]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Do not call API requiring struct_mutex where it is not available
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230                 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
268 {
269         struct drm_device *dev = ring->dev;
270
271         ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
272                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
273                                         (ring->id == VCS || ring->id == VCS2);
274
275         ring->ctx_desc_template = GEN8_CTX_VALID;
276         ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
277                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
278         if (IS_GEN8(dev))
279                 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
280         ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
281
282         /* TODO: WaDisableLiteRestore when we start using semaphore
283          * signalling between Command Streamers */
284         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
285
286         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
288         if (ring->disable_lite_restore_wa)
289                 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
290 }
291
292 /**
293  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
294  *                                        descriptor for a pinned context
295  *
296  * @ctx: Context to work on
297  * @ring: Engine the descriptor will be used with
298  *
299  * The context descriptor encodes various attributes of a context,
300  * including its GTT address and some flags. Because it's fairly
301  * expensive to calculate, we'll just do it once and cache the result,
302  * which remains valid until the context is unpinned.
303  *
304  * This is what a descriptor looks like, from LSB to MSB:
305  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
306  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
307  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
308  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
309  */
310 static void
311 intel_lr_context_descriptor_update(struct intel_context *ctx,
312                                    struct intel_engine_cs *ring)
313 {
314         uint64_t lrca, desc;
315
316         lrca = ctx->engine[ring->id].lrc_vma->node.start +
317                LRC_PPHWSP_PN * PAGE_SIZE;
318
319         desc = ring->ctx_desc_template;                    /* bits  0-11 */
320         desc |= lrca;                                      /* bits 12-31 */
321         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
322
323         ctx->engine[ring->id].lrc_desc = desc;
324 }
325
326 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
327                                      struct intel_engine_cs *ring)
328 {
329         return ctx->engine[ring->id].lrc_desc;
330 }
331
332 /**
333  * intel_execlists_ctx_id() - get the Execlists Context ID
334  * @ctx: Context to get the ID for
335  * @ring: Engine to get the ID for
336  *
337  * Do not confuse with ctx->id! Unfortunately we have a name overload
338  * here: the old context ID we pass to userspace as a handler so that
339  * they can refer to a context, and the new context ID we pass to the
340  * ELSP so that the GPU can inform us of the context status via
341  * interrupts.
342  *
343  * The context ID is a portion of the context descriptor, so we can
344  * just extract the required part from the cached descriptor.
345  *
346  * Return: 20-bits globally unique context ID.
347  */
348 u32 intel_execlists_ctx_id(struct intel_context *ctx,
349                            struct intel_engine_cs *ring)
350 {
351         return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
352 }
353
354 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
355                                  struct drm_i915_gem_request *rq1)
356 {
357
358         struct intel_engine_cs *ring = rq0->ring;
359         struct drm_device *dev = ring->dev;
360         struct drm_i915_private *dev_priv = dev->dev_private;
361         uint64_t desc[2];
362
363         if (rq1) {
364                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
365                 rq1->elsp_submitted++;
366         } else {
367                 desc[1] = 0;
368         }
369
370         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
371         rq0->elsp_submitted++;
372
373         /* You must always write both descriptors in the order below. */
374         spin_lock(&dev_priv->uncore.lock);
375         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
376         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
377         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
378
379         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
380         /* The context is automatically loaded after the following */
381         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
382
383         /* ELSP is a wo register, use another nearby reg for posting */
384         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
385         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
386         spin_unlock(&dev_priv->uncore.lock);
387 }
388
389 static int execlists_update_context(struct drm_i915_gem_request *rq)
390 {
391         struct intel_engine_cs *ring = rq->ring;
392         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
393         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
394         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
395         struct page *page;
396         uint32_t *reg_state;
397
398         BUG_ON(!ctx_obj);
399
400         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
401         reg_state = kmap_atomic(page);
402
403         reg_state[CTX_RING_TAIL+1] = rq->tail;
404         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
405
406         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
407                 /* True 32b PPGTT with dynamic page allocation: update PDP
408                  * registers and point the unallocated PDPs to scratch page.
409                  * PML4 is allocated during ppgtt init, so this is not needed
410                  * in 48-bit mode.
411                  */
412                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416         }
417
418         kunmap_atomic(reg_state);
419
420         return 0;
421 }
422
423 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
424                                       struct drm_i915_gem_request *rq1)
425 {
426         execlists_update_context(rq0);
427
428         if (rq1)
429                 execlists_update_context(rq1);
430
431         execlists_elsp_write(rq0, rq1);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *ring)
435 {
436         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
438
439         assert_spin_locked(&ring->execlist_lock);
440
441         /*
442          * If irqs are not active generate a warning as batches that finish
443          * without the irqs may get lost and a GPU Hang may occur.
444          */
445         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
446
447         if (list_empty(&ring->execlist_queue))
448                 return;
449
450         /* Try to read in pairs */
451         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
452                                  execlist_link) {
453                 if (!req0) {
454                         req0 = cursor;
455                 } else if (req0->ctx == cursor->ctx) {
456                         /* Same ctx: ignore first request, as second request
457                          * will update tail past first request's workload */
458                         cursor->elsp_submitted = req0->elsp_submitted;
459                         list_move_tail(&req0->execlist_link,
460                                        &ring->execlist_retired_req_list);
461                         req0 = cursor;
462                 } else {
463                         req1 = cursor;
464                         break;
465                 }
466         }
467
468         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
469                 /*
470                  * WaIdleLiteRestore: make sure we never cause a lite
471                  * restore with HEAD==TAIL
472                  */
473                 if (req0->elsp_submitted) {
474                         /*
475                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
476                          * as we resubmit the request. See gen8_emit_request()
477                          * for where we prepare the padding after the end of the
478                          * request.
479                          */
480                         struct intel_ringbuffer *ringbuf;
481
482                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
483                         req0->tail += 8;
484                         req0->tail &= ringbuf->size - 1;
485                 }
486         }
487
488         WARN_ON(req1 && req1->elsp_submitted);
489
490         execlists_submit_requests(req0, req1);
491 }
492
493 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
494                                            u32 request_id)
495 {
496         struct drm_i915_gem_request *head_req;
497
498         assert_spin_locked(&ring->execlist_lock);
499
500         head_req = list_first_entry_or_null(&ring->execlist_queue,
501                                             struct drm_i915_gem_request,
502                                             execlist_link);
503
504         if (head_req != NULL) {
505                 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
506                         WARN(head_req->elsp_submitted == 0,
507                              "Never submitted head request\n");
508
509                         if (--head_req->elsp_submitted <= 0) {
510                                 list_move_tail(&head_req->execlist_link,
511                                                &ring->execlist_retired_req_list);
512                                 return true;
513                         }
514                 }
515         }
516
517         return false;
518 }
519
520 static void get_context_status(struct intel_engine_cs *ring,
521                                u8 read_pointer,
522                                u32 *status, u32 *context_id)
523 {
524         struct drm_i915_private *dev_priv = ring->dev->dev_private;
525
526         if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
527                 return;
528
529         *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
530         *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
531 }
532
533 /**
534  * intel_lrc_irq_handler() - handle Context Switch interrupts
535  * @ring: Engine Command Streamer to handle.
536  *
537  * Check the unread Context Status Buffers and manage the submission of new
538  * contexts to the ELSP accordingly.
539  */
540 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
541 {
542         struct drm_i915_private *dev_priv = ring->dev->dev_private;
543         u32 status_pointer;
544         u8 read_pointer;
545         u8 write_pointer;
546         u32 status = 0;
547         u32 status_id;
548         u32 submit_contexts = 0;
549
550         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
551
552         read_pointer = ring->next_context_status_buffer;
553         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
554         if (read_pointer > write_pointer)
555                 write_pointer += GEN8_CSB_ENTRIES;
556
557         spin_lock(&ring->execlist_lock);
558
559         while (read_pointer < write_pointer) {
560
561                 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
562                                    &status, &status_id);
563
564                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
565                         continue;
566
567                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
568                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
569                                 if (execlists_check_remove_request(ring, status_id))
570                                         WARN(1, "Lite Restored request removed from queue\n");
571                         } else
572                                 WARN(1, "Preemption without Lite Restore\n");
573                 }
574
575                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
576                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
577                         if (execlists_check_remove_request(ring, status_id))
578                                 submit_contexts++;
579                 }
580         }
581
582         if (ring->disable_lite_restore_wa) {
583                 /* Prevent a ctx to preempt itself */
584                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
585                     (submit_contexts != 0))
586                         execlists_context_unqueue(ring);
587         } else if (submit_contexts != 0) {
588                 execlists_context_unqueue(ring);
589         }
590
591         spin_unlock(&ring->execlist_lock);
592
593         if (unlikely(submit_contexts > 2))
594                 DRM_ERROR("More than two context complete events?\n");
595
596         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
597
598         /* Update the read pointer to the old write pointer. Manual ringbuffer
599          * management ftw </sarcasm> */
600         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
601                    _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
602                                  ring->next_context_status_buffer << 8));
603 }
604
605 static int execlists_context_queue(struct drm_i915_gem_request *request)
606 {
607         struct intel_engine_cs *ring = request->ring;
608         struct drm_i915_gem_request *cursor;
609         int num_elements = 0;
610
611         if (request->ctx != ring->default_context)
612                 intel_lr_context_pin(request);
613
614         i915_gem_request_reference(request);
615
616         spin_lock_irq(&ring->execlist_lock);
617
618         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
619                 if (++num_elements > 2)
620                         break;
621
622         if (num_elements > 2) {
623                 struct drm_i915_gem_request *tail_req;
624
625                 tail_req = list_last_entry(&ring->execlist_queue,
626                                            struct drm_i915_gem_request,
627                                            execlist_link);
628
629                 if (request->ctx == tail_req->ctx) {
630                         WARN(tail_req->elsp_submitted != 0,
631                                 "More than 2 already-submitted reqs queued\n");
632                         list_move_tail(&tail_req->execlist_link,
633                                        &ring->execlist_retired_req_list);
634                 }
635         }
636
637         list_add_tail(&request->execlist_link, &ring->execlist_queue);
638         if (num_elements == 0)
639                 execlists_context_unqueue(ring);
640
641         spin_unlock_irq(&ring->execlist_lock);
642
643         return 0;
644 }
645
646 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
647 {
648         struct intel_engine_cs *ring = req->ring;
649         uint32_t flush_domains;
650         int ret;
651
652         flush_domains = 0;
653         if (ring->gpu_caches_dirty)
654                 flush_domains = I915_GEM_GPU_DOMAINS;
655
656         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
657         if (ret)
658                 return ret;
659
660         ring->gpu_caches_dirty = false;
661         return 0;
662 }
663
664 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
665                                  struct list_head *vmas)
666 {
667         const unsigned other_rings = ~intel_ring_flag(req->ring);
668         struct i915_vma *vma;
669         uint32_t flush_domains = 0;
670         bool flush_chipset = false;
671         int ret;
672
673         list_for_each_entry(vma, vmas, exec_list) {
674                 struct drm_i915_gem_object *obj = vma->obj;
675
676                 if (obj->active & other_rings) {
677                         ret = i915_gem_object_sync(obj, req->ring, &req);
678                         if (ret)
679                                 return ret;
680                 }
681
682                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
683                         flush_chipset |= i915_gem_clflush_object(obj, false);
684
685                 flush_domains |= obj->base.write_domain;
686         }
687
688         if (flush_domains & I915_GEM_DOMAIN_GTT)
689                 wmb();
690
691         /* Unconditionally invalidate gpu caches and ensure that we do flush
692          * any residual writes from the previous batch.
693          */
694         return logical_ring_invalidate_all_caches(req);
695 }
696
697 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
698 {
699         int ret;
700
701         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
702
703         if (request->ctx != request->ring->default_context) {
704                 ret = intel_lr_context_pin(request);
705                 if (ret)
706                         return ret;
707         }
708
709         if (i915.enable_guc_submission) {
710                 /*
711                  * Check that the GuC has space for the request before
712                  * going any further, as the i915_add_request() call
713                  * later on mustn't fail ...
714                  */
715                 struct intel_guc *guc = &request->i915->guc;
716
717                 ret = i915_guc_wq_check_space(guc->execbuf_client);
718                 if (ret)
719                         return ret;
720         }
721
722         return 0;
723 }
724
725 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
726                                        int bytes)
727 {
728         struct intel_ringbuffer *ringbuf = req->ringbuf;
729         struct intel_engine_cs *ring = req->ring;
730         struct drm_i915_gem_request *target;
731         unsigned space;
732         int ret;
733
734         if (intel_ring_space(ringbuf) >= bytes)
735                 return 0;
736
737         /* The whole point of reserving space is to not wait! */
738         WARN_ON(ringbuf->reserved_in_use);
739
740         list_for_each_entry(target, &ring->request_list, list) {
741                 /*
742                  * The request queue is per-engine, so can contain requests
743                  * from multiple ringbuffers. Here, we must ignore any that
744                  * aren't from the ringbuffer we're considering.
745                  */
746                 if (target->ringbuf != ringbuf)
747                         continue;
748
749                 /* Would completion of this request free enough space? */
750                 space = __intel_ring_space(target->postfix, ringbuf->tail,
751                                            ringbuf->size);
752                 if (space >= bytes)
753                         break;
754         }
755
756         if (WARN_ON(&target->list == &ring->request_list))
757                 return -ENOSPC;
758
759         ret = i915_wait_request(target);
760         if (ret)
761                 return ret;
762
763         ringbuf->space = space;
764         return 0;
765 }
766
767 /*
768  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
769  * @request: Request to advance the logical ringbuffer of.
770  *
771  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
772  * really happens during submission is that the context and current tail will be placed
773  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
774  * point, the tail *inside* the context is updated and the ELSP written to.
775  */
776 static void
777 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
778 {
779         struct intel_engine_cs *ring = request->ring;
780         struct drm_i915_private *dev_priv = request->i915;
781
782         intel_logical_ring_advance(request->ringbuf);
783
784         request->tail = request->ringbuf->tail;
785
786         if (intel_ring_stopped(ring))
787                 return;
788
789         if (dev_priv->guc.execbuf_client)
790                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
791         else
792                 execlists_context_queue(request);
793 }
794
795 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
796 {
797         uint32_t __iomem *virt;
798         int rem = ringbuf->size - ringbuf->tail;
799
800         virt = ringbuf->virtual_start + ringbuf->tail;
801         rem /= 4;
802         while (rem--)
803                 iowrite32(MI_NOOP, virt++);
804
805         ringbuf->tail = 0;
806         intel_ring_update_space(ringbuf);
807 }
808
809 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
810 {
811         struct intel_ringbuffer *ringbuf = req->ringbuf;
812         int remain_usable = ringbuf->effective_size - ringbuf->tail;
813         int remain_actual = ringbuf->size - ringbuf->tail;
814         int ret, total_bytes, wait_bytes = 0;
815         bool need_wrap = false;
816
817         if (ringbuf->reserved_in_use)
818                 total_bytes = bytes;
819         else
820                 total_bytes = bytes + ringbuf->reserved_size;
821
822         if (unlikely(bytes > remain_usable)) {
823                 /*
824                  * Not enough space for the basic request. So need to flush
825                  * out the remainder and then wait for base + reserved.
826                  */
827                 wait_bytes = remain_actual + total_bytes;
828                 need_wrap = true;
829         } else {
830                 if (unlikely(total_bytes > remain_usable)) {
831                         /*
832                          * The base request will fit but the reserved space
833                          * falls off the end. So only need to to wait for the
834                          * reserved size after flushing out the remainder.
835                          */
836                         wait_bytes = remain_actual + ringbuf->reserved_size;
837                         need_wrap = true;
838                 } else if (total_bytes > ringbuf->space) {
839                         /* No wrapping required, just waiting. */
840                         wait_bytes = total_bytes;
841                 }
842         }
843
844         if (wait_bytes) {
845                 ret = logical_ring_wait_for_space(req, wait_bytes);
846                 if (unlikely(ret))
847                         return ret;
848
849                 if (need_wrap)
850                         __wrap_ring_buffer(ringbuf);
851         }
852
853         return 0;
854 }
855
856 /**
857  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
858  *
859  * @req: The request to start some new work for
860  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
861  *
862  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
863  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
864  * and also preallocates a request (every workload submission is still mediated through
865  * requests, same as it did with legacy ringbuffer submission).
866  *
867  * Return: non-zero if the ringbuffer is not ready to be written to.
868  */
869 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
870 {
871         struct drm_i915_private *dev_priv;
872         int ret;
873
874         WARN_ON(req == NULL);
875         dev_priv = req->ring->dev->dev_private;
876
877         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
878                                    dev_priv->mm.interruptible);
879         if (ret)
880                 return ret;
881
882         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
883         if (ret)
884                 return ret;
885
886         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
887         return 0;
888 }
889
890 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
891 {
892         /*
893          * The first call merely notes the reserve request and is common for
894          * all back ends. The subsequent localised _begin() call actually
895          * ensures that the reservation is available. Without the begin, if
896          * the request creator immediately submitted the request without
897          * adding any commands to it then there might not actually be
898          * sufficient room for the submission commands.
899          */
900         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
901
902         return intel_logical_ring_begin(request, 0);
903 }
904
905 /**
906  * execlists_submission() - submit a batchbuffer for execution, Execlists style
907  * @dev: DRM device.
908  * @file: DRM file.
909  * @ring: Engine Command Streamer to submit to.
910  * @ctx: Context to employ for this submission.
911  * @args: execbuffer call arguments.
912  * @vmas: list of vmas.
913  * @batch_obj: the batchbuffer to submit.
914  * @exec_start: batchbuffer start virtual address pointer.
915  * @dispatch_flags: translated execbuffer call flags.
916  *
917  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
918  * away the submission details of the execbuffer ioctl call.
919  *
920  * Return: non-zero if the submission fails.
921  */
922 int intel_execlists_submission(struct i915_execbuffer_params *params,
923                                struct drm_i915_gem_execbuffer2 *args,
924                                struct list_head *vmas)
925 {
926         struct drm_device       *dev = params->dev;
927         struct intel_engine_cs  *ring = params->ring;
928         struct drm_i915_private *dev_priv = dev->dev_private;
929         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
930         u64 exec_start;
931         int instp_mode;
932         u32 instp_mask;
933         int ret;
934
935         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
936         instp_mask = I915_EXEC_CONSTANTS_MASK;
937         switch (instp_mode) {
938         case I915_EXEC_CONSTANTS_REL_GENERAL:
939         case I915_EXEC_CONSTANTS_ABSOLUTE:
940         case I915_EXEC_CONSTANTS_REL_SURFACE:
941                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
942                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
943                         return -EINVAL;
944                 }
945
946                 if (instp_mode != dev_priv->relative_constants_mode) {
947                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
948                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
949                                 return -EINVAL;
950                         }
951
952                         /* The HW changed the meaning on this bit on gen6 */
953                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
954                 }
955                 break;
956         default:
957                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
958                 return -EINVAL;
959         }
960
961         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
962                 DRM_DEBUG("sol reset is gen7 only\n");
963                 return -EINVAL;
964         }
965
966         ret = execlists_move_to_gpu(params->request, vmas);
967         if (ret)
968                 return ret;
969
970         if (ring == &dev_priv->ring[RCS] &&
971             instp_mode != dev_priv->relative_constants_mode) {
972                 ret = intel_logical_ring_begin(params->request, 4);
973                 if (ret)
974                         return ret;
975
976                 intel_logical_ring_emit(ringbuf, MI_NOOP);
977                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
978                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
979                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
980                 intel_logical_ring_advance(ringbuf);
981
982                 dev_priv->relative_constants_mode = instp_mode;
983         }
984
985         exec_start = params->batch_obj_vm_offset +
986                      args->batch_start_offset;
987
988         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
989         if (ret)
990                 return ret;
991
992         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
993
994         i915_gem_execbuffer_move_to_active(vmas, params->request);
995         i915_gem_execbuffer_retire_commands(params);
996
997         return 0;
998 }
999
1000 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
1001 {
1002         struct drm_i915_gem_request *req, *tmp;
1003         struct list_head retired_list;
1004
1005         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1006         if (list_empty(&ring->execlist_retired_req_list))
1007                 return;
1008
1009         INIT_LIST_HEAD(&retired_list);
1010         spin_lock_irq(&ring->execlist_lock);
1011         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1012         spin_unlock_irq(&ring->execlist_lock);
1013
1014         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1015                 struct intel_context *ctx = req->ctx;
1016                 struct drm_i915_gem_object *ctx_obj =
1017                                 ctx->engine[ring->id].state;
1018
1019                 if (ctx_obj && (ctx != ring->default_context))
1020                         intel_lr_context_unpin(req);
1021                 list_del(&req->execlist_link);
1022                 i915_gem_request_unreference(req);
1023         }
1024 }
1025
1026 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1027 {
1028         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1029         int ret;
1030
1031         if (!intel_ring_initialized(ring))
1032                 return;
1033
1034         ret = intel_ring_idle(ring);
1035         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1036                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1037                           ring->name, ret);
1038
1039         /* TODO: Is this correct with Execlists enabled? */
1040         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1041         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1042                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1043                 return;
1044         }
1045         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1046 }
1047
1048 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1049 {
1050         struct intel_engine_cs *ring = req->ring;
1051         int ret;
1052
1053         if (!ring->gpu_caches_dirty)
1054                 return 0;
1055
1056         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1057         if (ret)
1058                 return ret;
1059
1060         ring->gpu_caches_dirty = false;
1061         return 0;
1062 }
1063
1064 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1065                                    struct intel_context *ctx)
1066 {
1067         struct drm_device *dev = ring->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1070         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1071         int ret;
1072
1073         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1074
1075         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1076                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1077         if (ret)
1078                 return ret;
1079
1080         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1081         if (ret)
1082                 goto unpin_ctx_obj;
1083
1084         ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1085         intel_lr_context_descriptor_update(ctx, ring);
1086         ctx_obj->dirty = true;
1087
1088         /* Invalidate GuC TLB. */
1089         if (i915.enable_guc_submission)
1090                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1091
1092         return ret;
1093
1094 unpin_ctx_obj:
1095         i915_gem_object_ggtt_unpin(ctx_obj);
1096
1097         return ret;
1098 }
1099
1100 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1101 {
1102         int ret = 0;
1103         struct intel_engine_cs *ring = rq->ring;
1104
1105         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1106                 ret = intel_lr_context_do_pin(ring, rq->ctx);
1107                 if (ret)
1108                         goto reset_pin_count;
1109         }
1110         return ret;
1111
1112 reset_pin_count:
1113         rq->ctx->engine[ring->id].pin_count = 0;
1114         return ret;
1115 }
1116
1117 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1118 {
1119         struct intel_engine_cs *ring = rq->ring;
1120         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1121         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1122
1123         if (ctx_obj) {
1124                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1125                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1126                         intel_unpin_ringbuffer_obj(ringbuf);
1127                         i915_gem_object_ggtt_unpin(ctx_obj);
1128                         rq->ctx->engine[ring->id].lrc_vma = NULL;
1129                         rq->ctx->engine[ring->id].lrc_desc = 0;
1130                 }
1131         }
1132 }
1133
1134 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1135 {
1136         int ret, i;
1137         struct intel_engine_cs *ring = req->ring;
1138         struct intel_ringbuffer *ringbuf = req->ringbuf;
1139         struct drm_device *dev = ring->dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct i915_workarounds *w = &dev_priv->workarounds;
1142
1143         if (w->count == 0)
1144                 return 0;
1145
1146         ring->gpu_caches_dirty = true;
1147         ret = logical_ring_flush_all_caches(req);
1148         if (ret)
1149                 return ret;
1150
1151         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1152         if (ret)
1153                 return ret;
1154
1155         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1156         for (i = 0; i < w->count; i++) {
1157                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1158                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1159         }
1160         intel_logical_ring_emit(ringbuf, MI_NOOP);
1161
1162         intel_logical_ring_advance(ringbuf);
1163
1164         ring->gpu_caches_dirty = true;
1165         ret = logical_ring_flush_all_caches(req);
1166         if (ret)
1167                 return ret;
1168
1169         return 0;
1170 }
1171
1172 #define wa_ctx_emit(batch, index, cmd)                                  \
1173         do {                                                            \
1174                 int __index = (index)++;                                \
1175                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1176                         return -ENOSPC;                                 \
1177                 }                                                       \
1178                 batch[__index] = (cmd);                                 \
1179         } while (0)
1180
1181 #define wa_ctx_emit_reg(batch, index, reg) \
1182         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1183
1184 /*
1185  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1186  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1187  * but there is a slight complication as this is applied in WA batch where the
1188  * values are only initialized once so we cannot take register value at the
1189  * beginning and reuse it further; hence we save its value to memory, upload a
1190  * constant value with bit21 set and then we restore it back with the saved value.
1191  * To simplify the WA, a constant value is formed by using the default value
1192  * of this register. This shouldn't be a problem because we are only modifying
1193  * it for a short period and this batch in non-premptible. We can ofcourse
1194  * use additional instructions that read the actual value of the register
1195  * at that time and set our bit of interest but it makes the WA complicated.
1196  *
1197  * This WA is also required for Gen9 so extracting as a function avoids
1198  * code duplication.
1199  */
1200 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1201                                                 uint32_t *const batch,
1202                                                 uint32_t index)
1203 {
1204         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1205
1206         /*
1207          * WaDisableLSQCROPERFforOCL:skl
1208          * This WA is implemented in skl_init_clock_gating() but since
1209          * this batch updates GEN8_L3SQCREG4 with default value we need to
1210          * set this bit here to retain the WA during flush.
1211          */
1212         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1213                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1214
1215         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1216                                    MI_SRM_LRM_GLOBAL_GTT));
1217         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1218         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1219         wa_ctx_emit(batch, index, 0);
1220
1221         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1222         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1223         wa_ctx_emit(batch, index, l3sqc4_flush);
1224
1225         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1226         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1227                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1228         wa_ctx_emit(batch, index, 0);
1229         wa_ctx_emit(batch, index, 0);
1230         wa_ctx_emit(batch, index, 0);
1231         wa_ctx_emit(batch, index, 0);
1232
1233         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1234                                    MI_SRM_LRM_GLOBAL_GTT));
1235         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1236         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1237         wa_ctx_emit(batch, index, 0);
1238
1239         return index;
1240 }
1241
1242 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1243                                     uint32_t offset,
1244                                     uint32_t start_alignment)
1245 {
1246         return wa_ctx->offset = ALIGN(offset, start_alignment);
1247 }
1248
1249 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1250                              uint32_t offset,
1251                              uint32_t size_alignment)
1252 {
1253         wa_ctx->size = offset - wa_ctx->offset;
1254
1255         WARN(wa_ctx->size % size_alignment,
1256              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1257              wa_ctx->size, size_alignment);
1258         return 0;
1259 }
1260
1261 /**
1262  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1263  *
1264  * @ring: only applicable for RCS
1265  * @wa_ctx: structure representing wa_ctx
1266  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1267  *    with the offset value received as input.
1268  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1269  * @batch: page in which WA are loaded
1270  * @offset: This field specifies the start of the batch, it should be
1271  *  cache-aligned otherwise it is adjusted accordingly.
1272  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1273  *  initialized at the beginning and shared across all contexts but this field
1274  *  helps us to have multiple batches at different offsets and select them based
1275  *  on a criteria. At the moment this batch always start at the beginning of the page
1276  *  and at this point we don't have multiple wa_ctx batch buffers.
1277  *
1278  *  The number of WA applied are not known at the beginning; we use this field
1279  *  to return the no of DWORDS written.
1280  *
1281  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1282  *  so it adds NOOPs as padding to make it cacheline aligned.
1283  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1284  *  makes a complete batch buffer.
1285  *
1286  * Return: non-zero if we exceed the PAGE_SIZE limit.
1287  */
1288
1289 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1290                                     struct i915_wa_ctx_bb *wa_ctx,
1291                                     uint32_t *const batch,
1292                                     uint32_t *offset)
1293 {
1294         uint32_t scratch_addr;
1295         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1296
1297         /* WaDisableCtxRestoreArbitration:bdw,chv */
1298         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1299
1300         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1301         if (IS_BROADWELL(ring->dev)) {
1302                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1303                 if (rc < 0)
1304                         return rc;
1305                 index = rc;
1306         }
1307
1308         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1309         /* Actual scratch location is at 128 bytes offset */
1310         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1311
1312         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1313         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1314                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1315                                    PIPE_CONTROL_CS_STALL |
1316                                    PIPE_CONTROL_QW_WRITE));
1317         wa_ctx_emit(batch, index, scratch_addr);
1318         wa_ctx_emit(batch, index, 0);
1319         wa_ctx_emit(batch, index, 0);
1320         wa_ctx_emit(batch, index, 0);
1321
1322         /* Pad to end of cacheline */
1323         while (index % CACHELINE_DWORDS)
1324                 wa_ctx_emit(batch, index, MI_NOOP);
1325
1326         /*
1327          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1328          * execution depends on the length specified in terms of cache lines
1329          * in the register CTX_RCS_INDIRECT_CTX
1330          */
1331
1332         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1333 }
1334
1335 /**
1336  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1337  *
1338  * @ring: only applicable for RCS
1339  * @wa_ctx: structure representing wa_ctx
1340  *  offset: specifies start of the batch, should be cache-aligned.
1341  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1342  * @batch: page in which WA are loaded
1343  * @offset: This field specifies the start of this batch.
1344  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1345  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1346  *
1347  *   The number of DWORDS written are returned using this field.
1348  *
1349  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1350  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1351  */
1352 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1353                                struct i915_wa_ctx_bb *wa_ctx,
1354                                uint32_t *const batch,
1355                                uint32_t *offset)
1356 {
1357         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1358
1359         /* WaDisableCtxRestoreArbitration:bdw,chv */
1360         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1361
1362         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1363
1364         return wa_ctx_end(wa_ctx, *offset = index, 1);
1365 }
1366
1367 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1368                                     struct i915_wa_ctx_bb *wa_ctx,
1369                                     uint32_t *const batch,
1370                                     uint32_t *offset)
1371 {
1372         int ret;
1373         struct drm_device *dev = ring->dev;
1374         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1375
1376         /* WaDisableCtxRestoreArbitration:skl,bxt */
1377         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1378             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1379                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1380
1381         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1382         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1383         if (ret < 0)
1384                 return ret;
1385         index = ret;
1386
1387         /* Pad to end of cacheline */
1388         while (index % CACHELINE_DWORDS)
1389                 wa_ctx_emit(batch, index, MI_NOOP);
1390
1391         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1392 }
1393
1394 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1395                                struct i915_wa_ctx_bb *wa_ctx,
1396                                uint32_t *const batch,
1397                                uint32_t *offset)
1398 {
1399         struct drm_device *dev = ring->dev;
1400         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1401
1402         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1403         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1404             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1405                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1406                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1407                 wa_ctx_emit(batch, index,
1408                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1409                 wa_ctx_emit(batch, index, MI_NOOP);
1410         }
1411
1412         /* WaDisableCtxRestoreArbitration:skl,bxt */
1413         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1414             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1415                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1416
1417         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1418
1419         return wa_ctx_end(wa_ctx, *offset = index, 1);
1420 }
1421
1422 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1423 {
1424         int ret;
1425
1426         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1427         if (!ring->wa_ctx.obj) {
1428                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1429                 return -ENOMEM;
1430         }
1431
1432         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1433         if (ret) {
1434                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1435                                  ret);
1436                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1437                 return ret;
1438         }
1439
1440         return 0;
1441 }
1442
1443 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1444 {
1445         if (ring->wa_ctx.obj) {
1446                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1447                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1448                 ring->wa_ctx.obj = NULL;
1449         }
1450 }
1451
1452 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1453 {
1454         int ret;
1455         uint32_t *batch;
1456         uint32_t offset;
1457         struct page *page;
1458         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1459
1460         WARN_ON(ring->id != RCS);
1461
1462         /* update this when WA for higher Gen are added */
1463         if (INTEL_INFO(ring->dev)->gen > 9) {
1464                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1465                           INTEL_INFO(ring->dev)->gen);
1466                 return 0;
1467         }
1468
1469         /* some WA perform writes to scratch page, ensure it is valid */
1470         if (ring->scratch.obj == NULL) {
1471                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1472                 return -EINVAL;
1473         }
1474
1475         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1476         if (ret) {
1477                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1478                 return ret;
1479         }
1480
1481         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1482         batch = kmap_atomic(page);
1483         offset = 0;
1484
1485         if (INTEL_INFO(ring->dev)->gen == 8) {
1486                 ret = gen8_init_indirectctx_bb(ring,
1487                                                &wa_ctx->indirect_ctx,
1488                                                batch,
1489                                                &offset);
1490                 if (ret)
1491                         goto out;
1492
1493                 ret = gen8_init_perctx_bb(ring,
1494                                           &wa_ctx->per_ctx,
1495                                           batch,
1496                                           &offset);
1497                 if (ret)
1498                         goto out;
1499         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1500                 ret = gen9_init_indirectctx_bb(ring,
1501                                                &wa_ctx->indirect_ctx,
1502                                                batch,
1503                                                &offset);
1504                 if (ret)
1505                         goto out;
1506
1507                 ret = gen9_init_perctx_bb(ring,
1508                                           &wa_ctx->per_ctx,
1509                                           batch,
1510                                           &offset);
1511                 if (ret)
1512                         goto out;
1513         }
1514
1515 out:
1516         kunmap_atomic(batch);
1517         if (ret)
1518                 lrc_destroy_wa_ctx_obj(ring);
1519
1520         return ret;
1521 }
1522
1523 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1524 {
1525         struct drm_device *dev = ring->dev;
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527         u8 next_context_status_buffer_hw;
1528
1529         lrc_setup_hardware_status_page(ring,
1530                                 ring->default_context->engine[ring->id].state);
1531
1532         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1533         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1534
1535         I915_WRITE(RING_MODE_GEN7(ring),
1536                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1537                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1538         POSTING_READ(RING_MODE_GEN7(ring));
1539
1540         /*
1541          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1542          * zero, we need to read the write pointer from hardware and use its
1543          * value because "this register is power context save restored".
1544          * Effectively, these states have been observed:
1545          *
1546          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1547          * BDW  | CSB regs not reset       | CSB regs reset       |
1548          * CHT  | CSB regs not reset       | CSB regs not reset   |
1549          * SKL  |         ?                |         ?            |
1550          * BXT  |         ?                |         ?            |
1551          */
1552         next_context_status_buffer_hw =
1553                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1554
1555         /*
1556          * When the CSB registers are reset (also after power-up / gpu reset),
1557          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1558          * this special case, so the first element read is CSB[0].
1559          */
1560         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1561                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1562
1563         ring->next_context_status_buffer = next_context_status_buffer_hw;
1564         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1565
1566         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1567
1568         return 0;
1569 }
1570
1571 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1572 {
1573         struct drm_device *dev = ring->dev;
1574         struct drm_i915_private *dev_priv = dev->dev_private;
1575         int ret;
1576
1577         ret = gen8_init_common_ring(ring);
1578         if (ret)
1579                 return ret;
1580
1581         /* We need to disable the AsyncFlip performance optimisations in order
1582          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1583          * programmed to '1' on all products.
1584          *
1585          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1586          */
1587         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1588
1589         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1590
1591         return init_workarounds_ring(ring);
1592 }
1593
1594 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1595 {
1596         int ret;
1597
1598         ret = gen8_init_common_ring(ring);
1599         if (ret)
1600                 return ret;
1601
1602         return init_workarounds_ring(ring);
1603 }
1604
1605 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1606 {
1607         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1608         struct intel_engine_cs *ring = req->ring;
1609         struct intel_ringbuffer *ringbuf = req->ringbuf;
1610         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1611         int i, ret;
1612
1613         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1614         if (ret)
1615                 return ret;
1616
1617         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1618         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1619                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1620
1621                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1622                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1623                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1624                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1625         }
1626
1627         intel_logical_ring_emit(ringbuf, MI_NOOP);
1628         intel_logical_ring_advance(ringbuf);
1629
1630         return 0;
1631 }
1632
1633 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1634                               u64 offset, unsigned dispatch_flags)
1635 {
1636         struct intel_ringbuffer *ringbuf = req->ringbuf;
1637         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1638         int ret;
1639
1640         /* Don't rely in hw updating PDPs, specially in lite-restore.
1641          * Ideally, we should set Force PD Restore in ctx descriptor,
1642          * but we can't. Force Restore would be a second option, but
1643          * it is unsafe in case of lite-restore (because the ctx is
1644          * not idle). PML4 is allocated during ppgtt init so this is
1645          * not needed in 48-bit.*/
1646         if (req->ctx->ppgtt &&
1647             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1648                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1649                     !intel_vgpu_active(req->i915->dev)) {
1650                         ret = intel_logical_ring_emit_pdps(req);
1651                         if (ret)
1652                                 return ret;
1653                 }
1654
1655                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1656         }
1657
1658         ret = intel_logical_ring_begin(req, 4);
1659         if (ret)
1660                 return ret;
1661
1662         /* FIXME(BDW): Address space and security selectors. */
1663         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1664                                 (ppgtt<<8) |
1665                                 (dispatch_flags & I915_DISPATCH_RS ?
1666                                  MI_BATCH_RESOURCE_STREAMER : 0));
1667         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1668         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1669         intel_logical_ring_emit(ringbuf, MI_NOOP);
1670         intel_logical_ring_advance(ringbuf);
1671
1672         return 0;
1673 }
1674
1675 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1676 {
1677         struct drm_device *dev = ring->dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         unsigned long flags;
1680
1681         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1682                 return false;
1683
1684         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1685         if (ring->irq_refcount++ == 0) {
1686                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1687                 POSTING_READ(RING_IMR(ring->mmio_base));
1688         }
1689         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1690
1691         return true;
1692 }
1693
1694 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1695 {
1696         struct drm_device *dev = ring->dev;
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698         unsigned long flags;
1699
1700         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1701         if (--ring->irq_refcount == 0) {
1702                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1703                 POSTING_READ(RING_IMR(ring->mmio_base));
1704         }
1705         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706 }
1707
1708 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1709                            u32 invalidate_domains,
1710                            u32 unused)
1711 {
1712         struct intel_ringbuffer *ringbuf = request->ringbuf;
1713         struct intel_engine_cs *ring = ringbuf->ring;
1714         struct drm_device *dev = ring->dev;
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         uint32_t cmd;
1717         int ret;
1718
1719         ret = intel_logical_ring_begin(request, 4);
1720         if (ret)
1721                 return ret;
1722
1723         cmd = MI_FLUSH_DW + 1;
1724
1725         /* We always require a command barrier so that subsequent
1726          * commands, such as breadcrumb interrupts, are strictly ordered
1727          * wrt the contents of the write cache being flushed to memory
1728          * (and thus being coherent from the CPU).
1729          */
1730         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1731
1732         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1733                 cmd |= MI_INVALIDATE_TLB;
1734                 if (ring == &dev_priv->ring[VCS])
1735                         cmd |= MI_INVALIDATE_BSD;
1736         }
1737
1738         intel_logical_ring_emit(ringbuf, cmd);
1739         intel_logical_ring_emit(ringbuf,
1740                                 I915_GEM_HWS_SCRATCH_ADDR |
1741                                 MI_FLUSH_DW_USE_GTT);
1742         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1743         intel_logical_ring_emit(ringbuf, 0); /* value */
1744         intel_logical_ring_advance(ringbuf);
1745
1746         return 0;
1747 }
1748
1749 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1750                                   u32 invalidate_domains,
1751                                   u32 flush_domains)
1752 {
1753         struct intel_ringbuffer *ringbuf = request->ringbuf;
1754         struct intel_engine_cs *ring = ringbuf->ring;
1755         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1756         bool vf_flush_wa = false;
1757         u32 flags = 0;
1758         int ret;
1759
1760         flags |= PIPE_CONTROL_CS_STALL;
1761
1762         if (flush_domains) {
1763                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1764                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1765                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1766                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1767         }
1768
1769         if (invalidate_domains) {
1770                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1771                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1772                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1773                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1774                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1775                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1776                 flags |= PIPE_CONTROL_QW_WRITE;
1777                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1778
1779                 /*
1780                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1781                  * pipe control.
1782                  */
1783                 if (IS_GEN9(ring->dev))
1784                         vf_flush_wa = true;
1785         }
1786
1787         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1788         if (ret)
1789                 return ret;
1790
1791         if (vf_flush_wa) {
1792                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1793                 intel_logical_ring_emit(ringbuf, 0);
1794                 intel_logical_ring_emit(ringbuf, 0);
1795                 intel_logical_ring_emit(ringbuf, 0);
1796                 intel_logical_ring_emit(ringbuf, 0);
1797                 intel_logical_ring_emit(ringbuf, 0);
1798         }
1799
1800         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1801         intel_logical_ring_emit(ringbuf, flags);
1802         intel_logical_ring_emit(ringbuf, scratch_addr);
1803         intel_logical_ring_emit(ringbuf, 0);
1804         intel_logical_ring_emit(ringbuf, 0);
1805         intel_logical_ring_emit(ringbuf, 0);
1806         intel_logical_ring_advance(ringbuf);
1807
1808         return 0;
1809 }
1810
1811 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1812 {
1813         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1814 }
1815
1816 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1817 {
1818         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1819 }
1820
1821 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1822 {
1823
1824         /*
1825          * On BXT A steppings there is a HW coherency issue whereby the
1826          * MI_STORE_DATA_IMM storing the completed request's seqno
1827          * occasionally doesn't invalidate the CPU cache. Work around this by
1828          * clflushing the corresponding cacheline whenever the caller wants
1829          * the coherency to be guaranteed. Note that this cacheline is known
1830          * to be clean at this point, since we only write it in
1831          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1832          * this clflush in practice becomes an invalidate operation.
1833          */
1834
1835         if (!lazy_coherency)
1836                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1837
1838         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1839 }
1840
1841 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1842 {
1843         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1844
1845         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1846         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1847 }
1848
1849 static int gen8_emit_request(struct drm_i915_gem_request *request)
1850 {
1851         struct intel_ringbuffer *ringbuf = request->ringbuf;
1852         struct intel_engine_cs *ring = ringbuf->ring;
1853         u32 cmd;
1854         int ret;
1855
1856         /*
1857          * Reserve space for 2 NOOPs at the end of each request to be
1858          * used as a workaround for not being allowed to do lite
1859          * restore with HEAD==TAIL (WaIdleLiteRestore).
1860          */
1861         ret = intel_logical_ring_begin(request, 8);
1862         if (ret)
1863                 return ret;
1864
1865         cmd = MI_STORE_DWORD_IMM_GEN4;
1866         cmd |= MI_GLOBAL_GTT;
1867
1868         intel_logical_ring_emit(ringbuf, cmd);
1869         intel_logical_ring_emit(ringbuf,
1870                                 (ring->status_page.gfx_addr +
1871                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1872         intel_logical_ring_emit(ringbuf, 0);
1873         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1874         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1875         intel_logical_ring_emit(ringbuf, MI_NOOP);
1876         intel_logical_ring_advance_and_submit(request);
1877
1878         /*
1879          * Here we add two extra NOOPs as padding to avoid
1880          * lite restore of a context with HEAD==TAIL.
1881          */
1882         intel_logical_ring_emit(ringbuf, MI_NOOP);
1883         intel_logical_ring_emit(ringbuf, MI_NOOP);
1884         intel_logical_ring_advance(ringbuf);
1885
1886         return 0;
1887 }
1888
1889 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1890 {
1891         struct render_state so;
1892         int ret;
1893
1894         ret = i915_gem_render_state_prepare(req->ring, &so);
1895         if (ret)
1896                 return ret;
1897
1898         if (so.rodata == NULL)
1899                 return 0;
1900
1901         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1902                                        I915_DISPATCH_SECURE);
1903         if (ret)
1904                 goto out;
1905
1906         ret = req->ring->emit_bb_start(req,
1907                                        (so.ggtt_offset + so.aux_batch_offset),
1908                                        I915_DISPATCH_SECURE);
1909         if (ret)
1910                 goto out;
1911
1912         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1913
1914 out:
1915         i915_gem_render_state_fini(&so);
1916         return ret;
1917 }
1918
1919 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1920 {
1921         int ret;
1922
1923         ret = intel_logical_ring_workarounds_emit(req);
1924         if (ret)
1925                 return ret;
1926
1927         ret = intel_rcs_context_init_mocs(req);
1928         /*
1929          * Failing to program the MOCS is non-fatal.The system will not
1930          * run at peak performance. So generate an error and carry on.
1931          */
1932         if (ret)
1933                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1934
1935         return intel_lr_context_render_state_init(req);
1936 }
1937
1938 /**
1939  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1940  *
1941  * @ring: Engine Command Streamer.
1942  *
1943  */
1944 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1945 {
1946         struct drm_i915_private *dev_priv;
1947
1948         if (!intel_ring_initialized(ring))
1949                 return;
1950
1951         dev_priv = ring->dev->dev_private;
1952
1953         if (ring->buffer) {
1954                 intel_logical_ring_stop(ring);
1955                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1956         }
1957
1958         if (ring->cleanup)
1959                 ring->cleanup(ring);
1960
1961         i915_cmd_parser_fini_ring(ring);
1962         i915_gem_batch_pool_fini(&ring->batch_pool);
1963
1964         if (ring->status_page.obj) {
1965                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1966                 ring->status_page.obj = NULL;
1967         }
1968
1969         ring->disable_lite_restore_wa = false;
1970         ring->ctx_desc_template = 0;
1971
1972         lrc_destroy_wa_ctx_obj(ring);
1973         ring->dev = NULL;
1974 }
1975
1976 static void
1977 logical_ring_default_vfuncs(struct drm_device *dev,
1978                             struct intel_engine_cs *ring)
1979 {
1980         /* Default vfuncs which can be overriden by each engine. */
1981         ring->init_hw = gen8_init_common_ring;
1982         ring->emit_request = gen8_emit_request;
1983         ring->emit_flush = gen8_emit_flush;
1984         ring->irq_get = gen8_logical_ring_get_irq;
1985         ring->irq_put = gen8_logical_ring_put_irq;
1986         ring->emit_bb_start = gen8_emit_bb_start;
1987         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1988                 ring->get_seqno = bxt_a_get_seqno;
1989                 ring->set_seqno = bxt_a_set_seqno;
1990         } else {
1991                 ring->get_seqno = gen8_get_seqno;
1992                 ring->set_seqno = gen8_set_seqno;
1993         }
1994 }
1995
1996 static inline void
1997 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
1998 {
1999         ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2000         ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2001 }
2002
2003 static int
2004 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2005 {
2006         int ret;
2007
2008         /* Intentionally left blank. */
2009         ring->buffer = NULL;
2010
2011         ring->dev = dev;
2012         INIT_LIST_HEAD(&ring->active_list);
2013         INIT_LIST_HEAD(&ring->request_list);
2014         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2015         init_waitqueue_head(&ring->irq_queue);
2016
2017         INIT_LIST_HEAD(&ring->buffers);
2018         INIT_LIST_HEAD(&ring->execlist_queue);
2019         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2020         spin_lock_init(&ring->execlist_lock);
2021
2022         logical_ring_init_platform_invariants(ring);
2023
2024         ret = i915_cmd_parser_init_ring(ring);
2025         if (ret)
2026                 goto error;
2027
2028         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
2029         if (ret)
2030                 goto error;
2031
2032         /* As this is the default context, always pin it */
2033         ret = intel_lr_context_do_pin(ring, ring->default_context);
2034         if (ret) {
2035                 DRM_ERROR(
2036                         "Failed to pin and map ringbuffer %s: %d\n",
2037                         ring->name, ret);
2038                 goto error;
2039         }
2040
2041         return 0;
2042
2043 error:
2044         intel_logical_ring_cleanup(ring);
2045         return ret;
2046 }
2047
2048 static int logical_render_ring_init(struct drm_device *dev)
2049 {
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2052         int ret;
2053
2054         ring->name = "render ring";
2055         ring->id = RCS;
2056         ring->mmio_base = RENDER_RING_BASE;
2057
2058         logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2059         if (HAS_L3_DPF(dev))
2060                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2061
2062         logical_ring_default_vfuncs(dev, ring);
2063
2064         /* Override some for render ring. */
2065         if (INTEL_INFO(dev)->gen >= 9)
2066                 ring->init_hw = gen9_init_render_ring;
2067         else
2068                 ring->init_hw = gen8_init_render_ring;
2069         ring->init_context = gen8_init_rcs_context;
2070         ring->cleanup = intel_fini_pipe_control;
2071         ring->emit_flush = gen8_emit_flush_render;
2072
2073         ring->dev = dev;
2074
2075         ret = intel_init_pipe_control(ring);
2076         if (ret)
2077                 return ret;
2078
2079         ret = intel_init_workaround_bb(ring);
2080         if (ret) {
2081                 /*
2082                  * We continue even if we fail to initialize WA batch
2083                  * because we only expect rare glitches but nothing
2084                  * critical to prevent us from using GPU
2085                  */
2086                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2087                           ret);
2088         }
2089
2090         ret = logical_ring_init(dev, ring);
2091         if (ret) {
2092                 lrc_destroy_wa_ctx_obj(ring);
2093         }
2094
2095         return ret;
2096 }
2097
2098 static int logical_bsd_ring_init(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2102
2103         ring->name = "bsd ring";
2104         ring->id = VCS;
2105         ring->mmio_base = GEN6_BSD_RING_BASE;
2106
2107         logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2108         logical_ring_default_vfuncs(dev, ring);
2109
2110         return logical_ring_init(dev, ring);
2111 }
2112
2113 static int logical_bsd2_ring_init(struct drm_device *dev)
2114 {
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2117
2118         ring->name = "bsd2 ring";
2119         ring->id = VCS2;
2120         ring->mmio_base = GEN8_BSD2_RING_BASE;
2121
2122         logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2123         logical_ring_default_vfuncs(dev, ring);
2124
2125         return logical_ring_init(dev, ring);
2126 }
2127
2128 static int logical_blt_ring_init(struct drm_device *dev)
2129 {
2130         struct drm_i915_private *dev_priv = dev->dev_private;
2131         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2132
2133         ring->name = "blitter ring";
2134         ring->id = BCS;
2135         ring->mmio_base = BLT_RING_BASE;
2136
2137         logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2138         logical_ring_default_vfuncs(dev, ring);
2139
2140         return logical_ring_init(dev, ring);
2141 }
2142
2143 static int logical_vebox_ring_init(struct drm_device *dev)
2144 {
2145         struct drm_i915_private *dev_priv = dev->dev_private;
2146         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2147
2148         ring->name = "video enhancement ring";
2149         ring->id = VECS;
2150         ring->mmio_base = VEBOX_RING_BASE;
2151
2152         logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2153         logical_ring_default_vfuncs(dev, ring);
2154
2155         return logical_ring_init(dev, ring);
2156 }
2157
2158 /**
2159  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160  * @dev: DRM device.
2161  *
2162  * This function inits the engines for an Execlists submission style (the equivalent in the
2163  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2164  * those engines that are present in the hardware.
2165  *
2166  * Return: non-zero if the initialization failed.
2167  */
2168 int intel_logical_rings_init(struct drm_device *dev)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         int ret;
2172
2173         ret = logical_render_ring_init(dev);
2174         if (ret)
2175                 return ret;
2176
2177         if (HAS_BSD(dev)) {
2178                 ret = logical_bsd_ring_init(dev);
2179                 if (ret)
2180                         goto cleanup_render_ring;
2181         }
2182
2183         if (HAS_BLT(dev)) {
2184                 ret = logical_blt_ring_init(dev);
2185                 if (ret)
2186                         goto cleanup_bsd_ring;
2187         }
2188
2189         if (HAS_VEBOX(dev)) {
2190                 ret = logical_vebox_ring_init(dev);
2191                 if (ret)
2192                         goto cleanup_blt_ring;
2193         }
2194
2195         if (HAS_BSD2(dev)) {
2196                 ret = logical_bsd2_ring_init(dev);
2197                 if (ret)
2198                         goto cleanup_vebox_ring;
2199         }
2200
2201         return 0;
2202
2203 cleanup_vebox_ring:
2204         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2205 cleanup_blt_ring:
2206         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2207 cleanup_bsd_ring:
2208         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2209 cleanup_render_ring:
2210         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2211
2212         return ret;
2213 }
2214
2215 static u32
2216 make_rpcs(struct drm_device *dev)
2217 {
2218         u32 rpcs = 0;
2219
2220         /*
2221          * No explicit RPCS request is needed to ensure full
2222          * slice/subslice/EU enablement prior to Gen9.
2223         */
2224         if (INTEL_INFO(dev)->gen < 9)
2225                 return 0;
2226
2227         /*
2228          * Starting in Gen9, render power gating can leave
2229          * slice/subslice/EU in a partially enabled state. We
2230          * must make an explicit request through RPCS for full
2231          * enablement.
2232         */
2233         if (INTEL_INFO(dev)->has_slice_pg) {
2234                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235                 rpcs |= INTEL_INFO(dev)->slice_total <<
2236                         GEN8_RPCS_S_CNT_SHIFT;
2237                 rpcs |= GEN8_RPCS_ENABLE;
2238         }
2239
2240         if (INTEL_INFO(dev)->has_subslice_pg) {
2241                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243                         GEN8_RPCS_SS_CNT_SHIFT;
2244                 rpcs |= GEN8_RPCS_ENABLE;
2245         }
2246
2247         if (INTEL_INFO(dev)->has_eu_pg) {
2248                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249                         GEN8_RPCS_EU_MIN_SHIFT;
2250                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251                         GEN8_RPCS_EU_MAX_SHIFT;
2252                 rpcs |= GEN8_RPCS_ENABLE;
2253         }
2254
2255         return rpcs;
2256 }
2257
2258 static int
2259 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2260                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2261 {
2262         struct drm_device *dev = ring->dev;
2263         struct drm_i915_private *dev_priv = dev->dev_private;
2264         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2265         struct page *page;
2266         uint32_t *reg_state;
2267         int ret;
2268
2269         if (!ppgtt)
2270                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2271
2272         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2273         if (ret) {
2274                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2275                 return ret;
2276         }
2277
2278         ret = i915_gem_object_get_pages(ctx_obj);
2279         if (ret) {
2280                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2281                 return ret;
2282         }
2283
2284         i915_gem_object_pin_pages(ctx_obj);
2285
2286         /* The second page of the context object contains some fields which must
2287          * be set up prior to the first execution. */
2288         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2289         reg_state = kmap_atomic(page);
2290
2291         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2292          * commands followed by (reg, value) pairs. The values we are setting here are
2293          * only for the first context restore: on a subsequent save, the GPU will
2294          * recreate this batchbuffer with new values (including all the missing
2295          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2296         reg_state[CTX_LRI_HEADER_0] =
2297                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2298         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2299                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2300                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2301                                           CTX_CTRL_RS_CTX_ENABLE));
2302         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2303         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2304         /* Ring buffer start address is not known until the buffer is pinned.
2305          * It is written to the context image in execlists_update_context()
2306          */
2307         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2308         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2309                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2310         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2311         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2312         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2313                        RING_BB_PPGTT);
2314         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2315         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2316         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2317         if (ring->id == RCS) {
2318                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2319                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2320                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2321                 if (ring->wa_ctx.obj) {
2322                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2323                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2324
2325                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2326                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2327                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2328
2329                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2330                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2331
2332                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2333                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2334                                 0x01;
2335                 }
2336         }
2337         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2338         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2339         /* PDP values well be assigned later if needed */
2340         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2341         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2342         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2343         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2344         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2345         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2346         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2347         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2348
2349         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2350                 /* 64b PPGTT (48bit canonical)
2351                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2352                  * other PDP Descriptors are ignored.
2353                  */
2354                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2355         } else {
2356                 /* 32b PPGTT
2357                  * PDP*_DESCRIPTOR contains the base address of space supported.
2358                  * With dynamic page allocation, PDPs may not be allocated at
2359                  * this point. Point the unallocated PDPs to the scratch page
2360                  */
2361                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2362                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2363                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2364                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2365         }
2366
2367         if (ring->id == RCS) {
2368                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2369                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2370                                make_rpcs(dev));
2371         }
2372
2373         kunmap_atomic(reg_state);
2374         i915_gem_object_unpin_pages(ctx_obj);
2375
2376         return 0;
2377 }
2378
2379 /**
2380  * intel_lr_context_free() - free the LRC specific bits of a context
2381  * @ctx: the LR context to free.
2382  *
2383  * The real context freeing is done in i915_gem_context_free: this only
2384  * takes care of the bits that are LRC related: the per-engine backing
2385  * objects and the logical ringbuffer.
2386  */
2387 void intel_lr_context_free(struct intel_context *ctx)
2388 {
2389         int i;
2390
2391         for (i = 0; i < I915_NUM_RINGS; i++) {
2392                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2393
2394                 if (ctx_obj) {
2395                         struct intel_ringbuffer *ringbuf =
2396                                         ctx->engine[i].ringbuf;
2397                         struct intel_engine_cs *ring = ringbuf->ring;
2398
2399                         if (ctx == ring->default_context) {
2400                                 intel_unpin_ringbuffer_obj(ringbuf);
2401                                 i915_gem_object_ggtt_unpin(ctx_obj);
2402                         }
2403                         WARN_ON(ctx->engine[ring->id].pin_count);
2404                         intel_ringbuffer_free(ringbuf);
2405                         drm_gem_object_unreference(&ctx_obj->base);
2406                 }
2407         }
2408 }
2409
2410 /**
2411  * intel_lr_context_size() - return the size of the context for an engine
2412  * @ring: which engine to find the context size for
2413  *
2414  * Each engine may require a different amount of space for a context image,
2415  * so when allocating (or copying) an image, this function can be used to
2416  * find the right size for the specific engine.
2417  *
2418  * Return: size (in bytes) of an engine-specific context image
2419  *
2420  * Note: this size includes the HWSP, which is part of the context image
2421  * in LRC mode, but does not include the "shared data page" used with
2422  * GuC submission. The caller should account for this if using the GuC.
2423  */
2424 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2425 {
2426         int ret = 0;
2427
2428         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2429
2430         switch (ring->id) {
2431         case RCS:
2432                 if (INTEL_INFO(ring->dev)->gen >= 9)
2433                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2434                 else
2435                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2436                 break;
2437         case VCS:
2438         case BCS:
2439         case VECS:
2440         case VCS2:
2441                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2442                 break;
2443         }
2444
2445         return ret;
2446 }
2447
2448 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2449                 struct drm_i915_gem_object *default_ctx_obj)
2450 {
2451         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2452         struct page *page;
2453
2454         /* The HWSP is part of the default context object in LRC mode. */
2455         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2456                         + LRC_PPHWSP_PN * PAGE_SIZE;
2457         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2458         ring->status_page.page_addr = kmap(page);
2459         ring->status_page.obj = default_ctx_obj;
2460
2461         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2462                         (u32)ring->status_page.gfx_addr);
2463         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2464 }
2465
2466 /**
2467  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2468  * @ctx: LR context to create.
2469  * @ring: engine to be used with the context.
2470  *
2471  * This function can be called more than once, with different engines, if we plan
2472  * to use the context with them. The context backing objects and the ringbuffers
2473  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2474  * the creation is a deferred call: it's better to make sure first that we need to use
2475  * a given ring with the context.
2476  *
2477  * Return: non-zero on error.
2478  */
2479
2480 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2481                                      struct intel_engine_cs *ring)
2482 {
2483         struct drm_device *dev = ring->dev;
2484         struct drm_i915_gem_object *ctx_obj;
2485         uint32_t context_size;
2486         struct intel_ringbuffer *ringbuf;
2487         int ret;
2488
2489         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2490         WARN_ON(ctx->engine[ring->id].state);
2491
2492         context_size = round_up(intel_lr_context_size(ring), 4096);
2493
2494         /* One extra page as the sharing data between driver and GuC */
2495         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2496
2497         ctx_obj = i915_gem_alloc_object(dev, context_size);
2498         if (!ctx_obj) {
2499                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2500                 return -ENOMEM;
2501         }
2502
2503         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2504         if (IS_ERR(ringbuf)) {
2505                 ret = PTR_ERR(ringbuf);
2506                 goto error_deref_obj;
2507         }
2508
2509         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2510         if (ret) {
2511                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2512                 goto error_ringbuf;
2513         }
2514
2515         ctx->engine[ring->id].ringbuf = ringbuf;
2516         ctx->engine[ring->id].state = ctx_obj;
2517
2518         if (ctx != ring->default_context && ring->init_context) {
2519                 struct drm_i915_gem_request *req;
2520
2521                 ret = i915_gem_request_alloc(ring,
2522                         ctx, &req);
2523                 if (ret) {
2524                         DRM_ERROR("ring create req: %d\n",
2525                                 ret);
2526                         goto error_ringbuf;
2527                 }
2528
2529                 ret = ring->init_context(req);
2530                 if (ret) {
2531                         DRM_ERROR("ring init context: %d\n",
2532                                 ret);
2533                         i915_gem_request_cancel(req);
2534                         goto error_ringbuf;
2535                 }
2536                 i915_add_request_no_flush(req);
2537         }
2538         return 0;
2539
2540 error_ringbuf:
2541         intel_ringbuffer_free(ringbuf);
2542 error_deref_obj:
2543         drm_gem_object_unreference(&ctx_obj->base);
2544         ctx->engine[ring->id].ringbuf = NULL;
2545         ctx->engine[ring->id].state = NULL;
2546         return ret;
2547 }
2548
2549 void intel_lr_context_reset(struct drm_device *dev,
2550                         struct intel_context *ctx)
2551 {
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         struct intel_engine_cs *ring;
2554         int i;
2555
2556         for_each_ring(ring, dev_priv, i) {
2557                 struct drm_i915_gem_object *ctx_obj =
2558                                 ctx->engine[ring->id].state;
2559                 struct intel_ringbuffer *ringbuf =
2560                                 ctx->engine[ring->id].ringbuf;
2561                 uint32_t *reg_state;
2562                 struct page *page;
2563
2564                 if (!ctx_obj)
2565                         continue;
2566
2567                 if (i915_gem_object_get_pages(ctx_obj)) {
2568                         WARN(1, "Failed get_pages for context obj\n");
2569                         continue;
2570                 }
2571                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2572                 reg_state = kmap_atomic(page);
2573
2574                 reg_state[CTX_RING_HEAD+1] = 0;
2575                 reg_state[CTX_RING_TAIL+1] = 0;
2576
2577                 kunmap_atomic(reg_state);
2578
2579                 ringbuf->head = 0;
2580                 ringbuf->tail = 0;
2581         }
2582 }