]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
dc25cfe7bfc06d74f02a9a21e4a85807ba40868e
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
230
231 static int execlists_context_deferred_alloc(struct intel_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct intel_context *ctx,
234                                 struct intel_engine_cs *engine);
235
236 /**
237  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238  * @dev: DRM device.
239  * @enable_execlists: value of i915.enable_execlists module parameter.
240  *
241  * Only certain platforms support Execlists (the prerequisites being
242  * support for Logical Ring Contexts and Aliasing PPGTT or better).
243  *
244  * Return: 1 if Execlists is supported and has to be enabled.
245  */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248         WARN_ON(i915.enable_ppgtt == -1);
249
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254                 return 1;
255
256         if (INTEL_INFO(dev)->gen >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263             i915.use_mmio_flip >= 0)
264                 return 1;
265
266         return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272         struct drm_device *dev = engine->dev;
273
274         if (IS_GEN8(dev) || IS_GEN9(dev))
275                 engine->idle_lite_restore_wa = ~0;
276
277         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279                                         (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
284         if (IS_GEN8(dev))
285                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288         /* TODO: WaDisableLiteRestore when we start using semaphore
289          * signalling between Command Streamers */
290         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294         if (engine->disable_lite_restore_wa)
295                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300  *                                        descriptor for a pinned context
301  *
302  * @ctx: Context to work on
303  * @ring: Engine the descriptor will be used with
304  *
305  * The context descriptor encodes various attributes of a context,
306  * including its GTT address and some flags. Because it's fairly
307  * expensive to calculate, we'll just do it once and cache the result,
308  * which remains valid until the context is unpinned.
309  *
310  * This is what a descriptor looks like, from LSB to MSB:
311  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313  *    bits 32-52:    ctx ID, a globally unique tag
314  *    bits 53-54:    mbz, reserved for use by hardware
315  *    bits 55-63:    group ID, currently unused and set to 0
316  */
317 static void
318 intel_lr_context_descriptor_update(struct intel_context *ctx,
319                                    struct intel_engine_cs *engine)
320 {
321         u64 desc;
322
323         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324
325         desc = engine->ctx_desc_template;                       /* bits  0-11 */
326         desc |= ctx->engine[engine->id].lrc_vma->node.start +   /* bits 12-31 */
327                LRC_PPHWSP_PN * PAGE_SIZE;
328         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
329
330         ctx->engine[engine->id].lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334                                      struct intel_engine_cs *engine)
335 {
336         return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340                                  struct drm_i915_gem_request *rq1)
341 {
342
343         struct intel_engine_cs *engine = rq0->engine;
344         struct drm_device *dev = engine->dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346         uint64_t desc[2];
347
348         if (rq1) {
349                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350                 rq1->elsp_submitted++;
351         } else {
352                 desc[1] = 0;
353         }
354
355         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356         rq0->elsp_submitted++;
357
358         /* You must always write both descriptors in the order below. */
359         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361
362         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363         /* The context is automatically loaded after the following */
364         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365
366         /* ELSP is a wo register, use another nearby reg for posting */
367         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 }
369
370 static void
371 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372 {
373         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377 }
378
379 static void execlists_update_context(struct drm_i915_gem_request *rq)
380 {
381         struct intel_engine_cs *engine = rq->engine;
382         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384
385         reg_state[CTX_RING_TAIL+1] = rq->tail;
386
387         /* True 32b PPGTT with dynamic page allocation: update PDP
388          * registers and point the unallocated PDPs to scratch page.
389          * PML4 is allocated during ppgtt init, so this is not needed
390          * in 48-bit mode.
391          */
392         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393                 execlists_update_context_pdps(ppgtt, reg_state);
394 }
395
396 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397                                       struct drm_i915_gem_request *rq1)
398 {
399         struct drm_i915_private *dev_priv = rq0->i915;
400         unsigned int fw_domains = rq0->engine->fw_domains;
401
402         execlists_update_context(rq0);
403
404         if (rq1)
405                 execlists_update_context(rq1);
406
407         spin_lock_irq(&dev_priv->uncore.lock);
408         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409
410         execlists_elsp_write(rq0, rq1);
411
412         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413         spin_unlock_irq(&dev_priv->uncore.lock);
414 }
415
416 static void execlists_context_unqueue(struct intel_engine_cs *engine)
417 {
418         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419         struct drm_i915_gem_request *cursor, *tmp;
420
421         assert_spin_locked(&engine->execlist_lock);
422
423         /*
424          * If irqs are not active generate a warning as batches that finish
425          * without the irqs may get lost and a GPU Hang may occur.
426          */
427         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
428
429         /* Try to read in pairs */
430         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431                                  execlist_link) {
432                 if (!req0) {
433                         req0 = cursor;
434                 } else if (req0->ctx == cursor->ctx) {
435                         /* Same ctx: ignore first request, as second request
436                          * will update tail past first request's workload */
437                         cursor->elsp_submitted = req0->elsp_submitted;
438                         list_move_tail(&req0->execlist_link,
439                                        &engine->execlist_retired_req_list);
440                         req0 = cursor;
441                 } else {
442                         req1 = cursor;
443                         WARN_ON(req1->elsp_submitted);
444                         break;
445                 }
446         }
447
448         if (unlikely(!req0))
449                 return;
450
451         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452                 /*
453                  * WaIdleLiteRestore: make sure we never cause a lite restore
454                  * with HEAD==TAIL.
455                  *
456                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457                  * resubmit the request. See gen8_emit_request() for where we
458                  * prepare the padding after the end of the request.
459                  */
460                 struct intel_ringbuffer *ringbuf;
461
462                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
463                 req0->tail += 8;
464                 req0->tail &= ringbuf->size - 1;
465         }
466
467         execlists_submit_requests(req0, req1);
468 }
469
470 static unsigned int
471 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
472 {
473         struct drm_i915_gem_request *head_req;
474
475         assert_spin_locked(&engine->execlist_lock);
476
477         head_req = list_first_entry_or_null(&engine->execlist_queue,
478                                             struct drm_i915_gem_request,
479                                             execlist_link);
480
481         if (!head_req)
482                 return 0;
483
484         if (unlikely(head_req->ctx_hw_id != request_id))
485                 return 0;
486
487         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
488
489         if (--head_req->elsp_submitted > 0)
490                 return 0;
491
492         list_move_tail(&head_req->execlist_link,
493                        &engine->execlist_retired_req_list);
494
495         return 1;
496 }
497
498 static u32
499 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500                    u32 *context_id)
501 {
502         struct drm_i915_private *dev_priv = engine->dev->dev_private;
503         u32 status;
504
505         read_pointer %= GEN8_CSB_ENTRIES;
506
507         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508
509         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
510                 return 0;
511
512         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513                                                               read_pointer));
514
515         return status;
516 }
517
518 /**
519  * intel_lrc_irq_handler() - handle Context Switch interrupts
520  * @engine: Engine Command Streamer to handle.
521  *
522  * Check the unread Context Status Buffers and manage the submission of new
523  * contexts to the ELSP accordingly.
524  */
525 static void intel_lrc_irq_handler(unsigned long data)
526 {
527         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528         struct drm_i915_private *dev_priv = engine->dev->dev_private;
529         u32 status_pointer;
530         unsigned int read_pointer, write_pointer;
531         u32 csb[GEN8_CSB_ENTRIES][2];
532         unsigned int csb_read = 0, i;
533         unsigned int submit_contexts = 0;
534
535         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536
537         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538
539         read_pointer = engine->next_context_status_buffer;
540         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541         if (read_pointer > write_pointer)
542                 write_pointer += GEN8_CSB_ENTRIES;
543
544         while (read_pointer < write_pointer) {
545                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
546                         break;
547                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
548                                                       &csb[csb_read][1]);
549                 csb_read++;
550         }
551
552         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
553
554         /* Update the read pointer to the old write pointer. Manual ringbuffer
555          * management ftw </sarcasm> */
556         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
557                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
558                                     engine->next_context_status_buffer << 8));
559
560         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561
562         spin_lock(&engine->execlist_lock);
563
564         for (i = 0; i < csb_read; i++) {
565                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
566                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
567                                 if (execlists_check_remove_request(engine, csb[i][1]))
568                                         WARN(1, "Lite Restored request removed from queue\n");
569                         } else
570                                 WARN(1, "Preemption without Lite Restore\n");
571                 }
572
573                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
575                         submit_contexts +=
576                                 execlists_check_remove_request(engine, csb[i][1]);
577         }
578
579         if (submit_contexts) {
580                 if (!engine->disable_lite_restore_wa ||
581                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
582                         execlists_context_unqueue(engine);
583         }
584
585         spin_unlock(&engine->execlist_lock);
586
587         if (unlikely(submit_contexts > 2))
588                 DRM_ERROR("More than two context complete events?\n");
589 }
590
591 static void execlists_context_queue(struct drm_i915_gem_request *request)
592 {
593         struct intel_engine_cs *engine = request->engine;
594         struct drm_i915_gem_request *cursor;
595         int num_elements = 0;
596
597         intel_lr_context_pin(request->ctx, request->engine);
598         i915_gem_request_reference(request);
599
600         spin_lock_bh(&engine->execlist_lock);
601
602         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
603                 if (++num_elements > 2)
604                         break;
605
606         if (num_elements > 2) {
607                 struct drm_i915_gem_request *tail_req;
608
609                 tail_req = list_last_entry(&engine->execlist_queue,
610                                            struct drm_i915_gem_request,
611                                            execlist_link);
612
613                 if (request->ctx == tail_req->ctx) {
614                         WARN(tail_req->elsp_submitted != 0,
615                                 "More than 2 already-submitted reqs queued\n");
616                         list_move_tail(&tail_req->execlist_link,
617                                        &engine->execlist_retired_req_list);
618                 }
619         }
620
621         list_add_tail(&request->execlist_link, &engine->execlist_queue);
622         request->ctx_hw_id = request->ctx->hw_id;
623         if (num_elements == 0)
624                 execlists_context_unqueue(engine);
625
626         spin_unlock_bh(&engine->execlist_lock);
627 }
628
629 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
630 {
631         struct intel_engine_cs *engine = req->engine;
632         uint32_t flush_domains;
633         int ret;
634
635         flush_domains = 0;
636         if (engine->gpu_caches_dirty)
637                 flush_domains = I915_GEM_GPU_DOMAINS;
638
639         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
640         if (ret)
641                 return ret;
642
643         engine->gpu_caches_dirty = false;
644         return 0;
645 }
646
647 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
648                                  struct list_head *vmas)
649 {
650         const unsigned other_rings = ~intel_engine_flag(req->engine);
651         struct i915_vma *vma;
652         uint32_t flush_domains = 0;
653         bool flush_chipset = false;
654         int ret;
655
656         list_for_each_entry(vma, vmas, exec_list) {
657                 struct drm_i915_gem_object *obj = vma->obj;
658
659                 if (obj->active & other_rings) {
660                         ret = i915_gem_object_sync(obj, req->engine, &req);
661                         if (ret)
662                                 return ret;
663                 }
664
665                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
666                         flush_chipset |= i915_gem_clflush_object(obj, false);
667
668                 flush_domains |= obj->base.write_domain;
669         }
670
671         if (flush_domains & I915_GEM_DOMAIN_GTT)
672                 wmb();
673
674         /* Unconditionally invalidate gpu caches and ensure that we do flush
675          * any residual writes from the previous batch.
676          */
677         return logical_ring_invalidate_all_caches(req);
678 }
679
680 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
681 {
682         struct intel_engine_cs *engine = request->engine;
683         int ret;
684
685         /* Flush enough space to reduce the likelihood of waiting after
686          * we start building the request - in which case we will just
687          * have to repeat work.
688          */
689         request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
690
691         if (request->ctx->engine[engine->id].state == NULL) {
692                 ret = execlists_context_deferred_alloc(request->ctx, engine);
693                 if (ret)
694                         return ret;
695         }
696
697         request->ringbuf = request->ctx->engine[engine->id].ringbuf;
698
699         if (i915.enable_guc_submission) {
700                 /*
701                  * Check that the GuC has space for the request before
702                  * going any further, as the i915_add_request() call
703                  * later on mustn't fail ...
704                  */
705                 struct intel_guc *guc = &request->i915->guc;
706
707                 ret = i915_guc_wq_check_space(guc->execbuf_client);
708                 if (ret)
709                         return ret;
710         }
711
712         ret = intel_lr_context_pin(request->ctx, engine);
713         if (ret)
714                 return ret;
715
716         ret = intel_ring_begin(request, 0);
717         if (ret)
718                 goto err_unpin;
719
720         if (!request->ctx->engine[engine->id].initialised) {
721                 ret = engine->init_context(request);
722                 if (ret)
723                         goto err_unpin;
724
725                 request->ctx->engine[engine->id].initialised = true;
726         }
727
728         /* Note that after this point, we have committed to using
729          * this request as it is being used to both track the
730          * state of engine initialisation and liveness of the
731          * golden renderstate above. Think twice before you try
732          * to cancel/unwind this request now.
733          */
734
735         request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
736         return 0;
737
738 err_unpin:
739         intel_lr_context_unpin(request->ctx, engine);
740         return ret;
741 }
742
743 /*
744  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
745  * @request: Request to advance the logical ringbuffer of.
746  *
747  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
748  * really happens during submission is that the context and current tail will be placed
749  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
750  * point, the tail *inside* the context is updated and the ELSP written to.
751  */
752 static int
753 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
754 {
755         struct intel_ringbuffer *ringbuf = request->ringbuf;
756         struct drm_i915_private *dev_priv = request->i915;
757         struct intel_engine_cs *engine = request->engine;
758
759         intel_logical_ring_advance(ringbuf);
760         request->tail = ringbuf->tail;
761
762         /*
763          * Here we add two extra NOOPs as padding to avoid
764          * lite restore of a context with HEAD==TAIL.
765          *
766          * Caller must reserve WA_TAIL_DWORDS for us!
767          */
768         intel_logical_ring_emit(ringbuf, MI_NOOP);
769         intel_logical_ring_emit(ringbuf, MI_NOOP);
770         intel_logical_ring_advance(ringbuf);
771
772         if (intel_engine_stopped(engine))
773                 return 0;
774
775         /* We keep the previous context alive until we retire the following
776          * request. This ensures that any the context object is still pinned
777          * for any residual writes the HW makes into it on the context switch
778          * into the next object following the breadcrumb. Otherwise, we may
779          * retire the context too early.
780          */
781         request->previous_context = engine->last_context;
782         engine->last_context = request->ctx;
783
784         if (dev_priv->guc.execbuf_client)
785                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
786         else
787                 execlists_context_queue(request);
788
789         return 0;
790 }
791
792 /**
793  * execlists_submission() - submit a batchbuffer for execution, Execlists style
794  * @dev: DRM device.
795  * @file: DRM file.
796  * @ring: Engine Command Streamer to submit to.
797  * @ctx: Context to employ for this submission.
798  * @args: execbuffer call arguments.
799  * @vmas: list of vmas.
800  * @batch_obj: the batchbuffer to submit.
801  * @exec_start: batchbuffer start virtual address pointer.
802  * @dispatch_flags: translated execbuffer call flags.
803  *
804  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
805  * away the submission details of the execbuffer ioctl call.
806  *
807  * Return: non-zero if the submission fails.
808  */
809 int intel_execlists_submission(struct i915_execbuffer_params *params,
810                                struct drm_i915_gem_execbuffer2 *args,
811                                struct list_head *vmas)
812 {
813         struct drm_device       *dev = params->dev;
814         struct intel_engine_cs *engine = params->engine;
815         struct drm_i915_private *dev_priv = dev->dev_private;
816         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
817         u64 exec_start;
818         int instp_mode;
819         u32 instp_mask;
820         int ret;
821
822         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
823         instp_mask = I915_EXEC_CONSTANTS_MASK;
824         switch (instp_mode) {
825         case I915_EXEC_CONSTANTS_REL_GENERAL:
826         case I915_EXEC_CONSTANTS_ABSOLUTE:
827         case I915_EXEC_CONSTANTS_REL_SURFACE:
828                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
829                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
830                         return -EINVAL;
831                 }
832
833                 if (instp_mode != dev_priv->relative_constants_mode) {
834                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
835                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
836                                 return -EINVAL;
837                         }
838
839                         /* The HW changed the meaning on this bit on gen6 */
840                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
841                 }
842                 break;
843         default:
844                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
845                 return -EINVAL;
846         }
847
848         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
849                 DRM_DEBUG("sol reset is gen7 only\n");
850                 return -EINVAL;
851         }
852
853         ret = execlists_move_to_gpu(params->request, vmas);
854         if (ret)
855                 return ret;
856
857         if (engine == &dev_priv->engine[RCS] &&
858             instp_mode != dev_priv->relative_constants_mode) {
859                 ret = intel_ring_begin(params->request, 4);
860                 if (ret)
861                         return ret;
862
863                 intel_logical_ring_emit(ringbuf, MI_NOOP);
864                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
865                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
866                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
867                 intel_logical_ring_advance(ringbuf);
868
869                 dev_priv->relative_constants_mode = instp_mode;
870         }
871
872         exec_start = params->batch_obj_vm_offset +
873                      args->batch_start_offset;
874
875         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
876         if (ret)
877                 return ret;
878
879         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
880
881         i915_gem_execbuffer_move_to_active(vmas, params->request);
882
883         return 0;
884 }
885
886 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
887 {
888         struct drm_i915_gem_request *req, *tmp;
889         struct list_head retired_list;
890
891         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
892         if (list_empty(&engine->execlist_retired_req_list))
893                 return;
894
895         INIT_LIST_HEAD(&retired_list);
896         spin_lock_bh(&engine->execlist_lock);
897         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
898         spin_unlock_bh(&engine->execlist_lock);
899
900         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
901                 intel_lr_context_unpin(req->ctx, engine);
902
903                 list_del(&req->execlist_link);
904                 i915_gem_request_unreference(req);
905         }
906 }
907
908 void intel_logical_ring_stop(struct intel_engine_cs *engine)
909 {
910         struct drm_i915_private *dev_priv = engine->dev->dev_private;
911         int ret;
912
913         if (!intel_engine_initialized(engine))
914                 return;
915
916         ret = intel_engine_idle(engine);
917         if (ret)
918                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
919                           engine->name, ret);
920
921         /* TODO: Is this correct with Execlists enabled? */
922         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
923         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
924                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
925                 return;
926         }
927         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
928 }
929
930 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
931 {
932         struct intel_engine_cs *engine = req->engine;
933         int ret;
934
935         if (!engine->gpu_caches_dirty)
936                 return 0;
937
938         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
939         if (ret)
940                 return ret;
941
942         engine->gpu_caches_dirty = false;
943         return 0;
944 }
945
946 static int intel_lr_context_pin(struct intel_context *ctx,
947                                 struct intel_engine_cs *engine)
948 {
949         struct drm_i915_private *dev_priv = ctx->i915;
950         struct drm_i915_gem_object *ctx_obj;
951         struct intel_ringbuffer *ringbuf;
952         void *vaddr;
953         u32 *lrc_reg_state;
954         int ret;
955
956         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
957
958         if (ctx->engine[engine->id].pin_count++)
959                 return 0;
960
961         ctx_obj = ctx->engine[engine->id].state;
962         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
963                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
964         if (ret)
965                 goto err;
966
967         vaddr = i915_gem_object_pin_map(ctx_obj);
968         if (IS_ERR(vaddr)) {
969                 ret = PTR_ERR(vaddr);
970                 goto unpin_ctx_obj;
971         }
972
973         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
974
975         ringbuf = ctx->engine[engine->id].ringbuf;
976         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
977         if (ret)
978                 goto unpin_map;
979
980         i915_gem_context_reference(ctx);
981         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
982         intel_lr_context_descriptor_update(ctx, engine);
983         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
984         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
985         ctx_obj->dirty = true;
986
987         /* Invalidate GuC TLB. */
988         if (i915.enable_guc_submission)
989                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
990
991         return 0;
992
993 unpin_map:
994         i915_gem_object_unpin_map(ctx_obj);
995 unpin_ctx_obj:
996         i915_gem_object_ggtt_unpin(ctx_obj);
997 err:
998         ctx->engine[engine->id].pin_count = 0;
999         return ret;
1000 }
1001
1002 void intel_lr_context_unpin(struct intel_context *ctx,
1003                             struct intel_engine_cs *engine)
1004 {
1005         struct drm_i915_gem_object *ctx_obj;
1006
1007         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1008         GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1009
1010         if (--ctx->engine[engine->id].pin_count)
1011                 return;
1012
1013         intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1014
1015         ctx_obj = ctx->engine[engine->id].state;
1016         i915_gem_object_unpin_map(ctx_obj);
1017         i915_gem_object_ggtt_unpin(ctx_obj);
1018
1019         ctx->engine[engine->id].lrc_vma = NULL;
1020         ctx->engine[engine->id].lrc_desc = 0;
1021         ctx->engine[engine->id].lrc_reg_state = NULL;
1022
1023         i915_gem_context_unreference(ctx);
1024 }
1025
1026 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1027 {
1028         int ret, i;
1029         struct intel_engine_cs *engine = req->engine;
1030         struct intel_ringbuffer *ringbuf = req->ringbuf;
1031         struct drm_device *dev = engine->dev;
1032         struct drm_i915_private *dev_priv = dev->dev_private;
1033         struct i915_workarounds *w = &dev_priv->workarounds;
1034
1035         if (w->count == 0)
1036                 return 0;
1037
1038         engine->gpu_caches_dirty = true;
1039         ret = logical_ring_flush_all_caches(req);
1040         if (ret)
1041                 return ret;
1042
1043         ret = intel_ring_begin(req, w->count * 2 + 2);
1044         if (ret)
1045                 return ret;
1046
1047         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1048         for (i = 0; i < w->count; i++) {
1049                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1050                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1051         }
1052         intel_logical_ring_emit(ringbuf, MI_NOOP);
1053
1054         intel_logical_ring_advance(ringbuf);
1055
1056         engine->gpu_caches_dirty = true;
1057         ret = logical_ring_flush_all_caches(req);
1058         if (ret)
1059                 return ret;
1060
1061         return 0;
1062 }
1063
1064 #define wa_ctx_emit(batch, index, cmd)                                  \
1065         do {                                                            \
1066                 int __index = (index)++;                                \
1067                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1068                         return -ENOSPC;                                 \
1069                 }                                                       \
1070                 batch[__index] = (cmd);                                 \
1071         } while (0)
1072
1073 #define wa_ctx_emit_reg(batch, index, reg) \
1074         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1075
1076 /*
1077  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1078  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1079  * but there is a slight complication as this is applied in WA batch where the
1080  * values are only initialized once so we cannot take register value at the
1081  * beginning and reuse it further; hence we save its value to memory, upload a
1082  * constant value with bit21 set and then we restore it back with the saved value.
1083  * To simplify the WA, a constant value is formed by using the default value
1084  * of this register. This shouldn't be a problem because we are only modifying
1085  * it for a short period and this batch in non-premptible. We can ofcourse
1086  * use additional instructions that read the actual value of the register
1087  * at that time and set our bit of interest but it makes the WA complicated.
1088  *
1089  * This WA is also required for Gen9 so extracting as a function avoids
1090  * code duplication.
1091  */
1092 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1093                                                 uint32_t *const batch,
1094                                                 uint32_t index)
1095 {
1096         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1097
1098         /*
1099          * WaDisableLSQCROPERFforOCL:skl
1100          * This WA is implemented in skl_init_clock_gating() but since
1101          * this batch updates GEN8_L3SQCREG4 with default value we need to
1102          * set this bit here to retain the WA during flush.
1103          */
1104         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1105                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1106
1107         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1108                                    MI_SRM_LRM_GLOBAL_GTT));
1109         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1110         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1111         wa_ctx_emit(batch, index, 0);
1112
1113         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1114         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115         wa_ctx_emit(batch, index, l3sqc4_flush);
1116
1117         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1118         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1119                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1120         wa_ctx_emit(batch, index, 0);
1121         wa_ctx_emit(batch, index, 0);
1122         wa_ctx_emit(batch, index, 0);
1123         wa_ctx_emit(batch, index, 0);
1124
1125         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1126                                    MI_SRM_LRM_GLOBAL_GTT));
1127         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1128         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1129         wa_ctx_emit(batch, index, 0);
1130
1131         return index;
1132 }
1133
1134 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1135                                     uint32_t offset,
1136                                     uint32_t start_alignment)
1137 {
1138         return wa_ctx->offset = ALIGN(offset, start_alignment);
1139 }
1140
1141 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1142                              uint32_t offset,
1143                              uint32_t size_alignment)
1144 {
1145         wa_ctx->size = offset - wa_ctx->offset;
1146
1147         WARN(wa_ctx->size % size_alignment,
1148              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1149              wa_ctx->size, size_alignment);
1150         return 0;
1151 }
1152
1153 /**
1154  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1155  *
1156  * @ring: only applicable for RCS
1157  * @wa_ctx: structure representing wa_ctx
1158  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1159  *    with the offset value received as input.
1160  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1161  * @batch: page in which WA are loaded
1162  * @offset: This field specifies the start of the batch, it should be
1163  *  cache-aligned otherwise it is adjusted accordingly.
1164  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1165  *  initialized at the beginning and shared across all contexts but this field
1166  *  helps us to have multiple batches at different offsets and select them based
1167  *  on a criteria. At the moment this batch always start at the beginning of the page
1168  *  and at this point we don't have multiple wa_ctx batch buffers.
1169  *
1170  *  The number of WA applied are not known at the beginning; we use this field
1171  *  to return the no of DWORDS written.
1172  *
1173  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1174  *  so it adds NOOPs as padding to make it cacheline aligned.
1175  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1176  *  makes a complete batch buffer.
1177  *
1178  * Return: non-zero if we exceed the PAGE_SIZE limit.
1179  */
1180
1181 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1182                                     struct i915_wa_ctx_bb *wa_ctx,
1183                                     uint32_t *const batch,
1184                                     uint32_t *offset)
1185 {
1186         uint32_t scratch_addr;
1187         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1188
1189         /* WaDisableCtxRestoreArbitration:bdw,chv */
1190         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1191
1192         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1193         if (IS_BROADWELL(engine->dev)) {
1194                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1195                 if (rc < 0)
1196                         return rc;
1197                 index = rc;
1198         }
1199
1200         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1201         /* Actual scratch location is at 128 bytes offset */
1202         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1203
1204         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1205         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1206                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1207                                    PIPE_CONTROL_CS_STALL |
1208                                    PIPE_CONTROL_QW_WRITE));
1209         wa_ctx_emit(batch, index, scratch_addr);
1210         wa_ctx_emit(batch, index, 0);
1211         wa_ctx_emit(batch, index, 0);
1212         wa_ctx_emit(batch, index, 0);
1213
1214         /* Pad to end of cacheline */
1215         while (index % CACHELINE_DWORDS)
1216                 wa_ctx_emit(batch, index, MI_NOOP);
1217
1218         /*
1219          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1220          * execution depends on the length specified in terms of cache lines
1221          * in the register CTX_RCS_INDIRECT_CTX
1222          */
1223
1224         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1225 }
1226
1227 /**
1228  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1229  *
1230  * @ring: only applicable for RCS
1231  * @wa_ctx: structure representing wa_ctx
1232  *  offset: specifies start of the batch, should be cache-aligned.
1233  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1234  * @batch: page in which WA are loaded
1235  * @offset: This field specifies the start of this batch.
1236  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1237  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1238  *
1239  *   The number of DWORDS written are returned using this field.
1240  *
1241  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1242  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1243  */
1244 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1245                                struct i915_wa_ctx_bb *wa_ctx,
1246                                uint32_t *const batch,
1247                                uint32_t *offset)
1248 {
1249         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1250
1251         /* WaDisableCtxRestoreArbitration:bdw,chv */
1252         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1253
1254         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1255
1256         return wa_ctx_end(wa_ctx, *offset = index, 1);
1257 }
1258
1259 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1260                                     struct i915_wa_ctx_bb *wa_ctx,
1261                                     uint32_t *const batch,
1262                                     uint32_t *offset)
1263 {
1264         int ret;
1265         struct drm_device *dev = engine->dev;
1266         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1267
1268         /* WaDisableCtxRestoreArbitration:skl,bxt */
1269         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1270             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1271                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1272
1273         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1274         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1275         if (ret < 0)
1276                 return ret;
1277         index = ret;
1278
1279         /* Pad to end of cacheline */
1280         while (index % CACHELINE_DWORDS)
1281                 wa_ctx_emit(batch, index, MI_NOOP);
1282
1283         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1284 }
1285
1286 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1287                                struct i915_wa_ctx_bb *wa_ctx,
1288                                uint32_t *const batch,
1289                                uint32_t *offset)
1290 {
1291         struct drm_device *dev = engine->dev;
1292         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1293
1294         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1295         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1296             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1297                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1298                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1299                 wa_ctx_emit(batch, index,
1300                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1301                 wa_ctx_emit(batch, index, MI_NOOP);
1302         }
1303
1304         /* WaClearTdlStateAckDirtyBits:bxt */
1305         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1306                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1307
1308                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1309                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1310
1311                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1312                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1313
1314                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1315                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1316
1317                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1318                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1319                 wa_ctx_emit(batch, index, 0x0);
1320                 wa_ctx_emit(batch, index, MI_NOOP);
1321         }
1322
1323         /* WaDisableCtxRestoreArbitration:skl,bxt */
1324         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1325             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1326                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1327
1328         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1329
1330         return wa_ctx_end(wa_ctx, *offset = index, 1);
1331 }
1332
1333 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1334 {
1335         int ret;
1336
1337         engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1338                                                    PAGE_ALIGN(size));
1339         if (IS_ERR(engine->wa_ctx.obj)) {
1340                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1341                 ret = PTR_ERR(engine->wa_ctx.obj);
1342                 engine->wa_ctx.obj = NULL;
1343                 return ret;
1344         }
1345
1346         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1347         if (ret) {
1348                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1349                                  ret);
1350                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1351                 return ret;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1358 {
1359         if (engine->wa_ctx.obj) {
1360                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1361                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1362                 engine->wa_ctx.obj = NULL;
1363         }
1364 }
1365
1366 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1367 {
1368         int ret;
1369         uint32_t *batch;
1370         uint32_t offset;
1371         struct page *page;
1372         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1373
1374         WARN_ON(engine->id != RCS);
1375
1376         /* update this when WA for higher Gen are added */
1377         if (INTEL_INFO(engine->dev)->gen > 9) {
1378                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1379                           INTEL_INFO(engine->dev)->gen);
1380                 return 0;
1381         }
1382
1383         /* some WA perform writes to scratch page, ensure it is valid */
1384         if (engine->scratch.obj == NULL) {
1385                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1386                 return -EINVAL;
1387         }
1388
1389         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1390         if (ret) {
1391                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1392                 return ret;
1393         }
1394
1395         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1396         batch = kmap_atomic(page);
1397         offset = 0;
1398
1399         if (INTEL_INFO(engine->dev)->gen == 8) {
1400                 ret = gen8_init_indirectctx_bb(engine,
1401                                                &wa_ctx->indirect_ctx,
1402                                                batch,
1403                                                &offset);
1404                 if (ret)
1405                         goto out;
1406
1407                 ret = gen8_init_perctx_bb(engine,
1408                                           &wa_ctx->per_ctx,
1409                                           batch,
1410                                           &offset);
1411                 if (ret)
1412                         goto out;
1413         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1414                 ret = gen9_init_indirectctx_bb(engine,
1415                                                &wa_ctx->indirect_ctx,
1416                                                batch,
1417                                                &offset);
1418                 if (ret)
1419                         goto out;
1420
1421                 ret = gen9_init_perctx_bb(engine,
1422                                           &wa_ctx->per_ctx,
1423                                           batch,
1424                                           &offset);
1425                 if (ret)
1426                         goto out;
1427         }
1428
1429 out:
1430         kunmap_atomic(batch);
1431         if (ret)
1432                 lrc_destroy_wa_ctx_obj(engine);
1433
1434         return ret;
1435 }
1436
1437 static void lrc_init_hws(struct intel_engine_cs *engine)
1438 {
1439         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1440
1441         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1442                    (u32)engine->status_page.gfx_addr);
1443         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1444 }
1445
1446 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1447 {
1448         struct drm_device *dev = engine->dev;
1449         struct drm_i915_private *dev_priv = dev->dev_private;
1450         unsigned int next_context_status_buffer_hw;
1451
1452         lrc_init_hws(engine);
1453
1454         I915_WRITE_IMR(engine,
1455                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1456         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1457
1458         I915_WRITE(RING_MODE_GEN7(engine),
1459                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1460                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1461         POSTING_READ(RING_MODE_GEN7(engine));
1462
1463         /*
1464          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1465          * zero, we need to read the write pointer from hardware and use its
1466          * value because "this register is power context save restored".
1467          * Effectively, these states have been observed:
1468          *
1469          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1470          * BDW  | CSB regs not reset       | CSB regs reset       |
1471          * CHT  | CSB regs not reset       | CSB regs not reset   |
1472          * SKL  |         ?                |         ?            |
1473          * BXT  |         ?                |         ?            |
1474          */
1475         next_context_status_buffer_hw =
1476                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1477
1478         /*
1479          * When the CSB registers are reset (also after power-up / gpu reset),
1480          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1481          * this special case, so the first element read is CSB[0].
1482          */
1483         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1484                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1485
1486         engine->next_context_status_buffer = next_context_status_buffer_hw;
1487         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1488
1489         intel_engine_init_hangcheck(engine);
1490
1491         return intel_mocs_init_engine(engine);
1492 }
1493
1494 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1495 {
1496         struct drm_device *dev = engine->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         int ret;
1499
1500         ret = gen8_init_common_ring(engine);
1501         if (ret)
1502                 return ret;
1503
1504         /* We need to disable the AsyncFlip performance optimisations in order
1505          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1506          * programmed to '1' on all products.
1507          *
1508          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1509          */
1510         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1511
1512         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1513
1514         return init_workarounds_ring(engine);
1515 }
1516
1517 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1518 {
1519         int ret;
1520
1521         ret = gen8_init_common_ring(engine);
1522         if (ret)
1523                 return ret;
1524
1525         return init_workarounds_ring(engine);
1526 }
1527
1528 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1529 {
1530         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1531         struct intel_engine_cs *engine = req->engine;
1532         struct intel_ringbuffer *ringbuf = req->ringbuf;
1533         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1534         int i, ret;
1535
1536         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1537         if (ret)
1538                 return ret;
1539
1540         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1541         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1542                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1543
1544                 intel_logical_ring_emit_reg(ringbuf,
1545                                             GEN8_RING_PDP_UDW(engine, i));
1546                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1547                 intel_logical_ring_emit_reg(ringbuf,
1548                                             GEN8_RING_PDP_LDW(engine, i));
1549                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1550         }
1551
1552         intel_logical_ring_emit(ringbuf, MI_NOOP);
1553         intel_logical_ring_advance(ringbuf);
1554
1555         return 0;
1556 }
1557
1558 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1559                               u64 offset, unsigned dispatch_flags)
1560 {
1561         struct intel_ringbuffer *ringbuf = req->ringbuf;
1562         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1563         int ret;
1564
1565         /* Don't rely in hw updating PDPs, specially in lite-restore.
1566          * Ideally, we should set Force PD Restore in ctx descriptor,
1567          * but we can't. Force Restore would be a second option, but
1568          * it is unsafe in case of lite-restore (because the ctx is
1569          * not idle). PML4 is allocated during ppgtt init so this is
1570          * not needed in 48-bit.*/
1571         if (req->ctx->ppgtt &&
1572             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1573                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1574                     !intel_vgpu_active(req->i915->dev)) {
1575                         ret = intel_logical_ring_emit_pdps(req);
1576                         if (ret)
1577                                 return ret;
1578                 }
1579
1580                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1581         }
1582
1583         ret = intel_ring_begin(req, 4);
1584         if (ret)
1585                 return ret;
1586
1587         /* FIXME(BDW): Address space and security selectors. */
1588         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1589                                 (ppgtt<<8) |
1590                                 (dispatch_flags & I915_DISPATCH_RS ?
1591                                  MI_BATCH_RESOURCE_STREAMER : 0));
1592         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1593         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1594         intel_logical_ring_emit(ringbuf, MI_NOOP);
1595         intel_logical_ring_advance(ringbuf);
1596
1597         return 0;
1598 }
1599
1600 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1601 {
1602         struct drm_device *dev = engine->dev;
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604         unsigned long flags;
1605
1606         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1607                 return false;
1608
1609         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1610         if (engine->irq_refcount++ == 0) {
1611                 I915_WRITE_IMR(engine,
1612                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1613                 POSTING_READ(RING_IMR(engine->mmio_base));
1614         }
1615         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1616
1617         return true;
1618 }
1619
1620 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1621 {
1622         struct drm_device *dev = engine->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         unsigned long flags;
1625
1626         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627         if (--engine->irq_refcount == 0) {
1628                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1629                 POSTING_READ(RING_IMR(engine->mmio_base));
1630         }
1631         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632 }
1633
1634 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1635                            u32 invalidate_domains,
1636                            u32 unused)
1637 {
1638         struct intel_ringbuffer *ringbuf = request->ringbuf;
1639         struct intel_engine_cs *engine = ringbuf->engine;
1640         struct drm_device *dev = engine->dev;
1641         struct drm_i915_private *dev_priv = dev->dev_private;
1642         uint32_t cmd;
1643         int ret;
1644
1645         ret = intel_ring_begin(request, 4);
1646         if (ret)
1647                 return ret;
1648
1649         cmd = MI_FLUSH_DW + 1;
1650
1651         /* We always require a command barrier so that subsequent
1652          * commands, such as breadcrumb interrupts, are strictly ordered
1653          * wrt the contents of the write cache being flushed to memory
1654          * (and thus being coherent from the CPU).
1655          */
1656         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1657
1658         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1659                 cmd |= MI_INVALIDATE_TLB;
1660                 if (engine == &dev_priv->engine[VCS])
1661                         cmd |= MI_INVALIDATE_BSD;
1662         }
1663
1664         intel_logical_ring_emit(ringbuf, cmd);
1665         intel_logical_ring_emit(ringbuf,
1666                                 I915_GEM_HWS_SCRATCH_ADDR |
1667                                 MI_FLUSH_DW_USE_GTT);
1668         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1669         intel_logical_ring_emit(ringbuf, 0); /* value */
1670         intel_logical_ring_advance(ringbuf);
1671
1672         return 0;
1673 }
1674
1675 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1676                                   u32 invalidate_domains,
1677                                   u32 flush_domains)
1678 {
1679         struct intel_ringbuffer *ringbuf = request->ringbuf;
1680         struct intel_engine_cs *engine = ringbuf->engine;
1681         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1682         bool vf_flush_wa = false;
1683         u32 flags = 0;
1684         int ret;
1685
1686         flags |= PIPE_CONTROL_CS_STALL;
1687
1688         if (flush_domains) {
1689                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1690                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1691                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1692                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1693         }
1694
1695         if (invalidate_domains) {
1696                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1697                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1698                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1699                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1700                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1701                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1702                 flags |= PIPE_CONTROL_QW_WRITE;
1703                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1704
1705                 /*
1706                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1707                  * pipe control.
1708                  */
1709                 if (IS_GEN9(engine->dev))
1710                         vf_flush_wa = true;
1711         }
1712
1713         ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1714         if (ret)
1715                 return ret;
1716
1717         if (vf_flush_wa) {
1718                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1719                 intel_logical_ring_emit(ringbuf, 0);
1720                 intel_logical_ring_emit(ringbuf, 0);
1721                 intel_logical_ring_emit(ringbuf, 0);
1722                 intel_logical_ring_emit(ringbuf, 0);
1723                 intel_logical_ring_emit(ringbuf, 0);
1724         }
1725
1726         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1727         intel_logical_ring_emit(ringbuf, flags);
1728         intel_logical_ring_emit(ringbuf, scratch_addr);
1729         intel_logical_ring_emit(ringbuf, 0);
1730         intel_logical_ring_emit(ringbuf, 0);
1731         intel_logical_ring_emit(ringbuf, 0);
1732         intel_logical_ring_advance(ringbuf);
1733
1734         return 0;
1735 }
1736
1737 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1738 {
1739         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1740 }
1741
1742 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1743 {
1744         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1745 }
1746
1747 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1748 {
1749         /*
1750          * On BXT A steppings there is a HW coherency issue whereby the
1751          * MI_STORE_DATA_IMM storing the completed request's seqno
1752          * occasionally doesn't invalidate the CPU cache. Work around this by
1753          * clflushing the corresponding cacheline whenever the caller wants
1754          * the coherency to be guaranteed. Note that this cacheline is known
1755          * to be clean at this point, since we only write it in
1756          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1757          * this clflush in practice becomes an invalidate operation.
1758          */
1759         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1760 }
1761
1762 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1763 {
1764         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1765
1766         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1767         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1768 }
1769
1770 /*
1771  * Reserve space for 2 NOOPs at the end of each request to be
1772  * used as a workaround for not being allowed to do lite
1773  * restore with HEAD==TAIL (WaIdleLiteRestore).
1774  */
1775 #define WA_TAIL_DWORDS 2
1776
1777 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1778 {
1779         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1780 }
1781
1782 static int gen8_emit_request(struct drm_i915_gem_request *request)
1783 {
1784         struct intel_ringbuffer *ringbuf = request->ringbuf;
1785         int ret;
1786
1787         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1788         if (ret)
1789                 return ret;
1790
1791         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1792         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1793
1794         intel_logical_ring_emit(ringbuf,
1795                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1796         intel_logical_ring_emit(ringbuf,
1797                                 hws_seqno_address(request->engine) |
1798                                 MI_FLUSH_DW_USE_GTT);
1799         intel_logical_ring_emit(ringbuf, 0);
1800         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1801         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1802         intel_logical_ring_emit(ringbuf, MI_NOOP);
1803         return intel_logical_ring_advance_and_submit(request);
1804 }
1805
1806 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1807 {
1808         struct intel_ringbuffer *ringbuf = request->ringbuf;
1809         int ret;
1810
1811         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1812         if (ret)
1813                 return ret;
1814
1815         /* We're using qword write, seqno should be aligned to 8 bytes. */
1816         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1817
1818         /* w/a for post sync ops following a GPGPU operation we
1819          * need a prior CS_STALL, which is emitted by the flush
1820          * following the batch.
1821          */
1822         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1823         intel_logical_ring_emit(ringbuf,
1824                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1825                                  PIPE_CONTROL_CS_STALL |
1826                                  PIPE_CONTROL_QW_WRITE));
1827         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1828         intel_logical_ring_emit(ringbuf, 0);
1829         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1830         /* We're thrashing one dword of HWS. */
1831         intel_logical_ring_emit(ringbuf, 0);
1832         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1833         intel_logical_ring_emit(ringbuf, MI_NOOP);
1834         return intel_logical_ring_advance_and_submit(request);
1835 }
1836
1837 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1838 {
1839         struct render_state so;
1840         int ret;
1841
1842         ret = i915_gem_render_state_prepare(req->engine, &so);
1843         if (ret)
1844                 return ret;
1845
1846         if (so.rodata == NULL)
1847                 return 0;
1848
1849         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1850                                        I915_DISPATCH_SECURE);
1851         if (ret)
1852                 goto out;
1853
1854         ret = req->engine->emit_bb_start(req,
1855                                        (so.ggtt_offset + so.aux_batch_offset),
1856                                        I915_DISPATCH_SECURE);
1857         if (ret)
1858                 goto out;
1859
1860         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1861
1862 out:
1863         i915_gem_render_state_fini(&so);
1864         return ret;
1865 }
1866
1867 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1868 {
1869         int ret;
1870
1871         ret = intel_logical_ring_workarounds_emit(req);
1872         if (ret)
1873                 return ret;
1874
1875         ret = intel_rcs_context_init_mocs(req);
1876         /*
1877          * Failing to program the MOCS is non-fatal.The system will not
1878          * run at peak performance. So generate an error and carry on.
1879          */
1880         if (ret)
1881                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1882
1883         return intel_lr_context_render_state_init(req);
1884 }
1885
1886 /**
1887  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1888  *
1889  * @ring: Engine Command Streamer.
1890  *
1891  */
1892 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1893 {
1894         struct drm_i915_private *dev_priv;
1895
1896         if (!intel_engine_initialized(engine))
1897                 return;
1898
1899         /*
1900          * Tasklet cannot be active at this point due intel_mark_active/idle
1901          * so this is just for documentation.
1902          */
1903         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1904                 tasklet_kill(&engine->irq_tasklet);
1905
1906         dev_priv = engine->dev->dev_private;
1907
1908         if (engine->buffer) {
1909                 intel_logical_ring_stop(engine);
1910                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1911         }
1912
1913         if (engine->cleanup)
1914                 engine->cleanup(engine);
1915
1916         i915_cmd_parser_fini_ring(engine);
1917         i915_gem_batch_pool_fini(&engine->batch_pool);
1918
1919         if (engine->status_page.obj) {
1920                 i915_gem_object_unpin_map(engine->status_page.obj);
1921                 engine->status_page.obj = NULL;
1922         }
1923         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1924
1925         engine->idle_lite_restore_wa = 0;
1926         engine->disable_lite_restore_wa = false;
1927         engine->ctx_desc_template = 0;
1928
1929         lrc_destroy_wa_ctx_obj(engine);
1930         engine->dev = NULL;
1931 }
1932
1933 static void
1934 logical_ring_default_vfuncs(struct drm_device *dev,
1935                             struct intel_engine_cs *engine)
1936 {
1937         /* Default vfuncs which can be overriden by each engine. */
1938         engine->init_hw = gen8_init_common_ring;
1939         engine->emit_request = gen8_emit_request;
1940         engine->emit_flush = gen8_emit_flush;
1941         engine->irq_get = gen8_logical_ring_get_irq;
1942         engine->irq_put = gen8_logical_ring_put_irq;
1943         engine->emit_bb_start = gen8_emit_bb_start;
1944         engine->get_seqno = gen8_get_seqno;
1945         engine->set_seqno = gen8_set_seqno;
1946         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1947                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1948                 engine->set_seqno = bxt_a_set_seqno;
1949         }
1950 }
1951
1952 static inline void
1953 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1954 {
1955         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1956         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1957 }
1958
1959 static int
1960 lrc_setup_hws(struct intel_engine_cs *engine,
1961               struct drm_i915_gem_object *dctx_obj)
1962 {
1963         void *hws;
1964
1965         /* The HWSP is part of the default context object in LRC mode. */
1966         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1967                                        LRC_PPHWSP_PN * PAGE_SIZE;
1968         hws = i915_gem_object_pin_map(dctx_obj);
1969         if (IS_ERR(hws))
1970                 return PTR_ERR(hws);
1971         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1972         engine->status_page.obj = dctx_obj;
1973
1974         return 0;
1975 }
1976
1977 static int
1978 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1979 {
1980         struct drm_i915_private *dev_priv = to_i915(dev);
1981         struct intel_context *dctx = dev_priv->kernel_context;
1982         enum forcewake_domains fw_domains;
1983         int ret;
1984
1985         /* Intentionally left blank. */
1986         engine->buffer = NULL;
1987
1988         engine->dev = dev;
1989         INIT_LIST_HEAD(&engine->active_list);
1990         INIT_LIST_HEAD(&engine->request_list);
1991         i915_gem_batch_pool_init(dev, &engine->batch_pool);
1992         init_waitqueue_head(&engine->irq_queue);
1993
1994         INIT_LIST_HEAD(&engine->buffers);
1995         INIT_LIST_HEAD(&engine->execlist_queue);
1996         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1997         spin_lock_init(&engine->execlist_lock);
1998
1999         tasklet_init(&engine->irq_tasklet,
2000                      intel_lrc_irq_handler, (unsigned long)engine);
2001
2002         logical_ring_init_platform_invariants(engine);
2003
2004         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2005                                                     RING_ELSP(engine),
2006                                                     FW_REG_WRITE);
2007
2008         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2009                                                      RING_CONTEXT_STATUS_PTR(engine),
2010                                                      FW_REG_READ | FW_REG_WRITE);
2011
2012         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2013                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2014                                                      FW_REG_READ);
2015
2016         engine->fw_domains = fw_domains;
2017
2018         ret = i915_cmd_parser_init_ring(engine);
2019         if (ret)
2020                 goto error;
2021
2022         ret = execlists_context_deferred_alloc(dctx, engine);
2023         if (ret)
2024                 goto error;
2025
2026         /* As this is the default context, always pin it */
2027         ret = intel_lr_context_pin(dctx, engine);
2028         if (ret) {
2029                 DRM_ERROR("Failed to pin context for %s: %d\n",
2030                           engine->name, ret);
2031                 goto error;
2032         }
2033
2034         /* And setup the hardware status page. */
2035         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2036         if (ret) {
2037                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2038                 goto error;
2039         }
2040
2041         return 0;
2042
2043 error:
2044         intel_logical_ring_cleanup(engine);
2045         return ret;
2046 }
2047
2048 static int logical_render_ring_init(struct drm_device *dev)
2049 {
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2052         int ret;
2053
2054         engine->name = "render ring";
2055         engine->id = RCS;
2056         engine->exec_id = I915_EXEC_RENDER;
2057         engine->guc_id = GUC_RENDER_ENGINE;
2058         engine->mmio_base = RENDER_RING_BASE;
2059
2060         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2061         if (HAS_L3_DPF(dev))
2062                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2063
2064         logical_ring_default_vfuncs(dev, engine);
2065
2066         /* Override some for render ring. */
2067         if (INTEL_INFO(dev)->gen >= 9)
2068                 engine->init_hw = gen9_init_render_ring;
2069         else
2070                 engine->init_hw = gen8_init_render_ring;
2071         engine->init_context = gen8_init_rcs_context;
2072         engine->cleanup = intel_fini_pipe_control;
2073         engine->emit_flush = gen8_emit_flush_render;
2074         engine->emit_request = gen8_emit_request_render;
2075
2076         engine->dev = dev;
2077
2078         ret = intel_init_pipe_control(engine);
2079         if (ret)
2080                 return ret;
2081
2082         ret = intel_init_workaround_bb(engine);
2083         if (ret) {
2084                 /*
2085                  * We continue even if we fail to initialize WA batch
2086                  * because we only expect rare glitches but nothing
2087                  * critical to prevent us from using GPU
2088                  */
2089                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2090                           ret);
2091         }
2092
2093         ret = logical_ring_init(dev, engine);
2094         if (ret) {
2095                 lrc_destroy_wa_ctx_obj(engine);
2096         }
2097
2098         return ret;
2099 }
2100
2101 static int logical_bsd_ring_init(struct drm_device *dev)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2105
2106         engine->name = "bsd ring";
2107         engine->id = VCS;
2108         engine->exec_id = I915_EXEC_BSD;
2109         engine->guc_id = GUC_VIDEO_ENGINE;
2110         engine->mmio_base = GEN6_BSD_RING_BASE;
2111
2112         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2113         logical_ring_default_vfuncs(dev, engine);
2114
2115         return logical_ring_init(dev, engine);
2116 }
2117
2118 static int logical_bsd2_ring_init(struct drm_device *dev)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2122
2123         engine->name = "bsd2 ring";
2124         engine->id = VCS2;
2125         engine->exec_id = I915_EXEC_BSD;
2126         engine->guc_id = GUC_VIDEO_ENGINE2;
2127         engine->mmio_base = GEN8_BSD2_RING_BASE;
2128
2129         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2130         logical_ring_default_vfuncs(dev, engine);
2131
2132         return logical_ring_init(dev, engine);
2133 }
2134
2135 static int logical_blt_ring_init(struct drm_device *dev)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2139
2140         engine->name = "blitter ring";
2141         engine->id = BCS;
2142         engine->exec_id = I915_EXEC_BLT;
2143         engine->guc_id = GUC_BLITTER_ENGINE;
2144         engine->mmio_base = BLT_RING_BASE;
2145
2146         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2147         logical_ring_default_vfuncs(dev, engine);
2148
2149         return logical_ring_init(dev, engine);
2150 }
2151
2152 static int logical_vebox_ring_init(struct drm_device *dev)
2153 {
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2156
2157         engine->name = "video enhancement ring";
2158         engine->id = VECS;
2159         engine->exec_id = I915_EXEC_VEBOX;
2160         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2161         engine->mmio_base = VEBOX_RING_BASE;
2162
2163         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2164         logical_ring_default_vfuncs(dev, engine);
2165
2166         return logical_ring_init(dev, engine);
2167 }
2168
2169 /**
2170  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2171  * @dev: DRM device.
2172  *
2173  * This function inits the engines for an Execlists submission style (the equivalent in the
2174  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2175  * those engines that are present in the hardware.
2176  *
2177  * Return: non-zero if the initialization failed.
2178  */
2179 int intel_logical_rings_init(struct drm_device *dev)
2180 {
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         int ret;
2183
2184         ret = logical_render_ring_init(dev);
2185         if (ret)
2186                 return ret;
2187
2188         if (HAS_BSD(dev)) {
2189                 ret = logical_bsd_ring_init(dev);
2190                 if (ret)
2191                         goto cleanup_render_ring;
2192         }
2193
2194         if (HAS_BLT(dev)) {
2195                 ret = logical_blt_ring_init(dev);
2196                 if (ret)
2197                         goto cleanup_bsd_ring;
2198         }
2199
2200         if (HAS_VEBOX(dev)) {
2201                 ret = logical_vebox_ring_init(dev);
2202                 if (ret)
2203                         goto cleanup_blt_ring;
2204         }
2205
2206         if (HAS_BSD2(dev)) {
2207                 ret = logical_bsd2_ring_init(dev);
2208                 if (ret)
2209                         goto cleanup_vebox_ring;
2210         }
2211
2212         return 0;
2213
2214 cleanup_vebox_ring:
2215         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2216 cleanup_blt_ring:
2217         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2218 cleanup_bsd_ring:
2219         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2220 cleanup_render_ring:
2221         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2222
2223         return ret;
2224 }
2225
2226 static u32
2227 make_rpcs(struct drm_device *dev)
2228 {
2229         u32 rpcs = 0;
2230
2231         /*
2232          * No explicit RPCS request is needed to ensure full
2233          * slice/subslice/EU enablement prior to Gen9.
2234         */
2235         if (INTEL_INFO(dev)->gen < 9)
2236                 return 0;
2237
2238         /*
2239          * Starting in Gen9, render power gating can leave
2240          * slice/subslice/EU in a partially enabled state. We
2241          * must make an explicit request through RPCS for full
2242          * enablement.
2243         */
2244         if (INTEL_INFO(dev)->has_slice_pg) {
2245                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2246                 rpcs |= INTEL_INFO(dev)->slice_total <<
2247                         GEN8_RPCS_S_CNT_SHIFT;
2248                 rpcs |= GEN8_RPCS_ENABLE;
2249         }
2250
2251         if (INTEL_INFO(dev)->has_subslice_pg) {
2252                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2253                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2254                         GEN8_RPCS_SS_CNT_SHIFT;
2255                 rpcs |= GEN8_RPCS_ENABLE;
2256         }
2257
2258         if (INTEL_INFO(dev)->has_eu_pg) {
2259                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2260                         GEN8_RPCS_EU_MIN_SHIFT;
2261                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2262                         GEN8_RPCS_EU_MAX_SHIFT;
2263                 rpcs |= GEN8_RPCS_ENABLE;
2264         }
2265
2266         return rpcs;
2267 }
2268
2269 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2270 {
2271         u32 indirect_ctx_offset;
2272
2273         switch (INTEL_INFO(engine->dev)->gen) {
2274         default:
2275                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2276                 /* fall through */
2277         case 9:
2278                 indirect_ctx_offset =
2279                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2280                 break;
2281         case 8:
2282                 indirect_ctx_offset =
2283                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2284                 break;
2285         }
2286
2287         return indirect_ctx_offset;
2288 }
2289
2290 static int
2291 populate_lr_context(struct intel_context *ctx,
2292                     struct drm_i915_gem_object *ctx_obj,
2293                     struct intel_engine_cs *engine,
2294                     struct intel_ringbuffer *ringbuf)
2295 {
2296         struct drm_device *dev = engine->dev;
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2299         void *vaddr;
2300         u32 *reg_state;
2301         int ret;
2302
2303         if (!ppgtt)
2304                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2305
2306         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2307         if (ret) {
2308                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2309                 return ret;
2310         }
2311
2312         vaddr = i915_gem_object_pin_map(ctx_obj);
2313         if (IS_ERR(vaddr)) {
2314                 ret = PTR_ERR(vaddr);
2315                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2316                 return ret;
2317         }
2318         ctx_obj->dirty = true;
2319
2320         /* The second page of the context object contains some fields which must
2321          * be set up prior to the first execution. */
2322         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2323
2324         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2325          * commands followed by (reg, value) pairs. The values we are setting here are
2326          * only for the first context restore: on a subsequent save, the GPU will
2327          * recreate this batchbuffer with new values (including all the missing
2328          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2329         reg_state[CTX_LRI_HEADER_0] =
2330                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2331         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2332                        RING_CONTEXT_CONTROL(engine),
2333                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2334                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2335                                           (HAS_RESOURCE_STREAMER(dev) ?
2336                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2337         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2338                        0);
2339         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2340                        0);
2341         /* Ring buffer start address is not known until the buffer is pinned.
2342          * It is written to the context image in execlists_update_context()
2343          */
2344         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2345                        RING_START(engine->mmio_base), 0);
2346         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2347                        RING_CTL(engine->mmio_base),
2348                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2349         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2350                        RING_BBADDR_UDW(engine->mmio_base), 0);
2351         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2352                        RING_BBADDR(engine->mmio_base), 0);
2353         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2354                        RING_BBSTATE(engine->mmio_base),
2355                        RING_BB_PPGTT);
2356         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2357                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2358         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2359                        RING_SBBADDR(engine->mmio_base), 0);
2360         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2361                        RING_SBBSTATE(engine->mmio_base), 0);
2362         if (engine->id == RCS) {
2363                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2364                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2365                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2366                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2367                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2368                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2369                 if (engine->wa_ctx.obj) {
2370                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2371                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2372
2373                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2374                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2375                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2376
2377                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2378                                 intel_lr_indirect_ctx_offset(engine) << 6;
2379
2380                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2381                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2382                                 0x01;
2383                 }
2384         }
2385         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2386         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2387                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2388         /* PDP values well be assigned later if needed */
2389         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2390                        0);
2391         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2392                        0);
2393         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2394                        0);
2395         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2396                        0);
2397         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2398                        0);
2399         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2400                        0);
2401         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2402                        0);
2403         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2404                        0);
2405
2406         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2407                 /* 64b PPGTT (48bit canonical)
2408                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2409                  * other PDP Descriptors are ignored.
2410                  */
2411                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2412         } else {
2413                 /* 32b PPGTT
2414                  * PDP*_DESCRIPTOR contains the base address of space supported.
2415                  * With dynamic page allocation, PDPs may not be allocated at
2416                  * this point. Point the unallocated PDPs to the scratch page
2417                  */
2418                 execlists_update_context_pdps(ppgtt, reg_state);
2419         }
2420
2421         if (engine->id == RCS) {
2422                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2423                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2424                                make_rpcs(dev));
2425         }
2426
2427         i915_gem_object_unpin_map(ctx_obj);
2428
2429         return 0;
2430 }
2431
2432 /**
2433  * intel_lr_context_free() - free the LRC specific bits of a context
2434  * @ctx: the LR context to free.
2435  *
2436  * The real context freeing is done in i915_gem_context_free: this only
2437  * takes care of the bits that are LRC related: the per-engine backing
2438  * objects and the logical ringbuffer.
2439  */
2440 void intel_lr_context_free(struct intel_context *ctx)
2441 {
2442         int i;
2443
2444         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2445                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2446                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2447
2448                 if (!ctx_obj)
2449                         continue;
2450
2451                 WARN_ON(ctx->engine[i].pin_count);
2452                 intel_ringbuffer_free(ringbuf);
2453                 drm_gem_object_unreference(&ctx_obj->base);
2454         }
2455 }
2456
2457 /**
2458  * intel_lr_context_size() - return the size of the context for an engine
2459  * @ring: which engine to find the context size for
2460  *
2461  * Each engine may require a different amount of space for a context image,
2462  * so when allocating (or copying) an image, this function can be used to
2463  * find the right size for the specific engine.
2464  *
2465  * Return: size (in bytes) of an engine-specific context image
2466  *
2467  * Note: this size includes the HWSP, which is part of the context image
2468  * in LRC mode, but does not include the "shared data page" used with
2469  * GuC submission. The caller should account for this if using the GuC.
2470  */
2471 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 {
2473         int ret = 0;
2474
2475         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2476
2477         switch (engine->id) {
2478         case RCS:
2479                 if (INTEL_INFO(engine->dev)->gen >= 9)
2480                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2481                 else
2482                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483                 break;
2484         case VCS:
2485         case BCS:
2486         case VECS:
2487         case VCS2:
2488                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2489                 break;
2490         }
2491
2492         return ret;
2493 }
2494
2495 /**
2496  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2497  * @ctx: LR context to create.
2498  * @engine: engine to be used with the context.
2499  *
2500  * This function can be called more than once, with different engines, if we plan
2501  * to use the context with them. The context backing objects and the ringbuffers
2502  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2503  * the creation is a deferred call: it's better to make sure first that we need to use
2504  * a given ring with the context.
2505  *
2506  * Return: non-zero on error.
2507  */
2508 static int execlists_context_deferred_alloc(struct intel_context *ctx,
2509                                             struct intel_engine_cs *engine)
2510 {
2511         struct drm_device *dev = engine->dev;
2512         struct drm_i915_gem_object *ctx_obj;
2513         uint32_t context_size;
2514         struct intel_ringbuffer *ringbuf;
2515         int ret;
2516
2517         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2518         WARN_ON(ctx->engine[engine->id].state);
2519
2520         context_size = round_up(intel_lr_context_size(engine), 4096);
2521
2522         /* One extra page as the sharing data between driver and GuC */
2523         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2524
2525         ctx_obj = i915_gem_object_create(dev, context_size);
2526         if (IS_ERR(ctx_obj)) {
2527                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2528                 return PTR_ERR(ctx_obj);
2529         }
2530
2531         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2532         if (IS_ERR(ringbuf)) {
2533                 ret = PTR_ERR(ringbuf);
2534                 goto error_deref_obj;
2535         }
2536
2537         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2538         if (ret) {
2539                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2540                 goto error_ringbuf;
2541         }
2542
2543         ctx->engine[engine->id].ringbuf = ringbuf;
2544         ctx->engine[engine->id].state = ctx_obj;
2545         ctx->engine[engine->id].initialised = engine->init_context == NULL;
2546
2547         return 0;
2548
2549 error_ringbuf:
2550         intel_ringbuffer_free(ringbuf);
2551 error_deref_obj:
2552         drm_gem_object_unreference(&ctx_obj->base);
2553         ctx->engine[engine->id].ringbuf = NULL;
2554         ctx->engine[engine->id].state = NULL;
2555         return ret;
2556 }
2557
2558 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2559                             struct intel_context *ctx)
2560 {
2561         struct intel_engine_cs *engine;
2562
2563         for_each_engine(engine, dev_priv) {
2564                 struct drm_i915_gem_object *ctx_obj =
2565                                 ctx->engine[engine->id].state;
2566                 struct intel_ringbuffer *ringbuf =
2567                                 ctx->engine[engine->id].ringbuf;
2568                 void *vaddr;
2569                 uint32_t *reg_state;
2570
2571                 if (!ctx_obj)
2572                         continue;
2573
2574                 vaddr = i915_gem_object_pin_map(ctx_obj);
2575                 if (WARN_ON(IS_ERR(vaddr)))
2576                         continue;
2577
2578                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2579                 ctx_obj->dirty = true;
2580
2581                 reg_state[CTX_RING_HEAD+1] = 0;
2582                 reg_state[CTX_RING_TAIL+1] = 0;
2583
2584                 i915_gem_object_unpin_map(ctx_obj);
2585
2586                 ringbuf->head = 0;
2587                 ringbuf->tail = 0;
2588         }
2589 }