]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Cache LRC state page in the context
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230                 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
268 {
269         struct drm_device *dev = ring->dev;
270
271         ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
272                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
273                                         (ring->id == VCS || ring->id == VCS2);
274
275         ring->ctx_desc_template = GEN8_CTX_VALID;
276         ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
277                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
278         if (IS_GEN8(dev))
279                 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
280         ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
281
282         /* TODO: WaDisableLiteRestore when we start using semaphore
283          * signalling between Command Streamers */
284         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
285
286         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
288         if (ring->disable_lite_restore_wa)
289                 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
290 }
291
292 /**
293  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
294  *                                        descriptor for a pinned context
295  *
296  * @ctx: Context to work on
297  * @ring: Engine the descriptor will be used with
298  *
299  * The context descriptor encodes various attributes of a context,
300  * including its GTT address and some flags. Because it's fairly
301  * expensive to calculate, we'll just do it once and cache the result,
302  * which remains valid until the context is unpinned.
303  *
304  * This is what a descriptor looks like, from LSB to MSB:
305  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
306  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
307  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
308  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
309  */
310 static void
311 intel_lr_context_descriptor_update(struct intel_context *ctx,
312                                    struct intel_engine_cs *ring)
313 {
314         uint64_t lrca, desc;
315
316         lrca = ctx->engine[ring->id].lrc_vma->node.start +
317                LRC_PPHWSP_PN * PAGE_SIZE;
318
319         desc = ring->ctx_desc_template;                    /* bits  0-11 */
320         desc |= lrca;                                      /* bits 12-31 */
321         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
322
323         ctx->engine[ring->id].lrc_desc = desc;
324 }
325
326 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
327                                      struct intel_engine_cs *ring)
328 {
329         return ctx->engine[ring->id].lrc_desc;
330 }
331
332 /**
333  * intel_execlists_ctx_id() - get the Execlists Context ID
334  * @ctx: Context to get the ID for
335  * @ring: Engine to get the ID for
336  *
337  * Do not confuse with ctx->id! Unfortunately we have a name overload
338  * here: the old context ID we pass to userspace as a handler so that
339  * they can refer to a context, and the new context ID we pass to the
340  * ELSP so that the GPU can inform us of the context status via
341  * interrupts.
342  *
343  * The context ID is a portion of the context descriptor, so we can
344  * just extract the required part from the cached descriptor.
345  *
346  * Return: 20-bits globally unique context ID.
347  */
348 u32 intel_execlists_ctx_id(struct intel_context *ctx,
349                            struct intel_engine_cs *ring)
350 {
351         return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
352 }
353
354 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
355                                  struct drm_i915_gem_request *rq1)
356 {
357
358         struct intel_engine_cs *ring = rq0->ring;
359         struct drm_device *dev = ring->dev;
360         struct drm_i915_private *dev_priv = dev->dev_private;
361         uint64_t desc[2];
362
363         if (rq1) {
364                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
365                 rq1->elsp_submitted++;
366         } else {
367                 desc[1] = 0;
368         }
369
370         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
371         rq0->elsp_submitted++;
372
373         /* You must always write both descriptors in the order below. */
374         spin_lock(&dev_priv->uncore.lock);
375         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
376         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
377         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
378
379         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
380         /* The context is automatically loaded after the following */
381         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
382
383         /* ELSP is a wo register, use another nearby reg for posting */
384         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
385         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
386         spin_unlock(&dev_priv->uncore.lock);
387 }
388
389 static int execlists_update_context(struct drm_i915_gem_request *rq)
390 {
391         struct intel_engine_cs *ring = rq->ring;
392         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
393         uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
394
395         reg_state[CTX_RING_TAIL+1] = rq->tail;
396         reg_state[CTX_RING_BUFFER_START+1] = rq->ringbuf->vma->node.start;
397
398         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
399                 /* True 32b PPGTT with dynamic page allocation: update PDP
400                  * registers and point the unallocated PDPs to scratch page.
401                  * PML4 is allocated during ppgtt init, so this is not needed
402                  * in 48-bit mode.
403                  */
404                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
405                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
406                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
407                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
408         }
409
410         return 0;
411 }
412
413 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
414                                       struct drm_i915_gem_request *rq1)
415 {
416         execlists_update_context(rq0);
417
418         if (rq1)
419                 execlists_update_context(rq1);
420
421         execlists_elsp_write(rq0, rq1);
422 }
423
424 static void execlists_context_unqueue(struct intel_engine_cs *ring)
425 {
426         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
427         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
428
429         assert_spin_locked(&ring->execlist_lock);
430
431         /*
432          * If irqs are not active generate a warning as batches that finish
433          * without the irqs may get lost and a GPU Hang may occur.
434          */
435         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
436
437         if (list_empty(&ring->execlist_queue))
438                 return;
439
440         /* Try to read in pairs */
441         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442                                  execlist_link) {
443                 if (!req0) {
444                         req0 = cursor;
445                 } else if (req0->ctx == cursor->ctx) {
446                         /* Same ctx: ignore first request, as second request
447                          * will update tail past first request's workload */
448                         cursor->elsp_submitted = req0->elsp_submitted;
449                         list_move_tail(&req0->execlist_link,
450                                        &ring->execlist_retired_req_list);
451                         req0 = cursor;
452                 } else {
453                         req1 = cursor;
454                         break;
455                 }
456         }
457
458         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
459                 /*
460                  * WaIdleLiteRestore: make sure we never cause a lite
461                  * restore with HEAD==TAIL
462                  */
463                 if (req0->elsp_submitted) {
464                         /*
465                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
466                          * as we resubmit the request. See gen8_emit_request()
467                          * for where we prepare the padding after the end of the
468                          * request.
469                          */
470                         struct intel_ringbuffer *ringbuf;
471
472                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
473                         req0->tail += 8;
474                         req0->tail &= ringbuf->size - 1;
475                 }
476         }
477
478         WARN_ON(req1 && req1->elsp_submitted);
479
480         execlists_submit_requests(req0, req1);
481 }
482
483 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
484                                            u32 request_id)
485 {
486         struct drm_i915_gem_request *head_req;
487
488         assert_spin_locked(&ring->execlist_lock);
489
490         head_req = list_first_entry_or_null(&ring->execlist_queue,
491                                             struct drm_i915_gem_request,
492                                             execlist_link);
493
494         if (head_req != NULL) {
495                 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
496                         WARN(head_req->elsp_submitted == 0,
497                              "Never submitted head request\n");
498
499                         if (--head_req->elsp_submitted <= 0) {
500                                 list_move_tail(&head_req->execlist_link,
501                                                &ring->execlist_retired_req_list);
502                                 return true;
503                         }
504                 }
505         }
506
507         return false;
508 }
509
510 static void get_context_status(struct intel_engine_cs *ring,
511                                u8 read_pointer,
512                                u32 *status, u32 *context_id)
513 {
514         struct drm_i915_private *dev_priv = ring->dev->dev_private;
515
516         if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
517                 return;
518
519         *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
520         *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
521 }
522
523 /**
524  * intel_lrc_irq_handler() - handle Context Switch interrupts
525  * @ring: Engine Command Streamer to handle.
526  *
527  * Check the unread Context Status Buffers and manage the submission of new
528  * contexts to the ELSP accordingly.
529  */
530 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
531 {
532         struct drm_i915_private *dev_priv = ring->dev->dev_private;
533         u32 status_pointer;
534         u8 read_pointer;
535         u8 write_pointer;
536         u32 status = 0;
537         u32 status_id;
538         u32 submit_contexts = 0;
539
540         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
541
542         read_pointer = ring->next_context_status_buffer;
543         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
544         if (read_pointer > write_pointer)
545                 write_pointer += GEN8_CSB_ENTRIES;
546
547         spin_lock(&ring->execlist_lock);
548
549         while (read_pointer < write_pointer) {
550
551                 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
552                                    &status, &status_id);
553
554                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
555                         continue;
556
557                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
558                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
559                                 if (execlists_check_remove_request(ring, status_id))
560                                         WARN(1, "Lite Restored request removed from queue\n");
561                         } else
562                                 WARN(1, "Preemption without Lite Restore\n");
563                 }
564
565                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
566                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
567                         if (execlists_check_remove_request(ring, status_id))
568                                 submit_contexts++;
569                 }
570         }
571
572         if (ring->disable_lite_restore_wa) {
573                 /* Prevent a ctx to preempt itself */
574                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
575                     (submit_contexts != 0))
576                         execlists_context_unqueue(ring);
577         } else if (submit_contexts != 0) {
578                 execlists_context_unqueue(ring);
579         }
580
581         spin_unlock(&ring->execlist_lock);
582
583         if (unlikely(submit_contexts > 2))
584                 DRM_ERROR("More than two context complete events?\n");
585
586         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
587
588         /* Update the read pointer to the old write pointer. Manual ringbuffer
589          * management ftw </sarcasm> */
590         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
591                    _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
592                                  ring->next_context_status_buffer << 8));
593 }
594
595 static int execlists_context_queue(struct drm_i915_gem_request *request)
596 {
597         struct intel_engine_cs *ring = request->ring;
598         struct drm_i915_gem_request *cursor;
599         int num_elements = 0;
600
601         if (request->ctx != ring->default_context)
602                 intel_lr_context_pin(request);
603
604         i915_gem_request_reference(request);
605
606         spin_lock_irq(&ring->execlist_lock);
607
608         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
609                 if (++num_elements > 2)
610                         break;
611
612         if (num_elements > 2) {
613                 struct drm_i915_gem_request *tail_req;
614
615                 tail_req = list_last_entry(&ring->execlist_queue,
616                                            struct drm_i915_gem_request,
617                                            execlist_link);
618
619                 if (request->ctx == tail_req->ctx) {
620                         WARN(tail_req->elsp_submitted != 0,
621                                 "More than 2 already-submitted reqs queued\n");
622                         list_move_tail(&tail_req->execlist_link,
623                                        &ring->execlist_retired_req_list);
624                 }
625         }
626
627         list_add_tail(&request->execlist_link, &ring->execlist_queue);
628         if (num_elements == 0)
629                 execlists_context_unqueue(ring);
630
631         spin_unlock_irq(&ring->execlist_lock);
632
633         return 0;
634 }
635
636 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
637 {
638         struct intel_engine_cs *ring = req->ring;
639         uint32_t flush_domains;
640         int ret;
641
642         flush_domains = 0;
643         if (ring->gpu_caches_dirty)
644                 flush_domains = I915_GEM_GPU_DOMAINS;
645
646         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
647         if (ret)
648                 return ret;
649
650         ring->gpu_caches_dirty = false;
651         return 0;
652 }
653
654 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
655                                  struct list_head *vmas)
656 {
657         const unsigned other_rings = ~intel_ring_flag(req->ring);
658         struct i915_vma *vma;
659         uint32_t flush_domains = 0;
660         bool flush_chipset = false;
661         int ret;
662
663         list_for_each_entry(vma, vmas, exec_list) {
664                 struct drm_i915_gem_object *obj = vma->obj;
665
666                 if (obj->active & other_rings) {
667                         ret = i915_gem_object_sync(obj, req->ring, &req);
668                         if (ret)
669                                 return ret;
670                 }
671
672                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
673                         flush_chipset |= i915_gem_clflush_object(obj, false);
674
675                 flush_domains |= obj->base.write_domain;
676         }
677
678         if (flush_domains & I915_GEM_DOMAIN_GTT)
679                 wmb();
680
681         /* Unconditionally invalidate gpu caches and ensure that we do flush
682          * any residual writes from the previous batch.
683          */
684         return logical_ring_invalidate_all_caches(req);
685 }
686
687 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
688 {
689         int ret;
690
691         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
692
693         if (request->ctx != request->ring->default_context) {
694                 ret = intel_lr_context_pin(request);
695                 if (ret)
696                         return ret;
697         }
698
699         if (i915.enable_guc_submission) {
700                 /*
701                  * Check that the GuC has space for the request before
702                  * going any further, as the i915_add_request() call
703                  * later on mustn't fail ...
704                  */
705                 struct intel_guc *guc = &request->i915->guc;
706
707                 ret = i915_guc_wq_check_space(guc->execbuf_client);
708                 if (ret)
709                         return ret;
710         }
711
712         return 0;
713 }
714
715 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
716                                        int bytes)
717 {
718         struct intel_ringbuffer *ringbuf = req->ringbuf;
719         struct intel_engine_cs *ring = req->ring;
720         struct drm_i915_gem_request *target;
721         unsigned space;
722         int ret;
723
724         if (intel_ring_space(ringbuf) >= bytes)
725                 return 0;
726
727         /* The whole point of reserving space is to not wait! */
728         WARN_ON(ringbuf->reserved_in_use);
729
730         list_for_each_entry(target, &ring->request_list, list) {
731                 /*
732                  * The request queue is per-engine, so can contain requests
733                  * from multiple ringbuffers. Here, we must ignore any that
734                  * aren't from the ringbuffer we're considering.
735                  */
736                 if (target->ringbuf != ringbuf)
737                         continue;
738
739                 /* Would completion of this request free enough space? */
740                 space = __intel_ring_space(target->postfix, ringbuf->tail,
741                                            ringbuf->size);
742                 if (space >= bytes)
743                         break;
744         }
745
746         if (WARN_ON(&target->list == &ring->request_list))
747                 return -ENOSPC;
748
749         ret = i915_wait_request(target);
750         if (ret)
751                 return ret;
752
753         ringbuf->space = space;
754         return 0;
755 }
756
757 /*
758  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
759  * @request: Request to advance the logical ringbuffer of.
760  *
761  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
762  * really happens during submission is that the context and current tail will be placed
763  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
764  * point, the tail *inside* the context is updated and the ELSP written to.
765  */
766 static void
767 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
768 {
769         struct intel_engine_cs *ring = request->ring;
770         struct drm_i915_private *dev_priv = request->i915;
771
772         intel_logical_ring_advance(request->ringbuf);
773
774         request->tail = request->ringbuf->tail;
775
776         if (intel_ring_stopped(ring))
777                 return;
778
779         if (dev_priv->guc.execbuf_client)
780                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
781         else
782                 execlists_context_queue(request);
783 }
784
785 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
786 {
787         uint32_t __iomem *virt;
788         int rem = ringbuf->size - ringbuf->tail;
789
790         virt = ringbuf->virtual_start + ringbuf->tail;
791         rem /= 4;
792         while (rem--)
793                 iowrite32(MI_NOOP, virt++);
794
795         ringbuf->tail = 0;
796         intel_ring_update_space(ringbuf);
797 }
798
799 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
800 {
801         struct intel_ringbuffer *ringbuf = req->ringbuf;
802         int remain_usable = ringbuf->effective_size - ringbuf->tail;
803         int remain_actual = ringbuf->size - ringbuf->tail;
804         int ret, total_bytes, wait_bytes = 0;
805         bool need_wrap = false;
806
807         if (ringbuf->reserved_in_use)
808                 total_bytes = bytes;
809         else
810                 total_bytes = bytes + ringbuf->reserved_size;
811
812         if (unlikely(bytes > remain_usable)) {
813                 /*
814                  * Not enough space for the basic request. So need to flush
815                  * out the remainder and then wait for base + reserved.
816                  */
817                 wait_bytes = remain_actual + total_bytes;
818                 need_wrap = true;
819         } else {
820                 if (unlikely(total_bytes > remain_usable)) {
821                         /*
822                          * The base request will fit but the reserved space
823                          * falls off the end. So only need to to wait for the
824                          * reserved size after flushing out the remainder.
825                          */
826                         wait_bytes = remain_actual + ringbuf->reserved_size;
827                         need_wrap = true;
828                 } else if (total_bytes > ringbuf->space) {
829                         /* No wrapping required, just waiting. */
830                         wait_bytes = total_bytes;
831                 }
832         }
833
834         if (wait_bytes) {
835                 ret = logical_ring_wait_for_space(req, wait_bytes);
836                 if (unlikely(ret))
837                         return ret;
838
839                 if (need_wrap)
840                         __wrap_ring_buffer(ringbuf);
841         }
842
843         return 0;
844 }
845
846 /**
847  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
848  *
849  * @req: The request to start some new work for
850  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
851  *
852  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
853  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
854  * and also preallocates a request (every workload submission is still mediated through
855  * requests, same as it did with legacy ringbuffer submission).
856  *
857  * Return: non-zero if the ringbuffer is not ready to be written to.
858  */
859 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
860 {
861         struct drm_i915_private *dev_priv;
862         int ret;
863
864         WARN_ON(req == NULL);
865         dev_priv = req->ring->dev->dev_private;
866
867         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
868                                    dev_priv->mm.interruptible);
869         if (ret)
870                 return ret;
871
872         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
873         if (ret)
874                 return ret;
875
876         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
877         return 0;
878 }
879
880 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
881 {
882         /*
883          * The first call merely notes the reserve request and is common for
884          * all back ends. The subsequent localised _begin() call actually
885          * ensures that the reservation is available. Without the begin, if
886          * the request creator immediately submitted the request without
887          * adding any commands to it then there might not actually be
888          * sufficient room for the submission commands.
889          */
890         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
891
892         return intel_logical_ring_begin(request, 0);
893 }
894
895 /**
896  * execlists_submission() - submit a batchbuffer for execution, Execlists style
897  * @dev: DRM device.
898  * @file: DRM file.
899  * @ring: Engine Command Streamer to submit to.
900  * @ctx: Context to employ for this submission.
901  * @args: execbuffer call arguments.
902  * @vmas: list of vmas.
903  * @batch_obj: the batchbuffer to submit.
904  * @exec_start: batchbuffer start virtual address pointer.
905  * @dispatch_flags: translated execbuffer call flags.
906  *
907  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
908  * away the submission details of the execbuffer ioctl call.
909  *
910  * Return: non-zero if the submission fails.
911  */
912 int intel_execlists_submission(struct i915_execbuffer_params *params,
913                                struct drm_i915_gem_execbuffer2 *args,
914                                struct list_head *vmas)
915 {
916         struct drm_device       *dev = params->dev;
917         struct intel_engine_cs  *ring = params->ring;
918         struct drm_i915_private *dev_priv = dev->dev_private;
919         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
920         u64 exec_start;
921         int instp_mode;
922         u32 instp_mask;
923         int ret;
924
925         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
926         instp_mask = I915_EXEC_CONSTANTS_MASK;
927         switch (instp_mode) {
928         case I915_EXEC_CONSTANTS_REL_GENERAL:
929         case I915_EXEC_CONSTANTS_ABSOLUTE:
930         case I915_EXEC_CONSTANTS_REL_SURFACE:
931                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
932                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
933                         return -EINVAL;
934                 }
935
936                 if (instp_mode != dev_priv->relative_constants_mode) {
937                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
938                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
939                                 return -EINVAL;
940                         }
941
942                         /* The HW changed the meaning on this bit on gen6 */
943                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
944                 }
945                 break;
946         default:
947                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
948                 return -EINVAL;
949         }
950
951         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
952                 DRM_DEBUG("sol reset is gen7 only\n");
953                 return -EINVAL;
954         }
955
956         ret = execlists_move_to_gpu(params->request, vmas);
957         if (ret)
958                 return ret;
959
960         if (ring == &dev_priv->ring[RCS] &&
961             instp_mode != dev_priv->relative_constants_mode) {
962                 ret = intel_logical_ring_begin(params->request, 4);
963                 if (ret)
964                         return ret;
965
966                 intel_logical_ring_emit(ringbuf, MI_NOOP);
967                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
968                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
969                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
970                 intel_logical_ring_advance(ringbuf);
971
972                 dev_priv->relative_constants_mode = instp_mode;
973         }
974
975         exec_start = params->batch_obj_vm_offset +
976                      args->batch_start_offset;
977
978         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
979         if (ret)
980                 return ret;
981
982         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
983
984         i915_gem_execbuffer_move_to_active(vmas, params->request);
985         i915_gem_execbuffer_retire_commands(params);
986
987         return 0;
988 }
989
990 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
991 {
992         struct drm_i915_gem_request *req, *tmp;
993         struct list_head retired_list;
994
995         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
996         if (list_empty(&ring->execlist_retired_req_list))
997                 return;
998
999         INIT_LIST_HEAD(&retired_list);
1000         spin_lock_irq(&ring->execlist_lock);
1001         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1002         spin_unlock_irq(&ring->execlist_lock);
1003
1004         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1005                 struct intel_context *ctx = req->ctx;
1006                 struct drm_i915_gem_object *ctx_obj =
1007                                 ctx->engine[ring->id].state;
1008
1009                 if (ctx_obj && (ctx != ring->default_context))
1010                         intel_lr_context_unpin(req);
1011                 list_del(&req->execlist_link);
1012                 i915_gem_request_unreference(req);
1013         }
1014 }
1015
1016 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1017 {
1018         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1019         int ret;
1020
1021         if (!intel_ring_initialized(ring))
1022                 return;
1023
1024         ret = intel_ring_idle(ring);
1025         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1026                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1027                           ring->name, ret);
1028
1029         /* TODO: Is this correct with Execlists enabled? */
1030         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1031         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1032                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1033                 return;
1034         }
1035         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1036 }
1037
1038 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1039 {
1040         struct intel_engine_cs *ring = req->ring;
1041         int ret;
1042
1043         if (!ring->gpu_caches_dirty)
1044                 return 0;
1045
1046         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1047         if (ret)
1048                 return ret;
1049
1050         ring->gpu_caches_dirty = false;
1051         return 0;
1052 }
1053
1054 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1055                                    struct intel_context *ctx)
1056 {
1057         struct drm_device *dev = ring->dev;
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1060         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1061         struct page *lrc_state_page;
1062         int ret;
1063
1064         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1065
1066         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1067                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1068         if (ret)
1069                 return ret;
1070
1071         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1072         if (WARN_ON(!lrc_state_page)) {
1073                 ret = -ENODEV;
1074                 goto unpin_ctx_obj;
1075         }
1076
1077         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1078         if (ret)
1079                 goto unpin_ctx_obj;
1080
1081         ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1082         intel_lr_context_descriptor_update(ctx, ring);
1083         ctx->engine[ring->id].lrc_reg_state = kmap(lrc_state_page);
1084         ctx_obj->dirty = true;
1085
1086         /* Invalidate GuC TLB. */
1087         if (i915.enable_guc_submission)
1088                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1089
1090         return ret;
1091
1092 unpin_ctx_obj:
1093         i915_gem_object_ggtt_unpin(ctx_obj);
1094
1095         return ret;
1096 }
1097
1098 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1099 {
1100         int ret = 0;
1101         struct intel_engine_cs *ring = rq->ring;
1102
1103         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1104                 ret = intel_lr_context_do_pin(ring, rq->ctx);
1105                 if (ret)
1106                         goto reset_pin_count;
1107         }
1108         return ret;
1109
1110 reset_pin_count:
1111         rq->ctx->engine[ring->id].pin_count = 0;
1112         return ret;
1113 }
1114
1115 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1116 {
1117         struct intel_engine_cs *ring = rq->ring;
1118         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1119         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1120
1121         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1122
1123         if (!ctx_obj)
1124                 return;
1125
1126         if (--rq->ctx->engine[ring->id].pin_count == 0) {
1127                 kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
1128                 intel_unpin_ringbuffer_obj(ringbuf);
1129                 i915_gem_object_ggtt_unpin(ctx_obj);
1130                 rq->ctx->engine[ring->id].lrc_vma = NULL;
1131                 rq->ctx->engine[ring->id].lrc_desc = 0;
1132                 rq->ctx->engine[ring->id].lrc_reg_state = NULL;
1133         }
1134 }
1135
1136 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1137 {
1138         int ret, i;
1139         struct intel_engine_cs *ring = req->ring;
1140         struct intel_ringbuffer *ringbuf = req->ringbuf;
1141         struct drm_device *dev = ring->dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct i915_workarounds *w = &dev_priv->workarounds;
1144
1145         if (w->count == 0)
1146                 return 0;
1147
1148         ring->gpu_caches_dirty = true;
1149         ret = logical_ring_flush_all_caches(req);
1150         if (ret)
1151                 return ret;
1152
1153         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1154         if (ret)
1155                 return ret;
1156
1157         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1158         for (i = 0; i < w->count; i++) {
1159                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1160                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1161         }
1162         intel_logical_ring_emit(ringbuf, MI_NOOP);
1163
1164         intel_logical_ring_advance(ringbuf);
1165
1166         ring->gpu_caches_dirty = true;
1167         ret = logical_ring_flush_all_caches(req);
1168         if (ret)
1169                 return ret;
1170
1171         return 0;
1172 }
1173
1174 #define wa_ctx_emit(batch, index, cmd)                                  \
1175         do {                                                            \
1176                 int __index = (index)++;                                \
1177                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1178                         return -ENOSPC;                                 \
1179                 }                                                       \
1180                 batch[__index] = (cmd);                                 \
1181         } while (0)
1182
1183 #define wa_ctx_emit_reg(batch, index, reg) \
1184         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1185
1186 /*
1187  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1188  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1189  * but there is a slight complication as this is applied in WA batch where the
1190  * values are only initialized once so we cannot take register value at the
1191  * beginning and reuse it further; hence we save its value to memory, upload a
1192  * constant value with bit21 set and then we restore it back with the saved value.
1193  * To simplify the WA, a constant value is formed by using the default value
1194  * of this register. This shouldn't be a problem because we are only modifying
1195  * it for a short period and this batch in non-premptible. We can ofcourse
1196  * use additional instructions that read the actual value of the register
1197  * at that time and set our bit of interest but it makes the WA complicated.
1198  *
1199  * This WA is also required for Gen9 so extracting as a function avoids
1200  * code duplication.
1201  */
1202 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1203                                                 uint32_t *const batch,
1204                                                 uint32_t index)
1205 {
1206         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1207
1208         /*
1209          * WaDisableLSQCROPERFforOCL:skl
1210          * This WA is implemented in skl_init_clock_gating() but since
1211          * this batch updates GEN8_L3SQCREG4 with default value we need to
1212          * set this bit here to retain the WA during flush.
1213          */
1214         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1215                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1216
1217         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1218                                    MI_SRM_LRM_GLOBAL_GTT));
1219         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1220         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1221         wa_ctx_emit(batch, index, 0);
1222
1223         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1224         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1225         wa_ctx_emit(batch, index, l3sqc4_flush);
1226
1227         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1228         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1229                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1230         wa_ctx_emit(batch, index, 0);
1231         wa_ctx_emit(batch, index, 0);
1232         wa_ctx_emit(batch, index, 0);
1233         wa_ctx_emit(batch, index, 0);
1234
1235         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1236                                    MI_SRM_LRM_GLOBAL_GTT));
1237         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1238         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1239         wa_ctx_emit(batch, index, 0);
1240
1241         return index;
1242 }
1243
1244 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1245                                     uint32_t offset,
1246                                     uint32_t start_alignment)
1247 {
1248         return wa_ctx->offset = ALIGN(offset, start_alignment);
1249 }
1250
1251 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1252                              uint32_t offset,
1253                              uint32_t size_alignment)
1254 {
1255         wa_ctx->size = offset - wa_ctx->offset;
1256
1257         WARN(wa_ctx->size % size_alignment,
1258              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1259              wa_ctx->size, size_alignment);
1260         return 0;
1261 }
1262
1263 /**
1264  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1265  *
1266  * @ring: only applicable for RCS
1267  * @wa_ctx: structure representing wa_ctx
1268  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1269  *    with the offset value received as input.
1270  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1271  * @batch: page in which WA are loaded
1272  * @offset: This field specifies the start of the batch, it should be
1273  *  cache-aligned otherwise it is adjusted accordingly.
1274  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1275  *  initialized at the beginning and shared across all contexts but this field
1276  *  helps us to have multiple batches at different offsets and select them based
1277  *  on a criteria. At the moment this batch always start at the beginning of the page
1278  *  and at this point we don't have multiple wa_ctx batch buffers.
1279  *
1280  *  The number of WA applied are not known at the beginning; we use this field
1281  *  to return the no of DWORDS written.
1282  *
1283  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1284  *  so it adds NOOPs as padding to make it cacheline aligned.
1285  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1286  *  makes a complete batch buffer.
1287  *
1288  * Return: non-zero if we exceed the PAGE_SIZE limit.
1289  */
1290
1291 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1292                                     struct i915_wa_ctx_bb *wa_ctx,
1293                                     uint32_t *const batch,
1294                                     uint32_t *offset)
1295 {
1296         uint32_t scratch_addr;
1297         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
1299         /* WaDisableCtxRestoreArbitration:bdw,chv */
1300         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1301
1302         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1303         if (IS_BROADWELL(ring->dev)) {
1304                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1305                 if (rc < 0)
1306                         return rc;
1307                 index = rc;
1308         }
1309
1310         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1311         /* Actual scratch location is at 128 bytes offset */
1312         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1313
1314         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1315         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1316                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1317                                    PIPE_CONTROL_CS_STALL |
1318                                    PIPE_CONTROL_QW_WRITE));
1319         wa_ctx_emit(batch, index, scratch_addr);
1320         wa_ctx_emit(batch, index, 0);
1321         wa_ctx_emit(batch, index, 0);
1322         wa_ctx_emit(batch, index, 0);
1323
1324         /* Pad to end of cacheline */
1325         while (index % CACHELINE_DWORDS)
1326                 wa_ctx_emit(batch, index, MI_NOOP);
1327
1328         /*
1329          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1330          * execution depends on the length specified in terms of cache lines
1331          * in the register CTX_RCS_INDIRECT_CTX
1332          */
1333
1334         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1335 }
1336
1337 /**
1338  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1339  *
1340  * @ring: only applicable for RCS
1341  * @wa_ctx: structure representing wa_ctx
1342  *  offset: specifies start of the batch, should be cache-aligned.
1343  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1344  * @batch: page in which WA are loaded
1345  * @offset: This field specifies the start of this batch.
1346  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1347  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1348  *
1349  *   The number of DWORDS written are returned using this field.
1350  *
1351  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1352  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1353  */
1354 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1355                                struct i915_wa_ctx_bb *wa_ctx,
1356                                uint32_t *const batch,
1357                                uint32_t *offset)
1358 {
1359         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1360
1361         /* WaDisableCtxRestoreArbitration:bdw,chv */
1362         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1363
1364         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1365
1366         return wa_ctx_end(wa_ctx, *offset = index, 1);
1367 }
1368
1369 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1370                                     struct i915_wa_ctx_bb *wa_ctx,
1371                                     uint32_t *const batch,
1372                                     uint32_t *offset)
1373 {
1374         int ret;
1375         struct drm_device *dev = ring->dev;
1376         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1377
1378         /* WaDisableCtxRestoreArbitration:skl,bxt */
1379         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1380             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1381                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1382
1383         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1384         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1385         if (ret < 0)
1386                 return ret;
1387         index = ret;
1388
1389         /* Pad to end of cacheline */
1390         while (index % CACHELINE_DWORDS)
1391                 wa_ctx_emit(batch, index, MI_NOOP);
1392
1393         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1394 }
1395
1396 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1397                                struct i915_wa_ctx_bb *wa_ctx,
1398                                uint32_t *const batch,
1399                                uint32_t *offset)
1400 {
1401         struct drm_device *dev = ring->dev;
1402         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1403
1404         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1405         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1406             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1407                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1408                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1409                 wa_ctx_emit(batch, index,
1410                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1411                 wa_ctx_emit(batch, index, MI_NOOP);
1412         }
1413
1414         /* WaDisableCtxRestoreArbitration:skl,bxt */
1415         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1416             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1417                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1418
1419         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1420
1421         return wa_ctx_end(wa_ctx, *offset = index, 1);
1422 }
1423
1424 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1425 {
1426         int ret;
1427
1428         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1429         if (!ring->wa_ctx.obj) {
1430                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1431                 return -ENOMEM;
1432         }
1433
1434         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1435         if (ret) {
1436                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1437                                  ret);
1438                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1439                 return ret;
1440         }
1441
1442         return 0;
1443 }
1444
1445 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1446 {
1447         if (ring->wa_ctx.obj) {
1448                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1449                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1450                 ring->wa_ctx.obj = NULL;
1451         }
1452 }
1453
1454 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1455 {
1456         int ret;
1457         uint32_t *batch;
1458         uint32_t offset;
1459         struct page *page;
1460         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1461
1462         WARN_ON(ring->id != RCS);
1463
1464         /* update this when WA for higher Gen are added */
1465         if (INTEL_INFO(ring->dev)->gen > 9) {
1466                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1467                           INTEL_INFO(ring->dev)->gen);
1468                 return 0;
1469         }
1470
1471         /* some WA perform writes to scratch page, ensure it is valid */
1472         if (ring->scratch.obj == NULL) {
1473                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1474                 return -EINVAL;
1475         }
1476
1477         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1478         if (ret) {
1479                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1480                 return ret;
1481         }
1482
1483         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1484         batch = kmap_atomic(page);
1485         offset = 0;
1486
1487         if (INTEL_INFO(ring->dev)->gen == 8) {
1488                 ret = gen8_init_indirectctx_bb(ring,
1489                                                &wa_ctx->indirect_ctx,
1490                                                batch,
1491                                                &offset);
1492                 if (ret)
1493                         goto out;
1494
1495                 ret = gen8_init_perctx_bb(ring,
1496                                           &wa_ctx->per_ctx,
1497                                           batch,
1498                                           &offset);
1499                 if (ret)
1500                         goto out;
1501         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1502                 ret = gen9_init_indirectctx_bb(ring,
1503                                                &wa_ctx->indirect_ctx,
1504                                                batch,
1505                                                &offset);
1506                 if (ret)
1507                         goto out;
1508
1509                 ret = gen9_init_perctx_bb(ring,
1510                                           &wa_ctx->per_ctx,
1511                                           batch,
1512                                           &offset);
1513                 if (ret)
1514                         goto out;
1515         }
1516
1517 out:
1518         kunmap_atomic(batch);
1519         if (ret)
1520                 lrc_destroy_wa_ctx_obj(ring);
1521
1522         return ret;
1523 }
1524
1525 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1526 {
1527         struct drm_device *dev = ring->dev;
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529         u8 next_context_status_buffer_hw;
1530
1531         lrc_setup_hardware_status_page(ring,
1532                                 ring->default_context->engine[ring->id].state);
1533
1534         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1535         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1536
1537         I915_WRITE(RING_MODE_GEN7(ring),
1538                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1539                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1540         POSTING_READ(RING_MODE_GEN7(ring));
1541
1542         /*
1543          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1544          * zero, we need to read the write pointer from hardware and use its
1545          * value because "this register is power context save restored".
1546          * Effectively, these states have been observed:
1547          *
1548          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1549          * BDW  | CSB regs not reset       | CSB regs reset       |
1550          * CHT  | CSB regs not reset       | CSB regs not reset   |
1551          * SKL  |         ?                |         ?            |
1552          * BXT  |         ?                |         ?            |
1553          */
1554         next_context_status_buffer_hw =
1555                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1556
1557         /*
1558          * When the CSB registers are reset (also after power-up / gpu reset),
1559          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1560          * this special case, so the first element read is CSB[0].
1561          */
1562         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1563                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1564
1565         ring->next_context_status_buffer = next_context_status_buffer_hw;
1566         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1567
1568         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1569
1570         return 0;
1571 }
1572
1573 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1574 {
1575         struct drm_device *dev = ring->dev;
1576         struct drm_i915_private *dev_priv = dev->dev_private;
1577         int ret;
1578
1579         ret = gen8_init_common_ring(ring);
1580         if (ret)
1581                 return ret;
1582
1583         /* We need to disable the AsyncFlip performance optimisations in order
1584          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1585          * programmed to '1' on all products.
1586          *
1587          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1588          */
1589         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1590
1591         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1592
1593         return init_workarounds_ring(ring);
1594 }
1595
1596 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1597 {
1598         int ret;
1599
1600         ret = gen8_init_common_ring(ring);
1601         if (ret)
1602                 return ret;
1603
1604         return init_workarounds_ring(ring);
1605 }
1606
1607 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1608 {
1609         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1610         struct intel_engine_cs *ring = req->ring;
1611         struct intel_ringbuffer *ringbuf = req->ringbuf;
1612         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1613         int i, ret;
1614
1615         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1616         if (ret)
1617                 return ret;
1618
1619         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1620         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1621                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1622
1623                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1624                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1625                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1626                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1627         }
1628
1629         intel_logical_ring_emit(ringbuf, MI_NOOP);
1630         intel_logical_ring_advance(ringbuf);
1631
1632         return 0;
1633 }
1634
1635 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1636                               u64 offset, unsigned dispatch_flags)
1637 {
1638         struct intel_ringbuffer *ringbuf = req->ringbuf;
1639         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1640         int ret;
1641
1642         /* Don't rely in hw updating PDPs, specially in lite-restore.
1643          * Ideally, we should set Force PD Restore in ctx descriptor,
1644          * but we can't. Force Restore would be a second option, but
1645          * it is unsafe in case of lite-restore (because the ctx is
1646          * not idle). PML4 is allocated during ppgtt init so this is
1647          * not needed in 48-bit.*/
1648         if (req->ctx->ppgtt &&
1649             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1650                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1651                     !intel_vgpu_active(req->i915->dev)) {
1652                         ret = intel_logical_ring_emit_pdps(req);
1653                         if (ret)
1654                                 return ret;
1655                 }
1656
1657                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1658         }
1659
1660         ret = intel_logical_ring_begin(req, 4);
1661         if (ret)
1662                 return ret;
1663
1664         /* FIXME(BDW): Address space and security selectors. */
1665         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1666                                 (ppgtt<<8) |
1667                                 (dispatch_flags & I915_DISPATCH_RS ?
1668                                  MI_BATCH_RESOURCE_STREAMER : 0));
1669         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1670         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1671         intel_logical_ring_emit(ringbuf, MI_NOOP);
1672         intel_logical_ring_advance(ringbuf);
1673
1674         return 0;
1675 }
1676
1677 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1678 {
1679         struct drm_device *dev = ring->dev;
1680         struct drm_i915_private *dev_priv = dev->dev_private;
1681         unsigned long flags;
1682
1683         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1684                 return false;
1685
1686         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687         if (ring->irq_refcount++ == 0) {
1688                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1689                 POSTING_READ(RING_IMR(ring->mmio_base));
1690         }
1691         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692
1693         return true;
1694 }
1695
1696 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1697 {
1698         struct drm_device *dev = ring->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         unsigned long flags;
1701
1702         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703         if (--ring->irq_refcount == 0) {
1704                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1705                 POSTING_READ(RING_IMR(ring->mmio_base));
1706         }
1707         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708 }
1709
1710 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1711                            u32 invalidate_domains,
1712                            u32 unused)
1713 {
1714         struct intel_ringbuffer *ringbuf = request->ringbuf;
1715         struct intel_engine_cs *ring = ringbuf->ring;
1716         struct drm_device *dev = ring->dev;
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         uint32_t cmd;
1719         int ret;
1720
1721         ret = intel_logical_ring_begin(request, 4);
1722         if (ret)
1723                 return ret;
1724
1725         cmd = MI_FLUSH_DW + 1;
1726
1727         /* We always require a command barrier so that subsequent
1728          * commands, such as breadcrumb interrupts, are strictly ordered
1729          * wrt the contents of the write cache being flushed to memory
1730          * (and thus being coherent from the CPU).
1731          */
1732         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1733
1734         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1735                 cmd |= MI_INVALIDATE_TLB;
1736                 if (ring == &dev_priv->ring[VCS])
1737                         cmd |= MI_INVALIDATE_BSD;
1738         }
1739
1740         intel_logical_ring_emit(ringbuf, cmd);
1741         intel_logical_ring_emit(ringbuf,
1742                                 I915_GEM_HWS_SCRATCH_ADDR |
1743                                 MI_FLUSH_DW_USE_GTT);
1744         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1745         intel_logical_ring_emit(ringbuf, 0); /* value */
1746         intel_logical_ring_advance(ringbuf);
1747
1748         return 0;
1749 }
1750
1751 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1752                                   u32 invalidate_domains,
1753                                   u32 flush_domains)
1754 {
1755         struct intel_ringbuffer *ringbuf = request->ringbuf;
1756         struct intel_engine_cs *ring = ringbuf->ring;
1757         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1758         bool vf_flush_wa = false;
1759         u32 flags = 0;
1760         int ret;
1761
1762         flags |= PIPE_CONTROL_CS_STALL;
1763
1764         if (flush_domains) {
1765                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1766                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1767                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1768                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1769         }
1770
1771         if (invalidate_domains) {
1772                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1773                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1774                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1775                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1776                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1777                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1778                 flags |= PIPE_CONTROL_QW_WRITE;
1779                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1780
1781                 /*
1782                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1783                  * pipe control.
1784                  */
1785                 if (IS_GEN9(ring->dev))
1786                         vf_flush_wa = true;
1787         }
1788
1789         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1790         if (ret)
1791                 return ret;
1792
1793         if (vf_flush_wa) {
1794                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1795                 intel_logical_ring_emit(ringbuf, 0);
1796                 intel_logical_ring_emit(ringbuf, 0);
1797                 intel_logical_ring_emit(ringbuf, 0);
1798                 intel_logical_ring_emit(ringbuf, 0);
1799                 intel_logical_ring_emit(ringbuf, 0);
1800         }
1801
1802         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1803         intel_logical_ring_emit(ringbuf, flags);
1804         intel_logical_ring_emit(ringbuf, scratch_addr);
1805         intel_logical_ring_emit(ringbuf, 0);
1806         intel_logical_ring_emit(ringbuf, 0);
1807         intel_logical_ring_emit(ringbuf, 0);
1808         intel_logical_ring_advance(ringbuf);
1809
1810         return 0;
1811 }
1812
1813 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1814 {
1815         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1816 }
1817
1818 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1819 {
1820         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1821 }
1822
1823 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1824 {
1825
1826         /*
1827          * On BXT A steppings there is a HW coherency issue whereby the
1828          * MI_STORE_DATA_IMM storing the completed request's seqno
1829          * occasionally doesn't invalidate the CPU cache. Work around this by
1830          * clflushing the corresponding cacheline whenever the caller wants
1831          * the coherency to be guaranteed. Note that this cacheline is known
1832          * to be clean at this point, since we only write it in
1833          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1834          * this clflush in practice becomes an invalidate operation.
1835          */
1836
1837         if (!lazy_coherency)
1838                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1839
1840         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1841 }
1842
1843 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1844 {
1845         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1846
1847         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1848         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1849 }
1850
1851 static int gen8_emit_request(struct drm_i915_gem_request *request)
1852 {
1853         struct intel_ringbuffer *ringbuf = request->ringbuf;
1854         struct intel_engine_cs *ring = ringbuf->ring;
1855         u32 cmd;
1856         int ret;
1857
1858         /*
1859          * Reserve space for 2 NOOPs at the end of each request to be
1860          * used as a workaround for not being allowed to do lite
1861          * restore with HEAD==TAIL (WaIdleLiteRestore).
1862          */
1863         ret = intel_logical_ring_begin(request, 8);
1864         if (ret)
1865                 return ret;
1866
1867         cmd = MI_STORE_DWORD_IMM_GEN4;
1868         cmd |= MI_GLOBAL_GTT;
1869
1870         intel_logical_ring_emit(ringbuf, cmd);
1871         intel_logical_ring_emit(ringbuf,
1872                                 (ring->status_page.gfx_addr +
1873                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1874         intel_logical_ring_emit(ringbuf, 0);
1875         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1876         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1877         intel_logical_ring_emit(ringbuf, MI_NOOP);
1878         intel_logical_ring_advance_and_submit(request);
1879
1880         /*
1881          * Here we add two extra NOOPs as padding to avoid
1882          * lite restore of a context with HEAD==TAIL.
1883          */
1884         intel_logical_ring_emit(ringbuf, MI_NOOP);
1885         intel_logical_ring_emit(ringbuf, MI_NOOP);
1886         intel_logical_ring_advance(ringbuf);
1887
1888         return 0;
1889 }
1890
1891 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1892 {
1893         struct render_state so;
1894         int ret;
1895
1896         ret = i915_gem_render_state_prepare(req->ring, &so);
1897         if (ret)
1898                 return ret;
1899
1900         if (so.rodata == NULL)
1901                 return 0;
1902
1903         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1904                                        I915_DISPATCH_SECURE);
1905         if (ret)
1906                 goto out;
1907
1908         ret = req->ring->emit_bb_start(req,
1909                                        (so.ggtt_offset + so.aux_batch_offset),
1910                                        I915_DISPATCH_SECURE);
1911         if (ret)
1912                 goto out;
1913
1914         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1915
1916 out:
1917         i915_gem_render_state_fini(&so);
1918         return ret;
1919 }
1920
1921 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1922 {
1923         int ret;
1924
1925         ret = intel_logical_ring_workarounds_emit(req);
1926         if (ret)
1927                 return ret;
1928
1929         ret = intel_rcs_context_init_mocs(req);
1930         /*
1931          * Failing to program the MOCS is non-fatal.The system will not
1932          * run at peak performance. So generate an error and carry on.
1933          */
1934         if (ret)
1935                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1936
1937         return intel_lr_context_render_state_init(req);
1938 }
1939
1940 /**
1941  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1942  *
1943  * @ring: Engine Command Streamer.
1944  *
1945  */
1946 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1947 {
1948         struct drm_i915_private *dev_priv;
1949
1950         if (!intel_ring_initialized(ring))
1951                 return;
1952
1953         dev_priv = ring->dev->dev_private;
1954
1955         if (ring->buffer) {
1956                 intel_logical_ring_stop(ring);
1957                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1958         }
1959
1960         if (ring->cleanup)
1961                 ring->cleanup(ring);
1962
1963         i915_cmd_parser_fini_ring(ring);
1964         i915_gem_batch_pool_fini(&ring->batch_pool);
1965
1966         if (ring->status_page.obj) {
1967                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1968                 ring->status_page.obj = NULL;
1969         }
1970
1971         ring->disable_lite_restore_wa = false;
1972         ring->ctx_desc_template = 0;
1973
1974         lrc_destroy_wa_ctx_obj(ring);
1975         ring->dev = NULL;
1976 }
1977
1978 static void
1979 logical_ring_default_vfuncs(struct drm_device *dev,
1980                             struct intel_engine_cs *ring)
1981 {
1982         /* Default vfuncs which can be overriden by each engine. */
1983         ring->init_hw = gen8_init_common_ring;
1984         ring->emit_request = gen8_emit_request;
1985         ring->emit_flush = gen8_emit_flush;
1986         ring->irq_get = gen8_logical_ring_get_irq;
1987         ring->irq_put = gen8_logical_ring_put_irq;
1988         ring->emit_bb_start = gen8_emit_bb_start;
1989         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1990                 ring->get_seqno = bxt_a_get_seqno;
1991                 ring->set_seqno = bxt_a_set_seqno;
1992         } else {
1993                 ring->get_seqno = gen8_get_seqno;
1994                 ring->set_seqno = gen8_set_seqno;
1995         }
1996 }
1997
1998 static inline void
1999 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2000 {
2001         ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2002         ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2003 }
2004
2005 static int
2006 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2007 {
2008         int ret;
2009
2010         /* Intentionally left blank. */
2011         ring->buffer = NULL;
2012
2013         ring->dev = dev;
2014         INIT_LIST_HEAD(&ring->active_list);
2015         INIT_LIST_HEAD(&ring->request_list);
2016         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2017         init_waitqueue_head(&ring->irq_queue);
2018
2019         INIT_LIST_HEAD(&ring->buffers);
2020         INIT_LIST_HEAD(&ring->execlist_queue);
2021         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2022         spin_lock_init(&ring->execlist_lock);
2023
2024         logical_ring_init_platform_invariants(ring);
2025
2026         ret = i915_cmd_parser_init_ring(ring);
2027         if (ret)
2028                 goto error;
2029
2030         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
2031         if (ret)
2032                 goto error;
2033
2034         /* As this is the default context, always pin it */
2035         ret = intel_lr_context_do_pin(ring, ring->default_context);
2036         if (ret) {
2037                 DRM_ERROR(
2038                         "Failed to pin and map ringbuffer %s: %d\n",
2039                         ring->name, ret);
2040                 goto error;
2041         }
2042
2043         return 0;
2044
2045 error:
2046         intel_logical_ring_cleanup(ring);
2047         return ret;
2048 }
2049
2050 static int logical_render_ring_init(struct drm_device *dev)
2051 {
2052         struct drm_i915_private *dev_priv = dev->dev_private;
2053         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2054         int ret;
2055
2056         ring->name = "render ring";
2057         ring->id = RCS;
2058         ring->mmio_base = RENDER_RING_BASE;
2059
2060         logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2061         if (HAS_L3_DPF(dev))
2062                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2063
2064         logical_ring_default_vfuncs(dev, ring);
2065
2066         /* Override some for render ring. */
2067         if (INTEL_INFO(dev)->gen >= 9)
2068                 ring->init_hw = gen9_init_render_ring;
2069         else
2070                 ring->init_hw = gen8_init_render_ring;
2071         ring->init_context = gen8_init_rcs_context;
2072         ring->cleanup = intel_fini_pipe_control;
2073         ring->emit_flush = gen8_emit_flush_render;
2074
2075         ring->dev = dev;
2076
2077         ret = intel_init_pipe_control(ring);
2078         if (ret)
2079                 return ret;
2080
2081         ret = intel_init_workaround_bb(ring);
2082         if (ret) {
2083                 /*
2084                  * We continue even if we fail to initialize WA batch
2085                  * because we only expect rare glitches but nothing
2086                  * critical to prevent us from using GPU
2087                  */
2088                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2089                           ret);
2090         }
2091
2092         ret = logical_ring_init(dev, ring);
2093         if (ret) {
2094                 lrc_destroy_wa_ctx_obj(ring);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static int logical_bsd_ring_init(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2104
2105         ring->name = "bsd ring";
2106         ring->id = VCS;
2107         ring->mmio_base = GEN6_BSD_RING_BASE;
2108
2109         logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2110         logical_ring_default_vfuncs(dev, ring);
2111
2112         return logical_ring_init(dev, ring);
2113 }
2114
2115 static int logical_bsd2_ring_init(struct drm_device *dev)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2119
2120         ring->name = "bsd2 ring";
2121         ring->id = VCS2;
2122         ring->mmio_base = GEN8_BSD2_RING_BASE;
2123
2124         logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2125         logical_ring_default_vfuncs(dev, ring);
2126
2127         return logical_ring_init(dev, ring);
2128 }
2129
2130 static int logical_blt_ring_init(struct drm_device *dev)
2131 {
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2134
2135         ring->name = "blitter ring";
2136         ring->id = BCS;
2137         ring->mmio_base = BLT_RING_BASE;
2138
2139         logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2140         logical_ring_default_vfuncs(dev, ring);
2141
2142         return logical_ring_init(dev, ring);
2143 }
2144
2145 static int logical_vebox_ring_init(struct drm_device *dev)
2146 {
2147         struct drm_i915_private *dev_priv = dev->dev_private;
2148         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2149
2150         ring->name = "video enhancement ring";
2151         ring->id = VECS;
2152         ring->mmio_base = VEBOX_RING_BASE;
2153
2154         logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2155         logical_ring_default_vfuncs(dev, ring);
2156
2157         return logical_ring_init(dev, ring);
2158 }
2159
2160 /**
2161  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2162  * @dev: DRM device.
2163  *
2164  * This function inits the engines for an Execlists submission style (the equivalent in the
2165  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2166  * those engines that are present in the hardware.
2167  *
2168  * Return: non-zero if the initialization failed.
2169  */
2170 int intel_logical_rings_init(struct drm_device *dev)
2171 {
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         int ret;
2174
2175         ret = logical_render_ring_init(dev);
2176         if (ret)
2177                 return ret;
2178
2179         if (HAS_BSD(dev)) {
2180                 ret = logical_bsd_ring_init(dev);
2181                 if (ret)
2182                         goto cleanup_render_ring;
2183         }
2184
2185         if (HAS_BLT(dev)) {
2186                 ret = logical_blt_ring_init(dev);
2187                 if (ret)
2188                         goto cleanup_bsd_ring;
2189         }
2190
2191         if (HAS_VEBOX(dev)) {
2192                 ret = logical_vebox_ring_init(dev);
2193                 if (ret)
2194                         goto cleanup_blt_ring;
2195         }
2196
2197         if (HAS_BSD2(dev)) {
2198                 ret = logical_bsd2_ring_init(dev);
2199                 if (ret)
2200                         goto cleanup_vebox_ring;
2201         }
2202
2203         return 0;
2204
2205 cleanup_vebox_ring:
2206         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2207 cleanup_blt_ring:
2208         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2209 cleanup_bsd_ring:
2210         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2211 cleanup_render_ring:
2212         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2213
2214         return ret;
2215 }
2216
2217 static u32
2218 make_rpcs(struct drm_device *dev)
2219 {
2220         u32 rpcs = 0;
2221
2222         /*
2223          * No explicit RPCS request is needed to ensure full
2224          * slice/subslice/EU enablement prior to Gen9.
2225         */
2226         if (INTEL_INFO(dev)->gen < 9)
2227                 return 0;
2228
2229         /*
2230          * Starting in Gen9, render power gating can leave
2231          * slice/subslice/EU in a partially enabled state. We
2232          * must make an explicit request through RPCS for full
2233          * enablement.
2234         */
2235         if (INTEL_INFO(dev)->has_slice_pg) {
2236                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2237                 rpcs |= INTEL_INFO(dev)->slice_total <<
2238                         GEN8_RPCS_S_CNT_SHIFT;
2239                 rpcs |= GEN8_RPCS_ENABLE;
2240         }
2241
2242         if (INTEL_INFO(dev)->has_subslice_pg) {
2243                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2244                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2245                         GEN8_RPCS_SS_CNT_SHIFT;
2246                 rpcs |= GEN8_RPCS_ENABLE;
2247         }
2248
2249         if (INTEL_INFO(dev)->has_eu_pg) {
2250                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251                         GEN8_RPCS_EU_MIN_SHIFT;
2252                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2253                         GEN8_RPCS_EU_MAX_SHIFT;
2254                 rpcs |= GEN8_RPCS_ENABLE;
2255         }
2256
2257         return rpcs;
2258 }
2259
2260 static int
2261 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2262                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2263 {
2264         struct drm_device *dev = ring->dev;
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2267         struct page *page;
2268         uint32_t *reg_state;
2269         int ret;
2270
2271         if (!ppgtt)
2272                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2273
2274         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2275         if (ret) {
2276                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2277                 return ret;
2278         }
2279
2280         ret = i915_gem_object_get_pages(ctx_obj);
2281         if (ret) {
2282                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2283                 return ret;
2284         }
2285
2286         i915_gem_object_pin_pages(ctx_obj);
2287
2288         /* The second page of the context object contains some fields which must
2289          * be set up prior to the first execution. */
2290         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2291         reg_state = kmap_atomic(page);
2292
2293         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2294          * commands followed by (reg, value) pairs. The values we are setting here are
2295          * only for the first context restore: on a subsequent save, the GPU will
2296          * recreate this batchbuffer with new values (including all the missing
2297          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2298         reg_state[CTX_LRI_HEADER_0] =
2299                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2300         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2301                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2302                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2303                                           CTX_CTRL_RS_CTX_ENABLE));
2304         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2305         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2306         /* Ring buffer start address is not known until the buffer is pinned.
2307          * It is written to the context image in execlists_update_context()
2308          */
2309         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2310         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2311                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2312         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2313         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2314         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2315                        RING_BB_PPGTT);
2316         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2317         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2318         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2319         if (ring->id == RCS) {
2320                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2321                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2322                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2323                 if (ring->wa_ctx.obj) {
2324                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2325                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2326
2327                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2328                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2329                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2330
2331                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2332                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2333
2334                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2335                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2336                                 0x01;
2337                 }
2338         }
2339         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2340         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2341         /* PDP values well be assigned later if needed */
2342         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2343         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2344         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2345         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2346         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2347         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2348         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2349         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2350
2351         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2352                 /* 64b PPGTT (48bit canonical)
2353                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2354                  * other PDP Descriptors are ignored.
2355                  */
2356                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2357         } else {
2358                 /* 32b PPGTT
2359                  * PDP*_DESCRIPTOR contains the base address of space supported.
2360                  * With dynamic page allocation, PDPs may not be allocated at
2361                  * this point. Point the unallocated PDPs to the scratch page
2362                  */
2363                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2364                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2365                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2366                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2367         }
2368
2369         if (ring->id == RCS) {
2370                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2371                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2372                                make_rpcs(dev));
2373         }
2374
2375         kunmap_atomic(reg_state);
2376         i915_gem_object_unpin_pages(ctx_obj);
2377
2378         return 0;
2379 }
2380
2381 /**
2382  * intel_lr_context_free() - free the LRC specific bits of a context
2383  * @ctx: the LR context to free.
2384  *
2385  * The real context freeing is done in i915_gem_context_free: this only
2386  * takes care of the bits that are LRC related: the per-engine backing
2387  * objects and the logical ringbuffer.
2388  */
2389 void intel_lr_context_free(struct intel_context *ctx)
2390 {
2391         int i;
2392
2393         for (i = 0; i < I915_NUM_RINGS; i++) {
2394                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2395
2396                 if (ctx_obj) {
2397                         struct intel_ringbuffer *ringbuf =
2398                                         ctx->engine[i].ringbuf;
2399                         struct intel_engine_cs *ring = ringbuf->ring;
2400
2401                         if (ctx == ring->default_context) {
2402                                 intel_unpin_ringbuffer_obj(ringbuf);
2403                                 i915_gem_object_ggtt_unpin(ctx_obj);
2404                         }
2405                         WARN_ON(ctx->engine[ring->id].pin_count);
2406                         intel_ringbuffer_free(ringbuf);
2407                         drm_gem_object_unreference(&ctx_obj->base);
2408                 }
2409         }
2410 }
2411
2412 /**
2413  * intel_lr_context_size() - return the size of the context for an engine
2414  * @ring: which engine to find the context size for
2415  *
2416  * Each engine may require a different amount of space for a context image,
2417  * so when allocating (or copying) an image, this function can be used to
2418  * find the right size for the specific engine.
2419  *
2420  * Return: size (in bytes) of an engine-specific context image
2421  *
2422  * Note: this size includes the HWSP, which is part of the context image
2423  * in LRC mode, but does not include the "shared data page" used with
2424  * GuC submission. The caller should account for this if using the GuC.
2425  */
2426 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2427 {
2428         int ret = 0;
2429
2430         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2431
2432         switch (ring->id) {
2433         case RCS:
2434                 if (INTEL_INFO(ring->dev)->gen >= 9)
2435                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2436                 else
2437                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2438                 break;
2439         case VCS:
2440         case BCS:
2441         case VECS:
2442         case VCS2:
2443                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2444                 break;
2445         }
2446
2447         return ret;
2448 }
2449
2450 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2451                 struct drm_i915_gem_object *default_ctx_obj)
2452 {
2453         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2454         struct page *page;
2455
2456         /* The HWSP is part of the default context object in LRC mode. */
2457         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2458                         + LRC_PPHWSP_PN * PAGE_SIZE;
2459         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2460         ring->status_page.page_addr = kmap(page);
2461         ring->status_page.obj = default_ctx_obj;
2462
2463         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2464                         (u32)ring->status_page.gfx_addr);
2465         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2466 }
2467
2468 /**
2469  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2470  * @ctx: LR context to create.
2471  * @ring: engine to be used with the context.
2472  *
2473  * This function can be called more than once, with different engines, if we plan
2474  * to use the context with them. The context backing objects and the ringbuffers
2475  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2476  * the creation is a deferred call: it's better to make sure first that we need to use
2477  * a given ring with the context.
2478  *
2479  * Return: non-zero on error.
2480  */
2481
2482 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2483                                      struct intel_engine_cs *ring)
2484 {
2485         struct drm_device *dev = ring->dev;
2486         struct drm_i915_gem_object *ctx_obj;
2487         uint32_t context_size;
2488         struct intel_ringbuffer *ringbuf;
2489         int ret;
2490
2491         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2492         WARN_ON(ctx->engine[ring->id].state);
2493
2494         context_size = round_up(intel_lr_context_size(ring), 4096);
2495
2496         /* One extra page as the sharing data between driver and GuC */
2497         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2498
2499         ctx_obj = i915_gem_alloc_object(dev, context_size);
2500         if (!ctx_obj) {
2501                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2502                 return -ENOMEM;
2503         }
2504
2505         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2506         if (IS_ERR(ringbuf)) {
2507                 ret = PTR_ERR(ringbuf);
2508                 goto error_deref_obj;
2509         }
2510
2511         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2512         if (ret) {
2513                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2514                 goto error_ringbuf;
2515         }
2516
2517         ctx->engine[ring->id].ringbuf = ringbuf;
2518         ctx->engine[ring->id].state = ctx_obj;
2519
2520         if (ctx != ring->default_context && ring->init_context) {
2521                 struct drm_i915_gem_request *req;
2522
2523                 ret = i915_gem_request_alloc(ring,
2524                         ctx, &req);
2525                 if (ret) {
2526                         DRM_ERROR("ring create req: %d\n",
2527                                 ret);
2528                         goto error_ringbuf;
2529                 }
2530
2531                 ret = ring->init_context(req);
2532                 if (ret) {
2533                         DRM_ERROR("ring init context: %d\n",
2534                                 ret);
2535                         i915_gem_request_cancel(req);
2536                         goto error_ringbuf;
2537                 }
2538                 i915_add_request_no_flush(req);
2539         }
2540         return 0;
2541
2542 error_ringbuf:
2543         intel_ringbuffer_free(ringbuf);
2544 error_deref_obj:
2545         drm_gem_object_unreference(&ctx_obj->base);
2546         ctx->engine[ring->id].ringbuf = NULL;
2547         ctx->engine[ring->id].state = NULL;
2548         return ret;
2549 }
2550
2551 void intel_lr_context_reset(struct drm_device *dev,
2552                         struct intel_context *ctx)
2553 {
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_engine_cs *ring;
2556         int i;
2557
2558         for_each_ring(ring, dev_priv, i) {
2559                 struct drm_i915_gem_object *ctx_obj =
2560                                 ctx->engine[ring->id].state;
2561                 struct intel_ringbuffer *ringbuf =
2562                                 ctx->engine[ring->id].ringbuf;
2563                 uint32_t *reg_state;
2564                 struct page *page;
2565
2566                 if (!ctx_obj)
2567                         continue;
2568
2569                 if (i915_gem_object_get_pages(ctx_obj)) {
2570                         WARN(1, "Failed get_pages for context obj\n");
2571                         continue;
2572                 }
2573                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2574                 reg_state = kmap_atomic(page);
2575
2576                 reg_state[CTX_RING_HEAD+1] = 0;
2577                 reg_state[CTX_RING_TAIL+1] = 0;
2578
2579                 kunmap_atomic(reg_state);
2580
2581                 ringbuf->head = 0;
2582                 ringbuf->tail = 0;
2583         }
2584 }