]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Stop tracking execlists retired requests
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
230
231 static int execlists_context_deferred_alloc(struct intel_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct intel_context *ctx,
234                                 struct intel_engine_cs *engine);
235
236 /**
237  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238  * @dev: DRM device.
239  * @enable_execlists: value of i915.enable_execlists module parameter.
240  *
241  * Only certain platforms support Execlists (the prerequisites being
242  * support for Logical Ring Contexts and Aliasing PPGTT or better).
243  *
244  * Return: 1 if Execlists is supported and has to be enabled.
245  */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248         WARN_ON(i915.enable_ppgtt == -1);
249
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254                 return 1;
255
256         if (INTEL_INFO(dev)->gen >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263             i915.use_mmio_flip >= 0)
264                 return 1;
265
266         return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272         struct drm_device *dev = engine->dev;
273
274         if (IS_GEN8(dev) || IS_GEN9(dev))
275                 engine->idle_lite_restore_wa = ~0;
276
277         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279                                         (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
284         if (IS_GEN8(dev))
285                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288         /* TODO: WaDisableLiteRestore when we start using semaphore
289          * signalling between Command Streamers */
290         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294         if (engine->disable_lite_restore_wa)
295                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300  *                                        descriptor for a pinned context
301  *
302  * @ctx: Context to work on
303  * @ring: Engine the descriptor will be used with
304  *
305  * The context descriptor encodes various attributes of a context,
306  * including its GTT address and some flags. Because it's fairly
307  * expensive to calculate, we'll just do it once and cache the result,
308  * which remains valid until the context is unpinned.
309  *
310  * This is what a descriptor looks like, from LSB to MSB:
311  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313  *    bits 32-52:    ctx ID, a globally unique tag
314  *    bits 53-54:    mbz, reserved for use by hardware
315  *    bits 55-63:    group ID, currently unused and set to 0
316  */
317 static void
318 intel_lr_context_descriptor_update(struct intel_context *ctx,
319                                    struct intel_engine_cs *engine)
320 {
321         u64 desc;
322
323         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324
325         desc = engine->ctx_desc_template;                       /* bits  0-11 */
326         desc |= ctx->engine[engine->id].lrc_vma->node.start +   /* bits 12-31 */
327                LRC_PPHWSP_PN * PAGE_SIZE;
328         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
329
330         ctx->engine[engine->id].lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334                                      struct intel_engine_cs *engine)
335 {
336         return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340                                  struct drm_i915_gem_request *rq1)
341 {
342
343         struct intel_engine_cs *engine = rq0->engine;
344         struct drm_device *dev = engine->dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346         uint64_t desc[2];
347
348         if (rq1) {
349                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350                 rq1->elsp_submitted++;
351         } else {
352                 desc[1] = 0;
353         }
354
355         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356         rq0->elsp_submitted++;
357
358         /* You must always write both descriptors in the order below. */
359         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361
362         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363         /* The context is automatically loaded after the following */
364         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365
366         /* ELSP is a wo register, use another nearby reg for posting */
367         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 }
369
370 static void
371 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372 {
373         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377 }
378
379 static void execlists_update_context(struct drm_i915_gem_request *rq)
380 {
381         struct intel_engine_cs *engine = rq->engine;
382         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384
385         reg_state[CTX_RING_TAIL+1] = rq->tail;
386
387         /* True 32b PPGTT with dynamic page allocation: update PDP
388          * registers and point the unallocated PDPs to scratch page.
389          * PML4 is allocated during ppgtt init, so this is not needed
390          * in 48-bit mode.
391          */
392         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393                 execlists_update_context_pdps(ppgtt, reg_state);
394 }
395
396 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397                                       struct drm_i915_gem_request *rq1)
398 {
399         struct drm_i915_private *dev_priv = rq0->i915;
400         unsigned int fw_domains = rq0->engine->fw_domains;
401
402         execlists_update_context(rq0);
403
404         if (rq1)
405                 execlists_update_context(rq1);
406
407         spin_lock_irq(&dev_priv->uncore.lock);
408         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409
410         execlists_elsp_write(rq0, rq1);
411
412         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413         spin_unlock_irq(&dev_priv->uncore.lock);
414 }
415
416 static void execlists_context_unqueue(struct intel_engine_cs *engine)
417 {
418         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419         struct drm_i915_gem_request *cursor, *tmp;
420
421         assert_spin_locked(&engine->execlist_lock);
422
423         /*
424          * If irqs are not active generate a warning as batches that finish
425          * without the irqs may get lost and a GPU Hang may occur.
426          */
427         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
428
429         /* Try to read in pairs */
430         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431                                  execlist_link) {
432                 if (!req0) {
433                         req0 = cursor;
434                 } else if (req0->ctx == cursor->ctx) {
435                         /* Same ctx: ignore first request, as second request
436                          * will update tail past first request's workload */
437                         cursor->elsp_submitted = req0->elsp_submitted;
438                         list_del(&req0->execlist_link);
439                         i915_gem_request_unreference(req0);
440                         req0 = cursor;
441                 } else {
442                         req1 = cursor;
443                         WARN_ON(req1->elsp_submitted);
444                         break;
445                 }
446         }
447
448         if (unlikely(!req0))
449                 return;
450
451         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452                 /*
453                  * WaIdleLiteRestore: make sure we never cause a lite restore
454                  * with HEAD==TAIL.
455                  *
456                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457                  * resubmit the request. See gen8_emit_request() for where we
458                  * prepare the padding after the end of the request.
459                  */
460                 struct intel_ringbuffer *ringbuf;
461
462                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
463                 req0->tail += 8;
464                 req0->tail &= ringbuf->size - 1;
465         }
466
467         execlists_submit_requests(req0, req1);
468 }
469
470 static unsigned int
471 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
472 {
473         struct drm_i915_gem_request *head_req;
474
475         assert_spin_locked(&engine->execlist_lock);
476
477         head_req = list_first_entry_or_null(&engine->execlist_queue,
478                                             struct drm_i915_gem_request,
479                                             execlist_link);
480
481         if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
482                return 0;
483
484         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
485
486         if (--head_req->elsp_submitted > 0)
487                 return 0;
488
489         list_del(&head_req->execlist_link);
490         i915_gem_request_unreference(head_req);
491
492         return 1;
493 }
494
495 static u32
496 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
497                    u32 *context_id)
498 {
499         struct drm_i915_private *dev_priv = engine->dev->dev_private;
500         u32 status;
501
502         read_pointer %= GEN8_CSB_ENTRIES;
503
504         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
505
506         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
507                 return 0;
508
509         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
510                                                               read_pointer));
511
512         return status;
513 }
514
515 /**
516  * intel_lrc_irq_handler() - handle Context Switch interrupts
517  * @engine: Engine Command Streamer to handle.
518  *
519  * Check the unread Context Status Buffers and manage the submission of new
520  * contexts to the ELSP accordingly.
521  */
522 static void intel_lrc_irq_handler(unsigned long data)
523 {
524         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
525         struct drm_i915_private *dev_priv = engine->dev->dev_private;
526         u32 status_pointer;
527         unsigned int read_pointer, write_pointer;
528         u32 csb[GEN8_CSB_ENTRIES][2];
529         unsigned int csb_read = 0, i;
530         unsigned int submit_contexts = 0;
531
532         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
533
534         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
535
536         read_pointer = engine->next_context_status_buffer;
537         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
538         if (read_pointer > write_pointer)
539                 write_pointer += GEN8_CSB_ENTRIES;
540
541         while (read_pointer < write_pointer) {
542                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
543                         break;
544                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
545                                                       &csb[csb_read][1]);
546                 csb_read++;
547         }
548
549         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
550
551         /* Update the read pointer to the old write pointer. Manual ringbuffer
552          * management ftw </sarcasm> */
553         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
554                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
555                                     engine->next_context_status_buffer << 8));
556
557         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
558
559         spin_lock(&engine->execlist_lock);
560
561         for (i = 0; i < csb_read; i++) {
562                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
563                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
564                                 if (execlists_check_remove_request(engine, csb[i][1]))
565                                         WARN(1, "Lite Restored request removed from queue\n");
566                         } else
567                                 WARN(1, "Preemption without Lite Restore\n");
568                 }
569
570                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
571                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
572                         submit_contexts +=
573                                 execlists_check_remove_request(engine, csb[i][1]);
574         }
575
576         if (submit_contexts) {
577                 if (!engine->disable_lite_restore_wa ||
578                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
579                         execlists_context_unqueue(engine);
580         }
581
582         spin_unlock(&engine->execlist_lock);
583
584         if (unlikely(submit_contexts > 2))
585                 DRM_ERROR("More than two context complete events?\n");
586 }
587
588 static void execlists_context_queue(struct drm_i915_gem_request *request)
589 {
590         struct intel_engine_cs *engine = request->engine;
591         struct drm_i915_gem_request *cursor;
592         int num_elements = 0;
593
594         spin_lock_bh(&engine->execlist_lock);
595
596         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
597                 if (++num_elements > 2)
598                         break;
599
600         if (num_elements > 2) {
601                 struct drm_i915_gem_request *tail_req;
602
603                 tail_req = list_last_entry(&engine->execlist_queue,
604                                            struct drm_i915_gem_request,
605                                            execlist_link);
606
607                 if (request->ctx == tail_req->ctx) {
608                         WARN(tail_req->elsp_submitted != 0,
609                                 "More than 2 already-submitted reqs queued\n");
610                         list_del(&tail_req->execlist_link);
611                         i915_gem_request_unreference(tail_req);
612                 }
613         }
614
615         i915_gem_request_reference(request);
616         list_add_tail(&request->execlist_link, &engine->execlist_queue);
617         request->ctx_hw_id = request->ctx->hw_id;
618         if (num_elements == 0)
619                 execlists_context_unqueue(engine);
620
621         spin_unlock_bh(&engine->execlist_lock);
622 }
623
624 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
625 {
626         struct intel_engine_cs *engine = req->engine;
627         uint32_t flush_domains;
628         int ret;
629
630         flush_domains = 0;
631         if (engine->gpu_caches_dirty)
632                 flush_domains = I915_GEM_GPU_DOMAINS;
633
634         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
635         if (ret)
636                 return ret;
637
638         engine->gpu_caches_dirty = false;
639         return 0;
640 }
641
642 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
643                                  struct list_head *vmas)
644 {
645         const unsigned other_rings = ~intel_engine_flag(req->engine);
646         struct i915_vma *vma;
647         uint32_t flush_domains = 0;
648         bool flush_chipset = false;
649         int ret;
650
651         list_for_each_entry(vma, vmas, exec_list) {
652                 struct drm_i915_gem_object *obj = vma->obj;
653
654                 if (obj->active & other_rings) {
655                         ret = i915_gem_object_sync(obj, req->engine, &req);
656                         if (ret)
657                                 return ret;
658                 }
659
660                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
661                         flush_chipset |= i915_gem_clflush_object(obj, false);
662
663                 flush_domains |= obj->base.write_domain;
664         }
665
666         if (flush_domains & I915_GEM_DOMAIN_GTT)
667                 wmb();
668
669         /* Unconditionally invalidate gpu caches and ensure that we do flush
670          * any residual writes from the previous batch.
671          */
672         return logical_ring_invalidate_all_caches(req);
673 }
674
675 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
676 {
677         struct intel_engine_cs *engine = request->engine;
678         int ret;
679
680         /* Flush enough space to reduce the likelihood of waiting after
681          * we start building the request - in which case we will just
682          * have to repeat work.
683          */
684         request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
685
686         if (request->ctx->engine[engine->id].state == NULL) {
687                 ret = execlists_context_deferred_alloc(request->ctx, engine);
688                 if (ret)
689                         return ret;
690         }
691
692         request->ringbuf = request->ctx->engine[engine->id].ringbuf;
693
694         if (i915.enable_guc_submission) {
695                 /*
696                  * Check that the GuC has space for the request before
697                  * going any further, as the i915_add_request() call
698                  * later on mustn't fail ...
699                  */
700                 struct intel_guc *guc = &request->i915->guc;
701
702                 ret = i915_guc_wq_check_space(guc->execbuf_client);
703                 if (ret)
704                         return ret;
705         }
706
707         ret = intel_lr_context_pin(request->ctx, engine);
708         if (ret)
709                 return ret;
710
711         ret = intel_ring_begin(request, 0);
712         if (ret)
713                 goto err_unpin;
714
715         if (!request->ctx->engine[engine->id].initialised) {
716                 ret = engine->init_context(request);
717                 if (ret)
718                         goto err_unpin;
719
720                 request->ctx->engine[engine->id].initialised = true;
721         }
722
723         /* Note that after this point, we have committed to using
724          * this request as it is being used to both track the
725          * state of engine initialisation and liveness of the
726          * golden renderstate above. Think twice before you try
727          * to cancel/unwind this request now.
728          */
729
730         request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
731         return 0;
732
733 err_unpin:
734         intel_lr_context_unpin(request->ctx, engine);
735         return ret;
736 }
737
738 /*
739  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
740  * @request: Request to advance the logical ringbuffer of.
741  *
742  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
743  * really happens during submission is that the context and current tail will be placed
744  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
745  * point, the tail *inside* the context is updated and the ELSP written to.
746  */
747 static int
748 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
749 {
750         struct intel_ringbuffer *ringbuf = request->ringbuf;
751         struct drm_i915_private *dev_priv = request->i915;
752         struct intel_engine_cs *engine = request->engine;
753
754         intel_logical_ring_advance(ringbuf);
755         request->tail = ringbuf->tail;
756
757         /*
758          * Here we add two extra NOOPs as padding to avoid
759          * lite restore of a context with HEAD==TAIL.
760          *
761          * Caller must reserve WA_TAIL_DWORDS for us!
762          */
763         intel_logical_ring_emit(ringbuf, MI_NOOP);
764         intel_logical_ring_emit(ringbuf, MI_NOOP);
765         intel_logical_ring_advance(ringbuf);
766
767         if (intel_engine_stopped(engine))
768                 return 0;
769
770         /* We keep the previous context alive until we retire the following
771          * request. This ensures that any the context object is still pinned
772          * for any residual writes the HW makes into it on the context switch
773          * into the next object following the breadcrumb. Otherwise, we may
774          * retire the context too early.
775          */
776         request->previous_context = engine->last_context;
777         engine->last_context = request->ctx;
778
779         if (dev_priv->guc.execbuf_client)
780                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
781         else
782                 execlists_context_queue(request);
783
784         return 0;
785 }
786
787 /**
788  * execlists_submission() - submit a batchbuffer for execution, Execlists style
789  * @dev: DRM device.
790  * @file: DRM file.
791  * @ring: Engine Command Streamer to submit to.
792  * @ctx: Context to employ for this submission.
793  * @args: execbuffer call arguments.
794  * @vmas: list of vmas.
795  * @batch_obj: the batchbuffer to submit.
796  * @exec_start: batchbuffer start virtual address pointer.
797  * @dispatch_flags: translated execbuffer call flags.
798  *
799  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
800  * away the submission details of the execbuffer ioctl call.
801  *
802  * Return: non-zero if the submission fails.
803  */
804 int intel_execlists_submission(struct i915_execbuffer_params *params,
805                                struct drm_i915_gem_execbuffer2 *args,
806                                struct list_head *vmas)
807 {
808         struct drm_device       *dev = params->dev;
809         struct intel_engine_cs *engine = params->engine;
810         struct drm_i915_private *dev_priv = dev->dev_private;
811         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
812         u64 exec_start;
813         int instp_mode;
814         u32 instp_mask;
815         int ret;
816
817         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
818         instp_mask = I915_EXEC_CONSTANTS_MASK;
819         switch (instp_mode) {
820         case I915_EXEC_CONSTANTS_REL_GENERAL:
821         case I915_EXEC_CONSTANTS_ABSOLUTE:
822         case I915_EXEC_CONSTANTS_REL_SURFACE:
823                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
824                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
825                         return -EINVAL;
826                 }
827
828                 if (instp_mode != dev_priv->relative_constants_mode) {
829                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
830                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
831                                 return -EINVAL;
832                         }
833
834                         /* The HW changed the meaning on this bit on gen6 */
835                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
836                 }
837                 break;
838         default:
839                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
840                 return -EINVAL;
841         }
842
843         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
844                 DRM_DEBUG("sol reset is gen7 only\n");
845                 return -EINVAL;
846         }
847
848         ret = execlists_move_to_gpu(params->request, vmas);
849         if (ret)
850                 return ret;
851
852         if (engine == &dev_priv->engine[RCS] &&
853             instp_mode != dev_priv->relative_constants_mode) {
854                 ret = intel_ring_begin(params->request, 4);
855                 if (ret)
856                         return ret;
857
858                 intel_logical_ring_emit(ringbuf, MI_NOOP);
859                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
860                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
861                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
862                 intel_logical_ring_advance(ringbuf);
863
864                 dev_priv->relative_constants_mode = instp_mode;
865         }
866
867         exec_start = params->batch_obj_vm_offset +
868                      args->batch_start_offset;
869
870         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
871         if (ret)
872                 return ret;
873
874         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
875
876         i915_gem_execbuffer_move_to_active(vmas, params->request);
877
878         return 0;
879 }
880
881 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
882 {
883         struct drm_i915_gem_request *req, *tmp;
884         LIST_HEAD(cancel_list);
885
886         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
887
888         spin_lock_bh(&engine->execlist_lock);
889         list_replace_init(&engine->execlist_queue, &cancel_list);
890         spin_unlock_bh(&engine->execlist_lock);
891
892         list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
893                 list_del(&req->execlist_link);
894                 i915_gem_request_unreference(req);
895         }
896 }
897
898 void intel_logical_ring_stop(struct intel_engine_cs *engine)
899 {
900         struct drm_i915_private *dev_priv = engine->dev->dev_private;
901         int ret;
902
903         if (!intel_engine_initialized(engine))
904                 return;
905
906         ret = intel_engine_idle(engine);
907         if (ret)
908                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
909                           engine->name, ret);
910
911         /* TODO: Is this correct with Execlists enabled? */
912         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
913         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
914                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
915                 return;
916         }
917         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
918 }
919
920 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
921 {
922         struct intel_engine_cs *engine = req->engine;
923         int ret;
924
925         if (!engine->gpu_caches_dirty)
926                 return 0;
927
928         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
929         if (ret)
930                 return ret;
931
932         engine->gpu_caches_dirty = false;
933         return 0;
934 }
935
936 static int intel_lr_context_pin(struct intel_context *ctx,
937                                 struct intel_engine_cs *engine)
938 {
939         struct drm_i915_private *dev_priv = ctx->i915;
940         struct drm_i915_gem_object *ctx_obj;
941         struct intel_ringbuffer *ringbuf;
942         void *vaddr;
943         u32 *lrc_reg_state;
944         int ret;
945
946         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
947
948         if (ctx->engine[engine->id].pin_count++)
949                 return 0;
950
951         ctx_obj = ctx->engine[engine->id].state;
952         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
953                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
954         if (ret)
955                 goto err;
956
957         vaddr = i915_gem_object_pin_map(ctx_obj);
958         if (IS_ERR(vaddr)) {
959                 ret = PTR_ERR(vaddr);
960                 goto unpin_ctx_obj;
961         }
962
963         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
964
965         ringbuf = ctx->engine[engine->id].ringbuf;
966         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
967         if (ret)
968                 goto unpin_map;
969
970         i915_gem_context_reference(ctx);
971         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
972         intel_lr_context_descriptor_update(ctx, engine);
973         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
974         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
975         ctx_obj->dirty = true;
976
977         /* Invalidate GuC TLB. */
978         if (i915.enable_guc_submission)
979                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
980
981         return 0;
982
983 unpin_map:
984         i915_gem_object_unpin_map(ctx_obj);
985 unpin_ctx_obj:
986         i915_gem_object_ggtt_unpin(ctx_obj);
987 err:
988         ctx->engine[engine->id].pin_count = 0;
989         return ret;
990 }
991
992 void intel_lr_context_unpin(struct intel_context *ctx,
993                             struct intel_engine_cs *engine)
994 {
995         struct drm_i915_gem_object *ctx_obj;
996
997         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
998         GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
999
1000         if (--ctx->engine[engine->id].pin_count)
1001                 return;
1002
1003         intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1004
1005         ctx_obj = ctx->engine[engine->id].state;
1006         i915_gem_object_unpin_map(ctx_obj);
1007         i915_gem_object_ggtt_unpin(ctx_obj);
1008
1009         ctx->engine[engine->id].lrc_vma = NULL;
1010         ctx->engine[engine->id].lrc_desc = 0;
1011         ctx->engine[engine->id].lrc_reg_state = NULL;
1012
1013         i915_gem_context_unreference(ctx);
1014 }
1015
1016 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1017 {
1018         int ret, i;
1019         struct intel_engine_cs *engine = req->engine;
1020         struct intel_ringbuffer *ringbuf = req->ringbuf;
1021         struct drm_device *dev = engine->dev;
1022         struct drm_i915_private *dev_priv = dev->dev_private;
1023         struct i915_workarounds *w = &dev_priv->workarounds;
1024
1025         if (w->count == 0)
1026                 return 0;
1027
1028         engine->gpu_caches_dirty = true;
1029         ret = logical_ring_flush_all_caches(req);
1030         if (ret)
1031                 return ret;
1032
1033         ret = intel_ring_begin(req, w->count * 2 + 2);
1034         if (ret)
1035                 return ret;
1036
1037         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1038         for (i = 0; i < w->count; i++) {
1039                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1040                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1041         }
1042         intel_logical_ring_emit(ringbuf, MI_NOOP);
1043
1044         intel_logical_ring_advance(ringbuf);
1045
1046         engine->gpu_caches_dirty = true;
1047         ret = logical_ring_flush_all_caches(req);
1048         if (ret)
1049                 return ret;
1050
1051         return 0;
1052 }
1053
1054 #define wa_ctx_emit(batch, index, cmd)                                  \
1055         do {                                                            \
1056                 int __index = (index)++;                                \
1057                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1058                         return -ENOSPC;                                 \
1059                 }                                                       \
1060                 batch[__index] = (cmd);                                 \
1061         } while (0)
1062
1063 #define wa_ctx_emit_reg(batch, index, reg) \
1064         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1065
1066 /*
1067  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1068  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1069  * but there is a slight complication as this is applied in WA batch where the
1070  * values are only initialized once so we cannot take register value at the
1071  * beginning and reuse it further; hence we save its value to memory, upload a
1072  * constant value with bit21 set and then we restore it back with the saved value.
1073  * To simplify the WA, a constant value is formed by using the default value
1074  * of this register. This shouldn't be a problem because we are only modifying
1075  * it for a short period and this batch in non-premptible. We can ofcourse
1076  * use additional instructions that read the actual value of the register
1077  * at that time and set our bit of interest but it makes the WA complicated.
1078  *
1079  * This WA is also required for Gen9 so extracting as a function avoids
1080  * code duplication.
1081  */
1082 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1083                                                 uint32_t *const batch,
1084                                                 uint32_t index)
1085 {
1086         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1087
1088         /*
1089          * WaDisableLSQCROPERFforOCL:skl
1090          * This WA is implemented in skl_init_clock_gating() but since
1091          * this batch updates GEN8_L3SQCREG4 with default value we need to
1092          * set this bit here to retain the WA during flush.
1093          */
1094         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1095                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1096
1097         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1098                                    MI_SRM_LRM_GLOBAL_GTT));
1099         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1100         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1101         wa_ctx_emit(batch, index, 0);
1102
1103         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1104         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1105         wa_ctx_emit(batch, index, l3sqc4_flush);
1106
1107         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1108         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1109                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1110         wa_ctx_emit(batch, index, 0);
1111         wa_ctx_emit(batch, index, 0);
1112         wa_ctx_emit(batch, index, 0);
1113         wa_ctx_emit(batch, index, 0);
1114
1115         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1116                                    MI_SRM_LRM_GLOBAL_GTT));
1117         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1118         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1119         wa_ctx_emit(batch, index, 0);
1120
1121         return index;
1122 }
1123
1124 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1125                                     uint32_t offset,
1126                                     uint32_t start_alignment)
1127 {
1128         return wa_ctx->offset = ALIGN(offset, start_alignment);
1129 }
1130
1131 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1132                              uint32_t offset,
1133                              uint32_t size_alignment)
1134 {
1135         wa_ctx->size = offset - wa_ctx->offset;
1136
1137         WARN(wa_ctx->size % size_alignment,
1138              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1139              wa_ctx->size, size_alignment);
1140         return 0;
1141 }
1142
1143 /**
1144  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1145  *
1146  * @ring: only applicable for RCS
1147  * @wa_ctx: structure representing wa_ctx
1148  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1149  *    with the offset value received as input.
1150  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1151  * @batch: page in which WA are loaded
1152  * @offset: This field specifies the start of the batch, it should be
1153  *  cache-aligned otherwise it is adjusted accordingly.
1154  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1155  *  initialized at the beginning and shared across all contexts but this field
1156  *  helps us to have multiple batches at different offsets and select them based
1157  *  on a criteria. At the moment this batch always start at the beginning of the page
1158  *  and at this point we don't have multiple wa_ctx batch buffers.
1159  *
1160  *  The number of WA applied are not known at the beginning; we use this field
1161  *  to return the no of DWORDS written.
1162  *
1163  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1164  *  so it adds NOOPs as padding to make it cacheline aligned.
1165  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1166  *  makes a complete batch buffer.
1167  *
1168  * Return: non-zero if we exceed the PAGE_SIZE limit.
1169  */
1170
1171 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1172                                     struct i915_wa_ctx_bb *wa_ctx,
1173                                     uint32_t *const batch,
1174                                     uint32_t *offset)
1175 {
1176         uint32_t scratch_addr;
1177         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1178
1179         /* WaDisableCtxRestoreArbitration:bdw,chv */
1180         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1181
1182         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1183         if (IS_BROADWELL(engine->dev)) {
1184                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1185                 if (rc < 0)
1186                         return rc;
1187                 index = rc;
1188         }
1189
1190         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1191         /* Actual scratch location is at 128 bytes offset */
1192         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1193
1194         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1195         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1196                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1197                                    PIPE_CONTROL_CS_STALL |
1198                                    PIPE_CONTROL_QW_WRITE));
1199         wa_ctx_emit(batch, index, scratch_addr);
1200         wa_ctx_emit(batch, index, 0);
1201         wa_ctx_emit(batch, index, 0);
1202         wa_ctx_emit(batch, index, 0);
1203
1204         /* Pad to end of cacheline */
1205         while (index % CACHELINE_DWORDS)
1206                 wa_ctx_emit(batch, index, MI_NOOP);
1207
1208         /*
1209          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1210          * execution depends on the length specified in terms of cache lines
1211          * in the register CTX_RCS_INDIRECT_CTX
1212          */
1213
1214         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1215 }
1216
1217 /**
1218  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1219  *
1220  * @ring: only applicable for RCS
1221  * @wa_ctx: structure representing wa_ctx
1222  *  offset: specifies start of the batch, should be cache-aligned.
1223  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1224  * @batch: page in which WA are loaded
1225  * @offset: This field specifies the start of this batch.
1226  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1227  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1228  *
1229  *   The number of DWORDS written are returned using this field.
1230  *
1231  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1232  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1233  */
1234 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1235                                struct i915_wa_ctx_bb *wa_ctx,
1236                                uint32_t *const batch,
1237                                uint32_t *offset)
1238 {
1239         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1240
1241         /* WaDisableCtxRestoreArbitration:bdw,chv */
1242         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1243
1244         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1245
1246         return wa_ctx_end(wa_ctx, *offset = index, 1);
1247 }
1248
1249 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1250                                     struct i915_wa_ctx_bb *wa_ctx,
1251                                     uint32_t *const batch,
1252                                     uint32_t *offset)
1253 {
1254         int ret;
1255         struct drm_device *dev = engine->dev;
1256         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1257
1258         /* WaDisableCtxRestoreArbitration:skl,bxt */
1259         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1260             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1261                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1262
1263         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1264         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1265         if (ret < 0)
1266                 return ret;
1267         index = ret;
1268
1269         /* Pad to end of cacheline */
1270         while (index % CACHELINE_DWORDS)
1271                 wa_ctx_emit(batch, index, MI_NOOP);
1272
1273         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1274 }
1275
1276 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1277                                struct i915_wa_ctx_bb *wa_ctx,
1278                                uint32_t *const batch,
1279                                uint32_t *offset)
1280 {
1281         struct drm_device *dev = engine->dev;
1282         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1283
1284         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1285         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1286             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1287                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1288                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1289                 wa_ctx_emit(batch, index,
1290                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1291                 wa_ctx_emit(batch, index, MI_NOOP);
1292         }
1293
1294         /* WaClearTdlStateAckDirtyBits:bxt */
1295         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1296                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1297
1298                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1299                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1300
1301                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1302                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1303
1304                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1305                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1306
1307                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1308                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1309                 wa_ctx_emit(batch, index, 0x0);
1310                 wa_ctx_emit(batch, index, MI_NOOP);
1311         }
1312
1313         /* WaDisableCtxRestoreArbitration:skl,bxt */
1314         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1315             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1316                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1317
1318         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1319
1320         return wa_ctx_end(wa_ctx, *offset = index, 1);
1321 }
1322
1323 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1324 {
1325         int ret;
1326
1327         engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1328                                                    PAGE_ALIGN(size));
1329         if (IS_ERR(engine->wa_ctx.obj)) {
1330                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1331                 ret = PTR_ERR(engine->wa_ctx.obj);
1332                 engine->wa_ctx.obj = NULL;
1333                 return ret;
1334         }
1335
1336         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1337         if (ret) {
1338                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1339                                  ret);
1340                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1341                 return ret;
1342         }
1343
1344         return 0;
1345 }
1346
1347 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1348 {
1349         if (engine->wa_ctx.obj) {
1350                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1351                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1352                 engine->wa_ctx.obj = NULL;
1353         }
1354 }
1355
1356 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1357 {
1358         int ret;
1359         uint32_t *batch;
1360         uint32_t offset;
1361         struct page *page;
1362         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1363
1364         WARN_ON(engine->id != RCS);
1365
1366         /* update this when WA for higher Gen are added */
1367         if (INTEL_INFO(engine->dev)->gen > 9) {
1368                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1369                           INTEL_INFO(engine->dev)->gen);
1370                 return 0;
1371         }
1372
1373         /* some WA perform writes to scratch page, ensure it is valid */
1374         if (engine->scratch.obj == NULL) {
1375                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1376                 return -EINVAL;
1377         }
1378
1379         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1380         if (ret) {
1381                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1382                 return ret;
1383         }
1384
1385         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1386         batch = kmap_atomic(page);
1387         offset = 0;
1388
1389         if (INTEL_INFO(engine->dev)->gen == 8) {
1390                 ret = gen8_init_indirectctx_bb(engine,
1391                                                &wa_ctx->indirect_ctx,
1392                                                batch,
1393                                                &offset);
1394                 if (ret)
1395                         goto out;
1396
1397                 ret = gen8_init_perctx_bb(engine,
1398                                           &wa_ctx->per_ctx,
1399                                           batch,
1400                                           &offset);
1401                 if (ret)
1402                         goto out;
1403         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1404                 ret = gen9_init_indirectctx_bb(engine,
1405                                                &wa_ctx->indirect_ctx,
1406                                                batch,
1407                                                &offset);
1408                 if (ret)
1409                         goto out;
1410
1411                 ret = gen9_init_perctx_bb(engine,
1412                                           &wa_ctx->per_ctx,
1413                                           batch,
1414                                           &offset);
1415                 if (ret)
1416                         goto out;
1417         }
1418
1419 out:
1420         kunmap_atomic(batch);
1421         if (ret)
1422                 lrc_destroy_wa_ctx_obj(engine);
1423
1424         return ret;
1425 }
1426
1427 static void lrc_init_hws(struct intel_engine_cs *engine)
1428 {
1429         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1430
1431         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1432                    (u32)engine->status_page.gfx_addr);
1433         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1434 }
1435
1436 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1437 {
1438         struct drm_device *dev = engine->dev;
1439         struct drm_i915_private *dev_priv = dev->dev_private;
1440         unsigned int next_context_status_buffer_hw;
1441
1442         lrc_init_hws(engine);
1443
1444         I915_WRITE_IMR(engine,
1445                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1446         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1447
1448         I915_WRITE(RING_MODE_GEN7(engine),
1449                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1450                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1451         POSTING_READ(RING_MODE_GEN7(engine));
1452
1453         /*
1454          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1455          * zero, we need to read the write pointer from hardware and use its
1456          * value because "this register is power context save restored".
1457          * Effectively, these states have been observed:
1458          *
1459          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1460          * BDW  | CSB regs not reset       | CSB regs reset       |
1461          * CHT  | CSB regs not reset       | CSB regs not reset   |
1462          * SKL  |         ?                |         ?            |
1463          * BXT  |         ?                |         ?            |
1464          */
1465         next_context_status_buffer_hw =
1466                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1467
1468         /*
1469          * When the CSB registers are reset (also after power-up / gpu reset),
1470          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1471          * this special case, so the first element read is CSB[0].
1472          */
1473         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1474                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1475
1476         engine->next_context_status_buffer = next_context_status_buffer_hw;
1477         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1478
1479         intel_engine_init_hangcheck(engine);
1480
1481         return intel_mocs_init_engine(engine);
1482 }
1483
1484 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1485 {
1486         struct drm_device *dev = engine->dev;
1487         struct drm_i915_private *dev_priv = dev->dev_private;
1488         int ret;
1489
1490         ret = gen8_init_common_ring(engine);
1491         if (ret)
1492                 return ret;
1493
1494         /* We need to disable the AsyncFlip performance optimisations in order
1495          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1496          * programmed to '1' on all products.
1497          *
1498          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1499          */
1500         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1501
1502         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1503
1504         return init_workarounds_ring(engine);
1505 }
1506
1507 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1508 {
1509         int ret;
1510
1511         ret = gen8_init_common_ring(engine);
1512         if (ret)
1513                 return ret;
1514
1515         return init_workarounds_ring(engine);
1516 }
1517
1518 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1519 {
1520         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1521         struct intel_engine_cs *engine = req->engine;
1522         struct intel_ringbuffer *ringbuf = req->ringbuf;
1523         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1524         int i, ret;
1525
1526         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1527         if (ret)
1528                 return ret;
1529
1530         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1531         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1532                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1533
1534                 intel_logical_ring_emit_reg(ringbuf,
1535                                             GEN8_RING_PDP_UDW(engine, i));
1536                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1537                 intel_logical_ring_emit_reg(ringbuf,
1538                                             GEN8_RING_PDP_LDW(engine, i));
1539                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1540         }
1541
1542         intel_logical_ring_emit(ringbuf, MI_NOOP);
1543         intel_logical_ring_advance(ringbuf);
1544
1545         return 0;
1546 }
1547
1548 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1549                               u64 offset, unsigned dispatch_flags)
1550 {
1551         struct intel_ringbuffer *ringbuf = req->ringbuf;
1552         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1553         int ret;
1554
1555         /* Don't rely in hw updating PDPs, specially in lite-restore.
1556          * Ideally, we should set Force PD Restore in ctx descriptor,
1557          * but we can't. Force Restore would be a second option, but
1558          * it is unsafe in case of lite-restore (because the ctx is
1559          * not idle). PML4 is allocated during ppgtt init so this is
1560          * not needed in 48-bit.*/
1561         if (req->ctx->ppgtt &&
1562             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1563                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1564                     !intel_vgpu_active(req->i915->dev)) {
1565                         ret = intel_logical_ring_emit_pdps(req);
1566                         if (ret)
1567                                 return ret;
1568                 }
1569
1570                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1571         }
1572
1573         ret = intel_ring_begin(req, 4);
1574         if (ret)
1575                 return ret;
1576
1577         /* FIXME(BDW): Address space and security selectors. */
1578         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1579                                 (ppgtt<<8) |
1580                                 (dispatch_flags & I915_DISPATCH_RS ?
1581                                  MI_BATCH_RESOURCE_STREAMER : 0));
1582         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1583         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1584         intel_logical_ring_emit(ringbuf, MI_NOOP);
1585         intel_logical_ring_advance(ringbuf);
1586
1587         return 0;
1588 }
1589
1590 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1591 {
1592         struct drm_device *dev = engine->dev;
1593         struct drm_i915_private *dev_priv = dev->dev_private;
1594         unsigned long flags;
1595
1596         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1597                 return false;
1598
1599         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600         if (engine->irq_refcount++ == 0) {
1601                 I915_WRITE_IMR(engine,
1602                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1603                 POSTING_READ(RING_IMR(engine->mmio_base));
1604         }
1605         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1606
1607         return true;
1608 }
1609
1610 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1611 {
1612         struct drm_device *dev = engine->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614         unsigned long flags;
1615
1616         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1617         if (--engine->irq_refcount == 0) {
1618                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1619                 POSTING_READ(RING_IMR(engine->mmio_base));
1620         }
1621         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1622 }
1623
1624 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1625                            u32 invalidate_domains,
1626                            u32 unused)
1627 {
1628         struct intel_ringbuffer *ringbuf = request->ringbuf;
1629         struct intel_engine_cs *engine = ringbuf->engine;
1630         struct drm_device *dev = engine->dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         uint32_t cmd;
1633         int ret;
1634
1635         ret = intel_ring_begin(request, 4);
1636         if (ret)
1637                 return ret;
1638
1639         cmd = MI_FLUSH_DW + 1;
1640
1641         /* We always require a command barrier so that subsequent
1642          * commands, such as breadcrumb interrupts, are strictly ordered
1643          * wrt the contents of the write cache being flushed to memory
1644          * (and thus being coherent from the CPU).
1645          */
1646         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1647
1648         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1649                 cmd |= MI_INVALIDATE_TLB;
1650                 if (engine == &dev_priv->engine[VCS])
1651                         cmd |= MI_INVALIDATE_BSD;
1652         }
1653
1654         intel_logical_ring_emit(ringbuf, cmd);
1655         intel_logical_ring_emit(ringbuf,
1656                                 I915_GEM_HWS_SCRATCH_ADDR |
1657                                 MI_FLUSH_DW_USE_GTT);
1658         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1659         intel_logical_ring_emit(ringbuf, 0); /* value */
1660         intel_logical_ring_advance(ringbuf);
1661
1662         return 0;
1663 }
1664
1665 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1666                                   u32 invalidate_domains,
1667                                   u32 flush_domains)
1668 {
1669         struct intel_ringbuffer *ringbuf = request->ringbuf;
1670         struct intel_engine_cs *engine = ringbuf->engine;
1671         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1672         bool vf_flush_wa = false;
1673         u32 flags = 0;
1674         int ret;
1675
1676         flags |= PIPE_CONTROL_CS_STALL;
1677
1678         if (flush_domains) {
1679                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1680                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1681                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1682                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1683         }
1684
1685         if (invalidate_domains) {
1686                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1687                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1688                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1689                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1690                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1691                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1692                 flags |= PIPE_CONTROL_QW_WRITE;
1693                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1694
1695                 /*
1696                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1697                  * pipe control.
1698                  */
1699                 if (IS_GEN9(engine->dev))
1700                         vf_flush_wa = true;
1701         }
1702
1703         ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1704         if (ret)
1705                 return ret;
1706
1707         if (vf_flush_wa) {
1708                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1709                 intel_logical_ring_emit(ringbuf, 0);
1710                 intel_logical_ring_emit(ringbuf, 0);
1711                 intel_logical_ring_emit(ringbuf, 0);
1712                 intel_logical_ring_emit(ringbuf, 0);
1713                 intel_logical_ring_emit(ringbuf, 0);
1714         }
1715
1716         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1717         intel_logical_ring_emit(ringbuf, flags);
1718         intel_logical_ring_emit(ringbuf, scratch_addr);
1719         intel_logical_ring_emit(ringbuf, 0);
1720         intel_logical_ring_emit(ringbuf, 0);
1721         intel_logical_ring_emit(ringbuf, 0);
1722         intel_logical_ring_advance(ringbuf);
1723
1724         return 0;
1725 }
1726
1727 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1728 {
1729         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1730 }
1731
1732 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1733 {
1734         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1735 }
1736
1737 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1738 {
1739         /*
1740          * On BXT A steppings there is a HW coherency issue whereby the
1741          * MI_STORE_DATA_IMM storing the completed request's seqno
1742          * occasionally doesn't invalidate the CPU cache. Work around this by
1743          * clflushing the corresponding cacheline whenever the caller wants
1744          * the coherency to be guaranteed. Note that this cacheline is known
1745          * to be clean at this point, since we only write it in
1746          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1747          * this clflush in practice becomes an invalidate operation.
1748          */
1749         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1750 }
1751
1752 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1753 {
1754         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1755
1756         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1757         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1758 }
1759
1760 /*
1761  * Reserve space for 2 NOOPs at the end of each request to be
1762  * used as a workaround for not being allowed to do lite
1763  * restore with HEAD==TAIL (WaIdleLiteRestore).
1764  */
1765 #define WA_TAIL_DWORDS 2
1766
1767 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1768 {
1769         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1770 }
1771
1772 static int gen8_emit_request(struct drm_i915_gem_request *request)
1773 {
1774         struct intel_ringbuffer *ringbuf = request->ringbuf;
1775         int ret;
1776
1777         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1778         if (ret)
1779                 return ret;
1780
1781         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1782         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1783
1784         intel_logical_ring_emit(ringbuf,
1785                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1786         intel_logical_ring_emit(ringbuf,
1787                                 hws_seqno_address(request->engine) |
1788                                 MI_FLUSH_DW_USE_GTT);
1789         intel_logical_ring_emit(ringbuf, 0);
1790         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1791         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1792         intel_logical_ring_emit(ringbuf, MI_NOOP);
1793         return intel_logical_ring_advance_and_submit(request);
1794 }
1795
1796 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1797 {
1798         struct intel_ringbuffer *ringbuf = request->ringbuf;
1799         int ret;
1800
1801         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1802         if (ret)
1803                 return ret;
1804
1805         /* We're using qword write, seqno should be aligned to 8 bytes. */
1806         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1807
1808         /* w/a for post sync ops following a GPGPU operation we
1809          * need a prior CS_STALL, which is emitted by the flush
1810          * following the batch.
1811          */
1812         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1813         intel_logical_ring_emit(ringbuf,
1814                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1815                                  PIPE_CONTROL_CS_STALL |
1816                                  PIPE_CONTROL_QW_WRITE));
1817         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1818         intel_logical_ring_emit(ringbuf, 0);
1819         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1820         /* We're thrashing one dword of HWS. */
1821         intel_logical_ring_emit(ringbuf, 0);
1822         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1823         intel_logical_ring_emit(ringbuf, MI_NOOP);
1824         return intel_logical_ring_advance_and_submit(request);
1825 }
1826
1827 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1828 {
1829         struct render_state so;
1830         int ret;
1831
1832         ret = i915_gem_render_state_prepare(req->engine, &so);
1833         if (ret)
1834                 return ret;
1835
1836         if (so.rodata == NULL)
1837                 return 0;
1838
1839         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1840                                        I915_DISPATCH_SECURE);
1841         if (ret)
1842                 goto out;
1843
1844         ret = req->engine->emit_bb_start(req,
1845                                        (so.ggtt_offset + so.aux_batch_offset),
1846                                        I915_DISPATCH_SECURE);
1847         if (ret)
1848                 goto out;
1849
1850         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1851
1852 out:
1853         i915_gem_render_state_fini(&so);
1854         return ret;
1855 }
1856
1857 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1858 {
1859         int ret;
1860
1861         ret = intel_logical_ring_workarounds_emit(req);
1862         if (ret)
1863                 return ret;
1864
1865         ret = intel_rcs_context_init_mocs(req);
1866         /*
1867          * Failing to program the MOCS is non-fatal.The system will not
1868          * run at peak performance. So generate an error and carry on.
1869          */
1870         if (ret)
1871                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1872
1873         return intel_lr_context_render_state_init(req);
1874 }
1875
1876 /**
1877  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1878  *
1879  * @ring: Engine Command Streamer.
1880  *
1881  */
1882 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1883 {
1884         struct drm_i915_private *dev_priv;
1885
1886         if (!intel_engine_initialized(engine))
1887                 return;
1888
1889         /*
1890          * Tasklet cannot be active at this point due intel_mark_active/idle
1891          * so this is just for documentation.
1892          */
1893         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1894                 tasklet_kill(&engine->irq_tasklet);
1895
1896         dev_priv = engine->dev->dev_private;
1897
1898         if (engine->buffer) {
1899                 intel_logical_ring_stop(engine);
1900                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1901         }
1902
1903         if (engine->cleanup)
1904                 engine->cleanup(engine);
1905
1906         i915_cmd_parser_fini_ring(engine);
1907         i915_gem_batch_pool_fini(&engine->batch_pool);
1908
1909         if (engine->status_page.obj) {
1910                 i915_gem_object_unpin_map(engine->status_page.obj);
1911                 engine->status_page.obj = NULL;
1912         }
1913         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1914
1915         engine->idle_lite_restore_wa = 0;
1916         engine->disable_lite_restore_wa = false;
1917         engine->ctx_desc_template = 0;
1918
1919         lrc_destroy_wa_ctx_obj(engine);
1920         engine->dev = NULL;
1921 }
1922
1923 static void
1924 logical_ring_default_vfuncs(struct drm_device *dev,
1925                             struct intel_engine_cs *engine)
1926 {
1927         /* Default vfuncs which can be overriden by each engine. */
1928         engine->init_hw = gen8_init_common_ring;
1929         engine->emit_request = gen8_emit_request;
1930         engine->emit_flush = gen8_emit_flush;
1931         engine->irq_get = gen8_logical_ring_get_irq;
1932         engine->irq_put = gen8_logical_ring_put_irq;
1933         engine->emit_bb_start = gen8_emit_bb_start;
1934         engine->get_seqno = gen8_get_seqno;
1935         engine->set_seqno = gen8_set_seqno;
1936         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1937                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1938                 engine->set_seqno = bxt_a_set_seqno;
1939         }
1940 }
1941
1942 static inline void
1943 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1944 {
1945         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1946         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1947 }
1948
1949 static int
1950 lrc_setup_hws(struct intel_engine_cs *engine,
1951               struct drm_i915_gem_object *dctx_obj)
1952 {
1953         void *hws;
1954
1955         /* The HWSP is part of the default context object in LRC mode. */
1956         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1957                                        LRC_PPHWSP_PN * PAGE_SIZE;
1958         hws = i915_gem_object_pin_map(dctx_obj);
1959         if (IS_ERR(hws))
1960                 return PTR_ERR(hws);
1961         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1962         engine->status_page.obj = dctx_obj;
1963
1964         return 0;
1965 }
1966
1967 static int
1968 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1969 {
1970         struct drm_i915_private *dev_priv = to_i915(dev);
1971         struct intel_context *dctx = dev_priv->kernel_context;
1972         enum forcewake_domains fw_domains;
1973         int ret;
1974
1975         /* Intentionally left blank. */
1976         engine->buffer = NULL;
1977
1978         engine->dev = dev;
1979         INIT_LIST_HEAD(&engine->active_list);
1980         INIT_LIST_HEAD(&engine->request_list);
1981         i915_gem_batch_pool_init(dev, &engine->batch_pool);
1982         init_waitqueue_head(&engine->irq_queue);
1983
1984         INIT_LIST_HEAD(&engine->buffers);
1985         INIT_LIST_HEAD(&engine->execlist_queue);
1986         spin_lock_init(&engine->execlist_lock);
1987
1988         tasklet_init(&engine->irq_tasklet,
1989                      intel_lrc_irq_handler, (unsigned long)engine);
1990
1991         logical_ring_init_platform_invariants(engine);
1992
1993         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1994                                                     RING_ELSP(engine),
1995                                                     FW_REG_WRITE);
1996
1997         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1998                                                      RING_CONTEXT_STATUS_PTR(engine),
1999                                                      FW_REG_READ | FW_REG_WRITE);
2000
2001         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2002                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2003                                                      FW_REG_READ);
2004
2005         engine->fw_domains = fw_domains;
2006
2007         ret = i915_cmd_parser_init_ring(engine);
2008         if (ret)
2009                 goto error;
2010
2011         ret = execlists_context_deferred_alloc(dctx, engine);
2012         if (ret)
2013                 goto error;
2014
2015         /* As this is the default context, always pin it */
2016         ret = intel_lr_context_pin(dctx, engine);
2017         if (ret) {
2018                 DRM_ERROR("Failed to pin context for %s: %d\n",
2019                           engine->name, ret);
2020                 goto error;
2021         }
2022
2023         /* And setup the hardware status page. */
2024         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2025         if (ret) {
2026                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2027                 goto error;
2028         }
2029
2030         return 0;
2031
2032 error:
2033         intel_logical_ring_cleanup(engine);
2034         return ret;
2035 }
2036
2037 static int logical_render_ring_init(struct drm_device *dev)
2038 {
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2041         int ret;
2042
2043         engine->name = "render ring";
2044         engine->id = RCS;
2045         engine->exec_id = I915_EXEC_RENDER;
2046         engine->guc_id = GUC_RENDER_ENGINE;
2047         engine->mmio_base = RENDER_RING_BASE;
2048
2049         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2050         if (HAS_L3_DPF(dev))
2051                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2052
2053         logical_ring_default_vfuncs(dev, engine);
2054
2055         /* Override some for render ring. */
2056         if (INTEL_INFO(dev)->gen >= 9)
2057                 engine->init_hw = gen9_init_render_ring;
2058         else
2059                 engine->init_hw = gen8_init_render_ring;
2060         engine->init_context = gen8_init_rcs_context;
2061         engine->cleanup = intel_fini_pipe_control;
2062         engine->emit_flush = gen8_emit_flush_render;
2063         engine->emit_request = gen8_emit_request_render;
2064
2065         engine->dev = dev;
2066
2067         ret = intel_init_pipe_control(engine);
2068         if (ret)
2069                 return ret;
2070
2071         ret = intel_init_workaround_bb(engine);
2072         if (ret) {
2073                 /*
2074                  * We continue even if we fail to initialize WA batch
2075                  * because we only expect rare glitches but nothing
2076                  * critical to prevent us from using GPU
2077                  */
2078                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2079                           ret);
2080         }
2081
2082         ret = logical_ring_init(dev, engine);
2083         if (ret) {
2084                 lrc_destroy_wa_ctx_obj(engine);
2085         }
2086
2087         return ret;
2088 }
2089
2090 static int logical_bsd_ring_init(struct drm_device *dev)
2091 {
2092         struct drm_i915_private *dev_priv = dev->dev_private;
2093         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2094
2095         engine->name = "bsd ring";
2096         engine->id = VCS;
2097         engine->exec_id = I915_EXEC_BSD;
2098         engine->guc_id = GUC_VIDEO_ENGINE;
2099         engine->mmio_base = GEN6_BSD_RING_BASE;
2100
2101         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2102         logical_ring_default_vfuncs(dev, engine);
2103
2104         return logical_ring_init(dev, engine);
2105 }
2106
2107 static int logical_bsd2_ring_init(struct drm_device *dev)
2108 {
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2111
2112         engine->name = "bsd2 ring";
2113         engine->id = VCS2;
2114         engine->exec_id = I915_EXEC_BSD;
2115         engine->guc_id = GUC_VIDEO_ENGINE2;
2116         engine->mmio_base = GEN8_BSD2_RING_BASE;
2117
2118         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2119         logical_ring_default_vfuncs(dev, engine);
2120
2121         return logical_ring_init(dev, engine);
2122 }
2123
2124 static int logical_blt_ring_init(struct drm_device *dev)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2128
2129         engine->name = "blitter ring";
2130         engine->id = BCS;
2131         engine->exec_id = I915_EXEC_BLT;
2132         engine->guc_id = GUC_BLITTER_ENGINE;
2133         engine->mmio_base = BLT_RING_BASE;
2134
2135         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2136         logical_ring_default_vfuncs(dev, engine);
2137
2138         return logical_ring_init(dev, engine);
2139 }
2140
2141 static int logical_vebox_ring_init(struct drm_device *dev)
2142 {
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2145
2146         engine->name = "video enhancement ring";
2147         engine->id = VECS;
2148         engine->exec_id = I915_EXEC_VEBOX;
2149         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2150         engine->mmio_base = VEBOX_RING_BASE;
2151
2152         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2153         logical_ring_default_vfuncs(dev, engine);
2154
2155         return logical_ring_init(dev, engine);
2156 }
2157
2158 /**
2159  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160  * @dev: DRM device.
2161  *
2162  * This function inits the engines for an Execlists submission style (the equivalent in the
2163  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2164  * those engines that are present in the hardware.
2165  *
2166  * Return: non-zero if the initialization failed.
2167  */
2168 int intel_logical_rings_init(struct drm_device *dev)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         int ret;
2172
2173         ret = logical_render_ring_init(dev);
2174         if (ret)
2175                 return ret;
2176
2177         if (HAS_BSD(dev)) {
2178                 ret = logical_bsd_ring_init(dev);
2179                 if (ret)
2180                         goto cleanup_render_ring;
2181         }
2182
2183         if (HAS_BLT(dev)) {
2184                 ret = logical_blt_ring_init(dev);
2185                 if (ret)
2186                         goto cleanup_bsd_ring;
2187         }
2188
2189         if (HAS_VEBOX(dev)) {
2190                 ret = logical_vebox_ring_init(dev);
2191                 if (ret)
2192                         goto cleanup_blt_ring;
2193         }
2194
2195         if (HAS_BSD2(dev)) {
2196                 ret = logical_bsd2_ring_init(dev);
2197                 if (ret)
2198                         goto cleanup_vebox_ring;
2199         }
2200
2201         return 0;
2202
2203 cleanup_vebox_ring:
2204         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2205 cleanup_blt_ring:
2206         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2207 cleanup_bsd_ring:
2208         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2209 cleanup_render_ring:
2210         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2211
2212         return ret;
2213 }
2214
2215 static u32
2216 make_rpcs(struct drm_device *dev)
2217 {
2218         u32 rpcs = 0;
2219
2220         /*
2221          * No explicit RPCS request is needed to ensure full
2222          * slice/subslice/EU enablement prior to Gen9.
2223         */
2224         if (INTEL_INFO(dev)->gen < 9)
2225                 return 0;
2226
2227         /*
2228          * Starting in Gen9, render power gating can leave
2229          * slice/subslice/EU in a partially enabled state. We
2230          * must make an explicit request through RPCS for full
2231          * enablement.
2232         */
2233         if (INTEL_INFO(dev)->has_slice_pg) {
2234                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235                 rpcs |= INTEL_INFO(dev)->slice_total <<
2236                         GEN8_RPCS_S_CNT_SHIFT;
2237                 rpcs |= GEN8_RPCS_ENABLE;
2238         }
2239
2240         if (INTEL_INFO(dev)->has_subslice_pg) {
2241                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243                         GEN8_RPCS_SS_CNT_SHIFT;
2244                 rpcs |= GEN8_RPCS_ENABLE;
2245         }
2246
2247         if (INTEL_INFO(dev)->has_eu_pg) {
2248                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249                         GEN8_RPCS_EU_MIN_SHIFT;
2250                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251                         GEN8_RPCS_EU_MAX_SHIFT;
2252                 rpcs |= GEN8_RPCS_ENABLE;
2253         }
2254
2255         return rpcs;
2256 }
2257
2258 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2259 {
2260         u32 indirect_ctx_offset;
2261
2262         switch (INTEL_INFO(engine->dev)->gen) {
2263         default:
2264                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2265                 /* fall through */
2266         case 9:
2267                 indirect_ctx_offset =
2268                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2269                 break;
2270         case 8:
2271                 indirect_ctx_offset =
2272                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2273                 break;
2274         }
2275
2276         return indirect_ctx_offset;
2277 }
2278
2279 static int
2280 populate_lr_context(struct intel_context *ctx,
2281                     struct drm_i915_gem_object *ctx_obj,
2282                     struct intel_engine_cs *engine,
2283                     struct intel_ringbuffer *ringbuf)
2284 {
2285         struct drm_device *dev = engine->dev;
2286         struct drm_i915_private *dev_priv = dev->dev_private;
2287         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2288         void *vaddr;
2289         u32 *reg_state;
2290         int ret;
2291
2292         if (!ppgtt)
2293                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2294
2295         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2296         if (ret) {
2297                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2298                 return ret;
2299         }
2300
2301         vaddr = i915_gem_object_pin_map(ctx_obj);
2302         if (IS_ERR(vaddr)) {
2303                 ret = PTR_ERR(vaddr);
2304                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2305                 return ret;
2306         }
2307         ctx_obj->dirty = true;
2308
2309         /* The second page of the context object contains some fields which must
2310          * be set up prior to the first execution. */
2311         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2312
2313         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2314          * commands followed by (reg, value) pairs. The values we are setting here are
2315          * only for the first context restore: on a subsequent save, the GPU will
2316          * recreate this batchbuffer with new values (including all the missing
2317          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2318         reg_state[CTX_LRI_HEADER_0] =
2319                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2320         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2321                        RING_CONTEXT_CONTROL(engine),
2322                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2323                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2324                                           (HAS_RESOURCE_STREAMER(dev) ?
2325                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2326         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2327                        0);
2328         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2329                        0);
2330         /* Ring buffer start address is not known until the buffer is pinned.
2331          * It is written to the context image in execlists_update_context()
2332          */
2333         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2334                        RING_START(engine->mmio_base), 0);
2335         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2336                        RING_CTL(engine->mmio_base),
2337                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2338         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2339                        RING_BBADDR_UDW(engine->mmio_base), 0);
2340         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2341                        RING_BBADDR(engine->mmio_base), 0);
2342         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2343                        RING_BBSTATE(engine->mmio_base),
2344                        RING_BB_PPGTT);
2345         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2346                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2347         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2348                        RING_SBBADDR(engine->mmio_base), 0);
2349         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2350                        RING_SBBSTATE(engine->mmio_base), 0);
2351         if (engine->id == RCS) {
2352                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2353                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2354                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2355                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2356                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2357                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2358                 if (engine->wa_ctx.obj) {
2359                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2360                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2361
2362                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2363                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2364                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2365
2366                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2367                                 intel_lr_indirect_ctx_offset(engine) << 6;
2368
2369                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2370                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2371                                 0x01;
2372                 }
2373         }
2374         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2375         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2376                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2377         /* PDP values well be assigned later if needed */
2378         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2379                        0);
2380         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2381                        0);
2382         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2383                        0);
2384         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2385                        0);
2386         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2387                        0);
2388         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2389                        0);
2390         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2391                        0);
2392         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2393                        0);
2394
2395         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2396                 /* 64b PPGTT (48bit canonical)
2397                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2398                  * other PDP Descriptors are ignored.
2399                  */
2400                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2401         } else {
2402                 /* 32b PPGTT
2403                  * PDP*_DESCRIPTOR contains the base address of space supported.
2404                  * With dynamic page allocation, PDPs may not be allocated at
2405                  * this point. Point the unallocated PDPs to the scratch page
2406                  */
2407                 execlists_update_context_pdps(ppgtt, reg_state);
2408         }
2409
2410         if (engine->id == RCS) {
2411                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2412                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2413                                make_rpcs(dev));
2414         }
2415
2416         i915_gem_object_unpin_map(ctx_obj);
2417
2418         return 0;
2419 }
2420
2421 /**
2422  * intel_lr_context_free() - free the LRC specific bits of a context
2423  * @ctx: the LR context to free.
2424  *
2425  * The real context freeing is done in i915_gem_context_free: this only
2426  * takes care of the bits that are LRC related: the per-engine backing
2427  * objects and the logical ringbuffer.
2428  */
2429 void intel_lr_context_free(struct intel_context *ctx)
2430 {
2431         int i;
2432
2433         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2434                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2435                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2436
2437                 if (!ctx_obj)
2438                         continue;
2439
2440                 WARN_ON(ctx->engine[i].pin_count);
2441                 intel_ringbuffer_free(ringbuf);
2442                 drm_gem_object_unreference(&ctx_obj->base);
2443         }
2444 }
2445
2446 /**
2447  * intel_lr_context_size() - return the size of the context for an engine
2448  * @ring: which engine to find the context size for
2449  *
2450  * Each engine may require a different amount of space for a context image,
2451  * so when allocating (or copying) an image, this function can be used to
2452  * find the right size for the specific engine.
2453  *
2454  * Return: size (in bytes) of an engine-specific context image
2455  *
2456  * Note: this size includes the HWSP, which is part of the context image
2457  * in LRC mode, but does not include the "shared data page" used with
2458  * GuC submission. The caller should account for this if using the GuC.
2459  */
2460 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2461 {
2462         int ret = 0;
2463
2464         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2465
2466         switch (engine->id) {
2467         case RCS:
2468                 if (INTEL_INFO(engine->dev)->gen >= 9)
2469                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2470                 else
2471                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2472                 break;
2473         case VCS:
2474         case BCS:
2475         case VECS:
2476         case VCS2:
2477                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2478                 break;
2479         }
2480
2481         return ret;
2482 }
2483
2484 /**
2485  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2486  * @ctx: LR context to create.
2487  * @engine: engine to be used with the context.
2488  *
2489  * This function can be called more than once, with different engines, if we plan
2490  * to use the context with them. The context backing objects and the ringbuffers
2491  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2492  * the creation is a deferred call: it's better to make sure first that we need to use
2493  * a given ring with the context.
2494  *
2495  * Return: non-zero on error.
2496  */
2497 static int execlists_context_deferred_alloc(struct intel_context *ctx,
2498                                             struct intel_engine_cs *engine)
2499 {
2500         struct drm_device *dev = engine->dev;
2501         struct drm_i915_gem_object *ctx_obj;
2502         uint32_t context_size;
2503         struct intel_ringbuffer *ringbuf;
2504         int ret;
2505
2506         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2507         WARN_ON(ctx->engine[engine->id].state);
2508
2509         context_size = round_up(intel_lr_context_size(engine), 4096);
2510
2511         /* One extra page as the sharing data between driver and GuC */
2512         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2513
2514         ctx_obj = i915_gem_object_create(dev, context_size);
2515         if (IS_ERR(ctx_obj)) {
2516                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2517                 return PTR_ERR(ctx_obj);
2518         }
2519
2520         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2521         if (IS_ERR(ringbuf)) {
2522                 ret = PTR_ERR(ringbuf);
2523                 goto error_deref_obj;
2524         }
2525
2526         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2527         if (ret) {
2528                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2529                 goto error_ringbuf;
2530         }
2531
2532         ctx->engine[engine->id].ringbuf = ringbuf;
2533         ctx->engine[engine->id].state = ctx_obj;
2534         ctx->engine[engine->id].initialised = engine->init_context == NULL;
2535
2536         return 0;
2537
2538 error_ringbuf:
2539         intel_ringbuffer_free(ringbuf);
2540 error_deref_obj:
2541         drm_gem_object_unreference(&ctx_obj->base);
2542         ctx->engine[engine->id].ringbuf = NULL;
2543         ctx->engine[engine->id].state = NULL;
2544         return ret;
2545 }
2546
2547 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2548                             struct intel_context *ctx)
2549 {
2550         struct intel_engine_cs *engine;
2551
2552         for_each_engine(engine, dev_priv) {
2553                 struct drm_i915_gem_object *ctx_obj =
2554                                 ctx->engine[engine->id].state;
2555                 struct intel_ringbuffer *ringbuf =
2556                                 ctx->engine[engine->id].ringbuf;
2557                 void *vaddr;
2558                 uint32_t *reg_state;
2559
2560                 if (!ctx_obj)
2561                         continue;
2562
2563                 vaddr = i915_gem_object_pin_map(ctx_obj);
2564                 if (WARN_ON(IS_ERR(vaddr)))
2565                         continue;
2566
2567                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2568                 ctx_obj->dirty = true;
2569
2570                 reg_state[CTX_RING_HEAD+1] = 0;
2571                 reg_state[CTX_RING_TAIL+1] = 0;
2572
2573                 i915_gem_object_unpin_map(ctx_obj);
2574
2575                 ringbuf->head = 0;
2576                 ringbuf->tail = 0;
2577         }
2578 }