]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
ab344e0b878c57c30cc96b12facbf13cebb3bf72
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230                 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 /**
267  * intel_execlists_ctx_id() - get the Execlists Context ID
268  * @ctx_obj: Logical Ring Context backing object.
269  *
270  * Do not confuse with ctx->id! Unfortunately we have a name overload
271  * here: the old context ID we pass to userspace as a handler so that
272  * they can refer to a context, and the new context ID we pass to the
273  * ELSP so that the GPU can inform us of the context status via
274  * interrupts.
275  *
276  * Return: 20-bits globally unique context ID.
277  */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281                         LRC_PPHWSP_PN * PAGE_SIZE;
282
283         /* LRCA is required to be 4K aligned so the more significant 20 bits
284          * are globally unique */
285         return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290         struct drm_device *dev = ring->dev;
291
292         return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293                 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294                (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298                                      struct intel_engine_cs *ring)
299 {
300         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301         uint64_t desc;
302         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303                         LRC_PPHWSP_PN * PAGE_SIZE;
304
305         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307         desc = GEN8_CTX_VALID;
308         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309         if (IS_GEN8(ctx_obj->base.dev))
310                 desc |= GEN8_CTX_L3LLC_COHERENT;
311         desc |= GEN8_CTX_PRIVILEGE;
312         desc |= lrca;
313         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315         /* TODO: WaDisableLiteRestore when we start using semaphore
316          * signalling between Command Streamers */
317         /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321         if (disable_lite_restore_wa(ring))
322                 desc |= GEN8_CTX_FORCE_RESTORE;
323
324         return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328                                  struct drm_i915_gem_request *rq1)
329 {
330
331         struct intel_engine_cs *ring = rq0->ring;
332         struct drm_device *dev = ring->dev;
333         struct drm_i915_private *dev_priv = dev->dev_private;
334         uint64_t desc[2];
335
336         if (rq1) {
337                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338                 rq1->elsp_submitted++;
339         } else {
340                 desc[1] = 0;
341         }
342
343         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344         rq0->elsp_submitted++;
345
346         /* You must always write both descriptors in the order below. */
347         spin_lock(&dev_priv->uncore.lock);
348         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353         /* The context is automatically loaded after the following */
354         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356         /* ELSP is a wo register, use another nearby reg for posting */
357         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359         spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364         struct intel_engine_cs *ring = rq->ring;
365         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368         struct page *page;
369         uint32_t *reg_state;
370
371         BUG_ON(!ctx_obj);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376         reg_state = kmap_atomic(page);
377
378         reg_state[CTX_RING_TAIL+1] = rq->tail;
379         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382                 /* True 32b PPGTT with dynamic page allocation: update PDP
383                  * registers and point the unallocated PDPs to scratch page.
384                  * PML4 is allocated during ppgtt init, so this is not needed
385                  * in 48-bit mode.
386                  */
387                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391         }
392
393         kunmap_atomic(reg_state);
394
395         return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399                                       struct drm_i915_gem_request *rq1)
400 {
401         execlists_update_context(rq0);
402
403         if (rq1)
404                 execlists_update_context(rq1);
405
406         execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414         assert_spin_locked(&ring->execlist_lock);
415
416         /*
417          * If irqs are not active generate a warning as batches that finish
418          * without the irqs may get lost and a GPU Hang may occur.
419          */
420         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422         if (list_empty(&ring->execlist_queue))
423                 return;
424
425         /* Try to read in pairs */
426         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427                                  execlist_link) {
428                 if (!req0) {
429                         req0 = cursor;
430                 } else if (req0->ctx == cursor->ctx) {
431                         /* Same ctx: ignore first request, as second request
432                          * will update tail past first request's workload */
433                         cursor->elsp_submitted = req0->elsp_submitted;
434                         list_move_tail(&req0->execlist_link,
435                                        &ring->execlist_retired_req_list);
436                         req0 = cursor;
437                 } else {
438                         req1 = cursor;
439                         break;
440                 }
441         }
442
443         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
444                 /*
445                  * WaIdleLiteRestore: make sure we never cause a lite
446                  * restore with HEAD==TAIL
447                  */
448                 if (req0->elsp_submitted) {
449                         /*
450                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
451                          * as we resubmit the request. See gen8_emit_request()
452                          * for where we prepare the padding after the end of the
453                          * request.
454                          */
455                         struct intel_ringbuffer *ringbuf;
456
457                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
458                         req0->tail += 8;
459                         req0->tail &= ringbuf->size - 1;
460                 }
461         }
462
463         WARN_ON(req1 && req1->elsp_submitted);
464
465         execlists_submit_requests(req0, req1);
466 }
467
468 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
469                                            u32 request_id)
470 {
471         struct drm_i915_gem_request *head_req;
472
473         assert_spin_locked(&ring->execlist_lock);
474
475         head_req = list_first_entry_or_null(&ring->execlist_queue,
476                                             struct drm_i915_gem_request,
477                                             execlist_link);
478
479         if (head_req != NULL) {
480                 struct drm_i915_gem_object *ctx_obj =
481                                 head_req->ctx->engine[ring->id].state;
482                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
483                         WARN(head_req->elsp_submitted == 0,
484                              "Never submitted head request\n");
485
486                         if (--head_req->elsp_submitted <= 0) {
487                                 list_move_tail(&head_req->execlist_link,
488                                                &ring->execlist_retired_req_list);
489                                 return true;
490                         }
491                 }
492         }
493
494         return false;
495 }
496
497 static void get_context_status(struct intel_engine_cs *ring,
498                                u8 read_pointer,
499                                u32 *status, u32 *context_id)
500 {
501         struct drm_i915_private *dev_priv = ring->dev->dev_private;
502
503         if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
504                 return;
505
506         *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
507         *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
508 }
509
510 /**
511  * intel_lrc_irq_handler() - handle Context Switch interrupts
512  * @ring: Engine Command Streamer to handle.
513  *
514  * Check the unread Context Status Buffers and manage the submission of new
515  * contexts to the ELSP accordingly.
516  */
517 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
518 {
519         struct drm_i915_private *dev_priv = ring->dev->dev_private;
520         u32 status_pointer;
521         u8 read_pointer;
522         u8 write_pointer;
523         u32 status = 0;
524         u32 status_id;
525         u32 submit_contexts = 0;
526
527         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
528
529         read_pointer = ring->next_context_status_buffer;
530         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
531         if (read_pointer > write_pointer)
532                 write_pointer += GEN8_CSB_ENTRIES;
533
534         spin_lock(&ring->execlist_lock);
535
536         while (read_pointer < write_pointer) {
537
538                 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
539                                    &status, &status_id);
540
541                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
542                         continue;
543
544                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
545                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
546                                 if (execlists_check_remove_request(ring, status_id))
547                                         WARN(1, "Lite Restored request removed from queue\n");
548                         } else
549                                 WARN(1, "Preemption without Lite Restore\n");
550                 }
551
552                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
553                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
554                         if (execlists_check_remove_request(ring, status_id))
555                                 submit_contexts++;
556                 }
557         }
558
559         if (disable_lite_restore_wa(ring)) {
560                 /* Prevent a ctx to preempt itself */
561                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
562                     (submit_contexts != 0))
563                         execlists_context_unqueue(ring);
564         } else if (submit_contexts != 0) {
565                 execlists_context_unqueue(ring);
566         }
567
568         spin_unlock(&ring->execlist_lock);
569
570         if (unlikely(submit_contexts > 2))
571                 DRM_ERROR("More than two context complete events?\n");
572
573         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574
575         /* Update the read pointer to the old write pointer. Manual ringbuffer
576          * management ftw </sarcasm> */
577         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
578                    _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579                                  ring->next_context_status_buffer << 8));
580 }
581
582 static int execlists_context_queue(struct drm_i915_gem_request *request)
583 {
584         struct intel_engine_cs *ring = request->ring;
585         struct drm_i915_gem_request *cursor;
586         int num_elements = 0;
587
588         if (request->ctx != ring->default_context)
589                 intel_lr_context_pin(request);
590
591         i915_gem_request_reference(request);
592
593         spin_lock_irq(&ring->execlist_lock);
594
595         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
596                 if (++num_elements > 2)
597                         break;
598
599         if (num_elements > 2) {
600                 struct drm_i915_gem_request *tail_req;
601
602                 tail_req = list_last_entry(&ring->execlist_queue,
603                                            struct drm_i915_gem_request,
604                                            execlist_link);
605
606                 if (request->ctx == tail_req->ctx) {
607                         WARN(tail_req->elsp_submitted != 0,
608                                 "More than 2 already-submitted reqs queued\n");
609                         list_move_tail(&tail_req->execlist_link,
610                                        &ring->execlist_retired_req_list);
611                 }
612         }
613
614         list_add_tail(&request->execlist_link, &ring->execlist_queue);
615         if (num_elements == 0)
616                 execlists_context_unqueue(ring);
617
618         spin_unlock_irq(&ring->execlist_lock);
619
620         return 0;
621 }
622
623 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
624 {
625         struct intel_engine_cs *ring = req->ring;
626         uint32_t flush_domains;
627         int ret;
628
629         flush_domains = 0;
630         if (ring->gpu_caches_dirty)
631                 flush_domains = I915_GEM_GPU_DOMAINS;
632
633         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
634         if (ret)
635                 return ret;
636
637         ring->gpu_caches_dirty = false;
638         return 0;
639 }
640
641 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
642                                  struct list_head *vmas)
643 {
644         const unsigned other_rings = ~intel_ring_flag(req->ring);
645         struct i915_vma *vma;
646         uint32_t flush_domains = 0;
647         bool flush_chipset = false;
648         int ret;
649
650         list_for_each_entry(vma, vmas, exec_list) {
651                 struct drm_i915_gem_object *obj = vma->obj;
652
653                 if (obj->active & other_rings) {
654                         ret = i915_gem_object_sync(obj, req->ring, &req);
655                         if (ret)
656                                 return ret;
657                 }
658
659                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
660                         flush_chipset |= i915_gem_clflush_object(obj, false);
661
662                 flush_domains |= obj->base.write_domain;
663         }
664
665         if (flush_domains & I915_GEM_DOMAIN_GTT)
666                 wmb();
667
668         /* Unconditionally invalidate gpu caches and ensure that we do flush
669          * any residual writes from the previous batch.
670          */
671         return logical_ring_invalidate_all_caches(req);
672 }
673
674 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
675 {
676         int ret;
677
678         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
679
680         if (request->ctx != request->ring->default_context) {
681                 ret = intel_lr_context_pin(request);
682                 if (ret)
683                         return ret;
684         }
685
686         if (i915.enable_guc_submission) {
687                 /*
688                  * Check that the GuC has space for the request before
689                  * going any further, as the i915_add_request() call
690                  * later on mustn't fail ...
691                  */
692                 struct intel_guc *guc = &request->i915->guc;
693
694                 ret = i915_guc_wq_check_space(guc->execbuf_client);
695                 if (ret)
696                         return ret;
697         }
698
699         return 0;
700 }
701
702 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
703                                        int bytes)
704 {
705         struct intel_ringbuffer *ringbuf = req->ringbuf;
706         struct intel_engine_cs *ring = req->ring;
707         struct drm_i915_gem_request *target;
708         unsigned space;
709         int ret;
710
711         if (intel_ring_space(ringbuf) >= bytes)
712                 return 0;
713
714         /* The whole point of reserving space is to not wait! */
715         WARN_ON(ringbuf->reserved_in_use);
716
717         list_for_each_entry(target, &ring->request_list, list) {
718                 /*
719                  * The request queue is per-engine, so can contain requests
720                  * from multiple ringbuffers. Here, we must ignore any that
721                  * aren't from the ringbuffer we're considering.
722                  */
723                 if (target->ringbuf != ringbuf)
724                         continue;
725
726                 /* Would completion of this request free enough space? */
727                 space = __intel_ring_space(target->postfix, ringbuf->tail,
728                                            ringbuf->size);
729                 if (space >= bytes)
730                         break;
731         }
732
733         if (WARN_ON(&target->list == &ring->request_list))
734                 return -ENOSPC;
735
736         ret = i915_wait_request(target);
737         if (ret)
738                 return ret;
739
740         ringbuf->space = space;
741         return 0;
742 }
743
744 /*
745  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
746  * @request: Request to advance the logical ringbuffer of.
747  *
748  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
749  * really happens during submission is that the context and current tail will be placed
750  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
751  * point, the tail *inside* the context is updated and the ELSP written to.
752  */
753 static void
754 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
755 {
756         struct intel_engine_cs *ring = request->ring;
757         struct drm_i915_private *dev_priv = request->i915;
758
759         intel_logical_ring_advance(request->ringbuf);
760
761         request->tail = request->ringbuf->tail;
762
763         if (intel_ring_stopped(ring))
764                 return;
765
766         if (dev_priv->guc.execbuf_client)
767                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
768         else
769                 execlists_context_queue(request);
770 }
771
772 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
773 {
774         uint32_t __iomem *virt;
775         int rem = ringbuf->size - ringbuf->tail;
776
777         virt = ringbuf->virtual_start + ringbuf->tail;
778         rem /= 4;
779         while (rem--)
780                 iowrite32(MI_NOOP, virt++);
781
782         ringbuf->tail = 0;
783         intel_ring_update_space(ringbuf);
784 }
785
786 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
787 {
788         struct intel_ringbuffer *ringbuf = req->ringbuf;
789         int remain_usable = ringbuf->effective_size - ringbuf->tail;
790         int remain_actual = ringbuf->size - ringbuf->tail;
791         int ret, total_bytes, wait_bytes = 0;
792         bool need_wrap = false;
793
794         if (ringbuf->reserved_in_use)
795                 total_bytes = bytes;
796         else
797                 total_bytes = bytes + ringbuf->reserved_size;
798
799         if (unlikely(bytes > remain_usable)) {
800                 /*
801                  * Not enough space for the basic request. So need to flush
802                  * out the remainder and then wait for base + reserved.
803                  */
804                 wait_bytes = remain_actual + total_bytes;
805                 need_wrap = true;
806         } else {
807                 if (unlikely(total_bytes > remain_usable)) {
808                         /*
809                          * The base request will fit but the reserved space
810                          * falls off the end. So only need to to wait for the
811                          * reserved size after flushing out the remainder.
812                          */
813                         wait_bytes = remain_actual + ringbuf->reserved_size;
814                         need_wrap = true;
815                 } else if (total_bytes > ringbuf->space) {
816                         /* No wrapping required, just waiting. */
817                         wait_bytes = total_bytes;
818                 }
819         }
820
821         if (wait_bytes) {
822                 ret = logical_ring_wait_for_space(req, wait_bytes);
823                 if (unlikely(ret))
824                         return ret;
825
826                 if (need_wrap)
827                         __wrap_ring_buffer(ringbuf);
828         }
829
830         return 0;
831 }
832
833 /**
834  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
835  *
836  * @req: The request to start some new work for
837  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
838  *
839  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
840  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
841  * and also preallocates a request (every workload submission is still mediated through
842  * requests, same as it did with legacy ringbuffer submission).
843  *
844  * Return: non-zero if the ringbuffer is not ready to be written to.
845  */
846 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
847 {
848         struct drm_i915_private *dev_priv;
849         int ret;
850
851         WARN_ON(req == NULL);
852         dev_priv = req->ring->dev->dev_private;
853
854         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
855                                    dev_priv->mm.interruptible);
856         if (ret)
857                 return ret;
858
859         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
860         if (ret)
861                 return ret;
862
863         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
864         return 0;
865 }
866
867 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
868 {
869         /*
870          * The first call merely notes the reserve request and is common for
871          * all back ends. The subsequent localised _begin() call actually
872          * ensures that the reservation is available. Without the begin, if
873          * the request creator immediately submitted the request without
874          * adding any commands to it then there might not actually be
875          * sufficient room for the submission commands.
876          */
877         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
878
879         return intel_logical_ring_begin(request, 0);
880 }
881
882 /**
883  * execlists_submission() - submit a batchbuffer for execution, Execlists style
884  * @dev: DRM device.
885  * @file: DRM file.
886  * @ring: Engine Command Streamer to submit to.
887  * @ctx: Context to employ for this submission.
888  * @args: execbuffer call arguments.
889  * @vmas: list of vmas.
890  * @batch_obj: the batchbuffer to submit.
891  * @exec_start: batchbuffer start virtual address pointer.
892  * @dispatch_flags: translated execbuffer call flags.
893  *
894  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
895  * away the submission details of the execbuffer ioctl call.
896  *
897  * Return: non-zero if the submission fails.
898  */
899 int intel_execlists_submission(struct i915_execbuffer_params *params,
900                                struct drm_i915_gem_execbuffer2 *args,
901                                struct list_head *vmas)
902 {
903         struct drm_device       *dev = params->dev;
904         struct intel_engine_cs  *ring = params->ring;
905         struct drm_i915_private *dev_priv = dev->dev_private;
906         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
907         u64 exec_start;
908         int instp_mode;
909         u32 instp_mask;
910         int ret;
911
912         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
913         instp_mask = I915_EXEC_CONSTANTS_MASK;
914         switch (instp_mode) {
915         case I915_EXEC_CONSTANTS_REL_GENERAL:
916         case I915_EXEC_CONSTANTS_ABSOLUTE:
917         case I915_EXEC_CONSTANTS_REL_SURFACE:
918                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
919                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
920                         return -EINVAL;
921                 }
922
923                 if (instp_mode != dev_priv->relative_constants_mode) {
924                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
925                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
926                                 return -EINVAL;
927                         }
928
929                         /* The HW changed the meaning on this bit on gen6 */
930                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
931                 }
932                 break;
933         default:
934                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
935                 return -EINVAL;
936         }
937
938         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
939                 DRM_DEBUG("sol reset is gen7 only\n");
940                 return -EINVAL;
941         }
942
943         ret = execlists_move_to_gpu(params->request, vmas);
944         if (ret)
945                 return ret;
946
947         if (ring == &dev_priv->ring[RCS] &&
948             instp_mode != dev_priv->relative_constants_mode) {
949                 ret = intel_logical_ring_begin(params->request, 4);
950                 if (ret)
951                         return ret;
952
953                 intel_logical_ring_emit(ringbuf, MI_NOOP);
954                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
955                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
956                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
957                 intel_logical_ring_advance(ringbuf);
958
959                 dev_priv->relative_constants_mode = instp_mode;
960         }
961
962         exec_start = params->batch_obj_vm_offset +
963                      args->batch_start_offset;
964
965         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
966         if (ret)
967                 return ret;
968
969         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
970
971         i915_gem_execbuffer_move_to_active(vmas, params->request);
972         i915_gem_execbuffer_retire_commands(params);
973
974         return 0;
975 }
976
977 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
978 {
979         struct drm_i915_gem_request *req, *tmp;
980         struct list_head retired_list;
981
982         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
983         if (list_empty(&ring->execlist_retired_req_list))
984                 return;
985
986         INIT_LIST_HEAD(&retired_list);
987         spin_lock_irq(&ring->execlist_lock);
988         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
989         spin_unlock_irq(&ring->execlist_lock);
990
991         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
992                 struct intel_context *ctx = req->ctx;
993                 struct drm_i915_gem_object *ctx_obj =
994                                 ctx->engine[ring->id].state;
995
996                 if (ctx_obj && (ctx != ring->default_context))
997                         intel_lr_context_unpin(req);
998                 list_del(&req->execlist_link);
999                 i915_gem_request_unreference(req);
1000         }
1001 }
1002
1003 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1004 {
1005         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1006         int ret;
1007
1008         if (!intel_ring_initialized(ring))
1009                 return;
1010
1011         ret = intel_ring_idle(ring);
1012         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1013                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1014                           ring->name, ret);
1015
1016         /* TODO: Is this correct with Execlists enabled? */
1017         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1018         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1019                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1020                 return;
1021         }
1022         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1023 }
1024
1025 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1026 {
1027         struct intel_engine_cs *ring = req->ring;
1028         int ret;
1029
1030         if (!ring->gpu_caches_dirty)
1031                 return 0;
1032
1033         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1034         if (ret)
1035                 return ret;
1036
1037         ring->gpu_caches_dirty = false;
1038         return 0;
1039 }
1040
1041 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1042                 struct drm_i915_gem_object *ctx_obj,
1043                 struct intel_ringbuffer *ringbuf)
1044 {
1045         struct drm_device *dev = ring->dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         int ret = 0;
1048
1049         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1050         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1051                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1052         if (ret)
1053                 return ret;
1054
1055         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1056         if (ret)
1057                 goto unpin_ctx_obj;
1058
1059         ctx_obj->dirty = true;
1060
1061         /* Invalidate GuC TLB. */
1062         if (i915.enable_guc_submission)
1063                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1064
1065         return ret;
1066
1067 unpin_ctx_obj:
1068         i915_gem_object_ggtt_unpin(ctx_obj);
1069
1070         return ret;
1071 }
1072
1073 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1074 {
1075         int ret = 0;
1076         struct intel_engine_cs *ring = rq->ring;
1077         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1078         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1079
1080         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1081                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1082                 if (ret)
1083                         goto reset_pin_count;
1084         }
1085         return ret;
1086
1087 reset_pin_count:
1088         rq->ctx->engine[ring->id].pin_count = 0;
1089         return ret;
1090 }
1091
1092 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1093 {
1094         struct intel_engine_cs *ring = rq->ring;
1095         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1096         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1097
1098         if (ctx_obj) {
1099                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1100                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1101                         intel_unpin_ringbuffer_obj(ringbuf);
1102                         i915_gem_object_ggtt_unpin(ctx_obj);
1103                 }
1104         }
1105 }
1106
1107 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1108 {
1109         int ret, i;
1110         struct intel_engine_cs *ring = req->ring;
1111         struct intel_ringbuffer *ringbuf = req->ringbuf;
1112         struct drm_device *dev = ring->dev;
1113         struct drm_i915_private *dev_priv = dev->dev_private;
1114         struct i915_workarounds *w = &dev_priv->workarounds;
1115
1116         if (w->count == 0)
1117                 return 0;
1118
1119         ring->gpu_caches_dirty = true;
1120         ret = logical_ring_flush_all_caches(req);
1121         if (ret)
1122                 return ret;
1123
1124         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1125         if (ret)
1126                 return ret;
1127
1128         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1129         for (i = 0; i < w->count; i++) {
1130                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1131                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1132         }
1133         intel_logical_ring_emit(ringbuf, MI_NOOP);
1134
1135         intel_logical_ring_advance(ringbuf);
1136
1137         ring->gpu_caches_dirty = true;
1138         ret = logical_ring_flush_all_caches(req);
1139         if (ret)
1140                 return ret;
1141
1142         return 0;
1143 }
1144
1145 #define wa_ctx_emit(batch, index, cmd)                                  \
1146         do {                                                            \
1147                 int __index = (index)++;                                \
1148                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1149                         return -ENOSPC;                                 \
1150                 }                                                       \
1151                 batch[__index] = (cmd);                                 \
1152         } while (0)
1153
1154 #define wa_ctx_emit_reg(batch, index, reg) \
1155         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1156
1157 /*
1158  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1159  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1160  * but there is a slight complication as this is applied in WA batch where the
1161  * values are only initialized once so we cannot take register value at the
1162  * beginning and reuse it further; hence we save its value to memory, upload a
1163  * constant value with bit21 set and then we restore it back with the saved value.
1164  * To simplify the WA, a constant value is formed by using the default value
1165  * of this register. This shouldn't be a problem because we are only modifying
1166  * it for a short period and this batch in non-premptible. We can ofcourse
1167  * use additional instructions that read the actual value of the register
1168  * at that time and set our bit of interest but it makes the WA complicated.
1169  *
1170  * This WA is also required for Gen9 so extracting as a function avoids
1171  * code duplication.
1172  */
1173 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1174                                                 uint32_t *const batch,
1175                                                 uint32_t index)
1176 {
1177         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1178
1179         /*
1180          * WaDisableLSQCROPERFforOCL:skl
1181          * This WA is implemented in skl_init_clock_gating() but since
1182          * this batch updates GEN8_L3SQCREG4 with default value we need to
1183          * set this bit here to retain the WA during flush.
1184          */
1185         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1186                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1187
1188         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1189                                    MI_SRM_LRM_GLOBAL_GTT));
1190         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1191         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1192         wa_ctx_emit(batch, index, 0);
1193
1194         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1195         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1196         wa_ctx_emit(batch, index, l3sqc4_flush);
1197
1198         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1199         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1200                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1201         wa_ctx_emit(batch, index, 0);
1202         wa_ctx_emit(batch, index, 0);
1203         wa_ctx_emit(batch, index, 0);
1204         wa_ctx_emit(batch, index, 0);
1205
1206         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1207                                    MI_SRM_LRM_GLOBAL_GTT));
1208         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1209         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1210         wa_ctx_emit(batch, index, 0);
1211
1212         return index;
1213 }
1214
1215 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1216                                     uint32_t offset,
1217                                     uint32_t start_alignment)
1218 {
1219         return wa_ctx->offset = ALIGN(offset, start_alignment);
1220 }
1221
1222 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1223                              uint32_t offset,
1224                              uint32_t size_alignment)
1225 {
1226         wa_ctx->size = offset - wa_ctx->offset;
1227
1228         WARN(wa_ctx->size % size_alignment,
1229              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1230              wa_ctx->size, size_alignment);
1231         return 0;
1232 }
1233
1234 /**
1235  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1236  *
1237  * @ring: only applicable for RCS
1238  * @wa_ctx: structure representing wa_ctx
1239  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1240  *    with the offset value received as input.
1241  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1242  * @batch: page in which WA are loaded
1243  * @offset: This field specifies the start of the batch, it should be
1244  *  cache-aligned otherwise it is adjusted accordingly.
1245  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1246  *  initialized at the beginning and shared across all contexts but this field
1247  *  helps us to have multiple batches at different offsets and select them based
1248  *  on a criteria. At the moment this batch always start at the beginning of the page
1249  *  and at this point we don't have multiple wa_ctx batch buffers.
1250  *
1251  *  The number of WA applied are not known at the beginning; we use this field
1252  *  to return the no of DWORDS written.
1253  *
1254  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1255  *  so it adds NOOPs as padding to make it cacheline aligned.
1256  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1257  *  makes a complete batch buffer.
1258  *
1259  * Return: non-zero if we exceed the PAGE_SIZE limit.
1260  */
1261
1262 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1263                                     struct i915_wa_ctx_bb *wa_ctx,
1264                                     uint32_t *const batch,
1265                                     uint32_t *offset)
1266 {
1267         uint32_t scratch_addr;
1268         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1269
1270         /* WaDisableCtxRestoreArbitration:bdw,chv */
1271         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1272
1273         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1274         if (IS_BROADWELL(ring->dev)) {
1275                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1276                 if (rc < 0)
1277                         return rc;
1278                 index = rc;
1279         }
1280
1281         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1282         /* Actual scratch location is at 128 bytes offset */
1283         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1284
1285         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1286         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1287                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1288                                    PIPE_CONTROL_CS_STALL |
1289                                    PIPE_CONTROL_QW_WRITE));
1290         wa_ctx_emit(batch, index, scratch_addr);
1291         wa_ctx_emit(batch, index, 0);
1292         wa_ctx_emit(batch, index, 0);
1293         wa_ctx_emit(batch, index, 0);
1294
1295         /* Pad to end of cacheline */
1296         while (index % CACHELINE_DWORDS)
1297                 wa_ctx_emit(batch, index, MI_NOOP);
1298
1299         /*
1300          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1301          * execution depends on the length specified in terms of cache lines
1302          * in the register CTX_RCS_INDIRECT_CTX
1303          */
1304
1305         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1306 }
1307
1308 /**
1309  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1310  *
1311  * @ring: only applicable for RCS
1312  * @wa_ctx: structure representing wa_ctx
1313  *  offset: specifies start of the batch, should be cache-aligned.
1314  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1315  * @batch: page in which WA are loaded
1316  * @offset: This field specifies the start of this batch.
1317  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1318  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1319  *
1320  *   The number of DWORDS written are returned using this field.
1321  *
1322  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1323  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1324  */
1325 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1326                                struct i915_wa_ctx_bb *wa_ctx,
1327                                uint32_t *const batch,
1328                                uint32_t *offset)
1329 {
1330         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1331
1332         /* WaDisableCtxRestoreArbitration:bdw,chv */
1333         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1334
1335         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1336
1337         return wa_ctx_end(wa_ctx, *offset = index, 1);
1338 }
1339
1340 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1341                                     struct i915_wa_ctx_bb *wa_ctx,
1342                                     uint32_t *const batch,
1343                                     uint32_t *offset)
1344 {
1345         int ret;
1346         struct drm_device *dev = ring->dev;
1347         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1348
1349         /* WaDisableCtxRestoreArbitration:skl,bxt */
1350         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1351             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1352                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1353
1354         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1355         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1356         if (ret < 0)
1357                 return ret;
1358         index = ret;
1359
1360         /* Pad to end of cacheline */
1361         while (index % CACHELINE_DWORDS)
1362                 wa_ctx_emit(batch, index, MI_NOOP);
1363
1364         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1365 }
1366
1367 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1368                                struct i915_wa_ctx_bb *wa_ctx,
1369                                uint32_t *const batch,
1370                                uint32_t *offset)
1371 {
1372         struct drm_device *dev = ring->dev;
1373         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1374
1375         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1376         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1377             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1378                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1379                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1380                 wa_ctx_emit(batch, index,
1381                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1382                 wa_ctx_emit(batch, index, MI_NOOP);
1383         }
1384
1385         /* WaDisableCtxRestoreArbitration:skl,bxt */
1386         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1387             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1388                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1389
1390         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1391
1392         return wa_ctx_end(wa_ctx, *offset = index, 1);
1393 }
1394
1395 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1396 {
1397         int ret;
1398
1399         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1400         if (!ring->wa_ctx.obj) {
1401                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1402                 return -ENOMEM;
1403         }
1404
1405         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1406         if (ret) {
1407                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1408                                  ret);
1409                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1410                 return ret;
1411         }
1412
1413         return 0;
1414 }
1415
1416 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1417 {
1418         if (ring->wa_ctx.obj) {
1419                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1420                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1421                 ring->wa_ctx.obj = NULL;
1422         }
1423 }
1424
1425 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1426 {
1427         int ret;
1428         uint32_t *batch;
1429         uint32_t offset;
1430         struct page *page;
1431         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1432
1433         WARN_ON(ring->id != RCS);
1434
1435         /* update this when WA for higher Gen are added */
1436         if (INTEL_INFO(ring->dev)->gen > 9) {
1437                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1438                           INTEL_INFO(ring->dev)->gen);
1439                 return 0;
1440         }
1441
1442         /* some WA perform writes to scratch page, ensure it is valid */
1443         if (ring->scratch.obj == NULL) {
1444                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1445                 return -EINVAL;
1446         }
1447
1448         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1449         if (ret) {
1450                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1451                 return ret;
1452         }
1453
1454         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1455         batch = kmap_atomic(page);
1456         offset = 0;
1457
1458         if (INTEL_INFO(ring->dev)->gen == 8) {
1459                 ret = gen8_init_indirectctx_bb(ring,
1460                                                &wa_ctx->indirect_ctx,
1461                                                batch,
1462                                                &offset);
1463                 if (ret)
1464                         goto out;
1465
1466                 ret = gen8_init_perctx_bb(ring,
1467                                           &wa_ctx->per_ctx,
1468                                           batch,
1469                                           &offset);
1470                 if (ret)
1471                         goto out;
1472         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1473                 ret = gen9_init_indirectctx_bb(ring,
1474                                                &wa_ctx->indirect_ctx,
1475                                                batch,
1476                                                &offset);
1477                 if (ret)
1478                         goto out;
1479
1480                 ret = gen9_init_perctx_bb(ring,
1481                                           &wa_ctx->per_ctx,
1482                                           batch,
1483                                           &offset);
1484                 if (ret)
1485                         goto out;
1486         }
1487
1488 out:
1489         kunmap_atomic(batch);
1490         if (ret)
1491                 lrc_destroy_wa_ctx_obj(ring);
1492
1493         return ret;
1494 }
1495
1496 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1497 {
1498         struct drm_device *dev = ring->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         u8 next_context_status_buffer_hw;
1501
1502         lrc_setup_hardware_status_page(ring,
1503                                 ring->default_context->engine[ring->id].state);
1504
1505         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1506         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1507
1508         I915_WRITE(RING_MODE_GEN7(ring),
1509                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1510                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1511         POSTING_READ(RING_MODE_GEN7(ring));
1512
1513         /*
1514          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1515          * zero, we need to read the write pointer from hardware and use its
1516          * value because "this register is power context save restored".
1517          * Effectively, these states have been observed:
1518          *
1519          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1520          * BDW  | CSB regs not reset       | CSB regs reset       |
1521          * CHT  | CSB regs not reset       | CSB regs not reset   |
1522          * SKL  |         ?                |         ?            |
1523          * BXT  |         ?                |         ?            |
1524          */
1525         next_context_status_buffer_hw =
1526                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1527
1528         /*
1529          * When the CSB registers are reset (also after power-up / gpu reset),
1530          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1531          * this special case, so the first element read is CSB[0].
1532          */
1533         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1534                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1535
1536         ring->next_context_status_buffer = next_context_status_buffer_hw;
1537         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1538
1539         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1540
1541         return 0;
1542 }
1543
1544 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1545 {
1546         struct drm_device *dev = ring->dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         int ret;
1549
1550         ret = gen8_init_common_ring(ring);
1551         if (ret)
1552                 return ret;
1553
1554         /* We need to disable the AsyncFlip performance optimisations in order
1555          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1556          * programmed to '1' on all products.
1557          *
1558          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1559          */
1560         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1561
1562         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1563
1564         return init_workarounds_ring(ring);
1565 }
1566
1567 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1568 {
1569         int ret;
1570
1571         ret = gen8_init_common_ring(ring);
1572         if (ret)
1573                 return ret;
1574
1575         return init_workarounds_ring(ring);
1576 }
1577
1578 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1579 {
1580         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1581         struct intel_engine_cs *ring = req->ring;
1582         struct intel_ringbuffer *ringbuf = req->ringbuf;
1583         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1584         int i, ret;
1585
1586         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1587         if (ret)
1588                 return ret;
1589
1590         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1591         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1592                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1593
1594                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1595                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1596                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1597                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1598         }
1599
1600         intel_logical_ring_emit(ringbuf, MI_NOOP);
1601         intel_logical_ring_advance(ringbuf);
1602
1603         return 0;
1604 }
1605
1606 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1607                               u64 offset, unsigned dispatch_flags)
1608 {
1609         struct intel_ringbuffer *ringbuf = req->ringbuf;
1610         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1611         int ret;
1612
1613         /* Don't rely in hw updating PDPs, specially in lite-restore.
1614          * Ideally, we should set Force PD Restore in ctx descriptor,
1615          * but we can't. Force Restore would be a second option, but
1616          * it is unsafe in case of lite-restore (because the ctx is
1617          * not idle). PML4 is allocated during ppgtt init so this is
1618          * not needed in 48-bit.*/
1619         if (req->ctx->ppgtt &&
1620             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1621                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1622                     !intel_vgpu_active(req->i915->dev)) {
1623                         ret = intel_logical_ring_emit_pdps(req);
1624                         if (ret)
1625                                 return ret;
1626                 }
1627
1628                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1629         }
1630
1631         ret = intel_logical_ring_begin(req, 4);
1632         if (ret)
1633                 return ret;
1634
1635         /* FIXME(BDW): Address space and security selectors. */
1636         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1637                                 (ppgtt<<8) |
1638                                 (dispatch_flags & I915_DISPATCH_RS ?
1639                                  MI_BATCH_RESOURCE_STREAMER : 0));
1640         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1641         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1642         intel_logical_ring_emit(ringbuf, MI_NOOP);
1643         intel_logical_ring_advance(ringbuf);
1644
1645         return 0;
1646 }
1647
1648 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1649 {
1650         struct drm_device *dev = ring->dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         unsigned long flags;
1653
1654         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1655                 return false;
1656
1657         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1658         if (ring->irq_refcount++ == 0) {
1659                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1660                 POSTING_READ(RING_IMR(ring->mmio_base));
1661         }
1662         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1663
1664         return true;
1665 }
1666
1667 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1668 {
1669         struct drm_device *dev = ring->dev;
1670         struct drm_i915_private *dev_priv = dev->dev_private;
1671         unsigned long flags;
1672
1673         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1674         if (--ring->irq_refcount == 0) {
1675                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1676                 POSTING_READ(RING_IMR(ring->mmio_base));
1677         }
1678         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1679 }
1680
1681 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1682                            u32 invalidate_domains,
1683                            u32 unused)
1684 {
1685         struct intel_ringbuffer *ringbuf = request->ringbuf;
1686         struct intel_engine_cs *ring = ringbuf->ring;
1687         struct drm_device *dev = ring->dev;
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         uint32_t cmd;
1690         int ret;
1691
1692         ret = intel_logical_ring_begin(request, 4);
1693         if (ret)
1694                 return ret;
1695
1696         cmd = MI_FLUSH_DW + 1;
1697
1698         /* We always require a command barrier so that subsequent
1699          * commands, such as breadcrumb interrupts, are strictly ordered
1700          * wrt the contents of the write cache being flushed to memory
1701          * (and thus being coherent from the CPU).
1702          */
1703         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1704
1705         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1706                 cmd |= MI_INVALIDATE_TLB;
1707                 if (ring == &dev_priv->ring[VCS])
1708                         cmd |= MI_INVALIDATE_BSD;
1709         }
1710
1711         intel_logical_ring_emit(ringbuf, cmd);
1712         intel_logical_ring_emit(ringbuf,
1713                                 I915_GEM_HWS_SCRATCH_ADDR |
1714                                 MI_FLUSH_DW_USE_GTT);
1715         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1716         intel_logical_ring_emit(ringbuf, 0); /* value */
1717         intel_logical_ring_advance(ringbuf);
1718
1719         return 0;
1720 }
1721
1722 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1723                                   u32 invalidate_domains,
1724                                   u32 flush_domains)
1725 {
1726         struct intel_ringbuffer *ringbuf = request->ringbuf;
1727         struct intel_engine_cs *ring = ringbuf->ring;
1728         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1729         bool vf_flush_wa = false;
1730         u32 flags = 0;
1731         int ret;
1732
1733         flags |= PIPE_CONTROL_CS_STALL;
1734
1735         if (flush_domains) {
1736                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1737                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1738                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1739         }
1740
1741         if (invalidate_domains) {
1742                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1743                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1744                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1745                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1746                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1747                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1748                 flags |= PIPE_CONTROL_QW_WRITE;
1749                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1750
1751                 /*
1752                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1753                  * pipe control.
1754                  */
1755                 if (IS_GEN9(ring->dev))
1756                         vf_flush_wa = true;
1757         }
1758
1759         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1760         if (ret)
1761                 return ret;
1762
1763         if (vf_flush_wa) {
1764                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1765                 intel_logical_ring_emit(ringbuf, 0);
1766                 intel_logical_ring_emit(ringbuf, 0);
1767                 intel_logical_ring_emit(ringbuf, 0);
1768                 intel_logical_ring_emit(ringbuf, 0);
1769                 intel_logical_ring_emit(ringbuf, 0);
1770         }
1771
1772         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1773         intel_logical_ring_emit(ringbuf, flags);
1774         intel_logical_ring_emit(ringbuf, scratch_addr);
1775         intel_logical_ring_emit(ringbuf, 0);
1776         intel_logical_ring_emit(ringbuf, 0);
1777         intel_logical_ring_emit(ringbuf, 0);
1778         intel_logical_ring_advance(ringbuf);
1779
1780         return 0;
1781 }
1782
1783 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1784 {
1785         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1786 }
1787
1788 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1789 {
1790         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1791 }
1792
1793 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1794 {
1795
1796         /*
1797          * On BXT A steppings there is a HW coherency issue whereby the
1798          * MI_STORE_DATA_IMM storing the completed request's seqno
1799          * occasionally doesn't invalidate the CPU cache. Work around this by
1800          * clflushing the corresponding cacheline whenever the caller wants
1801          * the coherency to be guaranteed. Note that this cacheline is known
1802          * to be clean at this point, since we only write it in
1803          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1804          * this clflush in practice becomes an invalidate operation.
1805          */
1806
1807         if (!lazy_coherency)
1808                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1809
1810         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1811 }
1812
1813 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1814 {
1815         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1816
1817         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1818         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1819 }
1820
1821 static int gen8_emit_request(struct drm_i915_gem_request *request)
1822 {
1823         struct intel_ringbuffer *ringbuf = request->ringbuf;
1824         struct intel_engine_cs *ring = ringbuf->ring;
1825         u32 cmd;
1826         int ret;
1827
1828         /*
1829          * Reserve space for 2 NOOPs at the end of each request to be
1830          * used as a workaround for not being allowed to do lite
1831          * restore with HEAD==TAIL (WaIdleLiteRestore).
1832          */
1833         ret = intel_logical_ring_begin(request, 8);
1834         if (ret)
1835                 return ret;
1836
1837         cmd = MI_STORE_DWORD_IMM_GEN4;
1838         cmd |= MI_GLOBAL_GTT;
1839
1840         intel_logical_ring_emit(ringbuf, cmd);
1841         intel_logical_ring_emit(ringbuf,
1842                                 (ring->status_page.gfx_addr +
1843                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1844         intel_logical_ring_emit(ringbuf, 0);
1845         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1846         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1847         intel_logical_ring_emit(ringbuf, MI_NOOP);
1848         intel_logical_ring_advance_and_submit(request);
1849
1850         /*
1851          * Here we add two extra NOOPs as padding to avoid
1852          * lite restore of a context with HEAD==TAIL.
1853          */
1854         intel_logical_ring_emit(ringbuf, MI_NOOP);
1855         intel_logical_ring_emit(ringbuf, MI_NOOP);
1856         intel_logical_ring_advance(ringbuf);
1857
1858         return 0;
1859 }
1860
1861 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1862 {
1863         struct render_state so;
1864         int ret;
1865
1866         ret = i915_gem_render_state_prepare(req->ring, &so);
1867         if (ret)
1868                 return ret;
1869
1870         if (so.rodata == NULL)
1871                 return 0;
1872
1873         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1874                                        I915_DISPATCH_SECURE);
1875         if (ret)
1876                 goto out;
1877
1878         ret = req->ring->emit_bb_start(req,
1879                                        (so.ggtt_offset + so.aux_batch_offset),
1880                                        I915_DISPATCH_SECURE);
1881         if (ret)
1882                 goto out;
1883
1884         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1885
1886 out:
1887         i915_gem_render_state_fini(&so);
1888         return ret;
1889 }
1890
1891 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1892 {
1893         int ret;
1894
1895         ret = intel_logical_ring_workarounds_emit(req);
1896         if (ret)
1897                 return ret;
1898
1899         ret = intel_rcs_context_init_mocs(req);
1900         /*
1901          * Failing to program the MOCS is non-fatal.The system will not
1902          * run at peak performance. So generate an error and carry on.
1903          */
1904         if (ret)
1905                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1906
1907         return intel_lr_context_render_state_init(req);
1908 }
1909
1910 /**
1911  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1912  *
1913  * @ring: Engine Command Streamer.
1914  *
1915  */
1916 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1917 {
1918         struct drm_i915_private *dev_priv;
1919
1920         if (!intel_ring_initialized(ring))
1921                 return;
1922
1923         dev_priv = ring->dev->dev_private;
1924
1925         if (ring->buffer) {
1926                 intel_logical_ring_stop(ring);
1927                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1928         }
1929
1930         if (ring->cleanup)
1931                 ring->cleanup(ring);
1932
1933         i915_cmd_parser_fini_ring(ring);
1934         i915_gem_batch_pool_fini(&ring->batch_pool);
1935
1936         if (ring->status_page.obj) {
1937                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1938                 ring->status_page.obj = NULL;
1939         }
1940
1941         lrc_destroy_wa_ctx_obj(ring);
1942         ring->dev = NULL;
1943 }
1944
1945 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1946 {
1947         int ret;
1948
1949         /* Intentionally left blank. */
1950         ring->buffer = NULL;
1951
1952         ring->dev = dev;
1953         INIT_LIST_HEAD(&ring->active_list);
1954         INIT_LIST_HEAD(&ring->request_list);
1955         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1956         init_waitqueue_head(&ring->irq_queue);
1957
1958         INIT_LIST_HEAD(&ring->buffers);
1959         INIT_LIST_HEAD(&ring->execlist_queue);
1960         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1961         spin_lock_init(&ring->execlist_lock);
1962
1963         ret = i915_cmd_parser_init_ring(ring);
1964         if (ret)
1965                 goto error;
1966
1967         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1968         if (ret)
1969                 goto error;
1970
1971         /* As this is the default context, always pin it */
1972         ret = intel_lr_context_do_pin(
1973                         ring,
1974                         ring->default_context->engine[ring->id].state,
1975                         ring->default_context->engine[ring->id].ringbuf);
1976         if (ret) {
1977                 DRM_ERROR(
1978                         "Failed to pin and map ringbuffer %s: %d\n",
1979                         ring->name, ret);
1980                 goto error;
1981         }
1982
1983         return 0;
1984
1985 error:
1986         intel_logical_ring_cleanup(ring);
1987         return ret;
1988 }
1989
1990 static int logical_render_ring_init(struct drm_device *dev)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1994         int ret;
1995
1996         ring->name = "render ring";
1997         ring->id = RCS;
1998         ring->mmio_base = RENDER_RING_BASE;
1999         ring->irq_enable_mask =
2000                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
2001         ring->irq_keep_mask =
2002                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
2003         if (HAS_L3_DPF(dev))
2004                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2005
2006         if (INTEL_INFO(dev)->gen >= 9)
2007                 ring->init_hw = gen9_init_render_ring;
2008         else
2009                 ring->init_hw = gen8_init_render_ring;
2010         ring->init_context = gen8_init_rcs_context;
2011         ring->cleanup = intel_fini_pipe_control;
2012         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2013                 ring->get_seqno = bxt_a_get_seqno;
2014                 ring->set_seqno = bxt_a_set_seqno;
2015         } else {
2016                 ring->get_seqno = gen8_get_seqno;
2017                 ring->set_seqno = gen8_set_seqno;
2018         }
2019         ring->emit_request = gen8_emit_request;
2020         ring->emit_flush = gen8_emit_flush_render;
2021         ring->irq_get = gen8_logical_ring_get_irq;
2022         ring->irq_put = gen8_logical_ring_put_irq;
2023         ring->emit_bb_start = gen8_emit_bb_start;
2024
2025         ring->dev = dev;
2026
2027         ret = intel_init_pipe_control(ring);
2028         if (ret)
2029                 return ret;
2030
2031         ret = intel_init_workaround_bb(ring);
2032         if (ret) {
2033                 /*
2034                  * We continue even if we fail to initialize WA batch
2035                  * because we only expect rare glitches but nothing
2036                  * critical to prevent us from using GPU
2037                  */
2038                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2039                           ret);
2040         }
2041
2042         ret = logical_ring_init(dev, ring);
2043         if (ret) {
2044                 lrc_destroy_wa_ctx_obj(ring);
2045         }
2046
2047         return ret;
2048 }
2049
2050 static int logical_bsd_ring_init(struct drm_device *dev)
2051 {
2052         struct drm_i915_private *dev_priv = dev->dev_private;
2053         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2054
2055         ring->name = "bsd ring";
2056         ring->id = VCS;
2057         ring->mmio_base = GEN6_BSD_RING_BASE;
2058         ring->irq_enable_mask =
2059                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2060         ring->irq_keep_mask =
2061                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2062
2063         ring->init_hw = gen8_init_common_ring;
2064         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2065                 ring->get_seqno = bxt_a_get_seqno;
2066                 ring->set_seqno = bxt_a_set_seqno;
2067         } else {
2068                 ring->get_seqno = gen8_get_seqno;
2069                 ring->set_seqno = gen8_set_seqno;
2070         }
2071         ring->emit_request = gen8_emit_request;
2072         ring->emit_flush = gen8_emit_flush;
2073         ring->irq_get = gen8_logical_ring_get_irq;
2074         ring->irq_put = gen8_logical_ring_put_irq;
2075         ring->emit_bb_start = gen8_emit_bb_start;
2076
2077         return logical_ring_init(dev, ring);
2078 }
2079
2080 static int logical_bsd2_ring_init(struct drm_device *dev)
2081 {
2082         struct drm_i915_private *dev_priv = dev->dev_private;
2083         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2084
2085         ring->name = "bds2 ring";
2086         ring->id = VCS2;
2087         ring->mmio_base = GEN8_BSD2_RING_BASE;
2088         ring->irq_enable_mask =
2089                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2090         ring->irq_keep_mask =
2091                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2092
2093         ring->init_hw = gen8_init_common_ring;
2094         ring->get_seqno = gen8_get_seqno;
2095         ring->set_seqno = gen8_set_seqno;
2096         ring->emit_request = gen8_emit_request;
2097         ring->emit_flush = gen8_emit_flush;
2098         ring->irq_get = gen8_logical_ring_get_irq;
2099         ring->irq_put = gen8_logical_ring_put_irq;
2100         ring->emit_bb_start = gen8_emit_bb_start;
2101
2102         return logical_ring_init(dev, ring);
2103 }
2104
2105 static int logical_blt_ring_init(struct drm_device *dev)
2106 {
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2109
2110         ring->name = "blitter ring";
2111         ring->id = BCS;
2112         ring->mmio_base = BLT_RING_BASE;
2113         ring->irq_enable_mask =
2114                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2115         ring->irq_keep_mask =
2116                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2117
2118         ring->init_hw = gen8_init_common_ring;
2119         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2120                 ring->get_seqno = bxt_a_get_seqno;
2121                 ring->set_seqno = bxt_a_set_seqno;
2122         } else {
2123                 ring->get_seqno = gen8_get_seqno;
2124                 ring->set_seqno = gen8_set_seqno;
2125         }
2126         ring->emit_request = gen8_emit_request;
2127         ring->emit_flush = gen8_emit_flush;
2128         ring->irq_get = gen8_logical_ring_get_irq;
2129         ring->irq_put = gen8_logical_ring_put_irq;
2130         ring->emit_bb_start = gen8_emit_bb_start;
2131
2132         return logical_ring_init(dev, ring);
2133 }
2134
2135 static int logical_vebox_ring_init(struct drm_device *dev)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2139
2140         ring->name = "video enhancement ring";
2141         ring->id = VECS;
2142         ring->mmio_base = VEBOX_RING_BASE;
2143         ring->irq_enable_mask =
2144                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2145         ring->irq_keep_mask =
2146                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2147
2148         ring->init_hw = gen8_init_common_ring;
2149         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2150                 ring->get_seqno = bxt_a_get_seqno;
2151                 ring->set_seqno = bxt_a_set_seqno;
2152         } else {
2153                 ring->get_seqno = gen8_get_seqno;
2154                 ring->set_seqno = gen8_set_seqno;
2155         }
2156         ring->emit_request = gen8_emit_request;
2157         ring->emit_flush = gen8_emit_flush;
2158         ring->irq_get = gen8_logical_ring_get_irq;
2159         ring->irq_put = gen8_logical_ring_put_irq;
2160         ring->emit_bb_start = gen8_emit_bb_start;
2161
2162         return logical_ring_init(dev, ring);
2163 }
2164
2165 /**
2166  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2167  * @dev: DRM device.
2168  *
2169  * This function inits the engines for an Execlists submission style (the equivalent in the
2170  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2171  * those engines that are present in the hardware.
2172  *
2173  * Return: non-zero if the initialization failed.
2174  */
2175 int intel_logical_rings_init(struct drm_device *dev)
2176 {
2177         struct drm_i915_private *dev_priv = dev->dev_private;
2178         int ret;
2179
2180         ret = logical_render_ring_init(dev);
2181         if (ret)
2182                 return ret;
2183
2184         if (HAS_BSD(dev)) {
2185                 ret = logical_bsd_ring_init(dev);
2186                 if (ret)
2187                         goto cleanup_render_ring;
2188         }
2189
2190         if (HAS_BLT(dev)) {
2191                 ret = logical_blt_ring_init(dev);
2192                 if (ret)
2193                         goto cleanup_bsd_ring;
2194         }
2195
2196         if (HAS_VEBOX(dev)) {
2197                 ret = logical_vebox_ring_init(dev);
2198                 if (ret)
2199                         goto cleanup_blt_ring;
2200         }
2201
2202         if (HAS_BSD2(dev)) {
2203                 ret = logical_bsd2_ring_init(dev);
2204                 if (ret)
2205                         goto cleanup_vebox_ring;
2206         }
2207
2208         return 0;
2209
2210 cleanup_vebox_ring:
2211         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2212 cleanup_blt_ring:
2213         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2214 cleanup_bsd_ring:
2215         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2216 cleanup_render_ring:
2217         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2218
2219         return ret;
2220 }
2221
2222 static u32
2223 make_rpcs(struct drm_device *dev)
2224 {
2225         u32 rpcs = 0;
2226
2227         /*
2228          * No explicit RPCS request is needed to ensure full
2229          * slice/subslice/EU enablement prior to Gen9.
2230         */
2231         if (INTEL_INFO(dev)->gen < 9)
2232                 return 0;
2233
2234         /*
2235          * Starting in Gen9, render power gating can leave
2236          * slice/subslice/EU in a partially enabled state. We
2237          * must make an explicit request through RPCS for full
2238          * enablement.
2239         */
2240         if (INTEL_INFO(dev)->has_slice_pg) {
2241                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2242                 rpcs |= INTEL_INFO(dev)->slice_total <<
2243                         GEN8_RPCS_S_CNT_SHIFT;
2244                 rpcs |= GEN8_RPCS_ENABLE;
2245         }
2246
2247         if (INTEL_INFO(dev)->has_subslice_pg) {
2248                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2249                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2250                         GEN8_RPCS_SS_CNT_SHIFT;
2251                 rpcs |= GEN8_RPCS_ENABLE;
2252         }
2253
2254         if (INTEL_INFO(dev)->has_eu_pg) {
2255                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2256                         GEN8_RPCS_EU_MIN_SHIFT;
2257                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2258                         GEN8_RPCS_EU_MAX_SHIFT;
2259                 rpcs |= GEN8_RPCS_ENABLE;
2260         }
2261
2262         return rpcs;
2263 }
2264
2265 static int
2266 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2267                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2268 {
2269         struct drm_device *dev = ring->dev;
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2272         struct page *page;
2273         uint32_t *reg_state;
2274         int ret;
2275
2276         if (!ppgtt)
2277                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2278
2279         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2280         if (ret) {
2281                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2282                 return ret;
2283         }
2284
2285         ret = i915_gem_object_get_pages(ctx_obj);
2286         if (ret) {
2287                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2288                 return ret;
2289         }
2290
2291         i915_gem_object_pin_pages(ctx_obj);
2292
2293         /* The second page of the context object contains some fields which must
2294          * be set up prior to the first execution. */
2295         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2296         reg_state = kmap_atomic(page);
2297
2298         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2299          * commands followed by (reg, value) pairs. The values we are setting here are
2300          * only for the first context restore: on a subsequent save, the GPU will
2301          * recreate this batchbuffer with new values (including all the missing
2302          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2303         reg_state[CTX_LRI_HEADER_0] =
2304                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2305         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2306                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2307                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2308                                           CTX_CTRL_RS_CTX_ENABLE));
2309         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2310         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2311         /* Ring buffer start address is not known until the buffer is pinned.
2312          * It is written to the context image in execlists_update_context()
2313          */
2314         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2315         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2316                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2317         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2318         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2319         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2320                        RING_BB_PPGTT);
2321         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2322         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2323         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2324         if (ring->id == RCS) {
2325                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2326                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2327                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2328                 if (ring->wa_ctx.obj) {
2329                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2330                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2331
2332                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2333                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2334                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2335
2336                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2337                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2338
2339                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2340                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2341                                 0x01;
2342                 }
2343         }
2344         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2345         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2346         /* PDP values well be assigned later if needed */
2347         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2348         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2349         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2350         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2351         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2352         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2353         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2354         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2355
2356         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2357                 /* 64b PPGTT (48bit canonical)
2358                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2359                  * other PDP Descriptors are ignored.
2360                  */
2361                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2362         } else {
2363                 /* 32b PPGTT
2364                  * PDP*_DESCRIPTOR contains the base address of space supported.
2365                  * With dynamic page allocation, PDPs may not be allocated at
2366                  * this point. Point the unallocated PDPs to the scratch page
2367                  */
2368                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2369                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2370                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2371                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2372         }
2373
2374         if (ring->id == RCS) {
2375                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2376                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2377                                make_rpcs(dev));
2378         }
2379
2380         kunmap_atomic(reg_state);
2381         i915_gem_object_unpin_pages(ctx_obj);
2382
2383         return 0;
2384 }
2385
2386 /**
2387  * intel_lr_context_free() - free the LRC specific bits of a context
2388  * @ctx: the LR context to free.
2389  *
2390  * The real context freeing is done in i915_gem_context_free: this only
2391  * takes care of the bits that are LRC related: the per-engine backing
2392  * objects and the logical ringbuffer.
2393  */
2394 void intel_lr_context_free(struct intel_context *ctx)
2395 {
2396         int i;
2397
2398         for (i = 0; i < I915_NUM_RINGS; i++) {
2399                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2400
2401                 if (ctx_obj) {
2402                         struct intel_ringbuffer *ringbuf =
2403                                         ctx->engine[i].ringbuf;
2404                         struct intel_engine_cs *ring = ringbuf->ring;
2405
2406                         if (ctx == ring->default_context) {
2407                                 intel_unpin_ringbuffer_obj(ringbuf);
2408                                 i915_gem_object_ggtt_unpin(ctx_obj);
2409                         }
2410                         WARN_ON(ctx->engine[ring->id].pin_count);
2411                         intel_ringbuffer_free(ringbuf);
2412                         drm_gem_object_unreference(&ctx_obj->base);
2413                 }
2414         }
2415 }
2416
2417 /**
2418  * intel_lr_context_size() - return the size of the context for an engine
2419  * @ring: which engine to find the context size for
2420  *
2421  * Each engine may require a different amount of space for a context image,
2422  * so when allocating (or copying) an image, this function can be used to
2423  * find the right size for the specific engine.
2424  *
2425  * Return: size (in bytes) of an engine-specific context image
2426  *
2427  * Note: this size includes the HWSP, which is part of the context image
2428  * in LRC mode, but does not include the "shared data page" used with
2429  * GuC submission. The caller should account for this if using the GuC.
2430  */
2431 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2432 {
2433         int ret = 0;
2434
2435         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2436
2437         switch (ring->id) {
2438         case RCS:
2439                 if (INTEL_INFO(ring->dev)->gen >= 9)
2440                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2441                 else
2442                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2443                 break;
2444         case VCS:
2445         case BCS:
2446         case VECS:
2447         case VCS2:
2448                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2449                 break;
2450         }
2451
2452         return ret;
2453 }
2454
2455 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2456                 struct drm_i915_gem_object *default_ctx_obj)
2457 {
2458         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2459         struct page *page;
2460
2461         /* The HWSP is part of the default context object in LRC mode. */
2462         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2463                         + LRC_PPHWSP_PN * PAGE_SIZE;
2464         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2465         ring->status_page.page_addr = kmap(page);
2466         ring->status_page.obj = default_ctx_obj;
2467
2468         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2469                         (u32)ring->status_page.gfx_addr);
2470         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2471 }
2472
2473 /**
2474  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2475  * @ctx: LR context to create.
2476  * @ring: engine to be used with the context.
2477  *
2478  * This function can be called more than once, with different engines, if we plan
2479  * to use the context with them. The context backing objects and the ringbuffers
2480  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2481  * the creation is a deferred call: it's better to make sure first that we need to use
2482  * a given ring with the context.
2483  *
2484  * Return: non-zero on error.
2485  */
2486
2487 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2488                                      struct intel_engine_cs *ring)
2489 {
2490         struct drm_device *dev = ring->dev;
2491         struct drm_i915_gem_object *ctx_obj;
2492         uint32_t context_size;
2493         struct intel_ringbuffer *ringbuf;
2494         int ret;
2495
2496         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2497         WARN_ON(ctx->engine[ring->id].state);
2498
2499         context_size = round_up(intel_lr_context_size(ring), 4096);
2500
2501         /* One extra page as the sharing data between driver and GuC */
2502         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2503
2504         ctx_obj = i915_gem_alloc_object(dev, context_size);
2505         if (!ctx_obj) {
2506                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2507                 return -ENOMEM;
2508         }
2509
2510         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2511         if (IS_ERR(ringbuf)) {
2512                 ret = PTR_ERR(ringbuf);
2513                 goto error_deref_obj;
2514         }
2515
2516         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2517         if (ret) {
2518                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2519                 goto error_ringbuf;
2520         }
2521
2522         ctx->engine[ring->id].ringbuf = ringbuf;
2523         ctx->engine[ring->id].state = ctx_obj;
2524
2525         if (ctx != ring->default_context && ring->init_context) {
2526                 struct drm_i915_gem_request *req;
2527
2528                 ret = i915_gem_request_alloc(ring,
2529                         ctx, &req);
2530                 if (ret) {
2531                         DRM_ERROR("ring create req: %d\n",
2532                                 ret);
2533                         goto error_ringbuf;
2534                 }
2535
2536                 ret = ring->init_context(req);
2537                 if (ret) {
2538                         DRM_ERROR("ring init context: %d\n",
2539                                 ret);
2540                         i915_gem_request_cancel(req);
2541                         goto error_ringbuf;
2542                 }
2543                 i915_add_request_no_flush(req);
2544         }
2545         return 0;
2546
2547 error_ringbuf:
2548         intel_ringbuffer_free(ringbuf);
2549 error_deref_obj:
2550         drm_gem_object_unreference(&ctx_obj->base);
2551         ctx->engine[ring->id].ringbuf = NULL;
2552         ctx->engine[ring->id].state = NULL;
2553         return ret;
2554 }
2555
2556 void intel_lr_context_reset(struct drm_device *dev,
2557                         struct intel_context *ctx)
2558 {
2559         struct drm_i915_private *dev_priv = dev->dev_private;
2560         struct intel_engine_cs *ring;
2561         int i;
2562
2563         for_each_ring(ring, dev_priv, i) {
2564                 struct drm_i915_gem_object *ctx_obj =
2565                                 ctx->engine[ring->id].state;
2566                 struct intel_ringbuffer *ringbuf =
2567                                 ctx->engine[ring->id].ringbuf;
2568                 uint32_t *reg_state;
2569                 struct page *page;
2570
2571                 if (!ctx_obj)
2572                         continue;
2573
2574                 if (i915_gem_object_get_pages(ctx_obj)) {
2575                         WARN(1, "Failed get_pages for context obj\n");
2576                         continue;
2577                 }
2578                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2579                 reg_state = kmap_atomic(page);
2580
2581                 reg_state[CTX_RING_HEAD+1] = 0;
2582                 reg_state[CTX_RING_TAIL+1] = 0;
2583
2584                 kunmap_atomic(reg_state);
2585
2586                 ringbuf->head = 0;
2587                 ringbuf->tail = 0;
2588         }
2589 }