2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
193 #define CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
209 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
212 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
213 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
215 #define WA_TAIL_DWORDS 2
217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226 * @dev_priv: i915 device private
227 * @enable_execlists: value of i915.enable_execlists module parameter.
229 * Only certain platforms support Execlists (the prerequisites being
230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
232 * Return: 1 if Execlists is supported and has to be enabled.
234 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
242 if (INTEL_GEN(dev_priv) >= 9)
245 if (enable_execlists == 0)
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
259 * @ctx: Context to work on
260 * @engine: Engine the descriptor will be used with
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
267 * This is what a descriptor looks like, from LSB to MSB::
269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
276 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277 struct intel_engine_cs *engine)
279 struct intel_context *ce = &ctx->engine[engine->id];
282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
284 desc = ctx->desc_template; /* bits 0-11 */
285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
292 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293 struct intel_engine_cs *engine)
295 return ctx->engine[engine->id].lrc_desc;
299 execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
314 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
322 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327 u32 *reg_state = ce->lrc_reg_state;
329 assert_ring_tail_valid(rq->ring, rq->tail);
330 reg_state[CTX_RING_TAIL+1] = rq->tail;
332 /* True 32b PPGTT with dynamic page allocation: update PDP
333 * registers and point the unallocated PDPs to scratch page.
334 * PML4 is allocated during ppgtt init, so this is not needed
337 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338 execlists_update_context_pdps(ppgtt, reg_state);
343 static void execlists_submit_ports(struct intel_engine_cs *engine)
345 struct drm_i915_private *dev_priv = engine->i915;
346 struct execlist_port *port = engine->execlist_port;
348 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
351 GEM_BUG_ON(port[0].count > 1);
353 execlists_context_status_change(port[0].request,
354 INTEL_CONTEXT_SCHEDULE_IN);
355 desc[0] = execlists_update_context(port[0].request);
356 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
359 if (port[1].request) {
360 GEM_BUG_ON(port[1].count);
361 execlists_context_status_change(port[1].request,
362 INTEL_CONTEXT_SCHEDULE_IN);
363 desc[1] = execlists_update_context(port[1].request);
364 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
369 GEM_BUG_ON(desc[0] == desc[1]);
371 /* You must always write both descriptors in the order below. */
372 writel(upper_32_bits(desc[1]), elsp);
373 writel(lower_32_bits(desc[1]), elsp);
375 writel(upper_32_bits(desc[0]), elsp);
376 /* The context is automatically loaded after the following */
377 writel(lower_32_bits(desc[0]), elsp);
380 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
382 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383 i915_gem_context_force_single_submission(ctx));
386 static bool can_merge_ctx(const struct i915_gem_context *prev,
387 const struct i915_gem_context *next)
392 if (ctx_single_port_submission(prev))
398 static void execlists_dequeue(struct intel_engine_cs *engine)
400 struct drm_i915_gem_request *last;
401 struct execlist_port *port = engine->execlist_port;
405 last = port->request;
407 /* WaIdleLiteRestore:bdw,skl
408 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409 * as we resubmit the request. See gen8_emit_breadcrumb()
410 * for where we prepare the padding after the end of the
413 last->tail = last->wa_tail;
415 GEM_BUG_ON(port[1].request);
417 /* Hardware submission is through 2 ports. Conceptually each port
418 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419 * static for a context, and unique to each, so we only execute
420 * requests belonging to a single context from each ring. RING_HEAD
421 * is maintained by the CS in the context image, it marks the place
422 * where it got up to last time, and through RING_TAIL we tell the CS
423 * where we want to execute up to this time.
425 * In this list the requests are in order of execution. Consecutive
426 * requests from the same context are adjacent in the ringbuffer. We
427 * can combine these requests into a single RING_TAIL update:
429 * RING_HEAD...req1...req2
431 * since to execute req2 the CS must first execute req1.
433 * Our goal then is to point each port to the end of a consecutive
434 * sequence of requests as being the most optimal (fewest wake ups
435 * and context switches) submission.
438 spin_lock_irq(&engine->timeline->lock);
439 rb = engine->execlist_first;
441 struct drm_i915_gem_request *cursor =
442 rb_entry(rb, typeof(*cursor), priotree.node);
444 /* Can we combine this request with the current port? It has to
445 * be the same context/ringbuffer and not have any exceptions
446 * (e.g. GVT saying never to combine contexts).
448 * If we can combine the requests, we can execute both by
449 * updating the RING_TAIL to point to the end of the second
450 * request, and so we never need to tell the hardware about
453 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
454 /* If we are on the second port and cannot combine
455 * this request with the last, then we are done.
457 if (port != engine->execlist_port)
460 /* If GVT overrides us we only ever submit port[0],
461 * leaving port[1] empty. Note that we also have
462 * to be careful that we don't queue the same
463 * context (even though a different request) to
466 if (ctx_single_port_submission(last->ctx) ||
467 ctx_single_port_submission(cursor->ctx))
470 GEM_BUG_ON(last->ctx == cursor->ctx);
472 i915_gem_request_assign(&port->request, last);
477 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
478 RB_CLEAR_NODE(&cursor->priotree.node);
479 cursor->priotree.priority = INT_MAX;
481 __i915_gem_request_submit(cursor);
482 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
487 i915_gem_request_assign(&port->request, last);
488 engine->execlist_first = rb;
490 spin_unlock_irq(&engine->timeline->lock);
493 execlists_submit_ports(engine);
496 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
498 return !engine->execlist_port[0].request;
501 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
503 const struct execlist_port *port = engine->execlist_port;
505 return port[0].count + port[1].count < 2;
509 * Check the unread Context Status Buffers and manage the submission of new
510 * contexts to the ELSP accordingly.
512 static void intel_lrc_irq_handler(unsigned long data)
514 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
515 struct execlist_port *port = engine->execlist_port;
516 struct drm_i915_private *dev_priv = engine->i915;
518 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
520 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
521 * imposing the cost of a locked atomic transaction when submitting a
522 * new request (outside of the context-switch interrupt).
524 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
525 u32 __iomem *csb_mmio =
526 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
528 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
529 unsigned int head, tail;
531 /* The write will be ordered by the uncached read (itself
532 * a memory barrier), so we do not need another in the form
533 * of a locked instruction. The race between the interrupt
534 * handler and the split test/clear is harmless as we order
535 * our clear before the CSB read. If the interrupt arrived
536 * first between the test and the clear, we read the updated
537 * CSB and clear the bit. If the interrupt arrives as we read
538 * the CSB or later (i.e. after we had cleared the bit) the bit
539 * is set and we do a new loop.
541 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
542 head = readl(csb_mmio);
543 tail = GEN8_CSB_WRITE_PTR(head);
544 head = GEN8_CSB_READ_PTR(head);
545 while (head != tail) {
548 if (++head == GEN8_CSB_ENTRIES)
551 /* We are flying near dragons again.
553 * We hold a reference to the request in execlist_port[]
554 * but no more than that. We are operating in softirq
555 * context and so cannot hold any mutex or sleep. That
556 * prevents us stopping the requests we are processing
557 * in port[] from being retired simultaneously (the
558 * breadcrumb will be complete before we see the
559 * context-switch). As we only hold the reference to the
560 * request, any pointer chasing underneath the request
561 * is subject to a potential use-after-free. Thus we
562 * store all of the bookkeeping within port[] as
563 * required, and avoid using unguarded pointers beneath
564 * request itself. The same applies to the atomic
568 status = readl(buf + 2 * head);
569 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
572 /* Check the context/desc id for this event matches */
573 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
576 GEM_BUG_ON(port[0].count == 0);
577 if (--port[0].count == 0) {
578 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
579 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
580 execlists_context_status_change(port[0].request,
581 INTEL_CONTEXT_SCHEDULE_OUT);
583 trace_i915_gem_request_out(port[0].request);
584 i915_gem_request_put(port[0].request);
586 memset(&port[1], 0, sizeof(port[1]));
589 GEM_BUG_ON(port[0].count == 0 &&
590 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
593 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
597 if (execlists_elsp_ready(engine))
598 execlists_dequeue(engine);
600 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
603 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
605 struct rb_node **p, *rb;
608 /* most positive priority is scheduled first, equal priorities fifo */
612 struct i915_priotree *pos;
615 pos = rb_entry(rb, typeof(*pos), node);
616 if (pt->priority > pos->priority) {
623 rb_link_node(&pt->node, rb, p);
624 rb_insert_color(&pt->node, root);
629 static void execlists_submit_request(struct drm_i915_gem_request *request)
631 struct intel_engine_cs *engine = request->engine;
634 /* Will be called from irq-context when using foreign fences. */
635 spin_lock_irqsave(&engine->timeline->lock, flags);
637 if (insert_request(&request->priotree, &engine->execlist_queue)) {
638 engine->execlist_first = &request->priotree.node;
639 if (execlists_elsp_ready(engine))
640 tasklet_hi_schedule(&engine->irq_tasklet);
643 spin_unlock_irqrestore(&engine->timeline->lock, flags);
646 static struct intel_engine_cs *
647 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
649 struct intel_engine_cs *engine =
650 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
654 if (engine != locked) {
655 spin_unlock(&locked->timeline->lock);
656 spin_lock(&engine->timeline->lock);
662 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
664 struct intel_engine_cs *engine;
665 struct i915_dependency *dep, *p;
666 struct i915_dependency stack;
669 if (prio <= READ_ONCE(request->priotree.priority))
672 /* Need BKL in order to use the temporary link inside i915_dependency */
673 lockdep_assert_held(&request->i915->drm.struct_mutex);
675 stack.signaler = &request->priotree;
676 list_add(&stack.dfs_link, &dfs);
678 /* Recursively bump all dependent priorities to match the new request.
680 * A naive approach would be to use recursion:
681 * static void update_priorities(struct i915_priotree *pt, prio) {
682 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
683 * update_priorities(dep->signal, prio)
684 * insert_request(pt);
686 * but that may have unlimited recursion depth and so runs a very
687 * real risk of overunning the kernel stack. Instead, we build
688 * a flat list of all dependencies starting with the current request.
689 * As we walk the list of dependencies, we add all of its dependencies
690 * to the end of the list (this may include an already visited
691 * request) and continue to walk onwards onto the new dependencies. The
692 * end result is a topological list of requests in reverse order, the
693 * last element in the list is the request we must execute first.
695 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
696 struct i915_priotree *pt = dep->signaler;
698 /* Within an engine, there can be no cycle, but we may
699 * refer to the same dependency chain multiple times
700 * (redundant dependencies are not eliminated) and across
703 list_for_each_entry(p, &pt->signalers_list, signal_link) {
704 GEM_BUG_ON(p->signaler->priority < pt->priority);
705 if (prio > READ_ONCE(p->signaler->priority))
706 list_move_tail(&p->dfs_link, &dfs);
709 list_safe_reset_next(dep, p, dfs_link);
712 engine = request->engine;
713 spin_lock_irq(&engine->timeline->lock);
715 /* Fifo and depth-first replacement ensure our deps execute before us */
716 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
717 struct i915_priotree *pt = dep->signaler;
719 INIT_LIST_HEAD(&dep->dfs_link);
721 engine = pt_lock_engine(pt, engine);
723 if (prio <= pt->priority)
727 if (!RB_EMPTY_NODE(&pt->node)) {
728 rb_erase(&pt->node, &engine->execlist_queue);
729 if (insert_request(pt, &engine->execlist_queue))
730 engine->execlist_first = &pt->node;
734 spin_unlock_irq(&engine->timeline->lock);
736 /* XXX Do we need to preempt to make room for us and our deps? */
739 static int execlists_context_pin(struct intel_engine_cs *engine,
740 struct i915_gem_context *ctx)
742 struct intel_context *ce = &ctx->engine[engine->id];
747 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
751 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
754 ret = execlists_context_deferred_alloc(ctx, engine);
758 GEM_BUG_ON(!ce->state);
760 flags = PIN_GLOBAL | PIN_HIGH;
761 if (ctx->ggtt_offset_bias)
762 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
764 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
768 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
770 ret = PTR_ERR(vaddr);
774 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
778 intel_lr_context_descriptor_update(ctx, engine);
780 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
781 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
782 i915_ggtt_offset(ce->ring->vma);
784 ce->state->obj->mm.dirty = true;
786 i915_gem_context_get(ctx);
790 i915_gem_object_unpin_map(ce->state->obj);
792 __i915_vma_unpin(ce->state);
798 static void execlists_context_unpin(struct intel_engine_cs *engine,
799 struct i915_gem_context *ctx)
801 struct intel_context *ce = &ctx->engine[engine->id];
803 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
804 GEM_BUG_ON(ce->pin_count == 0);
809 intel_ring_unpin(ce->ring);
811 i915_gem_object_unpin_map(ce->state->obj);
812 i915_vma_unpin(ce->state);
814 i915_gem_context_put(ctx);
817 static int execlists_request_alloc(struct drm_i915_gem_request *request)
819 struct intel_engine_cs *engine = request->engine;
820 struct intel_context *ce = &request->ctx->engine[engine->id];
824 GEM_BUG_ON(!ce->pin_count);
826 /* Flush enough space to reduce the likelihood of waiting after
827 * we start building the request - in which case we will just
828 * have to repeat work.
830 request->reserved_space += EXECLISTS_REQUEST_SIZE;
832 GEM_BUG_ON(!ce->ring);
833 request->ring = ce->ring;
835 if (i915.enable_guc_submission) {
837 * Check that the GuC has space for the request before
838 * going any further, as the i915_add_request() call
839 * later on mustn't fail ...
841 ret = i915_guc_wq_reserve(request);
846 cs = intel_ring_begin(request, 0);
852 if (!ce->initialised) {
853 ret = engine->init_context(request);
857 ce->initialised = true;
860 /* Note that after this point, we have committed to using
861 * this request as it is being used to both track the
862 * state of engine initialisation and liveness of the
863 * golden renderstate above. Think twice before you try
864 * to cancel/unwind this request now.
867 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
871 if (i915.enable_guc_submission)
872 i915_guc_wq_unreserve(request);
878 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
879 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
880 * but there is a slight complication as this is applied in WA batch where the
881 * values are only initialized once so we cannot take register value at the
882 * beginning and reuse it further; hence we save its value to memory, upload a
883 * constant value with bit21 set and then we restore it back with the saved value.
884 * To simplify the WA, a constant value is formed by using the default value
885 * of this register. This shouldn't be a problem because we are only modifying
886 * it for a short period and this batch in non-premptible. We can ofcourse
887 * use additional instructions that read the actual value of the register
888 * at that time and set our bit of interest but it makes the WA complicated.
890 * This WA is also required for Gen9 so extracting as a function avoids
894 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
896 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
897 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
898 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
901 *batch++ = MI_LOAD_REGISTER_IMM(1);
902 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
903 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
905 batch = gen8_emit_pipe_control(batch,
906 PIPE_CONTROL_CS_STALL |
907 PIPE_CONTROL_DC_FLUSH_ENABLE,
910 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
911 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
912 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
919 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
920 * initialized at the beginning and shared across all contexts but this field
921 * helps us to have multiple batches at different offsets and select them based
922 * on a criteria. At the moment this batch always start at the beginning of the page
923 * and at this point we don't have multiple wa_ctx batch buffers.
925 * The number of WA applied are not known at the beginning; we use this field
926 * to return the no of DWORDS written.
928 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
929 * so it adds NOOPs as padding to make it cacheline aligned.
930 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
931 * makes a complete batch buffer.
933 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
935 /* WaDisableCtxRestoreArbitration:bdw,chv */
936 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
938 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
939 if (IS_BROADWELL(engine->i915))
940 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
942 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
943 /* Actual scratch location is at 128 bytes offset */
944 batch = gen8_emit_pipe_control(batch,
945 PIPE_CONTROL_FLUSH_L3 |
946 PIPE_CONTROL_GLOBAL_GTT_IVB |
947 PIPE_CONTROL_CS_STALL |
948 PIPE_CONTROL_QW_WRITE,
949 i915_ggtt_offset(engine->scratch) +
950 2 * CACHELINE_BYTES);
952 /* Pad to end of cacheline */
953 while ((unsigned long)batch % CACHELINE_BYTES)
957 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
958 * execution depends on the length specified in terms of cache lines
959 * in the register CTX_RCS_INDIRECT_CTX
966 * This batch is started immediately after indirect_ctx batch. Since we ensure
967 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
969 * The number of DWORDS written are returned using this field.
971 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
972 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
974 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
976 /* WaDisableCtxRestoreArbitration:bdw,chv */
977 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
978 *batch++ = MI_BATCH_BUFFER_END;
983 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
985 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
986 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
988 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
989 *batch++ = MI_LOAD_REGISTER_IMM(1);
990 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
991 *batch++ = _MASKED_BIT_DISABLE(
992 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
995 /* WaClearSlmSpaceAtContextSwitch:kbl */
996 /* Actual scratch location is at 128 bytes offset */
997 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
998 batch = gen8_emit_pipe_control(batch,
999 PIPE_CONTROL_FLUSH_L3 |
1000 PIPE_CONTROL_GLOBAL_GTT_IVB |
1001 PIPE_CONTROL_CS_STALL |
1002 PIPE_CONTROL_QW_WRITE,
1003 i915_ggtt_offset(engine->scratch)
1004 + 2 * CACHELINE_BYTES);
1007 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1008 if (HAS_POOLED_EU(engine->i915)) {
1010 * EU pool configuration is setup along with golden context
1011 * during context initialization. This value depends on
1012 * device type (2x6 or 3x6) and needs to be updated based
1013 * on which subslice is disabled especially for 2x6
1014 * devices, however it is safe to load default
1015 * configuration of 3x6 device instead of masking off
1016 * corresponding bits because HW ignores bits of a disabled
1017 * subslice and drops down to appropriate config. Please
1018 * see render_state_setup() in i915_gem_render_state.c for
1019 * possible configurations, to avoid duplication they are
1020 * not shown here again.
1022 *batch++ = GEN9_MEDIA_POOL_STATE;
1023 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1024 *batch++ = 0x00777000;
1030 /* Pad to end of cacheline */
1031 while ((unsigned long)batch % CACHELINE_BYTES)
1037 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1039 *batch++ = MI_BATCH_BUFFER_END;
1044 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1046 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1048 struct drm_i915_gem_object *obj;
1049 struct i915_vma *vma;
1052 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1054 return PTR_ERR(obj);
1056 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1062 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1066 engine->wa_ctx.vma = vma;
1070 i915_gem_object_put(obj);
1074 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1076 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1079 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1081 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1083 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1084 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1086 wa_bb_func_t wa_bb_fn[2];
1088 void *batch, *batch_ptr;
1092 if (WARN_ON(engine->id != RCS || !engine->scratch))
1095 switch (INTEL_GEN(engine->i915)) {
1097 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1098 wa_bb_fn[1] = gen9_init_perctx_bb;
1101 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1102 wa_bb_fn[1] = gen8_init_perctx_bb;
1105 MISSING_CASE(INTEL_GEN(engine->i915));
1109 ret = lrc_setup_wa_ctx(engine);
1111 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1115 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1116 batch = batch_ptr = kmap_atomic(page);
1119 * Emit the two workaround batch buffers, recording the offset from the
1120 * start of the workaround batch buffer object for each and their
1123 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1124 wa_bb[i]->offset = batch_ptr - batch;
1125 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1129 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1130 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1133 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1135 kunmap_atomic(batch);
1137 lrc_destroy_wa_ctx(engine);
1142 static u32 port_seqno(struct execlist_port *port)
1144 return port->request ? port->request->global_seqno : 0;
1147 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1149 struct drm_i915_private *dev_priv = engine->i915;
1152 ret = intel_mocs_init_engine(engine);
1156 intel_engine_reset_breadcrumbs(engine);
1157 intel_engine_init_hangcheck(engine);
1159 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1160 I915_WRITE(RING_MODE_GEN7(engine),
1161 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1162 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1163 engine->status_page.ggtt_offset);
1164 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1166 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1168 /* After a GPU reset, we may have requests to replay */
1169 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1170 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1171 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1173 port_seqno(&engine->execlist_port[0]),
1174 port_seqno(&engine->execlist_port[1]));
1175 engine->execlist_port[0].count = 0;
1176 engine->execlist_port[1].count = 0;
1177 execlists_submit_ports(engine);
1183 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1185 struct drm_i915_private *dev_priv = engine->i915;
1188 ret = gen8_init_common_ring(engine);
1192 /* We need to disable the AsyncFlip performance optimisations in order
1193 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1194 * programmed to '1' on all products.
1196 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1198 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1200 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202 return init_workarounds_ring(engine);
1205 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1209 ret = gen8_init_common_ring(engine);
1213 return init_workarounds_ring(engine);
1216 static void reset_common_ring(struct intel_engine_cs *engine,
1217 struct drm_i915_gem_request *request)
1219 struct execlist_port *port = engine->execlist_port;
1220 struct intel_context *ce;
1222 /* If the request was innocent, we leave the request in the ELSP
1223 * and will try to replay it on restarting. The context image may
1224 * have been corrupted by the reset, in which case we may have
1225 * to service a new GPU hang, but more likely we can continue on
1228 * If the request was guilty, we presume the context is corrupt
1229 * and have to at least restore the RING register in the context
1230 * image back to the expected values to skip over the guilty request.
1232 if (!request || request->fence.error != -EIO)
1235 /* We want a simple context + ring to execute the breadcrumb update.
1236 * We cannot rely on the context being intact across the GPU hang,
1237 * so clear it and rebuild just what we need for the breadcrumb.
1238 * All pending requests for this context will be zapped, and any
1239 * future request will be after userspace has had the opportunity
1240 * to recreate its own state.
1242 ce = &request->ctx->engine[engine->id];
1243 execlists_init_reg_state(ce->lrc_reg_state,
1244 request->ctx, engine, ce->ring);
1246 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1247 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1248 i915_ggtt_offset(ce->ring->vma);
1249 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1251 request->ring->head = request->postfix;
1252 intel_ring_update_space(request->ring);
1254 /* Catch up with any missed context-switch interrupts */
1255 if (request->ctx != port[0].request->ctx) {
1256 i915_gem_request_put(port[0].request);
1258 memset(&port[1], 0, sizeof(port[1]));
1261 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1263 /* Reset WaIdleLiteRestore:bdw,skl as well */
1265 intel_ring_wrap(request->ring,
1266 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1267 assert_ring_tail_valid(request->ring, request->tail);
1270 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1272 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1273 struct intel_engine_cs *engine = req->engine;
1274 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1278 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1282 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1283 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1284 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1286 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1287 *cs++ = upper_32_bits(pd_daddr);
1288 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1289 *cs++ = lower_32_bits(pd_daddr);
1293 intel_ring_advance(req, cs);
1298 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1299 u64 offset, u32 len,
1300 const unsigned int flags)
1305 /* Don't rely in hw updating PDPs, specially in lite-restore.
1306 * Ideally, we should set Force PD Restore in ctx descriptor,
1307 * but we can't. Force Restore would be a second option, but
1308 * it is unsafe in case of lite-restore (because the ctx is
1309 * not idle). PML4 is allocated during ppgtt init so this is
1310 * not needed in 48-bit.*/
1311 if (req->ctx->ppgtt &&
1312 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1313 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1314 !intel_vgpu_active(req->i915)) {
1315 ret = intel_logical_ring_emit_pdps(req);
1319 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1322 cs = intel_ring_begin(req, 4);
1326 /* FIXME(BDW): Address space and security selectors. */
1327 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1328 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1329 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1330 *cs++ = lower_32_bits(offset);
1331 *cs++ = upper_32_bits(offset);
1333 intel_ring_advance(req, cs);
1338 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1340 struct drm_i915_private *dev_priv = engine->i915;
1341 I915_WRITE_IMR(engine,
1342 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1343 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1346 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1348 struct drm_i915_private *dev_priv = engine->i915;
1349 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1352 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1356 cs = intel_ring_begin(request, 4);
1360 cmd = MI_FLUSH_DW + 1;
1362 /* We always require a command barrier so that subsequent
1363 * commands, such as breadcrumb interrupts, are strictly ordered
1364 * wrt the contents of the write cache being flushed to memory
1365 * (and thus being coherent from the CPU).
1367 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1369 if (mode & EMIT_INVALIDATE) {
1370 cmd |= MI_INVALIDATE_TLB;
1371 if (request->engine->id == VCS)
1372 cmd |= MI_INVALIDATE_BSD;
1376 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1377 *cs++ = 0; /* upper addr */
1378 *cs++ = 0; /* value */
1379 intel_ring_advance(request, cs);
1384 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1387 struct intel_engine_cs *engine = request->engine;
1389 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1390 bool vf_flush_wa = false, dc_flush_wa = false;
1394 flags |= PIPE_CONTROL_CS_STALL;
1396 if (mode & EMIT_FLUSH) {
1397 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1398 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1399 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1400 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1403 if (mode & EMIT_INVALIDATE) {
1404 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1405 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1406 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1407 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1408 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1409 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1410 flags |= PIPE_CONTROL_QW_WRITE;
1411 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1414 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1417 if (IS_GEN9(request->i915))
1420 /* WaForGAMHang:kbl */
1421 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1433 cs = intel_ring_begin(request, len);
1438 cs = gen8_emit_pipe_control(cs, 0, 0);
1441 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1444 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1447 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1449 intel_ring_advance(request, cs);
1455 * Reserve space for 2 NOOPs at the end of each request to be
1456 * used as a workaround for not being allowed to do lite
1457 * restore with HEAD==TAIL (WaIdleLiteRestore).
1459 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1463 request->wa_tail = intel_ring_offset(request, cs);
1466 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1468 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1469 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1471 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1472 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1474 *cs++ = request->global_seqno;
1475 *cs++ = MI_USER_INTERRUPT;
1477 request->tail = intel_ring_offset(request, cs);
1478 assert_ring_tail_valid(request->ring, request->tail);
1480 gen8_emit_wa_tail(request, cs);
1483 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1485 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1488 /* We're using qword write, seqno should be aligned to 8 bytes. */
1489 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1491 /* w/a for post sync ops following a GPGPU operation we
1492 * need a prior CS_STALL, which is emitted by the flush
1493 * following the batch.
1495 *cs++ = GFX_OP_PIPE_CONTROL(6);
1496 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1497 PIPE_CONTROL_QW_WRITE;
1498 *cs++ = intel_hws_seqno_address(request->engine);
1500 *cs++ = request->global_seqno;
1501 /* We're thrashing one dword of HWS. */
1503 *cs++ = MI_USER_INTERRUPT;
1505 request->tail = intel_ring_offset(request, cs);
1506 assert_ring_tail_valid(request->ring, request->tail);
1508 gen8_emit_wa_tail(request, cs);
1511 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1513 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1517 ret = intel_ring_workarounds_emit(req);
1521 ret = intel_rcs_context_init_mocs(req);
1523 * Failing to program the MOCS is non-fatal.The system will not
1524 * run at peak performance. So generate an error and carry on.
1527 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1529 return i915_gem_render_state_emit(req);
1533 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1534 * @engine: Engine Command Streamer.
1536 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1538 struct drm_i915_private *dev_priv;
1541 * Tasklet cannot be active at this point due intel_mark_active/idle
1542 * so this is just for documentation.
1544 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1545 tasklet_kill(&engine->irq_tasklet);
1547 dev_priv = engine->i915;
1549 if (engine->buffer) {
1550 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1553 if (engine->cleanup)
1554 engine->cleanup(engine);
1556 if (engine->status_page.vma) {
1557 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1558 engine->status_page.vma = NULL;
1561 intel_engine_cleanup_common(engine);
1563 lrc_destroy_wa_ctx(engine);
1564 engine->i915 = NULL;
1565 dev_priv->engine[engine->id] = NULL;
1569 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1571 engine->submit_request = execlists_submit_request;
1572 engine->schedule = execlists_schedule;
1573 engine->irq_tasklet.func = intel_lrc_irq_handler;
1577 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1579 /* Default vfuncs which can be overriden by each engine. */
1580 engine->init_hw = gen8_init_common_ring;
1581 engine->reset_hw = reset_common_ring;
1583 engine->context_pin = execlists_context_pin;
1584 engine->context_unpin = execlists_context_unpin;
1586 engine->request_alloc = execlists_request_alloc;
1588 engine->emit_flush = gen8_emit_flush;
1589 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1590 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1592 engine->set_default_submission = execlists_set_default_submission;
1594 engine->irq_enable = gen8_logical_ring_enable_irq;
1595 engine->irq_disable = gen8_logical_ring_disable_irq;
1596 engine->emit_bb_start = gen8_emit_bb_start;
1600 logical_ring_default_irqs(struct intel_engine_cs *engine)
1602 unsigned shift = engine->irq_shift;
1603 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1604 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1608 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1610 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1613 /* The HWSP is part of the default context object in LRC mode. */
1614 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1616 return PTR_ERR(hws);
1618 engine->status_page.page_addr = hws + hws_offset;
1619 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1620 engine->status_page.vma = vma;
1626 logical_ring_setup(struct intel_engine_cs *engine)
1628 struct drm_i915_private *dev_priv = engine->i915;
1629 enum forcewake_domains fw_domains;
1631 intel_engine_setup_common(engine);
1633 /* Intentionally left blank. */
1634 engine->buffer = NULL;
1636 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1640 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1641 RING_CONTEXT_STATUS_PTR(engine),
1642 FW_REG_READ | FW_REG_WRITE);
1644 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1645 RING_CONTEXT_STATUS_BUF_BASE(engine),
1648 engine->fw_domains = fw_domains;
1650 tasklet_init(&engine->irq_tasklet,
1651 intel_lrc_irq_handler, (unsigned long)engine);
1653 logical_ring_default_vfuncs(engine);
1654 logical_ring_default_irqs(engine);
1658 logical_ring_init(struct intel_engine_cs *engine)
1660 struct i915_gem_context *dctx = engine->i915->kernel_context;
1663 ret = intel_engine_init_common(engine);
1667 /* And setup the hardware status page. */
1668 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1670 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1677 intel_logical_ring_cleanup(engine);
1681 int logical_render_ring_init(struct intel_engine_cs *engine)
1683 struct drm_i915_private *dev_priv = engine->i915;
1686 logical_ring_setup(engine);
1688 if (HAS_L3_DPF(dev_priv))
1689 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1691 /* Override some for render ring. */
1692 if (INTEL_GEN(dev_priv) >= 9)
1693 engine->init_hw = gen9_init_render_ring;
1695 engine->init_hw = gen8_init_render_ring;
1696 engine->init_context = gen8_init_rcs_context;
1697 engine->emit_flush = gen8_emit_flush_render;
1698 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1699 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1701 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1705 ret = intel_init_workaround_bb(engine);
1708 * We continue even if we fail to initialize WA batch
1709 * because we only expect rare glitches but nothing
1710 * critical to prevent us from using GPU
1712 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1716 return logical_ring_init(engine);
1719 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1721 logical_ring_setup(engine);
1723 return logical_ring_init(engine);
1727 make_rpcs(struct drm_i915_private *dev_priv)
1732 * No explicit RPCS request is needed to ensure full
1733 * slice/subslice/EU enablement prior to Gen9.
1735 if (INTEL_GEN(dev_priv) < 9)
1739 * Starting in Gen9, render power gating can leave
1740 * slice/subslice/EU in a partially enabled state. We
1741 * must make an explicit request through RPCS for full
1744 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1745 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1746 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1747 GEN8_RPCS_S_CNT_SHIFT;
1748 rpcs |= GEN8_RPCS_ENABLE;
1751 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1752 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1753 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1754 GEN8_RPCS_SS_CNT_SHIFT;
1755 rpcs |= GEN8_RPCS_ENABLE;
1758 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1759 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1760 GEN8_RPCS_EU_MIN_SHIFT;
1761 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1762 GEN8_RPCS_EU_MAX_SHIFT;
1763 rpcs |= GEN8_RPCS_ENABLE;
1769 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1771 u32 indirect_ctx_offset;
1773 switch (INTEL_GEN(engine->i915)) {
1775 MISSING_CASE(INTEL_GEN(engine->i915));
1778 indirect_ctx_offset =
1779 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1782 indirect_ctx_offset =
1783 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1787 return indirect_ctx_offset;
1790 static void execlists_init_reg_state(u32 *regs,
1791 struct i915_gem_context *ctx,
1792 struct intel_engine_cs *engine,
1793 struct intel_ring *ring)
1795 struct drm_i915_private *dev_priv = engine->i915;
1796 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1797 u32 base = engine->mmio_base;
1798 bool rcs = engine->id == RCS;
1800 /* A context is actually a big batch buffer with several
1801 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1802 * values we are setting here are only for the first context restore:
1803 * on a subsequent save, the GPU will recreate this batchbuffer with new
1804 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1805 * we are not initializing here).
1807 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1808 MI_LRI_FORCE_POSTED;
1810 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1811 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1812 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1813 (HAS_RESOURCE_STREAMER(dev_priv) ?
1814 CTX_CTRL_RS_CTX_ENABLE : 0)));
1815 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1816 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1817 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1818 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1819 RING_CTL_SIZE(ring->size) | RING_VALID);
1820 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1821 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1822 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1823 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1824 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1825 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1827 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1828 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1829 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1830 RING_INDIRECT_CTX_OFFSET(base), 0);
1832 if (engine->wa_ctx.vma) {
1833 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1834 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1836 regs[CTX_RCS_INDIRECT_CTX + 1] =
1837 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1838 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1840 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1841 intel_lr_indirect_ctx_offset(engine) << 6;
1843 regs[CTX_BB_PER_CTX_PTR + 1] =
1844 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1848 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1850 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1851 /* PDP values well be assigned later if needed */
1852 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1853 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1854 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1855 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1856 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1857 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1858 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1859 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1861 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1862 /* 64b PPGTT (48bit canonical)
1863 * PDP0_DESCRIPTOR contains the base address to PML4 and
1864 * other PDP Descriptors are ignored.
1866 ASSIGN_CTX_PML4(ppgtt, regs);
1870 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1871 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1872 make_rpcs(dev_priv));
1877 populate_lr_context(struct i915_gem_context *ctx,
1878 struct drm_i915_gem_object *ctx_obj,
1879 struct intel_engine_cs *engine,
1880 struct intel_ring *ring)
1885 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1887 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1891 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1892 if (IS_ERR(vaddr)) {
1893 ret = PTR_ERR(vaddr);
1894 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1897 ctx_obj->mm.dirty = true;
1899 /* The second page of the context object contains some fields which must
1900 * be set up prior to the first execution. */
1902 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1905 i915_gem_object_unpin_map(ctx_obj);
1911 * intel_lr_context_size() - return the size of the context for an engine
1912 * @engine: which engine to find the context size for
1914 * Each engine may require a different amount of space for a context image,
1915 * so when allocating (or copying) an image, this function can be used to
1916 * find the right size for the specific engine.
1918 * Return: size (in bytes) of an engine-specific context image
1920 * Note: this size includes the HWSP, which is part of the context image
1921 * in LRC mode, but does not include the "shared data page" used with
1922 * GuC submission. The caller should account for this if using the GuC.
1924 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1928 WARN_ON(INTEL_GEN(engine->i915) < 8);
1930 switch (engine->id) {
1932 if (INTEL_GEN(engine->i915) >= 9)
1933 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1935 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1941 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1948 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1949 struct intel_engine_cs *engine)
1951 struct drm_i915_gem_object *ctx_obj;
1952 struct intel_context *ce = &ctx->engine[engine->id];
1953 struct i915_vma *vma;
1954 uint32_t context_size;
1955 struct intel_ring *ring;
1960 context_size = round_up(intel_lr_context_size(engine),
1961 I915_GTT_PAGE_SIZE);
1963 /* One extra page as the sharing data between driver and GuC */
1964 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1966 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1967 if (IS_ERR(ctx_obj)) {
1968 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1969 return PTR_ERR(ctx_obj);
1972 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1975 goto error_deref_obj;
1978 ring = intel_engine_create_ring(engine, ctx->ring_size);
1980 ret = PTR_ERR(ring);
1981 goto error_deref_obj;
1984 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1986 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1987 goto error_ring_free;
1992 ce->initialised |= engine->init_context == NULL;
1997 intel_ring_free(ring);
1999 i915_gem_object_put(ctx_obj);
2003 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2005 struct intel_engine_cs *engine;
2006 struct i915_gem_context *ctx;
2007 enum intel_engine_id id;
2009 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2010 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2011 * that stored in context. As we only write new commands from
2012 * ce->ring->tail onwards, everything before that is junk. If the GPU
2013 * starts reading from its RING_HEAD from the context, it may try to
2014 * execute that junk and die.
2016 * So to avoid that we reset the context images upon resume. For
2017 * simplicity, we just zero everything out.
2019 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2020 for_each_engine(engine, dev_priv, id) {
2021 struct intel_context *ce = &ctx->engine[engine->id];
2027 reg = i915_gem_object_pin_map(ce->state->obj,
2029 if (WARN_ON(IS_ERR(reg)))
2032 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2033 reg[CTX_RING_HEAD+1] = 0;
2034 reg[CTX_RING_TAIL+1] = 0;
2036 ce->state->obj->mm.dirty = true;
2037 i915_gem_object_unpin_map(ce->state->obj);
2039 ce->ring->head = ce->ring->tail = 0;
2040 intel_ring_update_space(ce->ring);