]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Fix a buch of kerneldoc warnings
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
230
231 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
232 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
234 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235                                             struct intel_engine_cs *engine);
236 static int intel_lr_context_pin(struct i915_gem_context *ctx,
237                                 struct intel_engine_cs *engine);
238
239 /**
240  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241  * @dev_priv: i915 device private
242  * @enable_execlists: value of i915.enable_execlists module parameter.
243  *
244  * Only certain platforms support Execlists (the prerequisites being
245  * support for Logical Ring Contexts and Aliasing PPGTT or better).
246  *
247  * Return: 1 if Execlists is supported and has to be enabled.
248  */
249 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250 {
251         /* On platforms with execlist available, vGPU will only
252          * support execlist mode, no ring buffer mode.
253          */
254         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255                 return 1;
256
257         if (INTEL_GEN(dev_priv) >= 9)
258                 return 1;
259
260         if (enable_execlists == 0)
261                 return 0;
262
263         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
264             USES_PPGTT(dev_priv) &&
265             i915.use_mmio_flip >= 0)
266                 return 1;
267
268         return 0;
269 }
270
271 static void
272 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273 {
274         struct drm_i915_private *dev_priv = engine->i915;
275
276         if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277                 engine->idle_lite_restore_wa = ~0;
278
279         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
280                                         IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281                                         (engine->id == VCS || engine->id == VCS2);
282
283         engine->ctx_desc_template = GEN8_CTX_VALID;
284         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
286         if (IS_GEN8(dev_priv))
287                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
288         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289
290         /* TODO: WaDisableLiteRestore when we start using semaphore
291          * signalling between Command Streamers */
292         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
293
294         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
295         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296         if (engine->disable_lite_restore_wa)
297                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 }
299
300 /**
301  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
302  *                                        descriptor for a pinned context
303  *
304  * @ctx: Context to work on
305  * @engine: Engine the descriptor will be used with
306  *
307  * The context descriptor encodes various attributes of a context,
308  * including its GTT address and some flags. Because it's fairly
309  * expensive to calculate, we'll just do it once and cache the result,
310  * which remains valid until the context is unpinned.
311  *
312  * This is what a descriptor looks like, from LSB to MSB:
313  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
314  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
315  *    bits 32-52:    ctx ID, a globally unique tag
316  *    bits 53-54:    mbz, reserved for use by hardware
317  *    bits 55-63:    group ID, currently unused and set to 0
318  */
319 static void
320 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321                                    struct intel_engine_cs *engine)
322 {
323         struct intel_context *ce = &ctx->engine[engine->id];
324         u64 desc;
325
326         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327
328         desc = engine->ctx_desc_template;                       /* bits  0-11 */
329         desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
330                                                                 /* bits 12-31 */
331         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
332
333         ce->lrc_desc = desc;
334 }
335
336 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337                                      struct intel_engine_cs *engine)
338 {
339         return ctx->engine[engine->id].lrc_desc;
340 }
341
342 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
343                                  struct drm_i915_gem_request *rq1)
344 {
345
346         struct intel_engine_cs *engine = rq0->engine;
347         struct drm_i915_private *dev_priv = rq0->i915;
348         uint64_t desc[2];
349
350         if (rq1) {
351                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352                 rq1->elsp_submitted++;
353         } else {
354                 desc[1] = 0;
355         }
356
357         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358         rq0->elsp_submitted++;
359
360         /* You must always write both descriptors in the order below. */
361         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
362         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363
364         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365         /* The context is automatically loaded after the following */
366         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367
368         /* ELSP is a wo register, use another nearby reg for posting */
369         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 }
371
372 static void
373 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
374 {
375         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
376         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
377         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
378         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
379 }
380
381 static void execlists_update_context(struct drm_i915_gem_request *rq)
382 {
383         struct intel_engine_cs *engine = rq->engine;
384         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386
387         reg_state[CTX_RING_TAIL+1] = rq->tail;
388
389         /* True 32b PPGTT with dynamic page allocation: update PDP
390          * registers and point the unallocated PDPs to scratch page.
391          * PML4 is allocated during ppgtt init, so this is not needed
392          * in 48-bit mode.
393          */
394         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
395                 execlists_update_context_pdps(ppgtt, reg_state);
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399                                       struct drm_i915_gem_request *rq1)
400 {
401         struct drm_i915_private *dev_priv = rq0->i915;
402         unsigned int fw_domains = rq0->engine->fw_domains;
403
404         execlists_update_context(rq0);
405
406         if (rq1)
407                 execlists_update_context(rq1);
408
409         spin_lock_irq(&dev_priv->uncore.lock);
410         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411
412         execlists_elsp_write(rq0, rq1);
413
414         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415         spin_unlock_irq(&dev_priv->uncore.lock);
416 }
417
418 static void execlists_context_unqueue(struct intel_engine_cs *engine)
419 {
420         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421         struct drm_i915_gem_request *cursor, *tmp;
422
423         assert_spin_locked(&engine->execlist_lock);
424
425         /*
426          * If irqs are not active generate a warning as batches that finish
427          * without the irqs may get lost and a GPU Hang may occur.
428          */
429         WARN_ON(!intel_irqs_enabled(engine->i915));
430
431         /* Try to read in pairs */
432         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433                                  execlist_link) {
434                 if (!req0) {
435                         req0 = cursor;
436                 } else if (req0->ctx == cursor->ctx) {
437                         /* Same ctx: ignore first request, as second request
438                          * will update tail past first request's workload */
439                         cursor->elsp_submitted = req0->elsp_submitted;
440                         list_del(&req0->execlist_link);
441                         i915_gem_request_unreference(req0);
442                         req0 = cursor;
443                 } else {
444                         req1 = cursor;
445                         WARN_ON(req1->elsp_submitted);
446                         break;
447                 }
448         }
449
450         if (unlikely(!req0))
451                 return;
452
453         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454                 /*
455                  * WaIdleLiteRestore: make sure we never cause a lite restore
456                  * with HEAD==TAIL.
457                  *
458                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
459                  * resubmit the request. See gen8_emit_request() for where we
460                  * prepare the padding after the end of the request.
461                  */
462                 struct intel_ringbuffer *ringbuf;
463
464                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
465                 req0->tail += 8;
466                 req0->tail &= ringbuf->size - 1;
467         }
468
469         execlists_submit_requests(req0, req1);
470 }
471
472 static unsigned int
473 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474 {
475         struct drm_i915_gem_request *head_req;
476
477         assert_spin_locked(&engine->execlist_lock);
478
479         head_req = list_first_entry_or_null(&engine->execlist_queue,
480                                             struct drm_i915_gem_request,
481                                             execlist_link);
482
483         if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
484                return 0;
485
486         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
487
488         if (--head_req->elsp_submitted > 0)
489                 return 0;
490
491         list_del(&head_req->execlist_link);
492         i915_gem_request_unreference(head_req);
493
494         return 1;
495 }
496
497 static u32
498 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499                    u32 *context_id)
500 {
501         struct drm_i915_private *dev_priv = engine->i915;
502         u32 status;
503
504         read_pointer %= GEN8_CSB_ENTRIES;
505
506         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507
508         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
509                 return 0;
510
511         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512                                                               read_pointer));
513
514         return status;
515 }
516
517 /**
518  * intel_lrc_irq_handler() - handle Context Switch interrupts
519  * @data: tasklet handler passed in unsigned long
520  *
521  * Check the unread Context Status Buffers and manage the submission of new
522  * contexts to the ELSP accordingly.
523  */
524 static void intel_lrc_irq_handler(unsigned long data)
525 {
526         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527         struct drm_i915_private *dev_priv = engine->i915;
528         u32 status_pointer;
529         unsigned int read_pointer, write_pointer;
530         u32 csb[GEN8_CSB_ENTRIES][2];
531         unsigned int csb_read = 0, i;
532         unsigned int submit_contexts = 0;
533
534         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535
536         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537
538         read_pointer = engine->next_context_status_buffer;
539         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540         if (read_pointer > write_pointer)
541                 write_pointer += GEN8_CSB_ENTRIES;
542
543         while (read_pointer < write_pointer) {
544                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
545                         break;
546                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
547                                                       &csb[csb_read][1]);
548                 csb_read++;
549         }
550
551         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
552
553         /* Update the read pointer to the old write pointer. Manual ringbuffer
554          * management ftw </sarcasm> */
555         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
556                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
557                                     engine->next_context_status_buffer << 8));
558
559         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560
561         spin_lock(&engine->execlist_lock);
562
563         for (i = 0; i < csb_read; i++) {
564                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
565                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
566                                 if (execlists_check_remove_request(engine, csb[i][1]))
567                                         WARN(1, "Lite Restored request removed from queue\n");
568                         } else
569                                 WARN(1, "Preemption without Lite Restore\n");
570                 }
571
572                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
574                         submit_contexts +=
575                                 execlists_check_remove_request(engine, csb[i][1]);
576         }
577
578         if (submit_contexts) {
579                 if (!engine->disable_lite_restore_wa ||
580                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
581                         execlists_context_unqueue(engine);
582         }
583
584         spin_unlock(&engine->execlist_lock);
585
586         if (unlikely(submit_contexts > 2))
587                 DRM_ERROR("More than two context complete events?\n");
588 }
589
590 static void execlists_context_queue(struct drm_i915_gem_request *request)
591 {
592         struct intel_engine_cs *engine = request->engine;
593         struct drm_i915_gem_request *cursor;
594         int num_elements = 0;
595
596         spin_lock_bh(&engine->execlist_lock);
597
598         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599                 if (++num_elements > 2)
600                         break;
601
602         if (num_elements > 2) {
603                 struct drm_i915_gem_request *tail_req;
604
605                 tail_req = list_last_entry(&engine->execlist_queue,
606                                            struct drm_i915_gem_request,
607                                            execlist_link);
608
609                 if (request->ctx == tail_req->ctx) {
610                         WARN(tail_req->elsp_submitted != 0,
611                                 "More than 2 already-submitted reqs queued\n");
612                         list_del(&tail_req->execlist_link);
613                         i915_gem_request_unreference(tail_req);
614                 }
615         }
616
617         i915_gem_request_reference(request);
618         list_add_tail(&request->execlist_link, &engine->execlist_queue);
619         request->ctx_hw_id = request->ctx->hw_id;
620         if (num_elements == 0)
621                 execlists_context_unqueue(engine);
622
623         spin_unlock_bh(&engine->execlist_lock);
624 }
625
626 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627 {
628         struct intel_engine_cs *engine = req->engine;
629         uint32_t flush_domains;
630         int ret;
631
632         flush_domains = 0;
633         if (engine->gpu_caches_dirty)
634                 flush_domains = I915_GEM_GPU_DOMAINS;
635
636         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637         if (ret)
638                 return ret;
639
640         engine->gpu_caches_dirty = false;
641         return 0;
642 }
643
644 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645                                  struct list_head *vmas)
646 {
647         const unsigned other_rings = ~intel_engine_flag(req->engine);
648         struct i915_vma *vma;
649         uint32_t flush_domains = 0;
650         bool flush_chipset = false;
651         int ret;
652
653         list_for_each_entry(vma, vmas, exec_list) {
654                 struct drm_i915_gem_object *obj = vma->obj;
655
656                 if (obj->active & other_rings) {
657                         ret = i915_gem_object_sync(obj, req->engine, &req);
658                         if (ret)
659                                 return ret;
660                 }
661
662                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
663                         flush_chipset |= i915_gem_clflush_object(obj, false);
664
665                 flush_domains |= obj->base.write_domain;
666         }
667
668         if (flush_domains & I915_GEM_DOMAIN_GTT)
669                 wmb();
670
671         /* Unconditionally invalidate gpu caches and ensure that we do flush
672          * any residual writes from the previous batch.
673          */
674         return logical_ring_invalidate_all_caches(req);
675 }
676
677 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678 {
679         struct intel_engine_cs *engine = request->engine;
680         struct intel_context *ce = &request->ctx->engine[engine->id];
681         int ret;
682
683         /* Flush enough space to reduce the likelihood of waiting after
684          * we start building the request - in which case we will just
685          * have to repeat work.
686          */
687         request->reserved_space += EXECLISTS_REQUEST_SIZE;
688
689         if (!ce->state) {
690                 ret = execlists_context_deferred_alloc(request->ctx, engine);
691                 if (ret)
692                         return ret;
693         }
694
695         request->ringbuf = ce->ringbuf;
696
697         if (i915.enable_guc_submission) {
698                 /*
699                  * Check that the GuC has space for the request before
700                  * going any further, as the i915_add_request() call
701                  * later on mustn't fail ...
702                  */
703                 ret = i915_guc_wq_check_space(request);
704                 if (ret)
705                         return ret;
706         }
707
708         ret = intel_lr_context_pin(request->ctx, engine);
709         if (ret)
710                 return ret;
711
712         ret = intel_ring_begin(request, 0);
713         if (ret)
714                 goto err_unpin;
715
716         if (!ce->initialised) {
717                 ret = engine->init_context(request);
718                 if (ret)
719                         goto err_unpin;
720
721                 ce->initialised = true;
722         }
723
724         /* Note that after this point, we have committed to using
725          * this request as it is being used to both track the
726          * state of engine initialisation and liveness of the
727          * golden renderstate above. Think twice before you try
728          * to cancel/unwind this request now.
729          */
730
731         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732         return 0;
733
734 err_unpin:
735         intel_lr_context_unpin(request->ctx, engine);
736         return ret;
737 }
738
739 /*
740  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741  * @request: Request to advance the logical ringbuffer of.
742  *
743  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
744  * really happens during submission is that the context and current tail will be placed
745  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
746  * point, the tail *inside* the context is updated and the ELSP written to.
747  */
748 static int
749 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750 {
751         struct intel_ringbuffer *ringbuf = request->ringbuf;
752         struct intel_engine_cs *engine = request->engine;
753
754         intel_logical_ring_advance(ringbuf);
755         request->tail = ringbuf->tail;
756
757         /*
758          * Here we add two extra NOOPs as padding to avoid
759          * lite restore of a context with HEAD==TAIL.
760          *
761          * Caller must reserve WA_TAIL_DWORDS for us!
762          */
763         intel_logical_ring_emit(ringbuf, MI_NOOP);
764         intel_logical_ring_emit(ringbuf, MI_NOOP);
765         intel_logical_ring_advance(ringbuf);
766
767         if (intel_engine_stopped(engine))
768                 return 0;
769
770         /* We keep the previous context alive until we retire the following
771          * request. This ensures that any the context object is still pinned
772          * for any residual writes the HW makes into it on the context switch
773          * into the next object following the breadcrumb. Otherwise, we may
774          * retire the context too early.
775          */
776         request->previous_context = engine->last_context;
777         engine->last_context = request->ctx;
778
779         if (i915.enable_guc_submission)
780                 i915_guc_submit(request);
781         else
782                 execlists_context_queue(request);
783
784         return 0;
785 }
786
787 /**
788  * execlists_submission() - submit a batchbuffer for execution, Execlists style
789  * @params: execbuffer call parameters.
790  * @args: execbuffer call arguments.
791  * @vmas: list of vmas.
792  *
793  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
794  * away the submission details of the execbuffer ioctl call.
795  *
796  * Return: non-zero if the submission fails.
797  */
798 int intel_execlists_submission(struct i915_execbuffer_params *params,
799                                struct drm_i915_gem_execbuffer2 *args,
800                                struct list_head *vmas)
801 {
802         struct drm_device       *dev = params->dev;
803         struct intel_engine_cs *engine = params->engine;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806         u64 exec_start;
807         int instp_mode;
808         u32 instp_mask;
809         int ret;
810
811         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
812         instp_mask = I915_EXEC_CONSTANTS_MASK;
813         switch (instp_mode) {
814         case I915_EXEC_CONSTANTS_REL_GENERAL:
815         case I915_EXEC_CONSTANTS_ABSOLUTE:
816         case I915_EXEC_CONSTANTS_REL_SURFACE:
817                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
819                         return -EINVAL;
820                 }
821
822                 if (instp_mode != dev_priv->relative_constants_mode) {
823                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
824                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
825                                 return -EINVAL;
826                         }
827
828                         /* The HW changed the meaning on this bit on gen6 */
829                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
830                 }
831                 break;
832         default:
833                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
834                 return -EINVAL;
835         }
836
837         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
838                 DRM_DEBUG("sol reset is gen7 only\n");
839                 return -EINVAL;
840         }
841
842         ret = execlists_move_to_gpu(params->request, vmas);
843         if (ret)
844                 return ret;
845
846         if (engine == &dev_priv->engine[RCS] &&
847             instp_mode != dev_priv->relative_constants_mode) {
848                 ret = intel_ring_begin(params->request, 4);
849                 if (ret)
850                         return ret;
851
852                 intel_logical_ring_emit(ringbuf, MI_NOOP);
853                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
855                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
856                 intel_logical_ring_advance(ringbuf);
857
858                 dev_priv->relative_constants_mode = instp_mode;
859         }
860
861         exec_start = params->batch_obj_vm_offset +
862                      args->batch_start_offset;
863
864         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865         if (ret)
866                 return ret;
867
868         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869
870         i915_gem_execbuffer_move_to_active(vmas, params->request);
871
872         return 0;
873 }
874
875 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876 {
877         struct drm_i915_gem_request *req, *tmp;
878         LIST_HEAD(cancel_list);
879
880         WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
881
882         spin_lock_bh(&engine->execlist_lock);
883         list_replace_init(&engine->execlist_queue, &cancel_list);
884         spin_unlock_bh(&engine->execlist_lock);
885
886         list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887                 list_del(&req->execlist_link);
888                 i915_gem_request_unreference(req);
889         }
890 }
891
892 void intel_logical_ring_stop(struct intel_engine_cs *engine)
893 {
894         struct drm_i915_private *dev_priv = engine->i915;
895         int ret;
896
897         if (!intel_engine_initialized(engine))
898                 return;
899
900         ret = intel_engine_idle(engine);
901         if (ret)
902                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903                           engine->name, ret);
904
905         /* TODO: Is this correct with Execlists enabled? */
906         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
907         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
908                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
909                 return;
910         }
911         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
912 }
913
914 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
915 {
916         struct intel_engine_cs *engine = req->engine;
917         int ret;
918
919         if (!engine->gpu_caches_dirty)
920                 return 0;
921
922         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
923         if (ret)
924                 return ret;
925
926         engine->gpu_caches_dirty = false;
927         return 0;
928 }
929
930 static int intel_lr_context_pin(struct i915_gem_context *ctx,
931                                 struct intel_engine_cs *engine)
932 {
933         struct drm_i915_private *dev_priv = ctx->i915;
934         struct intel_context *ce = &ctx->engine[engine->id];
935         void *vaddr;
936         u32 *lrc_reg_state;
937         int ret;
938
939         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
940
941         if (ce->pin_count++)
942                 return 0;
943
944         ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
945                                     PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
946         if (ret)
947                 goto err;
948
949         vaddr = i915_gem_object_pin_map(ce->state);
950         if (IS_ERR(vaddr)) {
951                 ret = PTR_ERR(vaddr);
952                 goto unpin_ctx_obj;
953         }
954
955         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
956
957         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
958         if (ret)
959                 goto unpin_map;
960
961         i915_gem_context_reference(ctx);
962         ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
963         intel_lr_context_descriptor_update(ctx, engine);
964
965         lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
966         ce->lrc_reg_state = lrc_reg_state;
967         ce->state->dirty = true;
968
969         /* Invalidate GuC TLB. */
970         if (i915.enable_guc_submission)
971                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972
973         return 0;
974
975 unpin_map:
976         i915_gem_object_unpin_map(ce->state);
977 unpin_ctx_obj:
978         i915_gem_object_ggtt_unpin(ce->state);
979 err:
980         ce->pin_count = 0;
981         return ret;
982 }
983
984 void intel_lr_context_unpin(struct i915_gem_context *ctx,
985                             struct intel_engine_cs *engine)
986 {
987         struct intel_context *ce = &ctx->engine[engine->id];
988
989         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
990         GEM_BUG_ON(ce->pin_count == 0);
991
992         if (--ce->pin_count)
993                 return;
994
995         intel_unpin_ringbuffer_obj(ce->ringbuf);
996
997         i915_gem_object_unpin_map(ce->state);
998         i915_gem_object_ggtt_unpin(ce->state);
999
1000         ce->lrc_vma = NULL;
1001         ce->lrc_desc = 0;
1002         ce->lrc_reg_state = NULL;
1003
1004         i915_gem_context_unreference(ctx);
1005 }
1006
1007 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1008 {
1009         int ret, i;
1010         struct intel_engine_cs *engine = req->engine;
1011         struct intel_ringbuffer *ringbuf = req->ringbuf;
1012         struct i915_workarounds *w = &req->i915->workarounds;
1013
1014         if (w->count == 0)
1015                 return 0;
1016
1017         engine->gpu_caches_dirty = true;
1018         ret = logical_ring_flush_all_caches(req);
1019         if (ret)
1020                 return ret;
1021
1022         ret = intel_ring_begin(req, w->count * 2 + 2);
1023         if (ret)
1024                 return ret;
1025
1026         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1027         for (i = 0; i < w->count; i++) {
1028                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1029                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1030         }
1031         intel_logical_ring_emit(ringbuf, MI_NOOP);
1032
1033         intel_logical_ring_advance(ringbuf);
1034
1035         engine->gpu_caches_dirty = true;
1036         ret = logical_ring_flush_all_caches(req);
1037         if (ret)
1038                 return ret;
1039
1040         return 0;
1041 }
1042
1043 #define wa_ctx_emit(batch, index, cmd)                                  \
1044         do {                                                            \
1045                 int __index = (index)++;                                \
1046                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1047                         return -ENOSPC;                                 \
1048                 }                                                       \
1049                 batch[__index] = (cmd);                                 \
1050         } while (0)
1051
1052 #define wa_ctx_emit_reg(batch, index, reg) \
1053         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1054
1055 /*
1056  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1057  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1058  * but there is a slight complication as this is applied in WA batch where the
1059  * values are only initialized once so we cannot take register value at the
1060  * beginning and reuse it further; hence we save its value to memory, upload a
1061  * constant value with bit21 set and then we restore it back with the saved value.
1062  * To simplify the WA, a constant value is formed by using the default value
1063  * of this register. This shouldn't be a problem because we are only modifying
1064  * it for a short period and this batch in non-premptible. We can ofcourse
1065  * use additional instructions that read the actual value of the register
1066  * at that time and set our bit of interest but it makes the WA complicated.
1067  *
1068  * This WA is also required for Gen9 so extracting as a function avoids
1069  * code duplication.
1070  */
1071 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1072                                                 uint32_t *const batch,
1073                                                 uint32_t index)
1074 {
1075         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1076
1077         /*
1078          * WaDisableLSQCROPERFforOCL:skl
1079          * This WA is implemented in skl_init_clock_gating() but since
1080          * this batch updates GEN8_L3SQCREG4 with default value we need to
1081          * set this bit here to retain the WA during flush.
1082          */
1083         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1084                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1085
1086         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1087                                    MI_SRM_LRM_GLOBAL_GTT));
1088         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1089         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1090         wa_ctx_emit(batch, index, 0);
1091
1092         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1093         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1094         wa_ctx_emit(batch, index, l3sqc4_flush);
1095
1096         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1097         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1098                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1099         wa_ctx_emit(batch, index, 0);
1100         wa_ctx_emit(batch, index, 0);
1101         wa_ctx_emit(batch, index, 0);
1102         wa_ctx_emit(batch, index, 0);
1103
1104         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1105                                    MI_SRM_LRM_GLOBAL_GTT));
1106         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1107         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1108         wa_ctx_emit(batch, index, 0);
1109
1110         return index;
1111 }
1112
1113 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1114                                     uint32_t offset,
1115                                     uint32_t start_alignment)
1116 {
1117         return wa_ctx->offset = ALIGN(offset, start_alignment);
1118 }
1119
1120 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1121                              uint32_t offset,
1122                              uint32_t size_alignment)
1123 {
1124         wa_ctx->size = offset - wa_ctx->offset;
1125
1126         WARN(wa_ctx->size % size_alignment,
1127              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1128              wa_ctx->size, size_alignment);
1129         return 0;
1130 }
1131
1132 /**
1133  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1134  *
1135  * @engine: only applicable for RCS
1136  * @wa_ctx: structure representing wa_ctx
1137  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1138  *    with the offset value received as input.
1139  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1140  * @batch: page in which WA are loaded
1141  * @offset: This field specifies the start of the batch, it should be
1142  *  cache-aligned otherwise it is adjusted accordingly.
1143  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1144  *  initialized at the beginning and shared across all contexts but this field
1145  *  helps us to have multiple batches at different offsets and select them based
1146  *  on a criteria. At the moment this batch always start at the beginning of the page
1147  *  and at this point we don't have multiple wa_ctx batch buffers.
1148  *
1149  *  The number of WA applied are not known at the beginning; we use this field
1150  *  to return the no of DWORDS written.
1151  *
1152  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1153  *  so it adds NOOPs as padding to make it cacheline aligned.
1154  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1155  *  makes a complete batch buffer.
1156  *
1157  * Return: non-zero if we exceed the PAGE_SIZE limit.
1158  */
1159
1160 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1161                                     struct i915_wa_ctx_bb *wa_ctx,
1162                                     uint32_t *const batch,
1163                                     uint32_t *offset)
1164 {
1165         uint32_t scratch_addr;
1166         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1167
1168         /* WaDisableCtxRestoreArbitration:bdw,chv */
1169         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1170
1171         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1172         if (IS_BROADWELL(engine->i915)) {
1173                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1174                 if (rc < 0)
1175                         return rc;
1176                 index = rc;
1177         }
1178
1179         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1180         /* Actual scratch location is at 128 bytes offset */
1181         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1182
1183         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1184         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1185                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1186                                    PIPE_CONTROL_CS_STALL |
1187                                    PIPE_CONTROL_QW_WRITE));
1188         wa_ctx_emit(batch, index, scratch_addr);
1189         wa_ctx_emit(batch, index, 0);
1190         wa_ctx_emit(batch, index, 0);
1191         wa_ctx_emit(batch, index, 0);
1192
1193         /* Pad to end of cacheline */
1194         while (index % CACHELINE_DWORDS)
1195                 wa_ctx_emit(batch, index, MI_NOOP);
1196
1197         /*
1198          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1199          * execution depends on the length specified in terms of cache lines
1200          * in the register CTX_RCS_INDIRECT_CTX
1201          */
1202
1203         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1204 }
1205
1206 /**
1207  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1208  *
1209  * @engine: only applicable for RCS
1210  * @wa_ctx: structure representing wa_ctx
1211  *  offset: specifies start of the batch, should be cache-aligned.
1212  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1213  * @batch: page in which WA are loaded
1214  * @offset: This field specifies the start of this batch.
1215  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1216  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1217  *
1218  *   The number of DWORDS written are returned using this field.
1219  *
1220  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1221  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1222  */
1223 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1224                                struct i915_wa_ctx_bb *wa_ctx,
1225                                uint32_t *const batch,
1226                                uint32_t *offset)
1227 {
1228         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1229
1230         /* WaDisableCtxRestoreArbitration:bdw,chv */
1231         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1232
1233         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1234
1235         return wa_ctx_end(wa_ctx, *offset = index, 1);
1236 }
1237
1238 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1239                                     struct i915_wa_ctx_bb *wa_ctx,
1240                                     uint32_t *const batch,
1241                                     uint32_t *offset)
1242 {
1243         int ret;
1244         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1245
1246         /* WaDisableCtxRestoreArbitration:skl,bxt */
1247         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1248             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1249                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1250
1251         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1252         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1253         if (ret < 0)
1254                 return ret;
1255         index = ret;
1256
1257         /* Pad to end of cacheline */
1258         while (index % CACHELINE_DWORDS)
1259                 wa_ctx_emit(batch, index, MI_NOOP);
1260
1261         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1262 }
1263
1264 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1265                                struct i915_wa_ctx_bb *wa_ctx,
1266                                uint32_t *const batch,
1267                                uint32_t *offset)
1268 {
1269         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1270
1271         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1272         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1273             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1274                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1275                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1276                 wa_ctx_emit(batch, index,
1277                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1278                 wa_ctx_emit(batch, index, MI_NOOP);
1279         }
1280
1281         /* WaClearTdlStateAckDirtyBits:bxt */
1282         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1283                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1284
1285                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1286                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1287
1288                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1289                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1290
1291                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1292                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1293
1294                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1295                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1296                 wa_ctx_emit(batch, index, 0x0);
1297                 wa_ctx_emit(batch, index, MI_NOOP);
1298         }
1299
1300         /* WaDisableCtxRestoreArbitration:skl,bxt */
1301         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1302             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1303                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1304
1305         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1306
1307         return wa_ctx_end(wa_ctx, *offset = index, 1);
1308 }
1309
1310 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1311 {
1312         int ret;
1313
1314         engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1315                                                    PAGE_ALIGN(size));
1316         if (IS_ERR(engine->wa_ctx.obj)) {
1317                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1318                 ret = PTR_ERR(engine->wa_ctx.obj);
1319                 engine->wa_ctx.obj = NULL;
1320                 return ret;
1321         }
1322
1323         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1324         if (ret) {
1325                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1326                                  ret);
1327                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1328                 return ret;
1329         }
1330
1331         return 0;
1332 }
1333
1334 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1335 {
1336         if (engine->wa_ctx.obj) {
1337                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1338                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1339                 engine->wa_ctx.obj = NULL;
1340         }
1341 }
1342
1343 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1344 {
1345         int ret;
1346         uint32_t *batch;
1347         uint32_t offset;
1348         struct page *page;
1349         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1350
1351         WARN_ON(engine->id != RCS);
1352
1353         /* update this when WA for higher Gen are added */
1354         if (INTEL_GEN(engine->i915) > 9) {
1355                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1356                           INTEL_GEN(engine->i915));
1357                 return 0;
1358         }
1359
1360         /* some WA perform writes to scratch page, ensure it is valid */
1361         if (engine->scratch.obj == NULL) {
1362                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1363                 return -EINVAL;
1364         }
1365
1366         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1367         if (ret) {
1368                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1369                 return ret;
1370         }
1371
1372         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1373         batch = kmap_atomic(page);
1374         offset = 0;
1375
1376         if (IS_GEN8(engine->i915)) {
1377                 ret = gen8_init_indirectctx_bb(engine,
1378                                                &wa_ctx->indirect_ctx,
1379                                                batch,
1380                                                &offset);
1381                 if (ret)
1382                         goto out;
1383
1384                 ret = gen8_init_perctx_bb(engine,
1385                                           &wa_ctx->per_ctx,
1386                                           batch,
1387                                           &offset);
1388                 if (ret)
1389                         goto out;
1390         } else if (IS_GEN9(engine->i915)) {
1391                 ret = gen9_init_indirectctx_bb(engine,
1392                                                &wa_ctx->indirect_ctx,
1393                                                batch,
1394                                                &offset);
1395                 if (ret)
1396                         goto out;
1397
1398                 ret = gen9_init_perctx_bb(engine,
1399                                           &wa_ctx->per_ctx,
1400                                           batch,
1401                                           &offset);
1402                 if (ret)
1403                         goto out;
1404         }
1405
1406 out:
1407         kunmap_atomic(batch);
1408         if (ret)
1409                 lrc_destroy_wa_ctx_obj(engine);
1410
1411         return ret;
1412 }
1413
1414 static void lrc_init_hws(struct intel_engine_cs *engine)
1415 {
1416         struct drm_i915_private *dev_priv = engine->i915;
1417
1418         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1419                    (u32)engine->status_page.gfx_addr);
1420         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1421 }
1422
1423 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1424 {
1425         struct drm_i915_private *dev_priv = engine->i915;
1426         unsigned int next_context_status_buffer_hw;
1427
1428         lrc_init_hws(engine);
1429
1430         I915_WRITE_IMR(engine,
1431                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1432         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1433
1434         I915_WRITE(RING_MODE_GEN7(engine),
1435                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1436                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1437         POSTING_READ(RING_MODE_GEN7(engine));
1438
1439         /*
1440          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1441          * zero, we need to read the write pointer from hardware and use its
1442          * value because "this register is power context save restored".
1443          * Effectively, these states have been observed:
1444          *
1445          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1446          * BDW  | CSB regs not reset       | CSB regs reset       |
1447          * CHT  | CSB regs not reset       | CSB regs not reset   |
1448          * SKL  |         ?                |         ?            |
1449          * BXT  |         ?                |         ?            |
1450          */
1451         next_context_status_buffer_hw =
1452                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1453
1454         /*
1455          * When the CSB registers are reset (also after power-up / gpu reset),
1456          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1457          * this special case, so the first element read is CSB[0].
1458          */
1459         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1460                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1461
1462         engine->next_context_status_buffer = next_context_status_buffer_hw;
1463         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1464
1465         intel_engine_init_hangcheck(engine);
1466
1467         return intel_mocs_init_engine(engine);
1468 }
1469
1470 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1471 {
1472         struct drm_i915_private *dev_priv = engine->i915;
1473         int ret;
1474
1475         ret = gen8_init_common_ring(engine);
1476         if (ret)
1477                 return ret;
1478
1479         /* We need to disable the AsyncFlip performance optimisations in order
1480          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1481          * programmed to '1' on all products.
1482          *
1483          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1484          */
1485         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1486
1487         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1488
1489         return init_workarounds_ring(engine);
1490 }
1491
1492 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1493 {
1494         int ret;
1495
1496         ret = gen8_init_common_ring(engine);
1497         if (ret)
1498                 return ret;
1499
1500         return init_workarounds_ring(engine);
1501 }
1502
1503 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1504 {
1505         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1506         struct intel_engine_cs *engine = req->engine;
1507         struct intel_ringbuffer *ringbuf = req->ringbuf;
1508         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1509         int i, ret;
1510
1511         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1512         if (ret)
1513                 return ret;
1514
1515         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1516         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1517                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1518
1519                 intel_logical_ring_emit_reg(ringbuf,
1520                                             GEN8_RING_PDP_UDW(engine, i));
1521                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1522                 intel_logical_ring_emit_reg(ringbuf,
1523                                             GEN8_RING_PDP_LDW(engine, i));
1524                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1525         }
1526
1527         intel_logical_ring_emit(ringbuf, MI_NOOP);
1528         intel_logical_ring_advance(ringbuf);
1529
1530         return 0;
1531 }
1532
1533 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1534                               u64 offset, unsigned dispatch_flags)
1535 {
1536         struct intel_ringbuffer *ringbuf = req->ringbuf;
1537         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1538         int ret;
1539
1540         /* Don't rely in hw updating PDPs, specially in lite-restore.
1541          * Ideally, we should set Force PD Restore in ctx descriptor,
1542          * but we can't. Force Restore would be a second option, but
1543          * it is unsafe in case of lite-restore (because the ctx is
1544          * not idle). PML4 is allocated during ppgtt init so this is
1545          * not needed in 48-bit.*/
1546         if (req->ctx->ppgtt &&
1547             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1548                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1549                     !intel_vgpu_active(req->i915)) {
1550                         ret = intel_logical_ring_emit_pdps(req);
1551                         if (ret)
1552                                 return ret;
1553                 }
1554
1555                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1556         }
1557
1558         ret = intel_ring_begin(req, 4);
1559         if (ret)
1560                 return ret;
1561
1562         /* FIXME(BDW): Address space and security selectors. */
1563         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1564                                 (ppgtt<<8) |
1565                                 (dispatch_flags & I915_DISPATCH_RS ?
1566                                  MI_BATCH_RESOURCE_STREAMER : 0));
1567         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1568         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1569         intel_logical_ring_emit(ringbuf, MI_NOOP);
1570         intel_logical_ring_advance(ringbuf);
1571
1572         return 0;
1573 }
1574
1575 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1576 {
1577         struct drm_i915_private *dev_priv = engine->i915;
1578         unsigned long flags;
1579
1580         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1581                 return false;
1582
1583         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1584         if (engine->irq_refcount++ == 0) {
1585                 I915_WRITE_IMR(engine,
1586                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1587                 POSTING_READ(RING_IMR(engine->mmio_base));
1588         }
1589         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1590
1591         return true;
1592 }
1593
1594 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1595 {
1596         struct drm_i915_private *dev_priv = engine->i915;
1597         unsigned long flags;
1598
1599         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600         if (--engine->irq_refcount == 0) {
1601                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1602                 POSTING_READ(RING_IMR(engine->mmio_base));
1603         }
1604         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1605 }
1606
1607 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1608                            u32 invalidate_domains,
1609                            u32 unused)
1610 {
1611         struct intel_ringbuffer *ringbuf = request->ringbuf;
1612         struct intel_engine_cs *engine = ringbuf->engine;
1613         struct drm_i915_private *dev_priv = request->i915;
1614         uint32_t cmd;
1615         int ret;
1616
1617         ret = intel_ring_begin(request, 4);
1618         if (ret)
1619                 return ret;
1620
1621         cmd = MI_FLUSH_DW + 1;
1622
1623         /* We always require a command barrier so that subsequent
1624          * commands, such as breadcrumb interrupts, are strictly ordered
1625          * wrt the contents of the write cache being flushed to memory
1626          * (and thus being coherent from the CPU).
1627          */
1628         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1629
1630         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1631                 cmd |= MI_INVALIDATE_TLB;
1632                 if (engine == &dev_priv->engine[VCS])
1633                         cmd |= MI_INVALIDATE_BSD;
1634         }
1635
1636         intel_logical_ring_emit(ringbuf, cmd);
1637         intel_logical_ring_emit(ringbuf,
1638                                 I915_GEM_HWS_SCRATCH_ADDR |
1639                                 MI_FLUSH_DW_USE_GTT);
1640         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1641         intel_logical_ring_emit(ringbuf, 0); /* value */
1642         intel_logical_ring_advance(ringbuf);
1643
1644         return 0;
1645 }
1646
1647 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1648                                   u32 invalidate_domains,
1649                                   u32 flush_domains)
1650 {
1651         struct intel_ringbuffer *ringbuf = request->ringbuf;
1652         struct intel_engine_cs *engine = ringbuf->engine;
1653         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1654         bool vf_flush_wa = false;
1655         u32 flags = 0;
1656         int ret;
1657
1658         flags |= PIPE_CONTROL_CS_STALL;
1659
1660         if (flush_domains) {
1661                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1662                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1663                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1664                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1665         }
1666
1667         if (invalidate_domains) {
1668                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1669                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1670                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1671                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1672                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1673                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1674                 flags |= PIPE_CONTROL_QW_WRITE;
1675                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1676
1677                 /*
1678                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1679                  * pipe control.
1680                  */
1681                 if (IS_GEN9(request->i915))
1682                         vf_flush_wa = true;
1683         }
1684
1685         ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1686         if (ret)
1687                 return ret;
1688
1689         if (vf_flush_wa) {
1690                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1691                 intel_logical_ring_emit(ringbuf, 0);
1692                 intel_logical_ring_emit(ringbuf, 0);
1693                 intel_logical_ring_emit(ringbuf, 0);
1694                 intel_logical_ring_emit(ringbuf, 0);
1695                 intel_logical_ring_emit(ringbuf, 0);
1696         }
1697
1698         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1699         intel_logical_ring_emit(ringbuf, flags);
1700         intel_logical_ring_emit(ringbuf, scratch_addr);
1701         intel_logical_ring_emit(ringbuf, 0);
1702         intel_logical_ring_emit(ringbuf, 0);
1703         intel_logical_ring_emit(ringbuf, 0);
1704         intel_logical_ring_advance(ringbuf);
1705
1706         return 0;
1707 }
1708
1709 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1710 {
1711         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1712 }
1713
1714 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1715 {
1716         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1717 }
1718
1719 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1720 {
1721         /*
1722          * On BXT A steppings there is a HW coherency issue whereby the
1723          * MI_STORE_DATA_IMM storing the completed request's seqno
1724          * occasionally doesn't invalidate the CPU cache. Work around this by
1725          * clflushing the corresponding cacheline whenever the caller wants
1726          * the coherency to be guaranteed. Note that this cacheline is known
1727          * to be clean at this point, since we only write it in
1728          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1729          * this clflush in practice becomes an invalidate operation.
1730          */
1731         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1732 }
1733
1734 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1735 {
1736         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1737
1738         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1739         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1740 }
1741
1742 /*
1743  * Reserve space for 2 NOOPs at the end of each request to be
1744  * used as a workaround for not being allowed to do lite
1745  * restore with HEAD==TAIL (WaIdleLiteRestore).
1746  */
1747 #define WA_TAIL_DWORDS 2
1748
1749 static int gen8_emit_request(struct drm_i915_gem_request *request)
1750 {
1751         struct intel_ringbuffer *ringbuf = request->ringbuf;
1752         int ret;
1753
1754         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1755         if (ret)
1756                 return ret;
1757
1758         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1759         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1760
1761         intel_logical_ring_emit(ringbuf,
1762                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1763         intel_logical_ring_emit(ringbuf,
1764                                 intel_hws_seqno_address(request->engine) |
1765                                 MI_FLUSH_DW_USE_GTT);
1766         intel_logical_ring_emit(ringbuf, 0);
1767         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1768         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1769         intel_logical_ring_emit(ringbuf, MI_NOOP);
1770         return intel_logical_ring_advance_and_submit(request);
1771 }
1772
1773 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1774 {
1775         struct intel_ringbuffer *ringbuf = request->ringbuf;
1776         int ret;
1777
1778         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1779         if (ret)
1780                 return ret;
1781
1782         /* We're using qword write, seqno should be aligned to 8 bytes. */
1783         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1784
1785         /* w/a for post sync ops following a GPGPU operation we
1786          * need a prior CS_STALL, which is emitted by the flush
1787          * following the batch.
1788          */
1789         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1790         intel_logical_ring_emit(ringbuf,
1791                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1792                                  PIPE_CONTROL_CS_STALL |
1793                                  PIPE_CONTROL_QW_WRITE));
1794         intel_logical_ring_emit(ringbuf,
1795                                 intel_hws_seqno_address(request->engine));
1796         intel_logical_ring_emit(ringbuf, 0);
1797         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1798         /* We're thrashing one dword of HWS. */
1799         intel_logical_ring_emit(ringbuf, 0);
1800         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1801         intel_logical_ring_emit(ringbuf, MI_NOOP);
1802         return intel_logical_ring_advance_and_submit(request);
1803 }
1804
1805 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1806 {
1807         struct render_state so;
1808         int ret;
1809
1810         ret = i915_gem_render_state_prepare(req->engine, &so);
1811         if (ret)
1812                 return ret;
1813
1814         if (so.rodata == NULL)
1815                 return 0;
1816
1817         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1818                                        I915_DISPATCH_SECURE);
1819         if (ret)
1820                 goto out;
1821
1822         ret = req->engine->emit_bb_start(req,
1823                                        (so.ggtt_offset + so.aux_batch_offset),
1824                                        I915_DISPATCH_SECURE);
1825         if (ret)
1826                 goto out;
1827
1828         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1829
1830 out:
1831         i915_gem_render_state_fini(&so);
1832         return ret;
1833 }
1834
1835 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1836 {
1837         int ret;
1838
1839         ret = intel_logical_ring_workarounds_emit(req);
1840         if (ret)
1841                 return ret;
1842
1843         ret = intel_rcs_context_init_mocs(req);
1844         /*
1845          * Failing to program the MOCS is non-fatal.The system will not
1846          * run at peak performance. So generate an error and carry on.
1847          */
1848         if (ret)
1849                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1850
1851         return intel_lr_context_render_state_init(req);
1852 }
1853
1854 /**
1855  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1856  *
1857  * @engine: Engine Command Streamer.
1858  *
1859  */
1860 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1861 {
1862         struct drm_i915_private *dev_priv;
1863
1864         if (!intel_engine_initialized(engine))
1865                 return;
1866
1867         /*
1868          * Tasklet cannot be active at this point due intel_mark_active/idle
1869          * so this is just for documentation.
1870          */
1871         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1872                 tasklet_kill(&engine->irq_tasklet);
1873
1874         dev_priv = engine->i915;
1875
1876         if (engine->buffer) {
1877                 intel_logical_ring_stop(engine);
1878                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1879         }
1880
1881         if (engine->cleanup)
1882                 engine->cleanup(engine);
1883
1884         i915_cmd_parser_fini_ring(engine);
1885         i915_gem_batch_pool_fini(&engine->batch_pool);
1886
1887         if (engine->status_page.obj) {
1888                 i915_gem_object_unpin_map(engine->status_page.obj);
1889                 engine->status_page.obj = NULL;
1890         }
1891         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1892
1893         engine->idle_lite_restore_wa = 0;
1894         engine->disable_lite_restore_wa = false;
1895         engine->ctx_desc_template = 0;
1896
1897         lrc_destroy_wa_ctx_obj(engine);
1898         engine->i915 = NULL;
1899 }
1900
1901 static void
1902 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1903 {
1904         /* Default vfuncs which can be overriden by each engine. */
1905         engine->init_hw = gen8_init_common_ring;
1906         engine->emit_request = gen8_emit_request;
1907         engine->emit_flush = gen8_emit_flush;
1908         engine->irq_get = gen8_logical_ring_get_irq;
1909         engine->irq_put = gen8_logical_ring_put_irq;
1910         engine->emit_bb_start = gen8_emit_bb_start;
1911         engine->get_seqno = gen8_get_seqno;
1912         engine->set_seqno = gen8_set_seqno;
1913         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1914                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1915                 engine->set_seqno = bxt_a_set_seqno;
1916         }
1917 }
1918
1919 static inline void
1920 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1921 {
1922         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1923         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1924         init_waitqueue_head(&engine->irq_queue);
1925 }
1926
1927 static int
1928 lrc_setup_hws(struct intel_engine_cs *engine,
1929               struct drm_i915_gem_object *dctx_obj)
1930 {
1931         void *hws;
1932
1933         /* The HWSP is part of the default context object in LRC mode. */
1934         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1935                                        LRC_PPHWSP_PN * PAGE_SIZE;
1936         hws = i915_gem_object_pin_map(dctx_obj);
1937         if (IS_ERR(hws))
1938                 return PTR_ERR(hws);
1939         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1940         engine->status_page.obj = dctx_obj;
1941
1942         return 0;
1943 }
1944
1945 static const struct logical_ring_info {
1946         const char *name;
1947         unsigned exec_id;
1948         unsigned guc_id;
1949         u32 mmio_base;
1950         unsigned irq_shift;
1951 } logical_rings[] = {
1952         [RCS] = {
1953                 .name = "render ring",
1954                 .exec_id = I915_EXEC_RENDER,
1955                 .guc_id = GUC_RENDER_ENGINE,
1956                 .mmio_base = RENDER_RING_BASE,
1957                 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1958         },
1959         [BCS] = {
1960                 .name = "blitter ring",
1961                 .exec_id = I915_EXEC_BLT,
1962                 .guc_id = GUC_BLITTER_ENGINE,
1963                 .mmio_base = BLT_RING_BASE,
1964                 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1965         },
1966         [VCS] = {
1967                 .name = "bsd ring",
1968                 .exec_id = I915_EXEC_BSD,
1969                 .guc_id = GUC_VIDEO_ENGINE,
1970                 .mmio_base = GEN6_BSD_RING_BASE,
1971                 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1972         },
1973         [VCS2] = {
1974                 .name = "bsd2 ring",
1975                 .exec_id = I915_EXEC_BSD,
1976                 .guc_id = GUC_VIDEO_ENGINE2,
1977                 .mmio_base = GEN8_BSD2_RING_BASE,
1978                 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1979         },
1980         [VECS] = {
1981                 .name = "video enhancement ring",
1982                 .exec_id = I915_EXEC_VEBOX,
1983                 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1984                 .mmio_base = VEBOX_RING_BASE,
1985                 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1986         },
1987 };
1988
1989 static struct intel_engine_cs *
1990 logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1991 {
1992         const struct logical_ring_info *info = &logical_rings[id];
1993         struct drm_i915_private *dev_priv = to_i915(dev);
1994         struct intel_engine_cs *engine = &dev_priv->engine[id];
1995         enum forcewake_domains fw_domains;
1996
1997         engine->id = id;
1998         engine->name = info->name;
1999         engine->exec_id = info->exec_id;
2000         engine->guc_id = info->guc_id;
2001         engine->mmio_base = info->mmio_base;
2002
2003         engine->i915 = dev_priv;
2004
2005         /* Intentionally left blank. */
2006         engine->buffer = NULL;
2007
2008         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2009                                                     RING_ELSP(engine),
2010                                                     FW_REG_WRITE);
2011
2012         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2013                                                      RING_CONTEXT_STATUS_PTR(engine),
2014                                                      FW_REG_READ | FW_REG_WRITE);
2015
2016         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2017                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2018                                                      FW_REG_READ);
2019
2020         engine->fw_domains = fw_domains;
2021
2022         INIT_LIST_HEAD(&engine->active_list);
2023         INIT_LIST_HEAD(&engine->request_list);
2024         INIT_LIST_HEAD(&engine->buffers);
2025         INIT_LIST_HEAD(&engine->execlist_queue);
2026         spin_lock_init(&engine->execlist_lock);
2027
2028         tasklet_init(&engine->irq_tasklet,
2029                      intel_lrc_irq_handler, (unsigned long)engine);
2030
2031         logical_ring_init_platform_invariants(engine);
2032         logical_ring_default_vfuncs(engine);
2033         logical_ring_default_irqs(engine, info->irq_shift);
2034
2035         intel_engine_init_hangcheck(engine);
2036         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2037
2038         return engine;
2039 }
2040
2041 static int
2042 logical_ring_init(struct intel_engine_cs *engine)
2043 {
2044         struct i915_gem_context *dctx = engine->i915->kernel_context;
2045         int ret;
2046
2047         ret = i915_cmd_parser_init_ring(engine);
2048         if (ret)
2049                 goto error;
2050
2051         ret = execlists_context_deferred_alloc(dctx, engine);
2052         if (ret)
2053                 goto error;
2054
2055         /* As this is the default context, always pin it */
2056         ret = intel_lr_context_pin(dctx, engine);
2057         if (ret) {
2058                 DRM_ERROR("Failed to pin context for %s: %d\n",
2059                           engine->name, ret);
2060                 goto error;
2061         }
2062
2063         /* And setup the hardware status page. */
2064         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2065         if (ret) {
2066                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2067                 goto error;
2068         }
2069
2070         return 0;
2071
2072 error:
2073         intel_logical_ring_cleanup(engine);
2074         return ret;
2075 }
2076
2077 static int logical_render_ring_init(struct drm_device *dev)
2078 {
2079         struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2080         int ret;
2081
2082         if (HAS_L3_DPF(dev))
2083                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2084
2085         /* Override some for render ring. */
2086         if (INTEL_INFO(dev)->gen >= 9)
2087                 engine->init_hw = gen9_init_render_ring;
2088         else
2089                 engine->init_hw = gen8_init_render_ring;
2090         engine->init_context = gen8_init_rcs_context;
2091         engine->cleanup = intel_fini_pipe_control;
2092         engine->emit_flush = gen8_emit_flush_render;
2093         engine->emit_request = gen8_emit_request_render;
2094
2095         ret = intel_init_pipe_control(engine);
2096         if (ret)
2097                 return ret;
2098
2099         ret = intel_init_workaround_bb(engine);
2100         if (ret) {
2101                 /*
2102                  * We continue even if we fail to initialize WA batch
2103                  * because we only expect rare glitches but nothing
2104                  * critical to prevent us from using GPU
2105                  */
2106                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2107                           ret);
2108         }
2109
2110         ret = logical_ring_init(engine);
2111         if (ret) {
2112                 lrc_destroy_wa_ctx_obj(engine);
2113         }
2114
2115         return ret;
2116 }
2117
2118 static int logical_bsd_ring_init(struct drm_device *dev)
2119 {
2120         struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2121
2122         return logical_ring_init(engine);
2123 }
2124
2125 static int logical_bsd2_ring_init(struct drm_device *dev)
2126 {
2127         struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2128
2129         return logical_ring_init(engine);
2130 }
2131
2132 static int logical_blt_ring_init(struct drm_device *dev)
2133 {
2134         struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2135
2136         return logical_ring_init(engine);
2137 }
2138
2139 static int logical_vebox_ring_init(struct drm_device *dev)
2140 {
2141         struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2142
2143         return logical_ring_init(engine);
2144 }
2145
2146 /**
2147  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2148  * @dev: DRM device.
2149  *
2150  * This function inits the engines for an Execlists submission style (the equivalent in the
2151  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2152  * those engines that are present in the hardware.
2153  *
2154  * Return: non-zero if the initialization failed.
2155  */
2156 int intel_logical_rings_init(struct drm_device *dev)
2157 {
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         int ret;
2160
2161         ret = logical_render_ring_init(dev);
2162         if (ret)
2163                 return ret;
2164
2165         if (HAS_BSD(dev)) {
2166                 ret = logical_bsd_ring_init(dev);
2167                 if (ret)
2168                         goto cleanup_render_ring;
2169         }
2170
2171         if (HAS_BLT(dev)) {
2172                 ret = logical_blt_ring_init(dev);
2173                 if (ret)
2174                         goto cleanup_bsd_ring;
2175         }
2176
2177         if (HAS_VEBOX(dev)) {
2178                 ret = logical_vebox_ring_init(dev);
2179                 if (ret)
2180                         goto cleanup_blt_ring;
2181         }
2182
2183         if (HAS_BSD2(dev)) {
2184                 ret = logical_bsd2_ring_init(dev);
2185                 if (ret)
2186                         goto cleanup_vebox_ring;
2187         }
2188
2189         return 0;
2190
2191 cleanup_vebox_ring:
2192         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2193 cleanup_blt_ring:
2194         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2195 cleanup_bsd_ring:
2196         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2197 cleanup_render_ring:
2198         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2199
2200         return ret;
2201 }
2202
2203 static u32
2204 make_rpcs(struct drm_i915_private *dev_priv)
2205 {
2206         u32 rpcs = 0;
2207
2208         /*
2209          * No explicit RPCS request is needed to ensure full
2210          * slice/subslice/EU enablement prior to Gen9.
2211         */
2212         if (INTEL_GEN(dev_priv) < 9)
2213                 return 0;
2214
2215         /*
2216          * Starting in Gen9, render power gating can leave
2217          * slice/subslice/EU in a partially enabled state. We
2218          * must make an explicit request through RPCS for full
2219          * enablement.
2220         */
2221         if (INTEL_INFO(dev_priv)->has_slice_pg) {
2222                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2223                 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2224                         GEN8_RPCS_S_CNT_SHIFT;
2225                 rpcs |= GEN8_RPCS_ENABLE;
2226         }
2227
2228         if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2229                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2230                 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2231                         GEN8_RPCS_SS_CNT_SHIFT;
2232                 rpcs |= GEN8_RPCS_ENABLE;
2233         }
2234
2235         if (INTEL_INFO(dev_priv)->has_eu_pg) {
2236                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2237                         GEN8_RPCS_EU_MIN_SHIFT;
2238                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2239                         GEN8_RPCS_EU_MAX_SHIFT;
2240                 rpcs |= GEN8_RPCS_ENABLE;
2241         }
2242
2243         return rpcs;
2244 }
2245
2246 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2247 {
2248         u32 indirect_ctx_offset;
2249
2250         switch (INTEL_GEN(engine->i915)) {
2251         default:
2252                 MISSING_CASE(INTEL_GEN(engine->i915));
2253                 /* fall through */
2254         case 9:
2255                 indirect_ctx_offset =
2256                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2257                 break;
2258         case 8:
2259                 indirect_ctx_offset =
2260                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2261                 break;
2262         }
2263
2264         return indirect_ctx_offset;
2265 }
2266
2267 static int
2268 populate_lr_context(struct i915_gem_context *ctx,
2269                     struct drm_i915_gem_object *ctx_obj,
2270                     struct intel_engine_cs *engine,
2271                     struct intel_ringbuffer *ringbuf)
2272 {
2273         struct drm_i915_private *dev_priv = ctx->i915;
2274         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2275         void *vaddr;
2276         u32 *reg_state;
2277         int ret;
2278
2279         if (!ppgtt)
2280                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2281
2282         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2283         if (ret) {
2284                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2285                 return ret;
2286         }
2287
2288         vaddr = i915_gem_object_pin_map(ctx_obj);
2289         if (IS_ERR(vaddr)) {
2290                 ret = PTR_ERR(vaddr);
2291                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2292                 return ret;
2293         }
2294         ctx_obj->dirty = true;
2295
2296         /* The second page of the context object contains some fields which must
2297          * be set up prior to the first execution. */
2298         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2299
2300         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2301          * commands followed by (reg, value) pairs. The values we are setting here are
2302          * only for the first context restore: on a subsequent save, the GPU will
2303          * recreate this batchbuffer with new values (including all the missing
2304          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2305         reg_state[CTX_LRI_HEADER_0] =
2306                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2307         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2308                        RING_CONTEXT_CONTROL(engine),
2309                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2310                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2311                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2312                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2313         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2314                        0);
2315         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2316                        0);
2317         /* Ring buffer start address is not known until the buffer is pinned.
2318          * It is written to the context image in execlists_update_context()
2319          */
2320         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2321                        RING_START(engine->mmio_base), 0);
2322         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2323                        RING_CTL(engine->mmio_base),
2324                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2325         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2326                        RING_BBADDR_UDW(engine->mmio_base), 0);
2327         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2328                        RING_BBADDR(engine->mmio_base), 0);
2329         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2330                        RING_BBSTATE(engine->mmio_base),
2331                        RING_BB_PPGTT);
2332         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2333                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2334         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2335                        RING_SBBADDR(engine->mmio_base), 0);
2336         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2337                        RING_SBBSTATE(engine->mmio_base), 0);
2338         if (engine->id == RCS) {
2339                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2340                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2341                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2342                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2343                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2344                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2345                 if (engine->wa_ctx.obj) {
2346                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2347                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2348
2349                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2350                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2351                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2352
2353                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2354                                 intel_lr_indirect_ctx_offset(engine) << 6;
2355
2356                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2357                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2358                                 0x01;
2359                 }
2360         }
2361         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2362         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2363                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2364         /* PDP values well be assigned later if needed */
2365         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2366                        0);
2367         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2368                        0);
2369         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2370                        0);
2371         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2372                        0);
2373         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2374                        0);
2375         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2376                        0);
2377         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2378                        0);
2379         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2380                        0);
2381
2382         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2383                 /* 64b PPGTT (48bit canonical)
2384                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2385                  * other PDP Descriptors are ignored.
2386                  */
2387                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2388         } else {
2389                 /* 32b PPGTT
2390                  * PDP*_DESCRIPTOR contains the base address of space supported.
2391                  * With dynamic page allocation, PDPs may not be allocated at
2392                  * this point. Point the unallocated PDPs to the scratch page
2393                  */
2394                 execlists_update_context_pdps(ppgtt, reg_state);
2395         }
2396
2397         if (engine->id == RCS) {
2398                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2399                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2400                                make_rpcs(dev_priv));
2401         }
2402
2403         i915_gem_object_unpin_map(ctx_obj);
2404
2405         return 0;
2406 }
2407
2408 /**
2409  * intel_lr_context_size() - return the size of the context for an engine
2410  * @engine: which engine to find the context size for
2411  *
2412  * Each engine may require a different amount of space for a context image,
2413  * so when allocating (or copying) an image, this function can be used to
2414  * find the right size for the specific engine.
2415  *
2416  * Return: size (in bytes) of an engine-specific context image
2417  *
2418  * Note: this size includes the HWSP, which is part of the context image
2419  * in LRC mode, but does not include the "shared data page" used with
2420  * GuC submission. The caller should account for this if using the GuC.
2421  */
2422 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2423 {
2424         int ret = 0;
2425
2426         WARN_ON(INTEL_GEN(engine->i915) < 8);
2427
2428         switch (engine->id) {
2429         case RCS:
2430                 if (INTEL_GEN(engine->i915) >= 9)
2431                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2432                 else
2433                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2434                 break;
2435         case VCS:
2436         case BCS:
2437         case VECS:
2438         case VCS2:
2439                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2440                 break;
2441         }
2442
2443         return ret;
2444 }
2445
2446 /**
2447  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2448  * @ctx: LR context to create.
2449  * @engine: engine to be used with the context.
2450  *
2451  * This function can be called more than once, with different engines, if we plan
2452  * to use the context with them. The context backing objects and the ringbuffers
2453  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2454  * the creation is a deferred call: it's better to make sure first that we need to use
2455  * a given ring with the context.
2456  *
2457  * Return: non-zero on error.
2458  */
2459 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2460                                             struct intel_engine_cs *engine)
2461 {
2462         struct drm_i915_gem_object *ctx_obj;
2463         struct intel_context *ce = &ctx->engine[engine->id];
2464         uint32_t context_size;
2465         struct intel_ringbuffer *ringbuf;
2466         int ret;
2467
2468         WARN_ON(ce->state);
2469
2470         context_size = round_up(intel_lr_context_size(engine), 4096);
2471
2472         /* One extra page as the sharing data between driver and GuC */
2473         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2474
2475         ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2476         if (IS_ERR(ctx_obj)) {
2477                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2478                 return PTR_ERR(ctx_obj);
2479         }
2480
2481         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2482         if (IS_ERR(ringbuf)) {
2483                 ret = PTR_ERR(ringbuf);
2484                 goto error_deref_obj;
2485         }
2486
2487         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2488         if (ret) {
2489                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2490                 goto error_ringbuf;
2491         }
2492
2493         ce->ringbuf = ringbuf;
2494         ce->state = ctx_obj;
2495         ce->initialised = engine->init_context == NULL;
2496
2497         return 0;
2498
2499 error_ringbuf:
2500         intel_ringbuffer_free(ringbuf);
2501 error_deref_obj:
2502         drm_gem_object_unreference(&ctx_obj->base);
2503         ce->ringbuf = NULL;
2504         ce->state = NULL;
2505         return ret;
2506 }
2507
2508 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2509                             struct i915_gem_context *ctx)
2510 {
2511         struct intel_engine_cs *engine;
2512
2513         for_each_engine(engine, dev_priv) {
2514                 struct intel_context *ce = &ctx->engine[engine->id];
2515                 struct drm_i915_gem_object *ctx_obj = ce->state;
2516                 void *vaddr;
2517                 uint32_t *reg_state;
2518
2519                 if (!ctx_obj)
2520                         continue;
2521
2522                 vaddr = i915_gem_object_pin_map(ctx_obj);
2523                 if (WARN_ON(IS_ERR(vaddr)))
2524                         continue;
2525
2526                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2527                 ctx_obj->dirty = true;
2528
2529                 reg_state[CTX_RING_HEAD+1] = 0;
2530                 reg_state[CTX_RING_TAIL+1] = 0;
2531
2532                 i915_gem_object_unpin_map(ctx_obj);
2533
2534                 ce->ringbuf->head = 0;
2535                 ce->ringbuf->tail = 0;
2536         }
2537 }