;
1335         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
1337         /* WaDisableCtxRestoreArbitration:bdw,chv */
1338         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1339
1340         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1341         if (IS_BROADWELL(engine->dev)) {
1342                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1343                 if (rc < 0)
1344                         return rc;
1345                 index = rc;
1346         }
1347
1348         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1349         /* Actual scratch location is at 128 bytes offset */
1350         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1351
1352         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1353         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1354                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1355                                    PIPE_CONTROL_CS_STALL |
1356                                    PIPE_CONTROL_QW_WRITE));
1357         wa_ctx_emit(batch, index, scratch_addr);
1358         wa_ctx_emit(batch, index, 0);
1359         wa_ctx_emit(batch, index, 0);
1360         wa_ctx_emit(batch, index, 0);
1361
1362         /* Pad to end of cacheline */
1363         while (index % CACHELINE_DWORDS)
1364                 wa_ctx_emit(batch, index, MI_NOOP);
1365
1366         /*
1367          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1368          * execution depends on the length specified in terms of cache lines
1369          * in the register CTX_RCS_INDIRECT_CTX
1370          */
1371
1372         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1373 }
1374
1375 /**
1376  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1377  *
1378  * @ring: only applicable for RCS
1379  * @wa_ctx: structure representing wa_ctx
1380  *  offset: specifies start of the batch, should be cache-aligned.
1381  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1382  * @batch: page in which WA are loaded
1383  * @offset: This field specifies the start of this batch.
1384  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1385  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1386  *
1387  *   The number of DWORDS written are returned using this field.
1388  *
1389  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1390  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1391  */
1392 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1393                                struct i915_wa_ctx_bb *wa_ctx,
1394                                uint32_t *const batch,
1395                                uint32_t *offset)
1396 {
1397         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1398
1399         /* WaDisableCtxRestoreArbitration:bdw,chv */
1400         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1401
1402         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1403
1404         return wa_ctx_end(wa_ctx, *offset = index, 1);
1405 }
1406
1407 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1408                                     struct i915_wa_ctx_bb *wa_ctx,
1409                                     uint32_t *const batch,
1410                                     uint32_t *offset)
1411 {
1412         int ret;
1413         struct drm_device *dev = engine->dev;
1414         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1415
1416         /* WaDisableCtxRestoreArbitration:skl,bxt */
1417         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1418             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1419                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1420
1421         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1422         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1423         if (ret < 0)
1424                 return ret;
1425         index = ret;
1426
1427         /* Pad to end of cacheline */
1428         while (index % CACHELINE_DWORDS)
1429                 wa_ctx_emit(batch, index, MI_NOOP);
1430
1431         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1432 }
1433
1434 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1435                                struct i915_wa_ctx_bb *wa_ctx,
1436                                uint32_t *const batch,
1437                                uint32_t *offset)
1438 {
1439         struct drm_device *dev = engine->dev;
1440         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1441
1442         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1443         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1444             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1445                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1446                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1447                 wa_ctx_emit(batch, index,
1448                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1449                 wa_ctx_emit(batch, index, MI_NOOP);
1450         }
1451
1452         /* WaDisableCtxRestoreArbitration:skl,bxt */
1453         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1454             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1455                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1456
1457         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1458
1459         return wa_ctx_end(wa_ctx, *offset = index, 1);
1460 }
1461
1462 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1463 {
1464         int ret;
1465
1466         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1467                                                    PAGE_ALIGN(size));
1468         if (!engine->wa_ctx.obj) {
1469                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1470                 return -ENOMEM;
1471         }
1472
1473         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1474         if (ret) {
1475                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1476                                  ret);
1477                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1478                 return ret;
1479         }
1480
1481         return 0;
1482 }
1483
1484 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1485 {
1486         if (engine->wa_ctx.obj) {
1487                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1488                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1489                 engine->wa_ctx.obj = NULL;
1490         }
1491 }
1492
1493 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1494 {
1495         int ret;
1496         uint32_t *batch;
1497         uint32_t offset;
1498         struct page *page;
1499         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1500
1501         WARN_ON(engine->id != RCS);
1502
1503         /* update this when WA for higher Gen are added */
1504         if (INTEL_INFO(engine->dev)->gen > 9) {
1505                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1506                           INTEL_INFO(engine->dev)->gen);
1507                 return 0;
1508         }
1509
1510         /* some WA perform writes to scratch page, ensure it is valid */
1511         if (engine->scratch.obj == NULL) {
1512                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1513                 return -EINVAL;
1514         }
1515
1516         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1517         if (ret) {
1518                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1519                 return ret;
1520         }
1521
1522         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1523         batch = kmap_atomic(page);
1524         offset = 0;
1525
1526         if (INTEL_INFO(engine->dev)->gen == 8) {
1527                 ret = gen8_init_indirectctx_bb(engine,
1528                                                &wa_ctx->indirect_ctx,
1529                                                batch,
1530                                                &offset);
1531                 if (ret)
1532                         goto out;
1533
1534                 ret = gen8_init_perctx_bb(engine,
1535                                           &wa_ctx->per_ctx,
1536                                           batch,
1537                                           &offset);
1538                 if (ret)
1539                         goto out;
1540         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1541                 ret = gen9_init_indirectctx_bb(engine,
1542                                                &wa_ctx->indirect_ctx,
1543                                                batch,
1544                                                &offset);
1545                 if (ret)
1546                         goto out;
1547
1548                 ret = gen9_init_perctx_bb(engine,
1549                                           &wa_ctx->per_ctx,
1550                                           batch,
1551                                           &offset);
1552                 if (ret)
1553                         goto out;
1554         }
1555
1556 out:
1557         kunmap_atomic(batch);
1558         if (ret)
1559                 lrc_destroy_wa_ctx_obj(engine);
1560
1561         return ret;
1562 }
1563
1564 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1565 {
1566         struct drm_device *dev = engine->dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         unsigned int next_context_status_buffer_hw;
1569
1570         lrc_setup_hardware_status_page(engine,
1571                                        dev_priv->kernel_context->engine[engine->id].state);
1572
1573         I915_WRITE_IMR(engine,
1574                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1575         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1576
1577         I915_WRITE(RING_MODE_GEN7(engine),
1578                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1579                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1580         POSTING_READ(RING_MODE_GEN7(engine));
1581
1582         /*
1583          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1584          * zero, we need to read the write pointer from hardware and use its
1585          * value because "this register is power context save restored".
1586          * Effectively, these states have been observed:
1587          *
1588          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1589          * BDW  | CSB regs not reset       | CSB regs reset       |
1590          * CHT  | CSB regs not reset       | CSB regs not reset   |
1591          * SKL  |         ?                |         ?            |
1592          * BXT  |         ?                |         ?            |
1593          */
1594         next_context_status_buffer_hw =
1595                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1596
1597         /*
1598          * When the CSB registers are reset (also after power-up / gpu reset),
1599          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1600          * this special case, so the first element read is CSB[0].
1601          */
1602         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1603                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1604
1605         engine->next_context_status_buffer = next_context_status_buffer_hw;
1606         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1607
1608         memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
1609
1610         return 0;
1611 }
1612
1613 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1614 {
1615         struct drm_device *dev = engine->dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617         int ret;
1618
1619         ret = gen8_init_common_ring(engine);
1620         if (ret)
1621                 return ret;
1622
1623         /* We need to disable the AsyncFlip performance optimisations in order
1624          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1625          * programmed to '1' on all products.
1626          *
1627          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1628          */
1629         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1630
1631         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1632
1633         return init_workarounds_ring(engine);
1634 }
1635
1636 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1637 {
1638         int ret;
1639
1640         ret = gen8_init_common_ring(engine);
1641         if (ret)
1642                 return ret;
1643
1644         return init_workarounds_ring(engine);
1645 }
1646
1647 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1648 {
1649         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1650         struct intel_engine_cs *engine = req->engine;
1651         struct intel_ringbuffer *ringbuf = req->ringbuf;
1652         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1653         int i, ret;
1654
1655         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1656         if (ret)
1657                 return ret;
1658
1659         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1660         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1661                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1662
1663                 intel_logical_ring_emit_reg(ringbuf,
1664                                             GEN8_RING_PDP_UDW(engine, i));
1665                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1666                 intel_logical_ring_emit_reg(ringbuf,
1667                                             GEN8_RING_PDP_LDW(engine, i));
1668                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1669         }
1670
1671         intel_logical_ring_emit(ringbuf, MI_NOOP);
1672         intel_logical_ring_advance(ringbuf);
1673
1674         return 0;
1675 }
1676
1677 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1678                               u64 offset, unsigned dispatch_flags)
1679 {
1680         struct intel_ringbuffer *ringbuf = req->ringbuf;
1681         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1682         int ret;
1683
1684         /* Don't rely in hw updating PDPs, specially in lite-restore.
1685          * Ideally, we should set Force PD Restore in ctx descriptor,
1686          * but we can't. Force Restore would be a second option, but
1687          * it is unsafe in case of lite-restore (because the ctx is
1688          * not idle). PML4 is allocated during ppgtt init so this is
1689          * not needed in 48-bit.*/
1690         if (req->ctx->ppgtt &&
1691             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1692                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1693                     !intel_vgpu_active(req->i915->dev)) {
1694                         ret = intel_logical_ring_emit_pdps(req);
1695                         if (ret)
1696                                 return ret;
1697                 }
1698
1699                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1700         }
1701
1702         ret = intel_logical_ring_begin(req, 4);
1703         if (ret)
1704                 return ret;
1705
1706         /* FIXME(BDW): Address space and security selectors. */
1707         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1708                                 (ppgtt<<8) |
1709                                 (dispatch_flags & I915_DISPATCH_RS ?
1710                                  MI_BATCH_RESOURCE_STREAMER : 0));
1711         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1712         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1713         intel_logical_ring_emit(ringbuf, MI_NOOP);
1714         intel_logical_ring_advance(ringbuf);
1715
1716         return 0;
1717 }
1718
1719 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1720 {
1721         struct drm_device *dev = engine->dev;
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723         unsigned long flags;
1724
1725         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726                 return false;
1727
1728         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1729         if (engine->irq_refcount++ == 0) {
1730                 I915_WRITE_IMR(engine,
1731                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1732                 POSTING_READ(RING_IMR(engine->mmio_base));
1733         }
1734         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1735
1736         return true;
1737 }
1738
1739 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1740 {
1741         struct drm_device *dev = engine->dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         unsigned long flags;
1744
1745         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1746         if (--engine->irq_refcount == 0) {
1747                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1748                 POSTING_READ(RING_IMR(engine->mmio_base));
1749         }
1750         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1751 }
1752
1753 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1754                            u32 invalidate_domains,
1755                            u32 unused)
1756 {
1757         struct intel_ringbuffer *ringbuf = request->ringbuf;
1758         struct intel_engine_cs *engine = ringbuf->engine;
1759         struct drm_device *dev = engine->dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         uint32_t cmd;
1762         int ret;
1763
1764         ret = intel_logical_ring_begin(request, 4);
1765         if (ret)
1766                 return ret;
1767
1768         cmd = MI_FLUSH_DW + 1;
1769
1770         /* We always require a command barrier so that subsequent
1771          * commands, such as breadcrumb interrupts, are strictly ordered
1772          * wrt the contents of the write cache being flushed to memory
1773          * (and thus being coherent from the CPU).
1774          */
1775         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1776
1777         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1778                 cmd |= MI_INVALIDATE_TLB;
1779                 if (engine == &dev_priv->engine[VCS])
1780                         cmd |= MI_INVALIDATE_BSD;
1781         }
1782
1783         intel_logical_ring_emit(ringbuf, cmd);
1784         intel_logical_ring_emit(ringbuf,
1785                                 I915_GEM_HWS_SCRATCH_ADDR |
1786                                 MI_FLUSH_DW_USE_GTT);
1787         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1788         intel_logical_ring_emit(ringbuf, 0); /* value */
1789         intel_logical_ring_advance(ringbuf);
1790
1791         return 0;
1792 }
1793
1794 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1795                                   u32 invalidate_domains,
1796                                   u32 flush_domains)
1797 {
1798         struct intel_ringbuffer *ringbuf = request->ringbuf;
1799         struct intel_engine_cs *engine = ringbuf->engine;
1800         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1801         bool vf_flush_wa = false;
1802         u32 flags = 0;
1803         int ret;
1804
1805         flags |= PIPE_CONTROL_CS_STALL;
1806
1807         if (flush_domains) {
1808                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1809                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1810                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1811                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1812         }
1813
1814         if (invalidate_domains) {
1815                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1816                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1817                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1818                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1819                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1820                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1821                 flags |= PIPE_CONTROL_QW_WRITE;
1822                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1823
1824                 /*
1825                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1826                  * pipe control.
1827                  */
1828                 if (IS_GEN9(engine->dev))
1829                         vf_flush_wa = true;
1830         }
1831
1832         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1833         if (ret)
1834                 return ret;
1835
1836         if (vf_flush_wa) {
1837                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1838                 intel_logical_ring_emit(ringbuf, 0);
1839                 intel_logical_ring_emit(ringbuf, 0);
1840                 intel_logical_ring_emit(ringbuf, 0);
1841                 intel_logical_ring_emit(ringbuf, 0);
1842                 intel_logical_ring_emit(ringbuf, 0);
1843         }
1844
1845         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1846         intel_logical_ring_emit(ringbuf, flags);
1847         intel_logical_ring_emit(ringbuf, scratch_addr);
1848         intel_logical_ring_emit(ringbuf, 0);
1849         intel_logical_ring_emit(ringbuf, 0);
1850         intel_logical_ring_emit(ringbuf, 0);
1851         intel_logical_ring_advance(ringbuf);
1852
1853         return 0;
1854 }
1855
1856 static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1857 {
1858         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1859 }
1860
1861 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1862 {
1863         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1864 }
1865
1866 static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
1867                            bool lazy_coherency)
1868 {
1869
1870         /*
1871          * On BXT A steppings there is a HW coherency issue whereby the
1872          * MI_STORE_DATA_IMM storing the completed request's seqno
1873          * occasionally doesn't invalidate the CPU cache. Work around this by
1874          * clflushing the corresponding cacheline whenever the caller wants
1875          * the coherency to be guaranteed. Note that this cacheline is known
1876          * to be clean at this point, since we only write it in
1877          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1878          * this clflush in practice becomes an invalidate operation.
1879          */
1880
1881         if (!lazy_coherency)
1882                 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1883
1884         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1885 }
1886
1887 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1888 {
1889         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1890
1891         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1892         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1893 }
1894
1895 /*
1896  * Reserve space for 2 NOOPs at the end of each request to be
1897  * used as a workaround for not being allowed to do lite
1898  * restore with HEAD==TAIL (WaIdleLiteRestore).
1899  */
1900 #define WA_TAIL_DWORDS 2
1901
1902 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1903 {
1904         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1905 }
1906
1907 static int gen8_emit_request(struct drm_i915_gem_request *request)
1908 {
1909         struct intel_ringbuffer *ringbuf = request->ringbuf;
1910         int ret;
1911
1912         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1913         if (ret)
1914                 return ret;
1915
1916         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1917         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1918
1919         intel_logical_ring_emit(ringbuf,
1920                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1921         intel_logical_ring_emit(ringbuf,
1922                                 hws_seqno_address(request->engine) |
1923                                 MI_FLUSH_DW_USE_GTT);
1924         intel_logical_ring_emit(ringbuf, 0);
1925         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1926         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1927         intel_logical_ring_emit(ringbuf, MI_NOOP);
1928         return intel_logical_ring_advance_and_submit(request);
1929 }
1930
1931 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1932 {
1933         struct intel_ringbuffer *ringbuf = request->ringbuf;
1934         int ret;
1935
1936         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1937         if (ret)
1938                 return ret;
1939
1940         /* w/a for post sync ops following a GPGPU operation we
1941          * need a prior CS_STALL, which is emitted by the flush
1942          * following the batch.
1943          */
1944         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1945         intel_logical_ring_emit(ringbuf,
1946                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1947                                  PIPE_CONTROL_CS_STALL |
1948                                  PIPE_CONTROL_QW_WRITE));
1949         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1950         intel_logical_ring_emit(ringbuf, 0);
1951         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1952         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1953         return intel_logical_ring_advance_and_submit(request);
1954 }
1955
1956 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1957 {
1958         struct render_state so;
1959         int ret;
1960
1961         ret = i915_gem_render_state_prepare(req->engine, &so);
1962         if (ret)
1963                 return ret;
1964
1965         if (so.rodata == NULL)
1966                 return 0;
1967
1968         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1969                                        I915_DISPATCH_SECURE);
1970         if (ret)
1971                 goto out;
1972
1973         ret = req->engine->emit_bb_start(req,
1974                                        (so.ggtt_offset + so.aux_batch_offset),
1975                                        I915_DISPATCH_SECURE);
1976         if (ret)
1977                 goto out;
1978
1979         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1980
1981 out:
1982         i915_gem_render_state_fini(&so);
1983         return ret;
1984 }
1985
1986 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1987 {
1988         int ret;
1989
1990         ret = intel_logical_ring_workarounds_emit(req);
1991         if (ret)
1992                 return ret;
1993
1994         ret = intel_rcs_context_init_mocs(req);
1995         /*
1996          * Failing to program the MOCS is non-fatal.The system will not
1997          * run at peak performance. So generate an error and carry on.
1998          */
1999         if (ret)
2000                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2001
2002         return intel_lr_context_render_state_init(req);
2003 }
2004
2005 /**
2006  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2007  *
2008  * @ring: Engine Command Streamer.
2009  *
2010  */
2011 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2012 {
2013         struct drm_i915_private *dev_priv;
2014
2015         if (!intel_engine_initialized(engine))
2016                 return;
2017
2018         dev_priv = engine->dev->dev_private;
2019
2020         if (engine->buffer) {
2021                 intel_logical_ring_stop(engine);
2022                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2023         }
2024
2025         if (engine->cleanup)
2026                 engine->cleanup(engine);
2027
2028         i915_cmd_parser_fini_ring(engine);
2029         i915_gem_batch_pool_fini(&engine->batch_pool);
2030
2031         if (engine->status_page.obj) {
2032                 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2033                 engine->status_page.obj = NULL;
2034         }
2035
2036         engine->idle_lite_restore_wa = 0;
2037         engine->disable_lite_restore_wa = false;
2038         engine->ctx_desc_template = 0;
2039
2040         lrc_destroy_wa_ctx_obj(engine);
2041         engine->dev = NULL;
2042 }
2043
2044 static void
2045 logical_ring_default_vfuncs(struct drm_device *dev,
2046                             struct intel_engine_cs *engine)
2047 {
2048         /* Default vfuncs which can be overriden by each engine. */
2049         engine->init_hw = gen8_init_common_ring;
2050         engine->emit_request = gen8_emit_request;
2051         engine->emit_flush = gen8_emit_flush;
2052         engine->irq_get = gen8_logical_ring_get_irq;
2053         engine->irq_put = gen8_logical_ring_put_irq;
2054         engine->emit_bb_start = gen8_emit_bb_start;
2055         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2056                 engine->get_seqno = bxt_a_get_seqno;
2057                 engine->set_seqno = bxt_a_set_seqno;
2058         } else {
2059                 engine->get_seqno = gen8_get_seqno;
2060                 engine->set_seqno = gen8_set_seqno;
2061         }
2062 }
2063
2064 static inline void
2065 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2066 {
2067         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2068         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2069 }
2070
2071 static int
2072 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2073 {
2074         struct intel_context *dctx = to_i915(dev)->kernel_context;
2075         int ret;
2076
2077         /* Intentionally left blank. */
2078         engine->buffer = NULL;
2079
2080         engine->dev = dev;
2081         INIT_LIST_HEAD(&engine->active_list);
2082         INIT_LIST_HEAD(&engine->request_list);
2083         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2084         init_waitqueue_head(&engine->irq_queue);
2085
2086         INIT_LIST_HEAD(&engine->buffers);
2087         INIT_LIST_HEAD(&engine->execlist_queue);
2088         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2089         spin_lock_init(&engine->execlist_lock);
2090
2091         logical_ring_init_platform_invariants(engine);
2092
2093         ret = i915_cmd_parser_init_ring(engine);
2094         if (ret)
2095                 goto error;
2096
2097         ret = intel_lr_context_deferred_alloc(dctx, engine);
2098         if (ret)
2099                 goto error;
2100
2101         /* As this is the default context, always pin it */
2102         ret = intel_lr_context_do_pin(dctx, engine);
2103         if (ret) {
2104                 DRM_ERROR(
2105                         "Failed to pin and map ringbuffer %s: %d\n",
2106                         engine->name, ret);
2107                 goto error;
2108         }
2109
2110         return 0;
2111
2112 error:
2113         intel_logical_ring_cleanup(engine);
2114         return ret;
2115 }
2116
2117 static int logical_render_ring_init(struct drm_device *dev)
2118 {
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2121         int ret;
2122
2123         engine->name = "render ring";
2124         engine->id = RCS;
2125         engine->exec_id = I915_EXEC_RENDER;
2126         engine->guc_id = GUC_RENDER_ENGINE;
2127         engine->mmio_base = RENDER_RING_BASE;
2128
2129         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2130         if (HAS_L3_DPF(dev))
2131                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2132
2133         logical_ring_default_vfuncs(dev, engine);
2134
2135         /* Override some for render ring. */
2136         if (INTEL_INFO(dev)->gen >= 9)
2137                 engine->init_hw = gen9_init_render_ring;
2138         else
2139                 engine->init_hw = gen8_init_render_ring;
2140         engine->init_context = gen8_init_rcs_context;
2141         engine->cleanup = intel_fini_pipe_control;
2142         engine->emit_flush = gen8_emit_flush_render;
2143         engine->emit_request = gen8_emit_request_render;
2144
2145         engine->dev = dev;
2146
2147         ret = intel_init_pipe_control(engine);
2148         if (ret)
2149                 return ret;
2150
2151         ret = intel_init_workaround_bb(engine);
2152         if (ret) {
2153                 /*
2154                  * We continue even if we fail to initialize WA batch
2155                  * because we only expect rare glitches but nothing
2156                  * critical to prevent us from using GPU
2157                  */
2158                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2159                           ret);
2160         }
2161
2162         ret = logical_ring_init(dev, engine);
2163         if (ret) {
2164                 lrc_destroy_wa_ctx_obj(engine);
2165         }
2166
2167         return ret;
2168 }
2169
2170 static int logical_bsd_ring_init(struct drm_device *dev)
2171 {
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2174
2175         engine->name = "bsd ring";
2176         engine->id = VCS;
2177         engine->exec_id = I915_EXEC_BSD;
2178         engine->guc_id = GUC_VIDEO_ENGINE;
2179         engine->mmio_base = GEN6_BSD_RING_BASE;
2180
2181         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2182         logical_ring_default_vfuncs(dev, engine);
2183
2184         return logical_ring_init(dev, engine);
2185 }
2186
2187 static int logical_bsd2_ring_init(struct drm_device *dev)
2188 {
2189         struct drm_i915_private *dev_priv = dev->dev_private;
2190         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2191
2192         engine->name = "bsd2 ring";
2193         engine->id = VCS2;
2194         engine->exec_id = I915_EXEC_BSD;
2195         engine->guc_id = GUC_VIDEO_ENGINE2;
2196         engine->mmio_base = GEN8_BSD2_RING_BASE;
2197
2198         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2199         logical_ring_default_vfuncs(dev, engine);
2200
2201         return logical_ring_init(dev, engine);
2202 }
2203
2204 static int logical_blt_ring_init(struct drm_device *dev)
2205 {
2206         struct drm_i915_private *dev_priv = dev->dev_private;
2207         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2208
2209         engine->name = "blitter ring";
2210         engine->id = BCS;
2211         engine->exec_id = I915_EXEC_BLT;
2212         engine->guc_id = GUC_BLITTER_ENGINE;
2213         engine->mmio_base = BLT_RING_BASE;
2214
2215         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2216         logical_ring_default_vfuncs(dev, engine);
2217
2218         return logical_ring_init(dev, engine);
2219 }
2220
2221 static int logical_vebox_ring_init(struct drm_device *dev)
2222 {
2223         struct drm_i915_private *dev_priv = dev->dev_private;
2224         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2225
2226         engine->name = "video enhancement ring";
2227         engine->id = VECS;
2228         engine->exec_id = I915_EXEC_VEBOX;
2229         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2230         engine->mmio_base = VEBOX_RING_BASE;
2231
2232         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2233         logical_ring_default_vfuncs(dev, engine);
2234
2235         return logical_ring_init(dev, engine);
2236 }
2237
2238 /**
2239  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2240  * @dev: DRM device.
2241  *
2242  * This function inits the engines for an Execlists submission style (the equivalent in the
2243  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2244  * those engines that are present in the hardware.
2245  *
2246  * Return: non-zero if the initialization failed.
2247  */
2248 int intel_logical_rings_init(struct drm_device *dev)
2249 {
2250         struct drm_i915_private *dev_priv = dev->dev_private;
2251         int ret;
2252
2253         ret = logical_render_ring_init(dev);
2254         if (ret)
2255                 return ret;
2256
2257         if (HAS_BSD(dev)) {
2258                 ret = logical_bsd_ring_init(dev);
2259                 if (ret)
2260                         goto cleanup_render_ring;
2261         }
2262
2263         if (HAS_BLT(dev)) {
2264                 ret = logical_blt_ring_init(dev);
2265                 if (ret)
2266                         goto cleanup_bsd_ring;
2267         }
2268
2269         if (HAS_VEBOX(dev)) {
2270                 ret = logical_vebox_ring_init(dev);
2271                 if (ret)
2272                         goto cleanup_blt_ring;
2273         }
2274
2275         if (HAS_BSD2(dev)) {
2276                 ret = logical_bsd2_ring_init(dev);
2277                 if (ret)
2278                         goto cleanup_vebox_ring;
2279         }
2280
2281         return 0;
2282
2283 cleanup_vebox_ring:
2284         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2285 cleanup_blt_ring:
2286         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2287 cleanup_bsd_ring:
2288         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2289 cleanup_render_ring:
2290         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2291
2292         return ret;
2293 }
2294
2295 static u32
2296 make_rpcs(struct drm_device *dev)
2297 {
2298         u32 rpcs = 0;
2299
2300         /*
2301          * No explicit RPCS request is needed to ensure full
2302          * slice/subslice/EU enablement prior to Gen9.
2303         */
2304         if (INTEL_INFO(dev)->gen < 9)
2305                 return 0;
2306
2307         /*
2308          * Starting in Gen9, render power gating can leave
2309          * slice/subslice/EU in a partially enabled state. We
2310          * must make an explicit request through RPCS for full
2311          * enablement.
2312         */
2313         if (INTEL_INFO(dev)->has_slice_pg) {
2314                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2315                 rpcs |= INTEL_INFO(dev)->slice_total <<
2316                         GEN8_RPCS_S_CNT_SHIFT;
2317                 rpcs |= GEN8_RPCS_ENABLE;
2318         }
2319
2320         if (INTEL_INFO(dev)->has_subslice_pg) {
2321                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2322                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2323                         GEN8_RPCS_SS_CNT_SHIFT;
2324                 rpcs |= GEN8_RPCS_ENABLE;
2325         }
2326
2327         if (INTEL_INFO(dev)->has_eu_pg) {
2328                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2329                         GEN8_RPCS_EU_MIN_SHIFT;
2330                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2331                         GEN8_RPCS_EU_MAX_SHIFT;
2332                 rpcs |= GEN8_RPCS_ENABLE;
2333         }
2334
2335         return rpcs;
2336 }
2337
2338 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2339 {
2340         u32 indirect_ctx_offset;
2341
2342         switch (INTEL_INFO(engine->dev)->gen) {
2343         default:
2344                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2345                 /* fall through */
2346         case 9:
2347                 indirect_ctx_offset =
2348                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2349                 break;
2350         case 8:
2351                 indirect_ctx_offset =
2352                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2353                 break;
2354         }
2355
2356         return indirect_ctx_offset;
2357 }
2358
2359 static int
2360 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2361                     struct intel_engine_cs *engine,
2362                     struct intel_ringbuffer *ringbuf)
2363 {
2364         struct drm_device *dev = engine->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2367         struct page *page;
2368         uint32_t *reg_state;
2369         int ret;
2370
2371         if (!ppgtt)
2372                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2373
2374         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2375         if (ret) {
2376                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2377                 return ret;
2378         }
2379
2380         ret = i915_gem_object_get_pages(ctx_obj);
2381         if (ret) {
2382                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2383                 return ret;
2384         }
2385
2386         i915_gem_object_pin_pages(ctx_obj);
2387
2388         /* The second page of the context object contains some fields which must
2389          * be set up prior to the first execution. */
2390         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2391         reg_state = kmap_atomic(page);
2392
2393         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2394          * commands followed by (reg, value) pairs. The values we are setting here are
2395          * only for the first context restore: on a subsequent save, the GPU will
2396          * recreate this batchbuffer with new values (including all the missing
2397          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2398         reg_state[CTX_LRI_HEADER_0] =
2399                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2400         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2401                        RING_CONTEXT_CONTROL(engine),
2402                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2403                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2404                                           (HAS_RESOURCE_STREAMER(dev) ?
2405                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2406         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2407                        0);
2408         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2409                        0);
2410         /* Ring buffer start address is not known until the buffer is pinned.
2411          * It is written to the context image in execlists_update_context()
2412          */
2413         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2414                        RING_START(engine->mmio_base), 0);
2415         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2416                        RING_CTL(engine->mmio_base),
2417                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2418         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2419                        RING_BBADDR_UDW(engine->mmio_base), 0);
2420         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2421                        RING_BBADDR(engine->mmio_base), 0);
2422         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2423                        RING_BBSTATE(engine->mmio_base),
2424                        RING_BB_PPGTT);
2425         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2426                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2427         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2428                        RING_SBBADDR(engine->mmio_base), 0);
2429         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2430                        RING_SBBSTATE(engine->mmio_base), 0);
2431         if (engine->id == RCS) {
2432                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2433                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2434                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2435                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2436                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2437                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2438                 if (engine->wa_ctx.obj) {
2439                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2440                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2441
2442                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2443                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2444                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2445
2446                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2447                                 intel_lr_indirect_ctx_offset(engine) << 6;
2448
2449                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2450                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2451                                 0x01;
2452                 }
2453         }
2454         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2455         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2456                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2457         /* PDP values well be assigned later if needed */
2458         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2459                        0);
2460         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2461                        0);
2462         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2463                        0);
2464         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2465                        0);
2466         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2467                        0);
2468         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2469                        0);
2470         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2471                        0);
2472         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2473                        0);
2474
2475         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2476                 /* 64b PPGTT (48bit canonical)
2477                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2478                  * other PDP Descriptors are ignored.
2479                  */
2480                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2481         } else {
2482                 /* 32b PPGTT
2483                  * PDP*_DESCRIPTOR contains the base address of space supported.
2484                  * With dynamic page allocation, PDPs may not be allocated at
2485                  * this point. Point the unallocated PDPs to the scratch page
2486                  */
2487                 execlists_update_context_pdps(ppgtt, reg_state);
2488         }
2489
2490         if (engine->id == RCS) {
2491                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2492                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2493                                make_rpcs(dev));
2494         }
2495
2496         kunmap_atomic(reg_state);
2497         i915_gem_object_unpin_pages(ctx_obj);
2498
2499         return 0;
2500 }
2501
2502 /**
2503  * intel_lr_context_free() - free the LRC specific bits of a context
2504  * @ctx: the LR context to free.
2505  *
2506  * The real context freeing is done in i915_gem_context_free: this only
2507  * takes care of the bits that are LRC related: the per-engine backing
2508  * objects and the logical ringbuffer.
2509  */
2510 void intel_lr_context_free(struct intel_context *ctx)
2511 {
2512         int i;
2513
2514         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2515                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2516                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2517
2518                 if (!ctx_obj)
2519                         continue;
2520
2521                 if (ctx == ctx->i915->kernel_context) {
2522                         intel_unpin_ringbuffer_obj(ringbuf);
2523                         i915_gem_object_ggtt_unpin(ctx_obj);
2524                 }
2525
2526                 WARN_ON(ctx->engine[i].pin_count);
2527                 intel_ringbuffer_free(ringbuf);
2528                 drm_gem_object_unreference(&ctx_obj->base);
2529         }
2530 }
2531
2532 /**
2533  * intel_lr_context_size() - return the size of the context for an engine
2534  * @ring: which engine to find the context size for
2535  *
2536  * Each engine may require a different amount of space for a context image,
2537  * so when allocating (or copying) an image, this function can be used to
2538  * find the right size for the specific engine.
2539  *
2540  * Return: size (in bytes) of an engine-specific context image
2541  *
2542  * Note: this size includes the HWSP, which is part of the context image
2543  * in LRC mode, but does not include the "shared data page" used with
2544  * GuC submission. The caller should account for this if using the GuC.
2545  */
2546 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2547 {
2548         int ret = 0;
2549
2550         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2551
2552         switch (engine->id) {
2553         case RCS:
2554                 if (INTEL_INFO(engine->dev)->gen >= 9)
2555                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2556                 else
2557                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2558                 break;
2559         case VCS:
2560         case BCS:
2561         case VECS:
2562         case VCS2:
2563                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2564                 break;
2565         }
2566
2567         return ret;
2568 }
2569
2570 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2571                                            struct drm_i915_gem_object *default_ctx_obj)
2572 {
2573         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2574         struct page *page;
2575
2576         /* The HWSP is part of the default context object in LRC mode. */
2577         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2578                         + LRC_PPHWSP_PN * PAGE_SIZE;
2579         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2580         engine->status_page.page_addr = kmap(page);
2581         engine->status_page.obj = default_ctx_obj;
2582
2583         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2584                         (u32)engine->status_page.gfx_addr);
2585         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2586 }
2587
2588 /**
2589  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2590  * @ctx: LR context to create.
2591  * @ring: engine to be used with the context.
2592  *
2593  * This function can be called more than once, with different engines, if we plan
2594  * to use the context with them. The context backing objects and the ringbuffers
2595  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2596  * the creation is a deferred call: it's better to make sure first that we need to use
2597  * a given ring with the context.
2598  *
2599  * Return: non-zero on error.
2600  */
2601
2602 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2603                                     struct intel_engine_cs *engine)
2604 {
2605         struct drm_device *dev = engine->dev;
2606         struct drm_i915_gem_object *ctx_obj;
2607         uint32_t context_size;
2608         struct intel_ringbuffer *ringbuf;
2609         int ret;
2610
2611         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2612         WARN_ON(ctx->engine[engine->id].state);
2613
2614         context_size = round_up(intel_lr_context_size(engine), 4096);
2615
2616         /* One extra page as the sharing data between driver and GuC */
2617         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2618
2619         ctx_obj = i915_gem_alloc_object(dev, context_size);
2620         if (!ctx_obj) {
2621                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2622                 return -ENOMEM;
2623         }
2624
2625         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2626         if (IS_ERR(ringbuf)) {
2627                 ret = PTR_ERR(ringbuf);
2628                 goto error_deref_obj;
2629         }
2630
2631         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2632         if (ret) {
2633                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2634                 goto error_ringbuf;
2635         }
2636
2637         ctx->engine[engine->id].ringbuf = ringbuf;
2638         ctx->engine[engine->id].state = ctx_obj;
2639
2640         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2641                 struct drm_i915_gem_request *req;
2642
2643                 req = i915_gem_request_alloc(engine, ctx);
2644                 if (IS_ERR(req)) {
2645                         ret = PTR_ERR(req);
2646                         DRM_ERROR("ring create req: %d\n", ret);
2647                         goto error_ringbuf;
2648                 }
2649
2650                 ret = engine->init_context(req);
2651                 if (ret) {
2652                         DRM_ERROR("ring init context: %d\n",
2653                                 ret);
2654                         i915_gem_request_cancel(req);
2655                         goto error_ringbuf;
2656                 }
2657                 i915_add_request_no_flush(req);
2658         }
2659         return 0;
2660
2661 error_ringbuf:
2662         intel_ringbuffer_free(ringbuf);
2663 error_deref_obj:
2664         drm_gem_object_unreference(&ctx_obj->base);
2665         ctx->engine[engine->id].ringbuf = NULL;
2666         ctx->engine[engine->id].state = NULL;
2667         return ret;
2668 }
2669
2670 void intel_lr_context_reset(struct drm_device *dev,
2671                         struct intel_context *ctx)
2672 {
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         struct intel_engine_cs *engine;
2675         int i;
2676
2677         for_each_engine(engine, dev_priv, i) {
2678                 struct drm_i915_gem_object *ctx_obj =
2679                                 ctx->engine[engine->id].state;
2680                 struct intel_ringbuffer *ringbuf =
2681                                 ctx->engine[engine->id].ringbuf;
2682                 uint32_t *reg_state;
2683                 struct page *page;
2684
2685                 if (!ctx_obj)
2686                         continue;
2687
2688                 if (i915_gem_object_get_pages(ctx_obj)) {
2689                         WARN(1, "Failed get_pages for context obj\n");
2690                         continue;
2691                 }
2692                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2693                 reg_state = kmap_atomic(page);
2694
2695                 reg_state[CTX_RING_HEAD+1] = 0;
2696                 reg_state[CTX_RING_TAIL+1] = 0;
2697
2698                 kunmap_atomic(reg_state);
2699
2700                 ringbuf->head = 0;
2701                 ringbuf->tail = 0;
2702         }
2703 }