]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Allocate context objects from stolen
[linux-beck.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216                 struct intel_context *ctx);
217
218 /**
219  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220  * @dev: DRM device.
221  * @enable_execlists: value of i915.enable_execlists module parameter.
222  *
223  * Only certain platforms support Execlists (the prerequisites being
224  * support for Logical Ring Contexts and Aliasing PPGTT or better).
225  *
226  * Return: 1 if Execlists is supported and has to be enabled.
227  */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230         WARN_ON(i915.enable_ppgtt == -1);
231
232         if (INTEL_INFO(dev)->gen >= 9)
233                 return 1;
234
235         if (enable_execlists == 0)
236                 return 0;
237
238         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239             i915.use_mmio_flip >= 0)
240                 return 1;
241
242         return 0;
243 }
244
245 /**
246  * intel_execlists_ctx_id() - get the Execlists Context ID
247  * @ctx_obj: Logical Ring Context backing object.
248  *
249  * Do not confuse with ctx->id! Unfortunately we have a name overload
250  * here: the old context ID we pass to userspace as a handler so that
251  * they can refer to a context, and the new context ID we pass to the
252  * ELSP so that the GPU can inform us of the context status via
253  * interrupts.
254  *
255  * Return: 20-bits globally unique context ID.
256  */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261         /* LRCA is required to be 4K aligned so the more significant 20 bits
262          * are globally unique */
263         return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267                                          struct drm_i915_gem_object *ctx_obj)
268 {
269         struct drm_device *dev = ring->dev;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298                                  struct drm_i915_gem_object *ctx_obj0,
299                                  struct drm_i915_gem_object *ctx_obj1)
300 {
301         struct drm_device *dev = ring->dev;
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         uint64_t temp = 0;
304         uint32_t desc[4];
305
306         /* XXX: You must always write both descriptors in the order below. */
307         if (ctx_obj1)
308                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309         else
310                 temp = 0;
311         desc[1] = (u32)(temp >> 32);
312         desc[0] = (u32)temp;
313
314         temp = execlists_ctx_descriptor(ring, ctx_obj0);
315         desc[3] = (u32)(temp >> 32);
316         desc[2] = (u32)temp;
317
318         spin_lock(&dev_priv->uncore.lock);
319         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324         /* The context is automatically loaded after the following */
325         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327         /* ELSP is a wo register, so use another nearby reg for posting instead */
328         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330         spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334                                     struct drm_i915_gem_object *ring_obj,
335                                     struct i915_hw_ppgtt *ppgtt,
336                                     u32 tail)
337 {
338         struct page *page;
339         uint32_t *reg_state;
340
341         page = i915_gem_object_get_page(ctx_obj, 1);
342         reg_state = kmap_atomic(page);
343
344         reg_state[CTX_RING_TAIL+1] = tail;
345         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347         /* True PPGTT with dynamic page allocation: update PDP registers and
348          * point the unallocated PDPs to the scratch page
349          */
350         if (ppgtt) {
351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355         }
356
357         kunmap_atomic(reg_state);
358
359         return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363                                       struct intel_context *to0, u32 tail0,
364                                       struct intel_context *to1, u32 tail1)
365 {
366         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368         struct drm_i915_gem_object *ctx_obj1 = NULL;
369         struct intel_ringbuffer *ringbuf1 = NULL;
370
371         BUG_ON(!ctx_obj0);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377         if (to1) {
378                 ringbuf1 = to1->engine[ring->id].ringbuf;
379                 ctx_obj1 = to1->engine[ring->id].state;
380                 BUG_ON(!ctx_obj1);
381                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385         }
386
387         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395         assert_spin_locked(&ring->execlist_lock);
396
397         if (list_empty(&ring->execlist_queue))
398                 return;
399
400         /* Try to read in pairs */
401         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
402                                  execlist_link) {
403                 if (!req0) {
404                         req0 = cursor;
405                 } else if (req0->ctx == cursor->ctx) {
406                         /* Same ctx: ignore first request, as second request
407                          * will update tail past first request's workload */
408                         cursor->elsp_submitted = req0->elsp_submitted;
409                         list_del(&req0->execlist_link);
410                         list_add_tail(&req0->execlist_link,
411                                 &ring->execlist_retired_req_list);
412                         req0 = cursor;
413                 } else {
414                         req1 = cursor;
415                         break;
416                 }
417         }
418
419         WARN_ON(req1 && req1->elsp_submitted);
420
421         execlists_submit_contexts(ring, req0->ctx, req0->tail,
422                                   req1 ? req1->ctx : NULL,
423                                   req1 ? req1->tail : 0);
424
425         req0->elsp_submitted++;
426         if (req1)
427                 req1->elsp_submitted++;
428 }
429
430 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
431                                            u32 request_id)
432 {
433         struct drm_i915_gem_request *head_req;
434
435         assert_spin_locked(&ring->execlist_lock);
436
437         head_req = list_first_entry_or_null(&ring->execlist_queue,
438                                             struct drm_i915_gem_request,
439                                             execlist_link);
440
441         if (head_req != NULL) {
442                 struct drm_i915_gem_object *ctx_obj =
443                                 head_req->ctx->engine[ring->id].state;
444                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
445                         WARN(head_req->elsp_submitted == 0,
446                              "Never submitted head request\n");
447
448                         if (--head_req->elsp_submitted <= 0) {
449                                 list_del(&head_req->execlist_link);
450                                 list_add_tail(&head_req->execlist_link,
451                                         &ring->execlist_retired_req_list);
452                                 return true;
453                         }
454                 }
455         }
456
457         return false;
458 }
459
460 /**
461  * intel_lrc_irq_handler() - handle Context Switch interrupts
462  * @ring: Engine Command Streamer to handle.
463  *
464  * Check the unread Context Status Buffers and manage the submission of new
465  * contexts to the ELSP accordingly.
466  */
467 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
468 {
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         u32 status_pointer;
471         u8 read_pointer;
472         u8 write_pointer;
473         u32 status;
474         u32 status_id;
475         u32 submit_contexts = 0;
476
477         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
478
479         read_pointer = ring->next_context_status_buffer;
480         write_pointer = status_pointer & 0x07;
481         if (read_pointer > write_pointer)
482                 write_pointer += 6;
483
484         spin_lock(&ring->execlist_lock);
485
486         while (read_pointer < write_pointer) {
487                 read_pointer++;
488                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
489                                 (read_pointer % 6) * 8);
490                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
491                                 (read_pointer % 6) * 8 + 4);
492
493                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
494                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
495                                 if (execlists_check_remove_request(ring, status_id))
496                                         WARN(1, "Lite Restored request removed from queue\n");
497                         } else
498                                 WARN(1, "Preemption without Lite Restore\n");
499                 }
500
501                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
502                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
503                         if (execlists_check_remove_request(ring, status_id))
504                                 submit_contexts++;
505                 }
506         }
507
508         if (submit_contexts != 0)
509                 execlists_context_unqueue(ring);
510
511         spin_unlock(&ring->execlist_lock);
512
513         WARN(submit_contexts > 2, "More than two context complete events?\n");
514         ring->next_context_status_buffer = write_pointer % 6;
515
516         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
517                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
518 }
519
520 static int execlists_context_queue(struct intel_engine_cs *ring,
521                                    struct intel_context *to,
522                                    u32 tail,
523                                    struct drm_i915_gem_request *request)
524 {
525         struct drm_i915_gem_request *cursor;
526         struct drm_i915_private *dev_priv = ring->dev->dev_private;
527         int num_elements = 0;
528
529         if (to != ring->default_context)
530                 intel_lr_context_pin(ring, to);
531
532         if (!request) {
533                 /*
534                  * If there isn't a request associated with this submission,
535                  * create one as a temporary holder.
536                  */
537                 request = kzalloc(sizeof(*request), GFP_KERNEL);
538                 if (request == NULL)
539                         return -ENOMEM;
540                 request->ring = ring;
541                 request->ctx = to;
542                 kref_init(&request->ref);
543                 i915_gem_context_reference(request->ctx);
544         } else {
545                 i915_gem_request_reference(request);
546                 WARN_ON(to != request->ctx);
547         }
548         request->tail = tail;
549
550         spin_lock_irq(&ring->execlist_lock);
551
552         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553                 if (++num_elements > 2)
554                         break;
555
556         if (num_elements > 2) {
557                 struct drm_i915_gem_request *tail_req;
558
559                 tail_req = list_last_entry(&ring->execlist_queue,
560                                            struct drm_i915_gem_request,
561                                            execlist_link);
562
563                 if (to == tail_req->ctx) {
564                         WARN(tail_req->elsp_submitted != 0,
565                                 "More than 2 already-submitted reqs queued\n");
566                         list_del(&tail_req->execlist_link);
567                         list_add_tail(&tail_req->execlist_link,
568                                 &ring->execlist_retired_req_list);
569                 }
570         }
571
572         list_add_tail(&request->execlist_link, &ring->execlist_queue);
573         if (num_elements == 0)
574                 execlists_context_unqueue(ring);
575
576         spin_unlock_irq(&ring->execlist_lock);
577
578         return 0;
579 }
580
581 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
582                                               struct intel_context *ctx)
583 {
584         struct intel_engine_cs *ring = ringbuf->ring;
585         uint32_t flush_domains;
586         int ret;
587
588         flush_domains = 0;
589         if (ring->gpu_caches_dirty)
590                 flush_domains = I915_GEM_GPU_DOMAINS;
591
592         ret = ring->emit_flush(ringbuf, ctx,
593                                I915_GEM_GPU_DOMAINS, flush_domains);
594         if (ret)
595                 return ret;
596
597         ring->gpu_caches_dirty = false;
598         return 0;
599 }
600
601 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
602                                  struct intel_context *ctx,
603                                  struct list_head *vmas)
604 {
605         struct intel_engine_cs *ring = ringbuf->ring;
606         struct i915_vma *vma;
607         uint32_t flush_domains = 0;
608         bool flush_chipset = false;
609         int ret;
610
611         list_for_each_entry(vma, vmas, exec_list) {
612                 struct drm_i915_gem_object *obj = vma->obj;
613
614                 ret = i915_gem_object_sync(obj, ring);
615                 if (ret)
616                         return ret;
617
618                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
619                         flush_chipset |= i915_gem_clflush_object(obj, false);
620
621                 flush_domains |= obj->base.write_domain;
622         }
623
624         if (flush_domains & I915_GEM_DOMAIN_GTT)
625                 wmb();
626
627         /* Unconditionally invalidate gpu caches and ensure that we do flush
628          * any residual writes from the previous batch.
629          */
630         return logical_ring_invalidate_all_caches(ringbuf, ctx);
631 }
632
633 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
634                                             struct intel_context *ctx)
635 {
636         int ret;
637
638         if (ctx != request->ring->default_context) {
639                 ret = intel_lr_context_pin(request->ring, ctx);
640                 if (ret)
641                         return ret;
642         }
643
644         request->ringbuf = ctx->engine[request->ring->id].ringbuf;
645         request->ctx     = ctx;
646         i915_gem_context_reference(request->ctx);
647
648         return 0;
649 }
650
651 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
652                                        struct intel_context *ctx,
653                                        int bytes)
654 {
655         struct intel_engine_cs *ring = ringbuf->ring;
656         struct drm_i915_gem_request *request;
657         int ret, new_space;
658
659         if (intel_ring_space(ringbuf) >= bytes)
660                 return 0;
661
662         list_for_each_entry(request, &ring->request_list, list) {
663                 /*
664                  * The request queue is per-engine, so can contain requests
665                  * from multiple ringbuffers. Here, we must ignore any that
666                  * aren't from the ringbuffer we're considering.
667                  */
668                 struct intel_context *ctx = request->ctx;
669                 if (ctx->engine[ring->id].ringbuf != ringbuf)
670                         continue;
671
672                 /* Would completion of this request free enough space? */
673                 new_space = __intel_ring_space(request->postfix, ringbuf->tail,
674                                        ringbuf->size);
675                 if (new_space >= bytes)
676                         break;
677         }
678
679         if (WARN_ON(&request->list == &ring->request_list))
680                 return -ENOSPC;
681
682         ret = i915_wait_request(request);
683         if (ret)
684                 return ret;
685
686         i915_gem_retire_requests_ring(ring);
687
688         WARN_ON(intel_ring_space(ringbuf) < new_space);
689
690         return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
691 }
692
693 /*
694  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
695  * @ringbuf: Logical Ringbuffer to advance.
696  *
697  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
698  * really happens during submission is that the context and current tail will be placed
699  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
700  * point, the tail *inside* the context is updated and the ELSP written to.
701  */
702 static void
703 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
704                                       struct intel_context *ctx,
705                                       struct drm_i915_gem_request *request)
706 {
707         struct intel_engine_cs *ring = ringbuf->ring;
708
709         intel_logical_ring_advance(ringbuf);
710
711         if (intel_ring_stopped(ring))
712                 return;
713
714         execlists_context_queue(ring, ctx, ringbuf->tail, request);
715 }
716
717 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
718                                     struct intel_context *ctx)
719 {
720         uint32_t __iomem *virt;
721         int rem = ringbuf->size - ringbuf->tail;
722
723         if (ringbuf->space < rem) {
724                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
725
726                 if (ret)
727                         return ret;
728         }
729
730         virt = ringbuf->virtual_start + ringbuf->tail;
731         rem /= 4;
732         while (rem--)
733                 iowrite32(MI_NOOP, virt++);
734
735         ringbuf->tail = 0;
736         intel_ring_update_space(ringbuf);
737
738         return 0;
739 }
740
741 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
742                                 struct intel_context *ctx, int bytes)
743 {
744         int ret;
745
746         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
747                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
748                 if (unlikely(ret))
749                         return ret;
750         }
751
752         if (unlikely(ringbuf->space < bytes)) {
753                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
754                 if (unlikely(ret))
755                         return ret;
756         }
757
758         return 0;
759 }
760
761 /**
762  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
763  *
764  * @ringbuf: Logical ringbuffer.
765  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
766  *
767  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
768  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
769  * and also preallocates a request (every workload submission is still mediated through
770  * requests, same as it did with legacy ringbuffer submission).
771  *
772  * Return: non-zero if the ringbuffer is not ready to be written to.
773  */
774 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
775                                     struct intel_context *ctx, int num_dwords)
776 {
777         struct intel_engine_cs *ring = ringbuf->ring;
778         struct drm_device *dev = ring->dev;
779         struct drm_i915_private *dev_priv = dev->dev_private;
780         int ret;
781
782         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
783                                    dev_priv->mm.interruptible);
784         if (ret)
785                 return ret;
786
787         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
788         if (ret)
789                 return ret;
790
791         /* Preallocate the olr before touching the ring */
792         ret = i915_gem_request_alloc(ring, ctx);
793         if (ret)
794                 return ret;
795
796         ringbuf->space -= num_dwords * sizeof(uint32_t);
797         return 0;
798 }
799
800 /**
801  * execlists_submission() - submit a batchbuffer for execution, Execlists style
802  * @dev: DRM device.
803  * @file: DRM file.
804  * @ring: Engine Command Streamer to submit to.
805  * @ctx: Context to employ for this submission.
806  * @args: execbuffer call arguments.
807  * @vmas: list of vmas.
808  * @batch_obj: the batchbuffer to submit.
809  * @exec_start: batchbuffer start virtual address pointer.
810  * @dispatch_flags: translated execbuffer call flags.
811  *
812  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
813  * away the submission details of the execbuffer ioctl call.
814  *
815  * Return: non-zero if the submission fails.
816  */
817 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
818                                struct intel_engine_cs *ring,
819                                struct intel_context *ctx,
820                                struct drm_i915_gem_execbuffer2 *args,
821                                struct list_head *vmas,
822                                struct drm_i915_gem_object *batch_obj,
823                                u64 exec_start, u32 dispatch_flags)
824 {
825         struct drm_i915_private *dev_priv = dev->dev_private;
826         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
827         int instp_mode;
828         u32 instp_mask;
829         int ret;
830
831         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
832         instp_mask = I915_EXEC_CONSTANTS_MASK;
833         switch (instp_mode) {
834         case I915_EXEC_CONSTANTS_REL_GENERAL:
835         case I915_EXEC_CONSTANTS_ABSOLUTE:
836         case I915_EXEC_CONSTANTS_REL_SURFACE:
837                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
838                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
839                         return -EINVAL;
840                 }
841
842                 if (instp_mode != dev_priv->relative_constants_mode) {
843                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
844                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
845                                 return -EINVAL;
846                         }
847
848                         /* The HW changed the meaning on this bit on gen6 */
849                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
850                 }
851                 break;
852         default:
853                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
854                 return -EINVAL;
855         }
856
857         if (args->num_cliprects != 0) {
858                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
859                 return -EINVAL;
860         } else {
861                 if (args->DR4 == 0xffffffff) {
862                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
863                         args->DR4 = 0;
864                 }
865
866                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
867                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
868                         return -EINVAL;
869                 }
870         }
871
872         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
873                 DRM_DEBUG("sol reset is gen7 only\n");
874                 return -EINVAL;
875         }
876
877         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
878         if (ret)
879                 return ret;
880
881         if (ring == &dev_priv->ring[RCS] &&
882             instp_mode != dev_priv->relative_constants_mode) {
883                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
884                 if (ret)
885                         return ret;
886
887                 intel_logical_ring_emit(ringbuf, MI_NOOP);
888                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
889                 intel_logical_ring_emit(ringbuf, INSTPM);
890                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
891                 intel_logical_ring_advance(ringbuf);
892
893                 dev_priv->relative_constants_mode = instp_mode;
894         }
895
896         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
897         if (ret)
898                 return ret;
899
900         trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
901
902         i915_gem_execbuffer_move_to_active(vmas, ring);
903         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
904
905         return 0;
906 }
907
908 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
909 {
910         struct drm_i915_gem_request *req, *tmp;
911         struct list_head retired_list;
912
913         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
914         if (list_empty(&ring->execlist_retired_req_list))
915                 return;
916
917         INIT_LIST_HEAD(&retired_list);
918         spin_lock_irq(&ring->execlist_lock);
919         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
920         spin_unlock_irq(&ring->execlist_lock);
921
922         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
923                 struct intel_context *ctx = req->ctx;
924                 struct drm_i915_gem_object *ctx_obj =
925                                 ctx->engine[ring->id].state;
926
927                 if (ctx_obj && (ctx != ring->default_context))
928                         intel_lr_context_unpin(ring, ctx);
929                 list_del(&req->execlist_link);
930                 i915_gem_request_unreference(req);
931         }
932 }
933
934 void intel_logical_ring_stop(struct intel_engine_cs *ring)
935 {
936         struct drm_i915_private *dev_priv = ring->dev->dev_private;
937         int ret;
938
939         if (!intel_ring_initialized(ring))
940                 return;
941
942         ret = intel_ring_idle(ring);
943         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
944                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
945                           ring->name, ret);
946
947         /* TODO: Is this correct with Execlists enabled? */
948         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
949         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
950                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
951                 return;
952         }
953         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
954 }
955
956 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
957                                   struct intel_context *ctx)
958 {
959         struct intel_engine_cs *ring = ringbuf->ring;
960         int ret;
961
962         if (!ring->gpu_caches_dirty)
963                 return 0;
964
965         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
966         if (ret)
967                 return ret;
968
969         ring->gpu_caches_dirty = false;
970         return 0;
971 }
972
973 static int intel_lr_context_pin(struct intel_engine_cs *ring,
974                 struct intel_context *ctx)
975 {
976         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
977         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
978         int ret = 0;
979
980         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981         if (ctx->engine[ring->id].pin_count++ == 0) {
982                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
983                                 GEN8_LR_CONTEXT_ALIGN, 0);
984                 if (ret)
985                         goto reset_pin_count;
986
987                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
988                 if (ret)
989                         goto unpin_ctx_obj;
990         }
991
992         return ret;
993
994 unpin_ctx_obj:
995         i915_gem_object_ggtt_unpin(ctx_obj);
996 reset_pin_count:
997         ctx->engine[ring->id].pin_count = 0;
998
999         return ret;
1000 }
1001
1002 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1003                 struct intel_context *ctx)
1004 {
1005         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1006         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1007
1008         if (ctx_obj) {
1009                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1010                 if (--ctx->engine[ring->id].pin_count == 0) {
1011                         intel_unpin_ringbuffer_obj(ringbuf);
1012                         i915_gem_object_ggtt_unpin(ctx_obj);
1013                 }
1014         }
1015 }
1016
1017 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1018                                                struct intel_context *ctx)
1019 {
1020         int ret, i;
1021         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1022         struct drm_device *dev = ring->dev;
1023         struct drm_i915_private *dev_priv = dev->dev_private;
1024         struct i915_workarounds *w = &dev_priv->workarounds;
1025
1026         if (WARN_ON_ONCE(w->count == 0))
1027                 return 0;
1028
1029         ring->gpu_caches_dirty = true;
1030         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1031         if (ret)
1032                 return ret;
1033
1034         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1035         if (ret)
1036                 return ret;
1037
1038         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1039         for (i = 0; i < w->count; i++) {
1040                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1041                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1042         }
1043         intel_logical_ring_emit(ringbuf, MI_NOOP);
1044
1045         intel_logical_ring_advance(ringbuf);
1046
1047         ring->gpu_caches_dirty = true;
1048         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1049         if (ret)
1050                 return ret;
1051
1052         return 0;
1053 }
1054
1055 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1056 {
1057         struct drm_device *dev = ring->dev;
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059
1060         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1061         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1062
1063         I915_WRITE(RING_MODE_GEN7(ring),
1064                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1065                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1066         POSTING_READ(RING_MODE_GEN7(ring));
1067         ring->next_context_status_buffer = 0;
1068         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1069
1070         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1071
1072         return 0;
1073 }
1074
1075 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1076 {
1077         struct drm_device *dev = ring->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         int ret;
1080
1081         ret = gen8_init_common_ring(ring);
1082         if (ret)
1083                 return ret;
1084
1085         /* We need to disable the AsyncFlip performance optimisations in order
1086          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1087          * programmed to '1' on all products.
1088          *
1089          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1090          */
1091         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1092
1093         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1094
1095         return init_workarounds_ring(ring);
1096 }
1097
1098 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1099 {
1100         int ret;
1101
1102         ret = gen8_init_common_ring(ring);
1103         if (ret)
1104                 return ret;
1105
1106         return init_workarounds_ring(ring);
1107 }
1108
1109 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1110                               struct intel_context *ctx,
1111                               u64 offset, unsigned dispatch_flags)
1112 {
1113         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1114         int ret;
1115
1116         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1117         if (ret)
1118                 return ret;
1119
1120         /* FIXME(BDW): Address space and security selectors. */
1121         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1122         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1123         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1124         intel_logical_ring_emit(ringbuf, MI_NOOP);
1125         intel_logical_ring_advance(ringbuf);
1126
1127         return 0;
1128 }
1129
1130 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1131 {
1132         struct drm_device *dev = ring->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         unsigned long flags;
1135
1136         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1137                 return false;
1138
1139         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1140         if (ring->irq_refcount++ == 0) {
1141                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1142                 POSTING_READ(RING_IMR(ring->mmio_base));
1143         }
1144         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1145
1146         return true;
1147 }
1148
1149 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1150 {
1151         struct drm_device *dev = ring->dev;
1152         struct drm_i915_private *dev_priv = dev->dev_private;
1153         unsigned long flags;
1154
1155         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1156         if (--ring->irq_refcount == 0) {
1157                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1158                 POSTING_READ(RING_IMR(ring->mmio_base));
1159         }
1160         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1161 }
1162
1163 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1164                            struct intel_context *ctx,
1165                            u32 invalidate_domains,
1166                            u32 unused)
1167 {
1168         struct intel_engine_cs *ring = ringbuf->ring;
1169         struct drm_device *dev = ring->dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         uint32_t cmd;
1172         int ret;
1173
1174         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1175         if (ret)
1176                 return ret;
1177
1178         cmd = MI_FLUSH_DW + 1;
1179
1180         /* We always require a command barrier so that subsequent
1181          * commands, such as breadcrumb interrupts, are strictly ordered
1182          * wrt the contents of the write cache being flushed to memory
1183          * (and thus being coherent from the CPU).
1184          */
1185         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1186
1187         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1188                 cmd |= MI_INVALIDATE_TLB;
1189                 if (ring == &dev_priv->ring[VCS])
1190                         cmd |= MI_INVALIDATE_BSD;
1191         }
1192
1193         intel_logical_ring_emit(ringbuf, cmd);
1194         intel_logical_ring_emit(ringbuf,
1195                                 I915_GEM_HWS_SCRATCH_ADDR |
1196                                 MI_FLUSH_DW_USE_GTT);
1197         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1198         intel_logical_ring_emit(ringbuf, 0); /* value */
1199         intel_logical_ring_advance(ringbuf);
1200
1201         return 0;
1202 }
1203
1204 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1205                                   struct intel_context *ctx,
1206                                   u32 invalidate_domains,
1207                                   u32 flush_domains)
1208 {
1209         struct intel_engine_cs *ring = ringbuf->ring;
1210         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1211         u32 flags = 0;
1212         int ret;
1213
1214         flags |= PIPE_CONTROL_CS_STALL;
1215
1216         if (flush_domains) {
1217                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1218                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1219         }
1220
1221         if (invalidate_domains) {
1222                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1223                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1224                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1225                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1226                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1227                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1228                 flags |= PIPE_CONTROL_QW_WRITE;
1229                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1230         }
1231
1232         ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1233         if (ret)
1234                 return ret;
1235
1236         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1237         intel_logical_ring_emit(ringbuf, flags);
1238         intel_logical_ring_emit(ringbuf, scratch_addr);
1239         intel_logical_ring_emit(ringbuf, 0);
1240         intel_logical_ring_emit(ringbuf, 0);
1241         intel_logical_ring_emit(ringbuf, 0);
1242         intel_logical_ring_advance(ringbuf);
1243
1244         return 0;
1245 }
1246
1247 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1248 {
1249         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1250 }
1251
1252 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1253 {
1254         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1255 }
1256
1257 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1258                              struct drm_i915_gem_request *request)
1259 {
1260         struct intel_engine_cs *ring = ringbuf->ring;
1261         u32 cmd;
1262         int ret;
1263
1264         ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1265         if (ret)
1266                 return ret;
1267
1268         cmd = MI_STORE_DWORD_IMM_GEN4;
1269         cmd |= MI_GLOBAL_GTT;
1270
1271         intel_logical_ring_emit(ringbuf, cmd);
1272         intel_logical_ring_emit(ringbuf,
1273                                 (ring->status_page.gfx_addr +
1274                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1275         intel_logical_ring_emit(ringbuf, 0);
1276         intel_logical_ring_emit(ringbuf,
1277                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1278         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1279         intel_logical_ring_emit(ringbuf, MI_NOOP);
1280         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1281
1282         return 0;
1283 }
1284
1285 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1286                                               struct intel_context *ctx)
1287 {
1288         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1289         struct render_state so;
1290         struct drm_i915_file_private *file_priv = ctx->file_priv;
1291         struct drm_file *file = file_priv ? file_priv->file : NULL;
1292         int ret;
1293
1294         ret = i915_gem_render_state_prepare(ring, &so);
1295         if (ret)
1296                 return ret;
1297
1298         if (so.rodata == NULL)
1299                 return 0;
1300
1301         ret = ring->emit_bb_start(ringbuf,
1302                         ctx,
1303                         so.ggtt_offset,
1304                         I915_DISPATCH_SECURE);
1305         if (ret)
1306                 goto out;
1307
1308         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1309
1310         ret = __i915_add_request(ring, file, so.obj);
1311         /* intel_logical_ring_add_request moves object to inactive if it
1312          * fails */
1313 out:
1314         i915_gem_render_state_fini(&so);
1315         return ret;
1316 }
1317
1318 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1319                        struct intel_context *ctx)
1320 {
1321         int ret;
1322
1323         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1324         if (ret)
1325                 return ret;
1326
1327         return intel_lr_context_render_state_init(ring, ctx);
1328 }
1329
1330 /**
1331  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1332  *
1333  * @ring: Engine Command Streamer.
1334  *
1335  */
1336 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1337 {
1338         struct drm_i915_private *dev_priv;
1339
1340         if (!intel_ring_initialized(ring))
1341                 return;
1342
1343         dev_priv = ring->dev->dev_private;
1344
1345         intel_logical_ring_stop(ring);
1346         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1347         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1348
1349         if (ring->cleanup)
1350                 ring->cleanup(ring);
1351
1352         i915_cmd_parser_fini_ring(ring);
1353         i915_gem_batch_pool_fini(&ring->batch_pool);
1354
1355         if (ring->status_page.obj) {
1356                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1357                 ring->status_page.obj = NULL;
1358         }
1359 }
1360
1361 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1362 {
1363         int ret;
1364
1365         /* Intentionally left blank. */
1366         ring->buffer = NULL;
1367
1368         ring->dev = dev;
1369         INIT_LIST_HEAD(&ring->active_list);
1370         INIT_LIST_HEAD(&ring->request_list);
1371         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1372         init_waitqueue_head(&ring->irq_queue);
1373
1374         INIT_LIST_HEAD(&ring->execlist_queue);
1375         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1376         spin_lock_init(&ring->execlist_lock);
1377
1378         ret = i915_cmd_parser_init_ring(ring);
1379         if (ret)
1380                 return ret;
1381
1382         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1383
1384         return ret;
1385 }
1386
1387 static int logical_render_ring_init(struct drm_device *dev)
1388 {
1389         struct drm_i915_private *dev_priv = dev->dev_private;
1390         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1391         int ret;
1392
1393         ring->name = "render ring";
1394         ring->id = RCS;
1395         ring->mmio_base = RENDER_RING_BASE;
1396         ring->irq_enable_mask =
1397                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1398         ring->irq_keep_mask =
1399                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1400         if (HAS_L3_DPF(dev))
1401                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1402
1403         if (INTEL_INFO(dev)->gen >= 9)
1404                 ring->init_hw = gen9_init_render_ring;
1405         else
1406                 ring->init_hw = gen8_init_render_ring;
1407         ring->init_context = gen8_init_rcs_context;
1408         ring->cleanup = intel_fini_pipe_control;
1409         ring->get_seqno = gen8_get_seqno;
1410         ring->set_seqno = gen8_set_seqno;
1411         ring->emit_request = gen8_emit_request;
1412         ring->emit_flush = gen8_emit_flush_render;
1413         ring->irq_get = gen8_logical_ring_get_irq;
1414         ring->irq_put = gen8_logical_ring_put_irq;
1415         ring->emit_bb_start = gen8_emit_bb_start;
1416
1417         ring->dev = dev;
1418         ret = logical_ring_init(dev, ring);
1419         if (ret)
1420                 return ret;
1421
1422         return intel_init_pipe_control(ring);
1423 }
1424
1425 static int logical_bsd_ring_init(struct drm_device *dev)
1426 {
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1429
1430         ring->name = "bsd ring";
1431         ring->id = VCS;
1432         ring->mmio_base = GEN6_BSD_RING_BASE;
1433         ring->irq_enable_mask =
1434                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1435         ring->irq_keep_mask =
1436                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1437
1438         ring->init_hw = gen8_init_common_ring;
1439         ring->get_seqno = gen8_get_seqno;
1440         ring->set_seqno = gen8_set_seqno;
1441         ring->emit_request = gen8_emit_request;
1442         ring->emit_flush = gen8_emit_flush;
1443         ring->irq_get = gen8_logical_ring_get_irq;
1444         ring->irq_put = gen8_logical_ring_put_irq;
1445         ring->emit_bb_start = gen8_emit_bb_start;
1446
1447         return logical_ring_init(dev, ring);
1448 }
1449
1450 static int logical_bsd2_ring_init(struct drm_device *dev)
1451 {
1452         struct drm_i915_private *dev_priv = dev->dev_private;
1453         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1454
1455         ring->name = "bds2 ring";
1456         ring->id = VCS2;
1457         ring->mmio_base = GEN8_BSD2_RING_BASE;
1458         ring->irq_enable_mask =
1459                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1460         ring->irq_keep_mask =
1461                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1462
1463         ring->init_hw = gen8_init_common_ring;
1464         ring->get_seqno = gen8_get_seqno;
1465         ring->set_seqno = gen8_set_seqno;
1466         ring->emit_request = gen8_emit_request;
1467         ring->emit_flush = gen8_emit_flush;
1468         ring->irq_get = gen8_logical_ring_get_irq;
1469         ring->irq_put = gen8_logical_ring_put_irq;
1470         ring->emit_bb_start = gen8_emit_bb_start;
1471
1472         return logical_ring_init(dev, ring);
1473 }
1474
1475 static int logical_blt_ring_init(struct drm_device *dev)
1476 {
1477         struct drm_i915_private *dev_priv = dev->dev_private;
1478         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1479
1480         ring->name = "blitter ring";
1481         ring->id = BCS;
1482         ring->mmio_base = BLT_RING_BASE;
1483         ring->irq_enable_mask =
1484                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1485         ring->irq_keep_mask =
1486                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1487
1488         ring->init_hw = gen8_init_common_ring;
1489         ring->get_seqno = gen8_get_seqno;
1490         ring->set_seqno = gen8_set_seqno;
1491         ring->emit_request = gen8_emit_request;
1492         ring->emit_flush = gen8_emit_flush;
1493         ring->irq_get = gen8_logical_ring_get_irq;
1494         ring->irq_put = gen8_logical_ring_put_irq;
1495         ring->emit_bb_start = gen8_emit_bb_start;
1496
1497         return logical_ring_init(dev, ring);
1498 }
1499
1500 static int logical_vebox_ring_init(struct drm_device *dev)
1501 {
1502         struct drm_i915_private *dev_priv = dev->dev_private;
1503         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1504
1505         ring->name = "video enhancement ring";
1506         ring->id = VECS;
1507         ring->mmio_base = VEBOX_RING_BASE;
1508         ring->irq_enable_mask =
1509                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1510         ring->irq_keep_mask =
1511                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1512
1513         ring->init_hw = gen8_init_common_ring;
1514         ring->get_seqno = gen8_get_seqno;
1515         ring->set_seqno = gen8_set_seqno;
1516         ring->emit_request = gen8_emit_request;
1517         ring->emit_flush = gen8_emit_flush;
1518         ring->irq_get = gen8_logical_ring_get_irq;
1519         ring->irq_put = gen8_logical_ring_put_irq;
1520         ring->emit_bb_start = gen8_emit_bb_start;
1521
1522         return logical_ring_init(dev, ring);
1523 }
1524
1525 /**
1526  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1527  * @dev: DRM device.
1528  *
1529  * This function inits the engines for an Execlists submission style (the equivalent in the
1530  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1531  * those engines that are present in the hardware.
1532  *
1533  * Return: non-zero if the initialization failed.
1534  */
1535 int intel_logical_rings_init(struct drm_device *dev)
1536 {
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         int ret;
1539
1540         ret = logical_render_ring_init(dev);
1541         if (ret)
1542                 return ret;
1543
1544         if (HAS_BSD(dev)) {
1545                 ret = logical_bsd_ring_init(dev);
1546                 if (ret)
1547                         goto cleanup_render_ring;
1548         }
1549
1550         if (HAS_BLT(dev)) {
1551                 ret = logical_blt_ring_init(dev);
1552                 if (ret)
1553                         goto cleanup_bsd_ring;
1554         }
1555
1556         if (HAS_VEBOX(dev)) {
1557                 ret = logical_vebox_ring_init(dev);
1558                 if (ret)
1559                         goto cleanup_blt_ring;
1560         }
1561
1562         if (HAS_BSD2(dev)) {
1563                 ret = logical_bsd2_ring_init(dev);
1564                 if (ret)
1565                         goto cleanup_vebox_ring;
1566         }
1567
1568         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1569         if (ret)
1570                 goto cleanup_bsd2_ring;
1571
1572         return 0;
1573
1574 cleanup_bsd2_ring:
1575         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1576 cleanup_vebox_ring:
1577         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1578 cleanup_blt_ring:
1579         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1580 cleanup_bsd_ring:
1581         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1582 cleanup_render_ring:
1583         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1584
1585         return ret;
1586 }
1587
1588 static u32
1589 make_rpcs(struct drm_device *dev)
1590 {
1591         u32 rpcs = 0;
1592
1593         /*
1594          * No explicit RPCS request is needed to ensure full
1595          * slice/subslice/EU enablement prior to Gen9.
1596         */
1597         if (INTEL_INFO(dev)->gen < 9)
1598                 return 0;
1599
1600         /*
1601          * Starting in Gen9, render power gating can leave
1602          * slice/subslice/EU in a partially enabled state. We
1603          * must make an explicit request through RPCS for full
1604          * enablement.
1605         */
1606         if (INTEL_INFO(dev)->has_slice_pg) {
1607                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1608                 rpcs |= INTEL_INFO(dev)->slice_total <<
1609                         GEN8_RPCS_S_CNT_SHIFT;
1610                 rpcs |= GEN8_RPCS_ENABLE;
1611         }
1612
1613         if (INTEL_INFO(dev)->has_subslice_pg) {
1614                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1615                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1616                         GEN8_RPCS_SS_CNT_SHIFT;
1617                 rpcs |= GEN8_RPCS_ENABLE;
1618         }
1619
1620         if (INTEL_INFO(dev)->has_eu_pg) {
1621                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1622                         GEN8_RPCS_EU_MIN_SHIFT;
1623                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1624                         GEN8_RPCS_EU_MAX_SHIFT;
1625                 rpcs |= GEN8_RPCS_ENABLE;
1626         }
1627
1628         return rpcs;
1629 }
1630
1631 static int
1632 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1633                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1634 {
1635         struct drm_device *dev = ring->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1638         struct page *page;
1639         uint32_t *reg_state;
1640         int ret;
1641
1642         if (!ppgtt)
1643                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1644
1645         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1646         if (ret) {
1647                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1648                 return ret;
1649         }
1650
1651         ret = i915_gem_object_get_pages(ctx_obj);
1652         if (ret) {
1653                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1654                 return ret;
1655         }
1656
1657         i915_gem_object_pin_pages(ctx_obj);
1658
1659         /* The second page of the context object contains some fields which must
1660          * be set up prior to the first execution. */
1661         page = i915_gem_object_get_page(ctx_obj, 1);
1662         reg_state = kmap_atomic(page);
1663
1664         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1665          * commands followed by (reg, value) pairs. The values we are setting here are
1666          * only for the first context restore: on a subsequent save, the GPU will
1667          * recreate this batchbuffer with new values (including all the missing
1668          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1669         if (ring->id == RCS)
1670                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1671         else
1672                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1673         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1674         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1675         reg_state[CTX_CONTEXT_CONTROL+1] =
1676                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1677                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1678         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1679         reg_state[CTX_RING_HEAD+1] = 0;
1680         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1681         reg_state[CTX_RING_TAIL+1] = 0;
1682         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1683         /* Ring buffer start address is not known until the buffer is pinned.
1684          * It is written to the context image in execlists_update_context()
1685          */
1686         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1687         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1688                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1689         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1690         reg_state[CTX_BB_HEAD_U+1] = 0;
1691         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1692         reg_state[CTX_BB_HEAD_L+1] = 0;
1693         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1694         reg_state[CTX_BB_STATE+1] = (1<<5);
1695         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1696         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1697         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1698         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1699         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1700         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1701         if (ring->id == RCS) {
1702                 /* TODO: according to BSpec, the register state context
1703                  * for CHV does not have these. OTOH, these registers do
1704                  * exist in CHV. I'm waiting for a clarification */
1705                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1706                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1707                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1708                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1709                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1710                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1711         }
1712         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1713         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1714         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1715         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1716         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1717         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1718         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1719         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1720         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1721         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1722         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1723         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1724
1725         /* With dynamic page allocation, PDPs may not be allocated at this point,
1726          * Point the unallocated PDPs to the scratch page
1727          */
1728         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1729         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1730         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1731         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1732         if (ring->id == RCS) {
1733                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1734                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1735                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1736         }
1737
1738         kunmap_atomic(reg_state);
1739
1740         ctx_obj->dirty = 1;
1741         set_page_dirty(page);
1742         i915_gem_object_unpin_pages(ctx_obj);
1743
1744         return 0;
1745 }
1746
1747 /**
1748  * intel_lr_context_free() - free the LRC specific bits of a context
1749  * @ctx: the LR context to free.
1750  *
1751  * The real context freeing is done in i915_gem_context_free: this only
1752  * takes care of the bits that are LRC related: the per-engine backing
1753  * objects and the logical ringbuffer.
1754  */
1755 void intel_lr_context_free(struct intel_context *ctx)
1756 {
1757         int i;
1758
1759         for (i = 0; i < I915_NUM_RINGS; i++) {
1760                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1761
1762                 if (ctx_obj) {
1763                         struct intel_ringbuffer *ringbuf =
1764                                         ctx->engine[i].ringbuf;
1765                         struct intel_engine_cs *ring = ringbuf->ring;
1766
1767                         if (ctx == ring->default_context) {
1768                                 intel_unpin_ringbuffer_obj(ringbuf);
1769                                 i915_gem_object_ggtt_unpin(ctx_obj);
1770                         }
1771                         WARN_ON(ctx->engine[ring->id].pin_count);
1772                         intel_destroy_ringbuffer_obj(ringbuf);
1773                         kfree(ringbuf);
1774                         drm_gem_object_unreference(&ctx_obj->base);
1775                 }
1776         }
1777 }
1778
1779 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1780 {
1781         int ret = 0;
1782
1783         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1784
1785         switch (ring->id) {
1786         case RCS:
1787                 if (INTEL_INFO(ring->dev)->gen >= 9)
1788                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1789                 else
1790                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1791                 break;
1792         case VCS:
1793         case BCS:
1794         case VECS:
1795         case VCS2:
1796                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1797                 break;
1798         }
1799
1800         return ret;
1801 }
1802
1803 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1804                 struct drm_i915_gem_object *default_ctx_obj)
1805 {
1806         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1807
1808         /* The status page is offset 0 from the default context object
1809          * in LRC mode. */
1810         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1811         ring->status_page.page_addr =
1812                         kmap(sg_page(default_ctx_obj->pages->sgl));
1813         ring->status_page.obj = default_ctx_obj;
1814
1815         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1816                         (u32)ring->status_page.gfx_addr);
1817         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1818 }
1819
1820 /**
1821  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1822  * @ctx: LR context to create.
1823  * @ring: engine to be used with the context.
1824  *
1825  * This function can be called more than once, with different engines, if we plan
1826  * to use the context with them. The context backing objects and the ringbuffers
1827  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1828  * the creation is a deferred call: it's better to make sure first that we need to use
1829  * a given ring with the context.
1830  *
1831  * Return: non-zero on error.
1832  */
1833 int intel_lr_context_deferred_create(struct intel_context *ctx,
1834                                      struct intel_engine_cs *ring)
1835 {
1836         const bool is_global_default_ctx = (ctx == ring->default_context);
1837         struct drm_device *dev = ring->dev;
1838         struct drm_i915_gem_object *ctx_obj;
1839         uint32_t context_size;
1840         struct intel_ringbuffer *ringbuf;
1841         int ret;
1842
1843         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1844         WARN_ON(ctx->engine[ring->id].state);
1845
1846         context_size = round_up(get_lr_context_size(ring), 4096);
1847
1848         ctx_obj = i915_gem_alloc_object(dev, context_size);
1849         if (IS_ERR(ctx_obj)) {
1850                 ret = PTR_ERR(ctx_obj);
1851                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1852                 return ret;
1853         }
1854
1855         if (is_global_default_ctx) {
1856                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1857                 if (ret) {
1858                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1859                                         ret);
1860                         drm_gem_object_unreference(&ctx_obj->base);
1861                         return ret;
1862                 }
1863         }
1864
1865         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1866         if (!ringbuf) {
1867                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1868                                 ring->name);
1869                 ret = -ENOMEM;
1870                 goto error_unpin_ctx;
1871         }
1872
1873         ringbuf->ring = ring;
1874
1875         ringbuf->size = 32 * PAGE_SIZE;
1876         ringbuf->effective_size = ringbuf->size;
1877         ringbuf->head = 0;
1878         ringbuf->tail = 0;
1879         ringbuf->last_retired_head = -1;
1880         intel_ring_update_space(ringbuf);
1881
1882         if (ringbuf->obj == NULL) {
1883                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1884                 if (ret) {
1885                         DRM_DEBUG_DRIVER(
1886                                 "Failed to allocate ringbuffer obj %s: %d\n",
1887                                 ring->name, ret);
1888                         goto error_free_rbuf;
1889                 }
1890
1891                 if (is_global_default_ctx) {
1892                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1893                         if (ret) {
1894                                 DRM_ERROR(
1895                                         "Failed to pin and map ringbuffer %s: %d\n",
1896                                         ring->name, ret);
1897                                 goto error_destroy_rbuf;
1898                         }
1899                 }
1900
1901         }
1902
1903         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1904         if (ret) {
1905                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1906                 goto error;
1907         }
1908
1909         ctx->engine[ring->id].ringbuf = ringbuf;
1910         ctx->engine[ring->id].state = ctx_obj;
1911
1912         if (ctx == ring->default_context)
1913                 lrc_setup_hardware_status_page(ring, ctx_obj);
1914         else if (ring->id == RCS && !ctx->rcs_initialized) {
1915                 if (ring->init_context) {
1916                         ret = ring->init_context(ring, ctx);
1917                         if (ret) {
1918                                 DRM_ERROR("ring init context: %d\n", ret);
1919                                 ctx->engine[ring->id].ringbuf = NULL;
1920                                 ctx->engine[ring->id].state = NULL;
1921                                 goto error;
1922                         }
1923                 }
1924
1925                 ctx->rcs_initialized = true;
1926         }
1927
1928         return 0;
1929
1930 error:
1931         if (is_global_default_ctx)
1932                 intel_unpin_ringbuffer_obj(ringbuf);
1933 error_destroy_rbuf:
1934         intel_destroy_ringbuffer_obj(ringbuf);
1935 error_free_rbuf:
1936         kfree(ringbuf);
1937 error_unpin_ctx:
1938         if (is_global_default_ctx)
1939                 i915_gem_object_ggtt_unpin(ctx_obj);
1940         drm_gem_object_unreference(&ctx_obj->base);
1941         return ret;
1942 }
1943
1944 void intel_lr_context_reset(struct drm_device *dev,
1945                         struct intel_context *ctx)
1946 {
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_engine_cs *ring;
1949         int i;
1950
1951         for_each_ring(ring, dev_priv, i) {
1952                 struct drm_i915_gem_object *ctx_obj =
1953                                 ctx->engine[ring->id].state;
1954                 struct intel_ringbuffer *ringbuf =
1955                                 ctx->engine[ring->id].ringbuf;
1956                 uint32_t *reg_state;
1957                 struct page *page;
1958
1959                 if (!ctx_obj)
1960                         continue;
1961
1962                 if (i915_gem_object_get_pages(ctx_obj)) {
1963                         WARN(1, "Failed get_pages for context obj\n");
1964                         continue;
1965                 }
1966                 page = i915_gem_object_get_page(ctx_obj, 1);
1967                 reg_state = kmap_atomic(page);
1968
1969                 reg_state[CTX_RING_HEAD+1] = 0;
1970                 reg_state[CTX_RING_TAIL+1] = 0;
1971
1972                 kunmap_atomic(reg_state);
1973
1974                 ringbuf->head = 0;
1975                 ringbuf->tail = 0;
1976         }
1977 }