]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
b7a3e7e639378b2e4c8f2ee6b66f975ff190fd24
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
230
231 static int execlists_context_deferred_alloc(struct intel_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct intel_context *ctx,
234                                 struct intel_engine_cs *engine);
235
236 /**
237  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238  * @dev: DRM device.
239  * @enable_execlists: value of i915.enable_execlists module parameter.
240  *
241  * Only certain platforms support Execlists (the prerequisites being
242  * support for Logical Ring Contexts and Aliasing PPGTT or better).
243  *
244  * Return: 1 if Execlists is supported and has to be enabled.
245  */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248         WARN_ON(i915.enable_ppgtt == -1);
249
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254                 return 1;
255
256         if (INTEL_INFO(dev)->gen >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263             i915.use_mmio_flip >= 0)
264                 return 1;
265
266         return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272         struct drm_device *dev = engine->dev;
273
274         if (IS_GEN8(dev) || IS_GEN9(dev))
275                 engine->idle_lite_restore_wa = ~0;
276
277         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279                                         (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
284         if (IS_GEN8(dev))
285                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288         /* TODO: WaDisableLiteRestore when we start using semaphore
289          * signalling between Command Streamers */
290         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294         if (engine->disable_lite_restore_wa)
295                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300  *                                        descriptor for a pinned context
301  *
302  * @ctx: Context to work on
303  * @ring: Engine the descriptor will be used with
304  *
305  * The context descriptor encodes various attributes of a context,
306  * including its GTT address and some flags. Because it's fairly
307  * expensive to calculate, we'll just do it once and cache the result,
308  * which remains valid until the context is unpinned.
309  *
310  * This is what a descriptor looks like, from LSB to MSB:
311  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313  *    bits 32-52:    ctx ID, a globally unique tag
314  *    bits 53-54:    mbz, reserved for use by hardware
315  *    bits 55-63:    group ID, currently unused and set to 0
316  */
317 static void
318 intel_lr_context_descriptor_update(struct intel_context *ctx,
319                                    struct intel_engine_cs *engine)
320 {
321         u64 desc;
322
323         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324
325         desc = engine->ctx_desc_template;                       /* bits  0-11 */
326         desc |= ctx->engine[engine->id].lrc_vma->node.start +   /* bits 12-31 */
327                LRC_PPHWSP_PN * PAGE_SIZE;
328         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
329
330         ctx->engine[engine->id].lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334                                      struct intel_engine_cs *engine)
335 {
336         return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340                                  struct drm_i915_gem_request *rq1)
341 {
342
343         struct intel_engine_cs *engine = rq0->engine;
344         struct drm_device *dev = engine->dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346         uint64_t desc[2];
347
348         if (rq1) {
349                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350                 rq1->elsp_submitted++;
351         } else {
352                 desc[1] = 0;
353         }
354
355         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356         rq0->elsp_submitted++;
357
358         /* You must always write both descriptors in the order below. */
359         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361
362         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363         /* The context is automatically loaded after the following */
364         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365
366         /* ELSP is a wo register, use another nearby reg for posting */
367         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 }
369
370 static void
371 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372 {
373         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377 }
378
379 static void execlists_update_context(struct drm_i915_gem_request *rq)
380 {
381         struct intel_engine_cs *engine = rq->engine;
382         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384
385         reg_state[CTX_RING_TAIL+1] = rq->tail;
386
387         /* True 32b PPGTT with dynamic page allocation: update PDP
388          * registers and point the unallocated PDPs to scratch page.
389          * PML4 is allocated during ppgtt init, so this is not needed
390          * in 48-bit mode.
391          */
392         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393                 execlists_update_context_pdps(ppgtt, reg_state);
394 }
395
396 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397                                       struct drm_i915_gem_request *rq1)
398 {
399         struct drm_i915_private *dev_priv = rq0->i915;
400         unsigned int fw_domains = rq0->engine->fw_domains;
401
402         execlists_update_context(rq0);
403
404         if (rq1)
405                 execlists_update_context(rq1);
406
407         spin_lock_irq(&dev_priv->uncore.lock);
408         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409
410         execlists_elsp_write(rq0, rq1);
411
412         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413         spin_unlock_irq(&dev_priv->uncore.lock);
414 }
415
416 static void execlists_context_unqueue(struct intel_engine_cs *engine)
417 {
418         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419         struct drm_i915_gem_request *cursor, *tmp;
420
421         assert_spin_locked(&engine->execlist_lock);
422
423         /*
424          * If irqs are not active generate a warning as batches that finish
425          * without the irqs may get lost and a GPU Hang may occur.
426          */
427         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
428
429         /* Try to read in pairs */
430         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431                                  execlist_link) {
432                 if (!req0) {
433                         req0 = cursor;
434                 } else if (req0->ctx == cursor->ctx) {
435                         /* Same ctx: ignore first request, as second request
436                          * will update tail past first request's workload */
437                         cursor->elsp_submitted = req0->elsp_submitted;
438                         list_move_tail(&req0->execlist_link,
439                                        &engine->execlist_retired_req_list);
440                         req0 = cursor;
441                 } else {
442                         req1 = cursor;
443                         WARN_ON(req1->elsp_submitted);
444                         break;
445                 }
446         }
447
448         if (unlikely(!req0))
449                 return;
450
451         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452                 /*
453                  * WaIdleLiteRestore: make sure we never cause a lite restore
454                  * with HEAD==TAIL.
455                  *
456                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457                  * resubmit the request. See gen8_emit_request() for where we
458                  * prepare the padding after the end of the request.
459                  */
460                 struct intel_ringbuffer *ringbuf;
461
462                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
463                 req0->tail += 8;
464                 req0->tail &= ringbuf->size - 1;
465         }
466
467         execlists_submit_requests(req0, req1);
468 }
469
470 static unsigned int
471 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
472 {
473         struct drm_i915_gem_request *head_req;
474
475         assert_spin_locked(&engine->execlist_lock);
476
477         head_req = list_first_entry_or_null(&engine->execlist_queue,
478                                             struct drm_i915_gem_request,
479                                             execlist_link);
480
481         if (!head_req)
482                 return 0;
483
484         if (unlikely(head_req->ctx->hw_id != request_id))
485                 return 0;
486
487         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
488
489         if (--head_req->elsp_submitted > 0)
490                 return 0;
491
492         list_move_tail(&head_req->execlist_link,
493                        &engine->execlist_retired_req_list);
494
495         return 1;
496 }
497
498 static u32
499 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500                    u32 *context_id)
501 {
502         struct drm_i915_private *dev_priv = engine->dev->dev_private;
503         u32 status;
504
505         read_pointer %= GEN8_CSB_ENTRIES;
506
507         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508
509         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
510                 return 0;
511
512         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513                                                               read_pointer));
514
515         return status;
516 }
517
518 /**
519  * intel_lrc_irq_handler() - handle Context Switch interrupts
520  * @engine: Engine Command Streamer to handle.
521  *
522  * Check the unread Context Status Buffers and manage the submission of new
523  * contexts to the ELSP accordingly.
524  */
525 static void intel_lrc_irq_handler(unsigned long data)
526 {
527         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528         struct drm_i915_private *dev_priv = engine->dev->dev_private;
529         u32 status_pointer;
530         unsigned int read_pointer, write_pointer;
531         u32 csb[GEN8_CSB_ENTRIES][2];
532         unsigned int csb_read = 0, i;
533         unsigned int submit_contexts = 0;
534
535         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536
537         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538
539         read_pointer = engine->next_context_status_buffer;
540         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541         if (read_pointer > write_pointer)
542                 write_pointer += GEN8_CSB_ENTRIES;
543
544         while (read_pointer < write_pointer) {
545                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
546                         break;
547                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
548                                                       &csb[csb_read][1]);
549                 csb_read++;
550         }
551
552         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
553
554         /* Update the read pointer to the old write pointer. Manual ringbuffer
555          * management ftw </sarcasm> */
556         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
557                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
558                                     engine->next_context_status_buffer << 8));
559
560         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561
562         spin_lock(&engine->execlist_lock);
563
564         for (i = 0; i < csb_read; i++) {
565                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
566                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
567                                 if (execlists_check_remove_request(engine, csb[i][1]))
568                                         WARN(1, "Lite Restored request removed from queue\n");
569                         } else
570                                 WARN(1, "Preemption without Lite Restore\n");
571                 }
572
573                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
575                         submit_contexts +=
576                                 execlists_check_remove_request(engine, csb[i][1]);
577         }
578
579         if (submit_contexts) {
580                 if (!engine->disable_lite_restore_wa ||
581                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
582                         execlists_context_unqueue(engine);
583         }
584
585         spin_unlock(&engine->execlist_lock);
586
587         if (unlikely(submit_contexts > 2))
588                 DRM_ERROR("More than two context complete events?\n");
589 }
590
591 static void execlists_context_queue(struct drm_i915_gem_request *request)
592 {
593         struct intel_engine_cs *engine = request->engine;
594         struct drm_i915_gem_request *cursor;
595         int num_elements = 0;
596
597         intel_lr_context_pin(request->ctx, request->engine);
598         i915_gem_request_reference(request);
599
600         spin_lock_bh(&engine->execlist_lock);
601
602         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
603                 if (++num_elements > 2)
604                         break;
605
606         if (num_elements > 2) {
607                 struct drm_i915_gem_request *tail_req;
608
609                 tail_req = list_last_entry(&engine->execlist_queue,
610                                            struct drm_i915_gem_request,
611                                            execlist_link);
612
613                 if (request->ctx == tail_req->ctx) {
614                         WARN(tail_req->elsp_submitted != 0,
615                                 "More than 2 already-submitted reqs queued\n");
616                         list_move_tail(&tail_req->execlist_link,
617                                        &engine->execlist_retired_req_list);
618                 }
619         }
620
621         list_add_tail(&request->execlist_link, &engine->execlist_queue);
622         if (num_elements == 0)
623                 execlists_context_unqueue(engine);
624
625         spin_unlock_bh(&engine->execlist_lock);
626 }
627
628 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
629 {
630         struct intel_engine_cs *engine = req->engine;
631         uint32_t flush_domains;
632         int ret;
633
634         flush_domains = 0;
635         if (engine->gpu_caches_dirty)
636                 flush_domains = I915_GEM_GPU_DOMAINS;
637
638         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
639         if (ret)
640                 return ret;
641
642         engine->gpu_caches_dirty = false;
643         return 0;
644 }
645
646 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
647                                  struct list_head *vmas)
648 {
649         const unsigned other_rings = ~intel_engine_flag(req->engine);
650         struct i915_vma *vma;
651         uint32_t flush_domains = 0;
652         bool flush_chipset = false;
653         int ret;
654
655         list_for_each_entry(vma, vmas, exec_list) {
656                 struct drm_i915_gem_object *obj = vma->obj;
657
658                 if (obj->active & other_rings) {
659                         ret = i915_gem_object_sync(obj, req->engine, &req);
660                         if (ret)
661                                 return ret;
662                 }
663
664                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
665                         flush_chipset |= i915_gem_clflush_object(obj, false);
666
667                 flush_domains |= obj->base.write_domain;
668         }
669
670         if (flush_domains & I915_GEM_DOMAIN_GTT)
671                 wmb();
672
673         /* Unconditionally invalidate gpu caches and ensure that we do flush
674          * any residual writes from the previous batch.
675          */
676         return logical_ring_invalidate_all_caches(req);
677 }
678
679 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
680 {
681         struct intel_engine_cs *engine = request->engine;
682         int ret;
683
684         /* Flush enough space to reduce the likelihood of waiting after
685          * we start building the request - in which case we will just
686          * have to repeat work.
687          */
688         request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
689
690         if (request->ctx->engine[engine->id].state == NULL) {
691                 ret = execlists_context_deferred_alloc(request->ctx, engine);
692                 if (ret)
693                         return ret;
694         }
695
696         request->ringbuf = request->ctx->engine[engine->id].ringbuf;
697
698         if (i915.enable_guc_submission) {
699                 /*
700                  * Check that the GuC has space for the request before
701                  * going any further, as the i915_add_request() call
702                  * later on mustn't fail ...
703                  */
704                 struct intel_guc *guc = &request->i915->guc;
705
706                 ret = i915_guc_wq_check_space(guc->execbuf_client);
707                 if (ret)
708                         return ret;
709         }
710
711         ret = intel_lr_context_pin(request->ctx, engine);
712         if (ret)
713                 return ret;
714
715         ret = intel_ring_begin(request, 0);
716         if (ret)
717                 goto err_unpin;
718
719         if (!request->ctx->engine[engine->id].initialised) {
720                 ret = engine->init_context(request);
721                 if (ret)
722                         goto err_unpin;
723
724                 request->ctx->engine[engine->id].initialised = true;
725         }
726
727         /* Note that after this point, we have committed to using
728          * this request as it is being used to both track the
729          * state of engine initialisation and liveness of the
730          * golden renderstate above. Think twice before you try
731          * to cancel/unwind this request now.
732          */
733
734         request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
735         return 0;
736
737 err_unpin:
738         intel_lr_context_unpin(request->ctx, engine);
739         return ret;
740 }
741
742 /*
743  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
744  * @request: Request to advance the logical ringbuffer of.
745  *
746  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
747  * really happens during submission is that the context and current tail will be placed
748  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
749  * point, the tail *inside* the context is updated and the ELSP written to.
750  */
751 static int
752 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
753 {
754         struct intel_ringbuffer *ringbuf = request->ringbuf;
755         struct drm_i915_private *dev_priv = request->i915;
756         struct intel_engine_cs *engine = request->engine;
757
758         intel_logical_ring_advance(ringbuf);
759         request->tail = ringbuf->tail;
760
761         /*
762          * Here we add two extra NOOPs as padding to avoid
763          * lite restore of a context with HEAD==TAIL.
764          *
765          * Caller must reserve WA_TAIL_DWORDS for us!
766          */
767         intel_logical_ring_emit(ringbuf, MI_NOOP);
768         intel_logical_ring_emit(ringbuf, MI_NOOP);
769         intel_logical_ring_advance(ringbuf);
770
771         if (intel_engine_stopped(engine))
772                 return 0;
773
774         /* We keep the previous context alive until we retire the following
775          * request. This ensures that any the context object is still pinned
776          * for any residual writes the HW makes into it on the context switch
777          * into the next object following the breadcrumb. Otherwise, we may
778          * retire the context too early.
779          */
780         request->previous_context = engine->last_context;
781         engine->last_context = request->ctx;
782
783         if (dev_priv->guc.execbuf_client)
784                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
785         else
786                 execlists_context_queue(request);
787
788         return 0;
789 }
790
791 /**
792  * execlists_submission() - submit a batchbuffer for execution, Execlists style
793  * @dev: DRM device.
794  * @file: DRM file.
795  * @ring: Engine Command Streamer to submit to.
796  * @ctx: Context to employ for this submission.
797  * @args: execbuffer call arguments.
798  * @vmas: list of vmas.
799  * @batch_obj: the batchbuffer to submit.
800  * @exec_start: batchbuffer start virtual address pointer.
801  * @dispatch_flags: translated execbuffer call flags.
802  *
803  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
804  * away the submission details of the execbuffer ioctl call.
805  *
806  * Return: non-zero if the submission fails.
807  */
808 int intel_execlists_submission(struct i915_execbuffer_params *params,
809                                struct drm_i915_gem_execbuffer2 *args,
810                                struct list_head *vmas)
811 {
812         struct drm_device       *dev = params->dev;
813         struct intel_engine_cs *engine = params->engine;
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
816         u64 exec_start;
817         int instp_mode;
818         u32 instp_mask;
819         int ret;
820
821         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
822         instp_mask = I915_EXEC_CONSTANTS_MASK;
823         switch (instp_mode) {
824         case I915_EXEC_CONSTANTS_REL_GENERAL:
825         case I915_EXEC_CONSTANTS_ABSOLUTE:
826         case I915_EXEC_CONSTANTS_REL_SURFACE:
827                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
828                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
829                         return -EINVAL;
830                 }
831
832                 if (instp_mode != dev_priv->relative_constants_mode) {
833                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
834                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
835                                 return -EINVAL;
836                         }
837
838                         /* The HW changed the meaning on this bit on gen6 */
839                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
840                 }
841                 break;
842         default:
843                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
844                 return -EINVAL;
845         }
846
847         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
848                 DRM_DEBUG("sol reset is gen7 only\n");
849                 return -EINVAL;
850         }
851
852         ret = execlists_move_to_gpu(params->request, vmas);
853         if (ret)
854                 return ret;
855
856         if (engine == &dev_priv->engine[RCS] &&
857             instp_mode != dev_priv->relative_constants_mode) {
858                 ret = intel_ring_begin(params->request, 4);
859                 if (ret)
860                         return ret;
861
862                 intel_logical_ring_emit(ringbuf, MI_NOOP);
863                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
864                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
865                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
866                 intel_logical_ring_advance(ringbuf);
867
868                 dev_priv->relative_constants_mode = instp_mode;
869         }
870
871         exec_start = params->batch_obj_vm_offset +
872                      args->batch_start_offset;
873
874         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
875         if (ret)
876                 return ret;
877
878         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
879
880         i915_gem_execbuffer_move_to_active(vmas, params->request);
881
882         return 0;
883 }
884
885 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
886 {
887         struct drm_i915_gem_request *req, *tmp;
888         struct list_head retired_list;
889
890         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
891         if (list_empty(&engine->execlist_retired_req_list))
892                 return;
893
894         INIT_LIST_HEAD(&retired_list);
895         spin_lock_bh(&engine->execlist_lock);
896         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
897         spin_unlock_bh(&engine->execlist_lock);
898
899         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
900                 intel_lr_context_unpin(req->ctx, engine);
901
902                 list_del(&req->execlist_link);
903                 i915_gem_request_unreference(req);
904         }
905 }
906
907 void intel_logical_ring_stop(struct intel_engine_cs *engine)
908 {
909         struct drm_i915_private *dev_priv = engine->dev->dev_private;
910         int ret;
911
912         if (!intel_engine_initialized(engine))
913                 return;
914
915         ret = intel_engine_idle(engine);
916         if (ret)
917                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
918                           engine->name, ret);
919
920         /* TODO: Is this correct with Execlists enabled? */
921         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
922         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
923                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
924                 return;
925         }
926         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
927 }
928
929 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
930 {
931         struct intel_engine_cs *engine = req->engine;
932         int ret;
933
934         if (!engine->gpu_caches_dirty)
935                 return 0;
936
937         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
938         if (ret)
939                 return ret;
940
941         engine->gpu_caches_dirty = false;
942         return 0;
943 }
944
945 static int intel_lr_context_pin(struct intel_context *ctx,
946                                 struct intel_engine_cs *engine)
947 {
948         struct drm_i915_private *dev_priv = ctx->i915;
949         struct drm_i915_gem_object *ctx_obj;
950         struct intel_ringbuffer *ringbuf;
951         void *vaddr;
952         u32 *lrc_reg_state;
953         int ret;
954
955         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
956
957         if (ctx->engine[engine->id].pin_count++)
958                 return 0;
959
960         ctx_obj = ctx->engine[engine->id].state;
961         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
962                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
963         if (ret)
964                 goto err;
965
966         vaddr = i915_gem_object_pin_map(ctx_obj);
967         if (IS_ERR(vaddr)) {
968                 ret = PTR_ERR(vaddr);
969                 goto unpin_ctx_obj;
970         }
971
972         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
973
974         ringbuf = ctx->engine[engine->id].ringbuf;
975         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976         if (ret)
977                 goto unpin_map;
978
979         i915_gem_context_reference(ctx);
980         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
981         intel_lr_context_descriptor_update(ctx, engine);
982         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
983         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
984         ctx_obj->dirty = true;
985
986         /* Invalidate GuC TLB. */
987         if (i915.enable_guc_submission)
988                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
989
990         return 0;
991
992 unpin_map:
993         i915_gem_object_unpin_map(ctx_obj);
994 unpin_ctx_obj:
995         i915_gem_object_ggtt_unpin(ctx_obj);
996 err:
997         ctx->engine[engine->id].pin_count = 0;
998         return ret;
999 }
1000
1001 void intel_lr_context_unpin(struct intel_context *ctx,
1002                             struct intel_engine_cs *engine)
1003 {
1004         struct drm_i915_gem_object *ctx_obj;
1005
1006         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1007         GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1008
1009         if (--ctx->engine[engine->id].pin_count)
1010                 return;
1011
1012         intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1013
1014         ctx_obj = ctx->engine[engine->id].state;
1015         i915_gem_object_unpin_map(ctx_obj);
1016         i915_gem_object_ggtt_unpin(ctx_obj);
1017
1018         ctx->engine[engine->id].lrc_vma = NULL;
1019         ctx->engine[engine->id].lrc_desc = 0;
1020         ctx->engine[engine->id].lrc_reg_state = NULL;
1021
1022         i915_gem_context_unreference(ctx);
1023 }
1024
1025 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1026 {
1027         int ret, i;
1028         struct intel_engine_cs *engine = req->engine;
1029         struct intel_ringbuffer *ringbuf = req->ringbuf;
1030         struct drm_device *dev = engine->dev;
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         struct i915_workarounds *w = &dev_priv->workarounds;
1033
1034         if (w->count == 0)
1035                 return 0;
1036
1037         engine->gpu_caches_dirty = true;
1038         ret = logical_ring_flush_all_caches(req);
1039         if (ret)
1040                 return ret;
1041
1042         ret = intel_ring_begin(req, w->count * 2 + 2);
1043         if (ret)
1044                 return ret;
1045
1046         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1047         for (i = 0; i < w->count; i++) {
1048                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1049                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1050         }
1051         intel_logical_ring_emit(ringbuf, MI_NOOP);
1052
1053         intel_logical_ring_advance(ringbuf);
1054
1055         engine->gpu_caches_dirty = true;
1056         ret = logical_ring_flush_all_caches(req);
1057         if (ret)
1058                 return ret;
1059
1060         return 0;
1061 }
1062
1063 #define wa_ctx_emit(batch, index, cmd)                                  \
1064         do {                                                            \
1065                 int __index = (index)++;                                \
1066                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1067                         return -ENOSPC;                                 \
1068                 }                                                       \
1069                 batch[__index] = (cmd);                                 \
1070         } while (0)
1071
1072 #define wa_ctx_emit_reg(batch, index, reg) \
1073         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1074
1075 /*
1076  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1077  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1078  * but there is a slight complication as this is applied in WA batch where the
1079  * values are only initialized once so we cannot take register value at the
1080  * beginning and reuse it further; hence we save its value to memory, upload a
1081  * constant value with bit21 set and then we restore it back with the saved value.
1082  * To simplify the WA, a constant value is formed by using the default value
1083  * of this register. This shouldn't be a problem because we are only modifying
1084  * it for a short period and this batch in non-premptible. We can ofcourse
1085  * use additional instructions that read the actual value of the register
1086  * at that time and set our bit of interest but it makes the WA complicated.
1087  *
1088  * This WA is also required for Gen9 so extracting as a function avoids
1089  * code duplication.
1090  */
1091 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1092                                                 uint32_t *const batch,
1093                                                 uint32_t index)
1094 {
1095         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1096
1097         /*
1098          * WaDisableLSQCROPERFforOCL:skl
1099          * This WA is implemented in skl_init_clock_gating() but since
1100          * this batch updates GEN8_L3SQCREG4 with default value we need to
1101          * set this bit here to retain the WA during flush.
1102          */
1103         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1104                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1105
1106         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1107                                    MI_SRM_LRM_GLOBAL_GTT));
1108         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1109         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1110         wa_ctx_emit(batch, index, 0);
1111
1112         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1113         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1114         wa_ctx_emit(batch, index, l3sqc4_flush);
1115
1116         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1117         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1118                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1119         wa_ctx_emit(batch, index, 0);
1120         wa_ctx_emit(batch, index, 0);
1121         wa_ctx_emit(batch, index, 0);
1122         wa_ctx_emit(batch, index, 0);
1123
1124         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1125                                    MI_SRM_LRM_GLOBAL_GTT));
1126         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1128         wa_ctx_emit(batch, index, 0);
1129
1130         return index;
1131 }
1132
1133 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1134                                     uint32_t offset,
1135                                     uint32_t start_alignment)
1136 {
1137         return wa_ctx->offset = ALIGN(offset, start_alignment);
1138 }
1139
1140 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1141                              uint32_t offset,
1142                              uint32_t size_alignment)
1143 {
1144         wa_ctx->size = offset - wa_ctx->offset;
1145
1146         WARN(wa_ctx->size % size_alignment,
1147              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1148              wa_ctx->size, size_alignment);
1149         return 0;
1150 }
1151
1152 /**
1153  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1154  *
1155  * @ring: only applicable for RCS
1156  * @wa_ctx: structure representing wa_ctx
1157  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1158  *    with the offset value received as input.
1159  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1160  * @batch: page in which WA are loaded
1161  * @offset: This field specifies the start of the batch, it should be
1162  *  cache-aligned otherwise it is adjusted accordingly.
1163  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1164  *  initialized at the beginning and shared across all contexts but this field
1165  *  helps us to have multiple batches at different offsets and select them based
1166  *  on a criteria. At the moment this batch always start at the beginning of the page
1167  *  and at this point we don't have multiple wa_ctx batch buffers.
1168  *
1169  *  The number of WA applied are not known at the beginning; we use this field
1170  *  to return the no of DWORDS written.
1171  *
1172  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1173  *  so it adds NOOPs as padding to make it cacheline aligned.
1174  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1175  *  makes a complete batch buffer.
1176  *
1177  * Return: non-zero if we exceed the PAGE_SIZE limit.
1178  */
1179
1180 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1181                                     struct i915_wa_ctx_bb *wa_ctx,
1182                                     uint32_t *const batch,
1183                                     uint32_t *offset)
1184 {
1185         uint32_t scratch_addr;
1186         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1187
1188         /* WaDisableCtxRestoreArbitration:bdw,chv */
1189         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1190
1191         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1192         if (IS_BROADWELL(engine->dev)) {
1193                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1194                 if (rc < 0)
1195                         return rc;
1196                 index = rc;
1197         }
1198
1199         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1200         /* Actual scratch location is at 128 bytes offset */
1201         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1202
1203         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1204         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1205                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1206                                    PIPE_CONTROL_CS_STALL |
1207                                    PIPE_CONTROL_QW_WRITE));
1208         wa_ctx_emit(batch, index, scratch_addr);
1209         wa_ctx_emit(batch, index, 0);
1210         wa_ctx_emit(batch, index, 0);
1211         wa_ctx_emit(batch, index, 0);
1212
1213         /* Pad to end of cacheline */
1214         while (index % CACHELINE_DWORDS)
1215                 wa_ctx_emit(batch, index, MI_NOOP);
1216
1217         /*
1218          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1219          * execution depends on the length specified in terms of cache lines
1220          * in the register CTX_RCS_INDIRECT_CTX
1221          */
1222
1223         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1224 }
1225
1226 /**
1227  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1228  *
1229  * @ring: only applicable for RCS
1230  * @wa_ctx: structure representing wa_ctx
1231  *  offset: specifies start of the batch, should be cache-aligned.
1232  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1233  * @batch: page in which WA are loaded
1234  * @offset: This field specifies the start of this batch.
1235  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1236  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1237  *
1238  *   The number of DWORDS written are returned using this field.
1239  *
1240  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1241  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1242  */
1243 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1244                                struct i915_wa_ctx_bb *wa_ctx,
1245                                uint32_t *const batch,
1246                                uint32_t *offset)
1247 {
1248         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1249
1250         /* WaDisableCtxRestoreArbitration:bdw,chv */
1251         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1252
1253         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1254
1255         return wa_ctx_end(wa_ctx, *offset = index, 1);
1256 }
1257
1258 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1259                                     struct i915_wa_ctx_bb *wa_ctx,
1260                                     uint32_t *const batch,
1261                                     uint32_t *offset)
1262 {
1263         int ret;
1264         struct drm_device *dev = engine->dev;
1265         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1266
1267         /* WaDisableCtxRestoreArbitration:skl,bxt */
1268         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1269             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1270                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1271
1272         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1273         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1274         if (ret < 0)
1275                 return ret;
1276         index = ret;
1277
1278         /* Pad to end of cacheline */
1279         while (index % CACHELINE_DWORDS)
1280                 wa_ctx_emit(batch, index, MI_NOOP);
1281
1282         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1283 }
1284
1285 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1286                                struct i915_wa_ctx_bb *wa_ctx,
1287                                uint32_t *const batch,
1288                                uint32_t *offset)
1289 {
1290         struct drm_device *dev = engine->dev;
1291         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1292
1293         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1294         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1295             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1296                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1297                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1298                 wa_ctx_emit(batch, index,
1299                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1300                 wa_ctx_emit(batch, index, MI_NOOP);
1301         }
1302
1303         /* WaClearTdlStateAckDirtyBits:bxt */
1304         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1305                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1306
1307                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1308                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1309
1310                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1311                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1312
1313                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1314                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1315
1316                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1317                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1318                 wa_ctx_emit(batch, index, 0x0);
1319                 wa_ctx_emit(batch, index, MI_NOOP);
1320         }
1321
1322         /* WaDisableCtxRestoreArbitration:skl,bxt */
1323         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1324             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1325                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1326
1327         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1328
1329         return wa_ctx_end(wa_ctx, *offset = index, 1);
1330 }
1331
1332 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1333 {
1334         int ret;
1335
1336         engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1337                                                    PAGE_ALIGN(size));
1338         if (IS_ERR(engine->wa_ctx.obj)) {
1339                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1340                 ret = PTR_ERR(engine->wa_ctx.obj);
1341                 engine->wa_ctx.obj = NULL;
1342                 return ret;
1343         }
1344
1345         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1346         if (ret) {
1347                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1348                                  ret);
1349                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1350                 return ret;
1351         }
1352
1353         return 0;
1354 }
1355
1356 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1357 {
1358         if (engine->wa_ctx.obj) {
1359                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1360                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1361                 engine->wa_ctx.obj = NULL;
1362         }
1363 }
1364
1365 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1366 {
1367         int ret;
1368         uint32_t *batch;
1369         uint32_t offset;
1370         struct page *page;
1371         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1372
1373         WARN_ON(engine->id != RCS);
1374
1375         /* update this when WA for higher Gen are added */
1376         if (INTEL_INFO(engine->dev)->gen > 9) {
1377                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1378                           INTEL_INFO(engine->dev)->gen);
1379                 return 0;
1380         }
1381
1382         /* some WA perform writes to scratch page, ensure it is valid */
1383         if (engine->scratch.obj == NULL) {
1384                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1385                 return -EINVAL;
1386         }
1387
1388         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1389         if (ret) {
1390                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1391                 return ret;
1392         }
1393
1394         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1395         batch = kmap_atomic(page);
1396         offset = 0;
1397
1398         if (INTEL_INFO(engine->dev)->gen == 8) {
1399                 ret = gen8_init_indirectctx_bb(engine,
1400                                                &wa_ctx->indirect_ctx,
1401                                                batch,
1402                                                &offset);
1403                 if (ret)
1404                         goto out;
1405
1406                 ret = gen8_init_perctx_bb(engine,
1407                                           &wa_ctx->per_ctx,
1408                                           batch,
1409                                           &offset);
1410                 if (ret)
1411                         goto out;
1412         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1413                 ret = gen9_init_indirectctx_bb(engine,
1414                                                &wa_ctx->indirect_ctx,
1415                                                batch,
1416                                                &offset);
1417                 if (ret)
1418                         goto out;
1419
1420                 ret = gen9_init_perctx_bb(engine,
1421                                           &wa_ctx->per_ctx,
1422                                           batch,
1423                                           &offset);
1424                 if (ret)
1425                         goto out;
1426         }
1427
1428 out:
1429         kunmap_atomic(batch);
1430         if (ret)
1431                 lrc_destroy_wa_ctx_obj(engine);
1432
1433         return ret;
1434 }
1435
1436 static void lrc_init_hws(struct intel_engine_cs *engine)
1437 {
1438         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1439
1440         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1441                    (u32)engine->status_page.gfx_addr);
1442         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1443 }
1444
1445 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1446 {
1447         struct drm_device *dev = engine->dev;
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         unsigned int next_context_status_buffer_hw;
1450
1451         lrc_init_hws(engine);
1452
1453         I915_WRITE_IMR(engine,
1454                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1455         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1456
1457         I915_WRITE(RING_MODE_GEN7(engine),
1458                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1459                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1460         POSTING_READ(RING_MODE_GEN7(engine));
1461
1462         /*
1463          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1464          * zero, we need to read the write pointer from hardware and use its
1465          * value because "this register is power context save restored".
1466          * Effectively, these states have been observed:
1467          *
1468          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1469          * BDW  | CSB regs not reset       | CSB regs reset       |
1470          * CHT  | CSB regs not reset       | CSB regs not reset   |
1471          * SKL  |         ?                |         ?            |
1472          * BXT  |         ?                |         ?            |
1473          */
1474         next_context_status_buffer_hw =
1475                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1476
1477         /*
1478          * When the CSB registers are reset (also after power-up / gpu reset),
1479          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1480          * this special case, so the first element read is CSB[0].
1481          */
1482         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1483                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1484
1485         engine->next_context_status_buffer = next_context_status_buffer_hw;
1486         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1487
1488         intel_engine_init_hangcheck(engine);
1489
1490         return intel_mocs_init_engine(engine);
1491 }
1492
1493 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1494 {
1495         struct drm_device *dev = engine->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         int ret;
1498
1499         ret = gen8_init_common_ring(engine);
1500         if (ret)
1501                 return ret;
1502
1503         /* We need to disable the AsyncFlip performance optimisations in order
1504          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1505          * programmed to '1' on all products.
1506          *
1507          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1508          */
1509         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1510
1511         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1512
1513         return init_workarounds_ring(engine);
1514 }
1515
1516 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1517 {
1518         int ret;
1519
1520         ret = gen8_init_common_ring(engine);
1521         if (ret)
1522                 return ret;
1523
1524         return init_workarounds_ring(engine);
1525 }
1526
1527 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1528 {
1529         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1530         struct intel_engine_cs *engine = req->engine;
1531         struct intel_ringbuffer *ringbuf = req->ringbuf;
1532         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1533         int i, ret;
1534
1535         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1536         if (ret)
1537                 return ret;
1538
1539         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1540         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1541                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1542
1543                 intel_logical_ring_emit_reg(ringbuf,
1544                                             GEN8_RING_PDP_UDW(engine, i));
1545                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1546                 intel_logical_ring_emit_reg(ringbuf,
1547                                             GEN8_RING_PDP_LDW(engine, i));
1548                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1549         }
1550
1551         intel_logical_ring_emit(ringbuf, MI_NOOP);
1552         intel_logical_ring_advance(ringbuf);
1553
1554         return 0;
1555 }
1556
1557 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1558                               u64 offset, unsigned dispatch_flags)
1559 {
1560         struct intel_ringbuffer *ringbuf = req->ringbuf;
1561         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1562         int ret;
1563
1564         /* Don't rely in hw updating PDPs, specially in lite-restore.
1565          * Ideally, we should set Force PD Restore in ctx descriptor,
1566          * but we can't. Force Restore would be a second option, but
1567          * it is unsafe in case of lite-restore (because the ctx is
1568          * not idle). PML4 is allocated during ppgtt init so this is
1569          * not needed in 48-bit.*/
1570         if (req->ctx->ppgtt &&
1571             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1572                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1573                     !intel_vgpu_active(req->i915->dev)) {
1574                         ret = intel_logical_ring_emit_pdps(req);
1575                         if (ret)
1576                                 return ret;
1577                 }
1578
1579                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1580         }
1581
1582         ret = intel_ring_begin(req, 4);
1583         if (ret)
1584                 return ret;
1585
1586         /* FIXME(BDW): Address space and security selectors. */
1587         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1588                                 (ppgtt<<8) |
1589                                 (dispatch_flags & I915_DISPATCH_RS ?
1590                                  MI_BATCH_RESOURCE_STREAMER : 0));
1591         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1592         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1593         intel_logical_ring_emit(ringbuf, MI_NOOP);
1594         intel_logical_ring_advance(ringbuf);
1595
1596         return 0;
1597 }
1598
1599 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1600 {
1601         struct drm_device *dev = engine->dev;
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         unsigned long flags;
1604
1605         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1606                 return false;
1607
1608         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609         if (engine->irq_refcount++ == 0) {
1610                 I915_WRITE_IMR(engine,
1611                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1612                 POSTING_READ(RING_IMR(engine->mmio_base));
1613         }
1614         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1615
1616         return true;
1617 }
1618
1619 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1620 {
1621         struct drm_device *dev = engine->dev;
1622         struct drm_i915_private *dev_priv = dev->dev_private;
1623         unsigned long flags;
1624
1625         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626         if (--engine->irq_refcount == 0) {
1627                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1628                 POSTING_READ(RING_IMR(engine->mmio_base));
1629         }
1630         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1631 }
1632
1633 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1634                            u32 invalidate_domains,
1635                            u32 unused)
1636 {
1637         struct intel_ringbuffer *ringbuf = request->ringbuf;
1638         struct intel_engine_cs *engine = ringbuf->engine;
1639         struct drm_device *dev = engine->dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         uint32_t cmd;
1642         int ret;
1643
1644         ret = intel_ring_begin(request, 4);
1645         if (ret)
1646                 return ret;
1647
1648         cmd = MI_FLUSH_DW + 1;
1649
1650         /* We always require a command barrier so that subsequent
1651          * commands, such as breadcrumb interrupts, are strictly ordered
1652          * wrt the contents of the write cache being flushed to memory
1653          * (and thus being coherent from the CPU).
1654          */
1655         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1656
1657         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1658                 cmd |= MI_INVALIDATE_TLB;
1659                 if (engine == &dev_priv->engine[VCS])
1660                         cmd |= MI_INVALIDATE_BSD;
1661         }
1662
1663         intel_logical_ring_emit(ringbuf, cmd);
1664         intel_logical_ring_emit(ringbuf,
1665                                 I915_GEM_HWS_SCRATCH_ADDR |
1666                                 MI_FLUSH_DW_USE_GTT);
1667         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1668         intel_logical_ring_emit(ringbuf, 0); /* value */
1669         intel_logical_ring_advance(ringbuf);
1670
1671         return 0;
1672 }
1673
1674 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1675                                   u32 invalidate_domains,
1676                                   u32 flush_domains)
1677 {
1678         struct intel_ringbuffer *ringbuf = request->ringbuf;
1679         struct intel_engine_cs *engine = ringbuf->engine;
1680         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1681         bool vf_flush_wa = false;
1682         u32 flags = 0;
1683         int ret;
1684
1685         flags |= PIPE_CONTROL_CS_STALL;
1686
1687         if (flush_domains) {
1688                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1689                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1690                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1691                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1692         }
1693
1694         if (invalidate_domains) {
1695                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1696                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1697                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1698                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1699                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1700                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1701                 flags |= PIPE_CONTROL_QW_WRITE;
1702                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1703
1704                 /*
1705                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1706                  * pipe control.
1707                  */
1708                 if (IS_GEN9(engine->dev))
1709                         vf_flush_wa = true;
1710         }
1711
1712         ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1713         if (ret)
1714                 return ret;
1715
1716         if (vf_flush_wa) {
1717                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1718                 intel_logical_ring_emit(ringbuf, 0);
1719                 intel_logical_ring_emit(ringbuf, 0);
1720                 intel_logical_ring_emit(ringbuf, 0);
1721                 intel_logical_ring_emit(ringbuf, 0);
1722                 intel_logical_ring_emit(ringbuf, 0);
1723         }
1724
1725         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1726         intel_logical_ring_emit(ringbuf, flags);
1727         intel_logical_ring_emit(ringbuf, scratch_addr);
1728         intel_logical_ring_emit(ringbuf, 0);
1729         intel_logical_ring_emit(ringbuf, 0);
1730         intel_logical_ring_emit(ringbuf, 0);
1731         intel_logical_ring_advance(ringbuf);
1732
1733         return 0;
1734 }
1735
1736 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1737 {
1738         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1739 }
1740
1741 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1742 {
1743         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1744 }
1745
1746 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1747 {
1748         /*
1749          * On BXT A steppings there is a HW coherency issue whereby the
1750          * MI_STORE_DATA_IMM storing the completed request's seqno
1751          * occasionally doesn't invalidate the CPU cache. Work around this by
1752          * clflushing the corresponding cacheline whenever the caller wants
1753          * the coherency to be guaranteed. Note that this cacheline is known
1754          * to be clean at this point, since we only write it in
1755          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1756          * this clflush in practice becomes an invalidate operation.
1757          */
1758         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1759 }
1760
1761 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1762 {
1763         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1764
1765         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1766         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1767 }
1768
1769 /*
1770  * Reserve space for 2 NOOPs at the end of each request to be
1771  * used as a workaround for not being allowed to do lite
1772  * restore with HEAD==TAIL (WaIdleLiteRestore).
1773  */
1774 #define WA_TAIL_DWORDS 2
1775
1776 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1777 {
1778         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1779 }
1780
1781 static int gen8_emit_request(struct drm_i915_gem_request *request)
1782 {
1783         struct intel_ringbuffer *ringbuf = request->ringbuf;
1784         int ret;
1785
1786         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1787         if (ret)
1788                 return ret;
1789
1790         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1791         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1792
1793         intel_logical_ring_emit(ringbuf,
1794                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1795         intel_logical_ring_emit(ringbuf,
1796                                 hws_seqno_address(request->engine) |
1797                                 MI_FLUSH_DW_USE_GTT);
1798         intel_logical_ring_emit(ringbuf, 0);
1799         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1800         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1801         intel_logical_ring_emit(ringbuf, MI_NOOP);
1802         return intel_logical_ring_advance_and_submit(request);
1803 }
1804
1805 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1806 {
1807         struct intel_ringbuffer *ringbuf = request->ringbuf;
1808         int ret;
1809
1810         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1811         if (ret)
1812                 return ret;
1813
1814         /* We're using qword write, seqno should be aligned to 8 bytes. */
1815         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1816
1817         /* w/a for post sync ops following a GPGPU operation we
1818          * need a prior CS_STALL, which is emitted by the flush
1819          * following the batch.
1820          */
1821         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1822         intel_logical_ring_emit(ringbuf,
1823                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1824                                  PIPE_CONTROL_CS_STALL |
1825                                  PIPE_CONTROL_QW_WRITE));
1826         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1827         intel_logical_ring_emit(ringbuf, 0);
1828         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1829         /* We're thrashing one dword of HWS. */
1830         intel_logical_ring_emit(ringbuf, 0);
1831         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1832         intel_logical_ring_emit(ringbuf, MI_NOOP);
1833         return intel_logical_ring_advance_and_submit(request);
1834 }
1835
1836 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1837 {
1838         struct render_state so;
1839         int ret;
1840
1841         ret = i915_gem_render_state_prepare(req->engine, &so);
1842         if (ret)
1843                 return ret;
1844
1845         if (so.rodata == NULL)
1846                 return 0;
1847
1848         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1849                                        I915_DISPATCH_SECURE);
1850         if (ret)
1851                 goto out;
1852
1853         ret = req->engine->emit_bb_start(req,
1854                                        (so.ggtt_offset + so.aux_batch_offset),
1855                                        I915_DISPATCH_SECURE);
1856         if (ret)
1857                 goto out;
1858
1859         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1860
1861 out:
1862         i915_gem_render_state_fini(&so);
1863         return ret;
1864 }
1865
1866 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1867 {
1868         int ret;
1869
1870         ret = intel_logical_ring_workarounds_emit(req);
1871         if (ret)
1872                 return ret;
1873
1874         ret = intel_rcs_context_init_mocs(req);
1875         /*
1876          * Failing to program the MOCS is non-fatal.The system will not
1877          * run at peak performance. So generate an error and carry on.
1878          */
1879         if (ret)
1880                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1881
1882         return intel_lr_context_render_state_init(req);
1883 }
1884
1885 /**
1886  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1887  *
1888  * @ring: Engine Command Streamer.
1889  *
1890  */
1891 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1892 {
1893         struct drm_i915_private *dev_priv;
1894
1895         if (!intel_engine_initialized(engine))
1896                 return;
1897
1898         /*
1899          * Tasklet cannot be active at this point due intel_mark_active/idle
1900          * so this is just for documentation.
1901          */
1902         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1903                 tasklet_kill(&engine->irq_tasklet);
1904
1905         dev_priv = engine->dev->dev_private;
1906
1907         if (engine->buffer) {
1908                 intel_logical_ring_stop(engine);
1909                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1910         }
1911
1912         if (engine->cleanup)
1913                 engine->cleanup(engine);
1914
1915         i915_cmd_parser_fini_ring(engine);
1916         i915_gem_batch_pool_fini(&engine->batch_pool);
1917
1918         if (engine->status_page.obj) {
1919                 i915_gem_object_unpin_map(engine->status_page.obj);
1920                 engine->status_page.obj = NULL;
1921         }
1922         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1923
1924         engine->idle_lite_restore_wa = 0;
1925         engine->disable_lite_restore_wa = false;
1926         engine->ctx_desc_template = 0;
1927
1928         lrc_destroy_wa_ctx_obj(engine);
1929         engine->dev = NULL;
1930 }
1931
1932 static void
1933 logical_ring_default_vfuncs(struct drm_device *dev,
1934                             struct intel_engine_cs *engine)
1935 {
1936         /* Default vfuncs which can be overriden by each engine. */
1937         engine->init_hw = gen8_init_common_ring;
1938         engine->emit_request = gen8_emit_request;
1939         engine->emit_flush = gen8_emit_flush;
1940         engine->irq_get = gen8_logical_ring_get_irq;
1941         engine->irq_put = gen8_logical_ring_put_irq;
1942         engine->emit_bb_start = gen8_emit_bb_start;
1943         engine->get_seqno = gen8_get_seqno;
1944         engine->set_seqno = gen8_set_seqno;
1945         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1946                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1947                 engine->set_seqno = bxt_a_set_seqno;
1948         }
1949 }
1950
1951 static inline void
1952 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1953 {
1954         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1955         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1956 }
1957
1958 static int
1959 lrc_setup_hws(struct intel_engine_cs *engine,
1960               struct drm_i915_gem_object *dctx_obj)
1961 {
1962         void *hws;
1963
1964         /* The HWSP is part of the default context object in LRC mode. */
1965         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1966                                        LRC_PPHWSP_PN * PAGE_SIZE;
1967         hws = i915_gem_object_pin_map(dctx_obj);
1968         if (IS_ERR(hws))
1969                 return PTR_ERR(hws);
1970         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1971         engine->status_page.obj = dctx_obj;
1972
1973         return 0;
1974 }
1975
1976 static int
1977 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1978 {
1979         struct drm_i915_private *dev_priv = to_i915(dev);
1980         struct intel_context *dctx = dev_priv->kernel_context;
1981         enum forcewake_domains fw_domains;
1982         int ret;
1983
1984         /* Intentionally left blank. */
1985         engine->buffer = NULL;
1986
1987         engine->dev = dev;
1988         INIT_LIST_HEAD(&engine->active_list);
1989         INIT_LIST_HEAD(&engine->request_list);
1990         i915_gem_batch_pool_init(dev, &engine->batch_pool);
1991         init_waitqueue_head(&engine->irq_queue);
1992
1993         INIT_LIST_HEAD(&engine->buffers);
1994         INIT_LIST_HEAD(&engine->execlist_queue);
1995         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1996         spin_lock_init(&engine->execlist_lock);
1997
1998         tasklet_init(&engine->irq_tasklet,
1999                      intel_lrc_irq_handler, (unsigned long)engine);
2000
2001         logical_ring_init_platform_invariants(engine);
2002
2003         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2004                                                     RING_ELSP(engine),
2005                                                     FW_REG_WRITE);
2006
2007         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2008                                                      RING_CONTEXT_STATUS_PTR(engine),
2009                                                      FW_REG_READ | FW_REG_WRITE);
2010
2011         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2012                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2013                                                      FW_REG_READ);
2014
2015         engine->fw_domains = fw_domains;
2016
2017         ret = i915_cmd_parser_init_ring(engine);
2018         if (ret)
2019                 goto error;
2020
2021         ret = execlists_context_deferred_alloc(dctx, engine);
2022         if (ret)
2023                 goto error;
2024
2025         /* As this is the default context, always pin it */
2026         ret = intel_lr_context_pin(dctx, engine);
2027         if (ret) {
2028                 DRM_ERROR("Failed to pin context for %s: %d\n",
2029                           engine->name, ret);
2030                 goto error;
2031         }
2032
2033         /* And setup the hardware status page. */
2034         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2035         if (ret) {
2036                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2037                 goto error;
2038         }
2039
2040         return 0;
2041
2042 error:
2043         intel_logical_ring_cleanup(engine);
2044         return ret;
2045 }
2046
2047 static int logical_render_ring_init(struct drm_device *dev)
2048 {
2049         struct drm_i915_private *dev_priv = dev->dev_private;
2050         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2051         int ret;
2052
2053         engine->name = "render ring";
2054         engine->id = RCS;
2055         engine->exec_id = I915_EXEC_RENDER;
2056         engine->guc_id = GUC_RENDER_ENGINE;
2057         engine->mmio_base = RENDER_RING_BASE;
2058
2059         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2060         if (HAS_L3_DPF(dev))
2061                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2062
2063         logical_ring_default_vfuncs(dev, engine);
2064
2065         /* Override some for render ring. */
2066         if (INTEL_INFO(dev)->gen >= 9)
2067                 engine->init_hw = gen9_init_render_ring;
2068         else
2069                 engine->init_hw = gen8_init_render_ring;
2070         engine->init_context = gen8_init_rcs_context;
2071         engine->cleanup = intel_fini_pipe_control;
2072         engine->emit_flush = gen8_emit_flush_render;
2073         engine->emit_request = gen8_emit_request_render;
2074
2075         engine->dev = dev;
2076
2077         ret = intel_init_pipe_control(engine);
2078         if (ret)
2079                 return ret;
2080
2081         ret = intel_init_workaround_bb(engine);
2082         if (ret) {
2083                 /*
2084                  * We continue even if we fail to initialize WA batch
2085                  * because we only expect rare glitches but nothing
2086                  * critical to prevent us from using GPU
2087                  */
2088                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2089                           ret);
2090         }
2091
2092         ret = logical_ring_init(dev, engine);
2093         if (ret) {
2094                 lrc_destroy_wa_ctx_obj(engine);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static int logical_bsd_ring_init(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2104
2105         engine->name = "bsd ring";
2106         engine->id = VCS;
2107         engine->exec_id = I915_EXEC_BSD;
2108         engine->guc_id = GUC_VIDEO_ENGINE;
2109         engine->mmio_base = GEN6_BSD_RING_BASE;
2110
2111         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2112         logical_ring_default_vfuncs(dev, engine);
2113
2114         return logical_ring_init(dev, engine);
2115 }
2116
2117 static int logical_bsd2_ring_init(struct drm_device *dev)
2118 {
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2121
2122         engine->name = "bsd2 ring";
2123         engine->id = VCS2;
2124         engine->exec_id = I915_EXEC_BSD;
2125         engine->guc_id = GUC_VIDEO_ENGINE2;
2126         engine->mmio_base = GEN8_BSD2_RING_BASE;
2127
2128         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2129         logical_ring_default_vfuncs(dev, engine);
2130
2131         return logical_ring_init(dev, engine);
2132 }
2133
2134 static int logical_blt_ring_init(struct drm_device *dev)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2138
2139         engine->name = "blitter ring";
2140         engine->id = BCS;
2141         engine->exec_id = I915_EXEC_BLT;
2142         engine->guc_id = GUC_BLITTER_ENGINE;
2143         engine->mmio_base = BLT_RING_BASE;
2144
2145         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2146         logical_ring_default_vfuncs(dev, engine);
2147
2148         return logical_ring_init(dev, engine);
2149 }
2150
2151 static int logical_vebox_ring_init(struct drm_device *dev)
2152 {
2153         struct drm_i915_private *dev_priv = dev->dev_private;
2154         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2155
2156         engine->name = "video enhancement ring";
2157         engine->id = VECS;
2158         engine->exec_id = I915_EXEC_VEBOX;
2159         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2160         engine->mmio_base = VEBOX_RING_BASE;
2161
2162         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2163         logical_ring_default_vfuncs(dev, engine);
2164
2165         return logical_ring_init(dev, engine);
2166 }
2167
2168 /**
2169  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2170  * @dev: DRM device.
2171  *
2172  * This function inits the engines for an Execlists submission style (the equivalent in the
2173  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2174  * those engines that are present in the hardware.
2175  *
2176  * Return: non-zero if the initialization failed.
2177  */
2178 int intel_logical_rings_init(struct drm_device *dev)
2179 {
2180         struct drm_i915_private *dev_priv = dev->dev_private;
2181         int ret;
2182
2183         ret = logical_render_ring_init(dev);
2184         if (ret)
2185                 return ret;
2186
2187         if (HAS_BSD(dev)) {
2188                 ret = logical_bsd_ring_init(dev);
2189                 if (ret)
2190                         goto cleanup_render_ring;
2191         }
2192
2193         if (HAS_BLT(dev)) {
2194                 ret = logical_blt_ring_init(dev);
2195                 if (ret)
2196                         goto cleanup_bsd_ring;
2197         }
2198
2199         if (HAS_VEBOX(dev)) {
2200                 ret = logical_vebox_ring_init(dev);
2201                 if (ret)
2202                         goto cleanup_blt_ring;
2203         }
2204
2205         if (HAS_BSD2(dev)) {
2206                 ret = logical_bsd2_ring_init(dev);
2207                 if (ret)
2208                         goto cleanup_vebox_ring;
2209         }
2210
2211         return 0;
2212
2213 cleanup_vebox_ring:
2214         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2215 cleanup_blt_ring:
2216         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2217 cleanup_bsd_ring:
2218         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2219 cleanup_render_ring:
2220         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2221
2222         return ret;
2223 }
2224
2225 static u32
2226 make_rpcs(struct drm_device *dev)
2227 {
2228         u32 rpcs = 0;
2229
2230         /*
2231          * No explicit RPCS request is needed to ensure full
2232          * slice/subslice/EU enablement prior to Gen9.
2233         */
2234         if (INTEL_INFO(dev)->gen < 9)
2235                 return 0;
2236
2237         /*
2238          * Starting in Gen9, render power gating can leave
2239          * slice/subslice/EU in a partially enabled state. We
2240          * must make an explicit request through RPCS for full
2241          * enablement.
2242         */
2243         if (INTEL_INFO(dev)->has_slice_pg) {
2244                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2245                 rpcs |= INTEL_INFO(dev)->slice_total <<
2246                         GEN8_RPCS_S_CNT_SHIFT;
2247                 rpcs |= GEN8_RPCS_ENABLE;
2248         }
2249
2250         if (INTEL_INFO(dev)->has_subslice_pg) {
2251                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2252                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2253                         GEN8_RPCS_SS_CNT_SHIFT;
2254                 rpcs |= GEN8_RPCS_ENABLE;
2255         }
2256
2257         if (INTEL_INFO(dev)->has_eu_pg) {
2258                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2259                         GEN8_RPCS_EU_MIN_SHIFT;
2260                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2261                         GEN8_RPCS_EU_MAX_SHIFT;
2262                 rpcs |= GEN8_RPCS_ENABLE;
2263         }
2264
2265         return rpcs;
2266 }
2267
2268 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2269 {
2270         u32 indirect_ctx_offset;
2271
2272         switch (INTEL_INFO(engine->dev)->gen) {
2273         default:
2274                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2275                 /* fall through */
2276         case 9:
2277                 indirect_ctx_offset =
2278                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2279                 break;
2280         case 8:
2281                 indirect_ctx_offset =
2282                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2283                 break;
2284         }
2285
2286         return indirect_ctx_offset;
2287 }
2288
2289 static int
2290 populate_lr_context(struct intel_context *ctx,
2291                     struct drm_i915_gem_object *ctx_obj,
2292                     struct intel_engine_cs *engine,
2293                     struct intel_ringbuffer *ringbuf)
2294 {
2295         struct drm_device *dev = engine->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2298         void *vaddr;
2299         u32 *reg_state;
2300         int ret;
2301
2302         if (!ppgtt)
2303                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2304
2305         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2306         if (ret) {
2307                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2308                 return ret;
2309         }
2310
2311         vaddr = i915_gem_object_pin_map(ctx_obj);
2312         if (IS_ERR(vaddr)) {
2313                 ret = PTR_ERR(vaddr);
2314                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2315                 return ret;
2316         }
2317         ctx_obj->dirty = true;
2318
2319         /* The second page of the context object contains some fields which must
2320          * be set up prior to the first execution. */
2321         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2322
2323         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2324          * commands followed by (reg, value) pairs. The values we are setting here are
2325          * only for the first context restore: on a subsequent save, the GPU will
2326          * recreate this batchbuffer with new values (including all the missing
2327          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2328         reg_state[CTX_LRI_HEADER_0] =
2329                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2330         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2331                        RING_CONTEXT_CONTROL(engine),
2332                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2333                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2334                                           (HAS_RESOURCE_STREAMER(dev) ?
2335                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2336         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2337                        0);
2338         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2339                        0);
2340         /* Ring buffer start address is not known until the buffer is pinned.
2341          * It is written to the context image in execlists_update_context()
2342          */
2343         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2344                        RING_START(engine->mmio_base), 0);
2345         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2346                        RING_CTL(engine->mmio_base),
2347                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2348         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2349                        RING_BBADDR_UDW(engine->mmio_base), 0);
2350         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2351                        RING_BBADDR(engine->mmio_base), 0);
2352         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2353                        RING_BBSTATE(engine->mmio_base),
2354                        RING_BB_PPGTT);
2355         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2356                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2357         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2358                        RING_SBBADDR(engine->mmio_base), 0);
2359         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2360                        RING_SBBSTATE(engine->mmio_base), 0);
2361         if (engine->id == RCS) {
2362                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2363                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2364                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2365                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2366                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2367                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2368                 if (engine->wa_ctx.obj) {
2369                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2370                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2371
2372                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2373                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2374                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2375
2376                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2377                                 intel_lr_indirect_ctx_offset(engine) << 6;
2378
2379                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2380                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2381                                 0x01;
2382                 }
2383         }
2384         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2385         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2386                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2387         /* PDP values well be assigned later if needed */
2388         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2389                        0);
2390         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2391                        0);
2392         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2393                        0);
2394         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2395                        0);
2396         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2397                        0);
2398         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2399                        0);
2400         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2401                        0);
2402         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2403                        0);
2404
2405         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2406                 /* 64b PPGTT (48bit canonical)
2407                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2408                  * other PDP Descriptors are ignored.
2409                  */
2410                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2411         } else {
2412                 /* 32b PPGTT
2413                  * PDP*_DESCRIPTOR contains the base address of space supported.
2414                  * With dynamic page allocation, PDPs may not be allocated at
2415                  * this point. Point the unallocated PDPs to the scratch page
2416                  */
2417                 execlists_update_context_pdps(ppgtt, reg_state);
2418         }
2419
2420         if (engine->id == RCS) {
2421                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2422                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2423                                make_rpcs(dev));
2424         }
2425
2426         i915_gem_object_unpin_map(ctx_obj);
2427
2428         return 0;
2429 }
2430
2431 /**
2432  * intel_lr_context_free() - free the LRC specific bits of a context
2433  * @ctx: the LR context to free.
2434  *
2435  * The real context freeing is done in i915_gem_context_free: this only
2436  * takes care of the bits that are LRC related: the per-engine backing
2437  * objects and the logical ringbuffer.
2438  */
2439 void intel_lr_context_free(struct intel_context *ctx)
2440 {
2441         int i;
2442
2443         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2444                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2445                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2446
2447                 if (!ctx_obj)
2448                         continue;
2449
2450                 WARN_ON(ctx->engine[i].pin_count);
2451                 intel_ringbuffer_free(ringbuf);
2452                 drm_gem_object_unreference(&ctx_obj->base);
2453         }
2454 }
2455
2456 /**
2457  * intel_lr_context_size() - return the size of the context for an engine
2458  * @ring: which engine to find the context size for
2459  *
2460  * Each engine may require a different amount of space for a context image,
2461  * so when allocating (or copying) an image, this function can be used to
2462  * find the right size for the specific engine.
2463  *
2464  * Return: size (in bytes) of an engine-specific context image
2465  *
2466  * Note: this size includes the HWSP, which is part of the context image
2467  * in LRC mode, but does not include the "shared data page" used with
2468  * GuC submission. The caller should account for this if using the GuC.
2469  */
2470 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2471 {
2472         int ret = 0;
2473
2474         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2475
2476         switch (engine->id) {
2477         case RCS:
2478                 if (INTEL_INFO(engine->dev)->gen >= 9)
2479                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2480                 else
2481                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2482                 break;
2483         case VCS:
2484         case BCS:
2485         case VECS:
2486         case VCS2:
2487                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2488                 break;
2489         }
2490
2491         return ret;
2492 }
2493
2494 /**
2495  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2496  * @ctx: LR context to create.
2497  * @engine: engine to be used with the context.
2498  *
2499  * This function can be called more than once, with different engines, if we plan
2500  * to use the context with them. The context backing objects and the ringbuffers
2501  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2502  * the creation is a deferred call: it's better to make sure first that we need to use
2503  * a given ring with the context.
2504  *
2505  * Return: non-zero on error.
2506  */
2507 static int execlists_context_deferred_alloc(struct intel_context *ctx,
2508                                             struct intel_engine_cs *engine)
2509 {
2510         struct drm_device *dev = engine->dev;
2511         struct drm_i915_gem_object *ctx_obj;
2512         uint32_t context_size;
2513         struct intel_ringbuffer *ringbuf;
2514         int ret;
2515
2516         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2517         WARN_ON(ctx->engine[engine->id].state);
2518
2519         context_size = round_up(intel_lr_context_size(engine), 4096);
2520
2521         /* One extra page as the sharing data between driver and GuC */
2522         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2523
2524         ctx_obj = i915_gem_object_create(dev, context_size);
2525         if (IS_ERR(ctx_obj)) {
2526                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2527                 return PTR_ERR(ctx_obj);
2528         }
2529
2530         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2531         if (IS_ERR(ringbuf)) {
2532                 ret = PTR_ERR(ringbuf);
2533                 goto error_deref_obj;
2534         }
2535
2536         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2537         if (ret) {
2538                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2539                 goto error_ringbuf;
2540         }
2541
2542         ctx->engine[engine->id].ringbuf = ringbuf;
2543         ctx->engine[engine->id].state = ctx_obj;
2544         ctx->engine[engine->id].initialised = engine->init_context == NULL;
2545
2546         return 0;
2547
2548 error_ringbuf:
2549         intel_ringbuffer_free(ringbuf);
2550 error_deref_obj:
2551         drm_gem_object_unreference(&ctx_obj->base);
2552         ctx->engine[engine->id].ringbuf = NULL;
2553         ctx->engine[engine->id].state = NULL;
2554         return ret;
2555 }
2556
2557 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2558                             struct intel_context *ctx)
2559 {
2560         struct intel_engine_cs *engine;
2561
2562         for_each_engine(engine, dev_priv) {
2563                 struct drm_i915_gem_object *ctx_obj =
2564                                 ctx->engine[engine->id].state;
2565                 struct intel_ringbuffer *ringbuf =
2566                                 ctx->engine[engine->id].ringbuf;
2567                 void *vaddr;
2568                 uint32_t *reg_state;
2569
2570                 if (!ctx_obj)
2571                         continue;
2572
2573                 vaddr = i915_gem_object_pin_map(ctx_obj);
2574                 if (WARN_ON(IS_ERR(vaddr)))
2575                         continue;
2576
2577                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2578                 ctx_obj->dirty = true;
2579
2580                 reg_state[CTX_RING_HEAD+1] = 0;
2581                 reg_state[CTX_RING_TAIL+1] = 0;
2582
2583                 i915_gem_object_unpin_map(ctx_obj);
2584
2585                 ringbuf->head = 0;
2586                 ringbuf->tail = 0;
2587         }
2588 }