]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Check for matching ringbuffer in logical_ring_wait_request()
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192         ADVANCED_CONTEXT = 0,
193         LEGACY_CONTEXT,
194         ADVANCED_AD_CONTEXT,
195         LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199         FAULT_AND_HANG = 0,
200         FAULT_AND_HALT, /* Debug only */
201         FAULT_AND_STREAM,
202         FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207                 struct intel_context *ctx);
208
209 /**
210  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211  * @dev: DRM device.
212  * @enable_execlists: value of i915.enable_execlists module parameter.
213  *
214  * Only certain platforms support Execlists (the prerequisites being
215  * support for Logical Ring Contexts and Aliasing PPGTT or better),
216  * and only when enabled via module parameter.
217  *
218  * Return: 1 if Execlists is supported and has to be enabled.
219  */
220 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221 {
222         WARN_ON(i915.enable_ppgtt == -1);
223
224         if (INTEL_INFO(dev)->gen >= 9)
225                 return 1;
226
227         if (enable_execlists == 0)
228                 return 0;
229
230         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231             i915.use_mmio_flip >= 0)
232                 return 1;
233
234         return 0;
235 }
236
237 /**
238  * intel_execlists_ctx_id() - get the Execlists Context ID
239  * @ctx_obj: Logical Ring Context backing object.
240  *
241  * Do not confuse with ctx->id! Unfortunately we have a name overload
242  * here: the old context ID we pass to userspace as a handler so that
243  * they can refer to a context, and the new context ID we pass to the
244  * ELSP so that the GPU can inform us of the context status via
245  * interrupts.
246  *
247  * Return: 20-bits globally unique context ID.
248  */
249 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250 {
251         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253         /* LRCA is required to be 4K aligned so the more significant 20 bits
254          * are globally unique */
255         return lrca >> 12;
256 }
257
258 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259 {
260         uint64_t desc;
261         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
262
263         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
264
265         desc = GEN8_CTX_VALID;
266         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267         desc |= GEN8_CTX_L3LLC_COHERENT;
268         desc |= GEN8_CTX_PRIVILEGE;
269         desc |= lrca;
270         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272         /* TODO: WaDisableLiteRestore when we start using semaphore
273          * signalling between Command Streamers */
274         /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276         return desc;
277 }
278
279 static void execlists_elsp_write(struct intel_engine_cs *ring,
280                                  struct drm_i915_gem_object *ctx_obj0,
281                                  struct drm_i915_gem_object *ctx_obj1)
282 {
283         struct drm_device *dev = ring->dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         uint64_t temp = 0;
286         uint32_t desc[4];
287         unsigned long flags;
288
289         /* XXX: You must always write both descriptors in the order below. */
290         if (ctx_obj1)
291                 temp = execlists_ctx_descriptor(ctx_obj1);
292         else
293                 temp = 0;
294         desc[1] = (u32)(temp >> 32);
295         desc[0] = (u32)temp;
296
297         temp = execlists_ctx_descriptor(ctx_obj0);
298         desc[3] = (u32)(temp >> 32);
299         desc[2] = (u32)temp;
300
301         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
302          * are in progress.
303          *
304          * The other problem is that we can't just call gen6_gt_force_wake_get()
305          * because that function calls intel_runtime_pm_get(), which might sleep.
306          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
307          */
308         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
309         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
310                 if (dev_priv->uncore.fw_rendercount++ == 0)
311                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
312                                                               FORCEWAKE_RENDER);
313                 if (dev_priv->uncore.fw_mediacount++ == 0)
314                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
315                                                               FORCEWAKE_MEDIA);
316                 if (INTEL_INFO(dev)->gen >= 9) {
317                         if (dev_priv->uncore.fw_blittercount++ == 0)
318                                 dev_priv->uncore.funcs.force_wake_get(dev_priv,
319                                                         FORCEWAKE_BLITTER);
320                 }
321         } else {
322                 if (dev_priv->uncore.forcewake_count++ == 0)
323                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
324                                                               FORCEWAKE_ALL);
325         }
326         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
327
328         I915_WRITE(RING_ELSP(ring), desc[1]);
329         I915_WRITE(RING_ELSP(ring), desc[0]);
330         I915_WRITE(RING_ELSP(ring), desc[3]);
331         /* The context is automatically loaded after the following */
332         I915_WRITE(RING_ELSP(ring), desc[2]);
333
334         /* ELSP is a wo register, so use another nearby reg for posting instead */
335         POSTING_READ(RING_EXECLIST_STATUS(ring));
336
337         /* Release Force Wakeup (see the big comment above). */
338         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
339         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
340                 if (--dev_priv->uncore.fw_rendercount == 0)
341                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
342                                                               FORCEWAKE_RENDER);
343                 if (--dev_priv->uncore.fw_mediacount == 0)
344                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
345                                                               FORCEWAKE_MEDIA);
346                 if (INTEL_INFO(dev)->gen >= 9) {
347                         if (--dev_priv->uncore.fw_blittercount == 0)
348                                 dev_priv->uncore.funcs.force_wake_put(dev_priv,
349                                                         FORCEWAKE_BLITTER);
350                 }
351         } else {
352                 if (--dev_priv->uncore.forcewake_count == 0)
353                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
354                                                               FORCEWAKE_ALL);
355         }
356
357         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
358 }
359
360 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
361                                     struct drm_i915_gem_object *ring_obj,
362                                     u32 tail)
363 {
364         struct page *page;
365         uint32_t *reg_state;
366
367         page = i915_gem_object_get_page(ctx_obj, 1);
368         reg_state = kmap_atomic(page);
369
370         reg_state[CTX_RING_TAIL+1] = tail;
371         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
372
373         kunmap_atomic(reg_state);
374
375         return 0;
376 }
377
378 static void execlists_submit_contexts(struct intel_engine_cs *ring,
379                                       struct intel_context *to0, u32 tail0,
380                                       struct intel_context *to1, u32 tail1)
381 {
382         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
383         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
384         struct drm_i915_gem_object *ctx_obj1 = NULL;
385         struct intel_ringbuffer *ringbuf1 = NULL;
386
387         BUG_ON(!ctx_obj0);
388         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
389         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
390
391         execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
392
393         if (to1) {
394                 ringbuf1 = to1->engine[ring->id].ringbuf;
395                 ctx_obj1 = to1->engine[ring->id].state;
396                 BUG_ON(!ctx_obj1);
397                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
398                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
399
400                 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
401         }
402
403         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
404 }
405
406 static void execlists_context_unqueue(struct intel_engine_cs *ring)
407 {
408         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
409         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
410
411         assert_spin_locked(&ring->execlist_lock);
412
413         if (list_empty(&ring->execlist_queue))
414                 return;
415
416         /* Try to read in pairs */
417         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
418                                  execlist_link) {
419                 if (!req0) {
420                         req0 = cursor;
421                 } else if (req0->ctx == cursor->ctx) {
422                         /* Same ctx: ignore first request, as second request
423                          * will update tail past first request's workload */
424                         cursor->elsp_submitted = req0->elsp_submitted;
425                         list_del(&req0->execlist_link);
426                         list_add_tail(&req0->execlist_link,
427                                 &ring->execlist_retired_req_list);
428                         req0 = cursor;
429                 } else {
430                         req1 = cursor;
431                         break;
432                 }
433         }
434
435         WARN_ON(req1 && req1->elsp_submitted);
436
437         execlists_submit_contexts(ring, req0->ctx, req0->tail,
438                                   req1 ? req1->ctx : NULL,
439                                   req1 ? req1->tail : 0);
440
441         req0->elsp_submitted++;
442         if (req1)
443                 req1->elsp_submitted++;
444 }
445
446 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447                                            u32 request_id)
448 {
449         struct intel_ctx_submit_request *head_req;
450
451         assert_spin_locked(&ring->execlist_lock);
452
453         head_req = list_first_entry_or_null(&ring->execlist_queue,
454                                             struct intel_ctx_submit_request,
455                                             execlist_link);
456
457         if (head_req != NULL) {
458                 struct drm_i915_gem_object *ctx_obj =
459                                 head_req->ctx->engine[ring->id].state;
460                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
461                         WARN(head_req->elsp_submitted == 0,
462                              "Never submitted head request\n");
463
464                         if (--head_req->elsp_submitted <= 0) {
465                                 list_del(&head_req->execlist_link);
466                                 list_add_tail(&head_req->execlist_link,
467                                         &ring->execlist_retired_req_list);
468                                 return true;
469                         }
470                 }
471         }
472
473         return false;
474 }
475
476 /**
477  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
478  * @ring: Engine Command Streamer to handle.
479  *
480  * Check the unread Context Status Buffers and manage the submission of new
481  * contexts to the ELSP accordingly.
482  */
483 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
484 {
485         struct drm_i915_private *dev_priv = ring->dev->dev_private;
486         u32 status_pointer;
487         u8 read_pointer;
488         u8 write_pointer;
489         u32 status;
490         u32 status_id;
491         u32 submit_contexts = 0;
492
493         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495         read_pointer = ring->next_context_status_buffer;
496         write_pointer = status_pointer & 0x07;
497         if (read_pointer > write_pointer)
498                 write_pointer += 6;
499
500         spin_lock(&ring->execlist_lock);
501
502         while (read_pointer < write_pointer) {
503                 read_pointer++;
504                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505                                 (read_pointer % 6) * 8);
506                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507                                 (read_pointer % 6) * 8 + 4);
508
509                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511                                 if (execlists_check_remove_request(ring, status_id))
512                                         WARN(1, "Lite Restored request removed from queue\n");
513                         } else
514                                 WARN(1, "Preemption without Lite Restore\n");
515                 }
516
517                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
519                         if (execlists_check_remove_request(ring, status_id))
520                                 submit_contexts++;
521                 }
522         }
523
524         if (submit_contexts != 0)
525                 execlists_context_unqueue(ring);
526
527         spin_unlock(&ring->execlist_lock);
528
529         WARN(submit_contexts > 2, "More than two context complete events?\n");
530         ring->next_context_status_buffer = write_pointer % 6;
531
532         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
534 }
535
536 static int execlists_context_queue(struct intel_engine_cs *ring,
537                                    struct intel_context *to,
538                                    u32 tail)
539 {
540         struct intel_ctx_submit_request *req = NULL, *cursor;
541         struct drm_i915_private *dev_priv = ring->dev->dev_private;
542         unsigned long flags;
543         int num_elements = 0;
544
545         req = kzalloc(sizeof(*req), GFP_KERNEL);
546         if (req == NULL)
547                 return -ENOMEM;
548         req->ctx = to;
549         i915_gem_context_reference(req->ctx);
550
551         if (to != ring->default_context)
552                 intel_lr_context_pin(ring, to);
553
554         req->ring = ring;
555         req->tail = tail;
556
557         intel_runtime_pm_get(dev_priv);
558
559         spin_lock_irqsave(&ring->execlist_lock, flags);
560
561         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562                 if (++num_elements > 2)
563                         break;
564
565         if (num_elements > 2) {
566                 struct intel_ctx_submit_request *tail_req;
567
568                 tail_req = list_last_entry(&ring->execlist_queue,
569                                            struct intel_ctx_submit_request,
570                                            execlist_link);
571
572                 if (to == tail_req->ctx) {
573                         WARN(tail_req->elsp_submitted != 0,
574                                 "More than 2 already-submitted reqs queued\n");
575                         list_del(&tail_req->execlist_link);
576                         list_add_tail(&tail_req->execlist_link,
577                                 &ring->execlist_retired_req_list);
578                 }
579         }
580
581         list_add_tail(&req->execlist_link, &ring->execlist_queue);
582         if (num_elements == 0)
583                 execlists_context_unqueue(ring);
584
585         spin_unlock_irqrestore(&ring->execlist_lock, flags);
586
587         return 0;
588 }
589
590 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
591 {
592         struct intel_engine_cs *ring = ringbuf->ring;
593         uint32_t flush_domains;
594         int ret;
595
596         flush_domains = 0;
597         if (ring->gpu_caches_dirty)
598                 flush_domains = I915_GEM_GPU_DOMAINS;
599
600         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
601         if (ret)
602                 return ret;
603
604         ring->gpu_caches_dirty = false;
605         return 0;
606 }
607
608 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
609                                  struct list_head *vmas)
610 {
611         struct intel_engine_cs *ring = ringbuf->ring;
612         struct i915_vma *vma;
613         uint32_t flush_domains = 0;
614         bool flush_chipset = false;
615         int ret;
616
617         list_for_each_entry(vma, vmas, exec_list) {
618                 struct drm_i915_gem_object *obj = vma->obj;
619
620                 ret = i915_gem_object_sync(obj, ring);
621                 if (ret)
622                         return ret;
623
624                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
625                         flush_chipset |= i915_gem_clflush_object(obj, false);
626
627                 flush_domains |= obj->base.write_domain;
628         }
629
630         if (flush_domains & I915_GEM_DOMAIN_GTT)
631                 wmb();
632
633         /* Unconditionally invalidate gpu caches and ensure that we do flush
634          * any residual writes from the previous batch.
635          */
636         return logical_ring_invalidate_all_caches(ringbuf);
637 }
638
639 /**
640  * execlists_submission() - submit a batchbuffer for execution, Execlists style
641  * @dev: DRM device.
642  * @file: DRM file.
643  * @ring: Engine Command Streamer to submit to.
644  * @ctx: Context to employ for this submission.
645  * @args: execbuffer call arguments.
646  * @vmas: list of vmas.
647  * @batch_obj: the batchbuffer to submit.
648  * @exec_start: batchbuffer start virtual address pointer.
649  * @flags: translated execbuffer call flags.
650  *
651  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
652  * away the submission details of the execbuffer ioctl call.
653  *
654  * Return: non-zero if the submission fails.
655  */
656 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
657                                struct intel_engine_cs *ring,
658                                struct intel_context *ctx,
659                                struct drm_i915_gem_execbuffer2 *args,
660                                struct list_head *vmas,
661                                struct drm_i915_gem_object *batch_obj,
662                                u64 exec_start, u32 flags)
663 {
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
666         int instp_mode;
667         u32 instp_mask;
668         int ret;
669
670         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
671         instp_mask = I915_EXEC_CONSTANTS_MASK;
672         switch (instp_mode) {
673         case I915_EXEC_CONSTANTS_REL_GENERAL:
674         case I915_EXEC_CONSTANTS_ABSOLUTE:
675         case I915_EXEC_CONSTANTS_REL_SURFACE:
676                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
677                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
678                         return -EINVAL;
679                 }
680
681                 if (instp_mode != dev_priv->relative_constants_mode) {
682                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
683                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
684                                 return -EINVAL;
685                         }
686
687                         /* The HW changed the meaning on this bit on gen6 */
688                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
689                 }
690                 break;
691         default:
692                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
693                 return -EINVAL;
694         }
695
696         if (args->num_cliprects != 0) {
697                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
698                 return -EINVAL;
699         } else {
700                 if (args->DR4 == 0xffffffff) {
701                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
702                         args->DR4 = 0;
703                 }
704
705                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
706                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
707                         return -EINVAL;
708                 }
709         }
710
711         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
712                 DRM_DEBUG("sol reset is gen7 only\n");
713                 return -EINVAL;
714         }
715
716         ret = execlists_move_to_gpu(ringbuf, vmas);
717         if (ret)
718                 return ret;
719
720         if (ring == &dev_priv->ring[RCS] &&
721             instp_mode != dev_priv->relative_constants_mode) {
722                 ret = intel_logical_ring_begin(ringbuf, 4);
723                 if (ret)
724                         return ret;
725
726                 intel_logical_ring_emit(ringbuf, MI_NOOP);
727                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
728                 intel_logical_ring_emit(ringbuf, INSTPM);
729                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
730                 intel_logical_ring_advance(ringbuf);
731
732                 dev_priv->relative_constants_mode = instp_mode;
733         }
734
735         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
736         if (ret)
737                 return ret;
738
739         i915_gem_execbuffer_move_to_active(vmas, ring);
740         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
741
742         return 0;
743 }
744
745 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
746 {
747         struct intel_ctx_submit_request *req, *tmp;
748         struct drm_i915_private *dev_priv = ring->dev->dev_private;
749         unsigned long flags;
750         struct list_head retired_list;
751
752         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
753         if (list_empty(&ring->execlist_retired_req_list))
754                 return;
755
756         INIT_LIST_HEAD(&retired_list);
757         spin_lock_irqsave(&ring->execlist_lock, flags);
758         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
759         spin_unlock_irqrestore(&ring->execlist_lock, flags);
760
761         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
762                 struct intel_context *ctx = req->ctx;
763                 struct drm_i915_gem_object *ctx_obj =
764                                 ctx->engine[ring->id].state;
765
766                 if (ctx_obj && (ctx != ring->default_context))
767                         intel_lr_context_unpin(ring, ctx);
768                 intel_runtime_pm_put(dev_priv);
769                 i915_gem_context_unreference(req->ctx);
770                 list_del(&req->execlist_link);
771                 kfree(req);
772         }
773 }
774
775 void intel_logical_ring_stop(struct intel_engine_cs *ring)
776 {
777         struct drm_i915_private *dev_priv = ring->dev->dev_private;
778         int ret;
779
780         if (!intel_ring_initialized(ring))
781                 return;
782
783         ret = intel_ring_idle(ring);
784         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
785                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
786                           ring->name, ret);
787
788         /* TODO: Is this correct with Execlists enabled? */
789         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
790         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
791                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
792                 return;
793         }
794         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
795 }
796
797 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
798 {
799         struct intel_engine_cs *ring = ringbuf->ring;
800         int ret;
801
802         if (!ring->gpu_caches_dirty)
803                 return 0;
804
805         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
806         if (ret)
807                 return ret;
808
809         ring->gpu_caches_dirty = false;
810         return 0;
811 }
812
813 /**
814  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
815  * @ringbuf: Logical Ringbuffer to advance.
816  *
817  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
818  * really happens during submission is that the context and current tail will be placed
819  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
820  * point, the tail *inside* the context is updated and the ELSP written to.
821  */
822 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
826
827         intel_logical_ring_advance(ringbuf);
828
829         if (intel_ring_stopped(ring))
830                 return;
831
832         execlists_context_queue(ring, ctx, ringbuf->tail);
833 }
834
835 static int intel_lr_context_pin(struct intel_engine_cs *ring,
836                 struct intel_context *ctx)
837 {
838         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
839         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
840         int ret = 0;
841
842         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
843         if (ctx->engine[ring->id].unpin_count++ == 0) {
844                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
845                                 GEN8_LR_CONTEXT_ALIGN, 0);
846                 if (ret)
847                         goto reset_unpin_count;
848
849                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
850                 if (ret)
851                         goto unpin_ctx_obj;
852         }
853
854         return ret;
855
856 unpin_ctx_obj:
857         i915_gem_object_ggtt_unpin(ctx_obj);
858 reset_unpin_count:
859         ctx->engine[ring->id].unpin_count = 0;
860
861         return ret;
862 }
863
864 void intel_lr_context_unpin(struct intel_engine_cs *ring,
865                 struct intel_context *ctx)
866 {
867         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
868         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
869
870         if (ctx_obj) {
871                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
872                 if (--ctx->engine[ring->id].unpin_count == 0) {
873                         intel_unpin_ringbuffer_obj(ringbuf);
874                         i915_gem_object_ggtt_unpin(ctx_obj);
875                 }
876         }
877 }
878
879 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
880                                     struct intel_context *ctx)
881 {
882         int ret;
883
884         if (ring->outstanding_lazy_seqno)
885                 return 0;
886
887         if (ring->preallocated_lazy_request == NULL) {
888                 struct drm_i915_gem_request *request;
889
890                 request = kmalloc(sizeof(*request), GFP_KERNEL);
891                 if (request == NULL)
892                         return -ENOMEM;
893
894                 if (ctx != ring->default_context) {
895                         ret = intel_lr_context_pin(ring, ctx);
896                         if (ret) {
897                                 kfree(request);
898                                 return ret;
899                         }
900                 }
901
902                 /* Hold a reference to the context this request belongs to
903                  * (we will need it when the time comes to emit/retire the
904                  * request).
905                  */
906                 request->ctx = ctx;
907                 i915_gem_context_reference(request->ctx);
908
909                 ring->preallocated_lazy_request = request;
910         }
911
912         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
913 }
914
915 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
916                                      int bytes)
917 {
918         struct intel_engine_cs *ring = ringbuf->ring;
919         struct drm_i915_gem_request *request;
920         u32 seqno = 0;
921         int ret;
922
923         if (ringbuf->last_retired_head != -1) {
924                 ringbuf->head = ringbuf->last_retired_head;
925                 ringbuf->last_retired_head = -1;
926
927                 ringbuf->space = intel_ring_space(ringbuf);
928                 if (ringbuf->space >= bytes)
929                         return 0;
930         }
931
932         list_for_each_entry(request, &ring->request_list, list) {
933                 /*
934                  * The request queue is per-engine, so can contain requests
935                  * from multiple ringbuffers. Here, we must ignore any that
936                  * aren't from the ringbuffer we're considering.
937                  */
938                 struct intel_context *ctx = request->ctx;
939                 if (ctx->engine[ring->id].ringbuf != ringbuf)
940                         continue;
941
942                 /* Would completion of this request free enough space? */
943                 if (__intel_ring_space(request->tail, ringbuf->tail,
944                                        ringbuf->size) >= bytes) {
945                         seqno = request->seqno;
946                         break;
947                 }
948         }
949
950         if (seqno == 0)
951                 return -ENOSPC;
952
953         ret = i915_wait_seqno(ring, seqno);
954         if (ret)
955                 return ret;
956
957         i915_gem_retire_requests_ring(ring);
958         ringbuf->head = ringbuf->last_retired_head;
959         ringbuf->last_retired_head = -1;
960
961         ringbuf->space = intel_ring_space(ringbuf);
962         return 0;
963 }
964
965 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
966                                        int bytes)
967 {
968         struct intel_engine_cs *ring = ringbuf->ring;
969         struct drm_device *dev = ring->dev;
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         unsigned long end;
972         int ret;
973
974         ret = logical_ring_wait_request(ringbuf, bytes);
975         if (ret != -ENOSPC)
976                 return ret;
977
978         /* Force the context submission in case we have been skipping it */
979         intel_logical_ring_advance_and_submit(ringbuf);
980
981         /* With GEM the hangcheck timer should kick us out of the loop,
982          * leaving it early runs the risk of corrupting GEM state (due
983          * to running on almost untested codepaths). But on resume
984          * timers don't work yet, so prevent a complete hang in that
985          * case by choosing an insanely large timeout. */
986         end = jiffies + 60 * HZ;
987
988         do {
989                 ringbuf->head = I915_READ_HEAD(ring);
990                 ringbuf->space = intel_ring_space(ringbuf);
991                 if (ringbuf->space >= bytes) {
992                         ret = 0;
993                         break;
994                 }
995
996                 msleep(1);
997
998                 if (dev_priv->mm.interruptible && signal_pending(current)) {
999                         ret = -ERESTARTSYS;
1000                         break;
1001                 }
1002
1003                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1004                                            dev_priv->mm.interruptible);
1005                 if (ret)
1006                         break;
1007
1008                 if (time_after(jiffies, end)) {
1009                         ret = -EBUSY;
1010                         break;
1011                 }
1012         } while (1);
1013
1014         return ret;
1015 }
1016
1017 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1018 {
1019         uint32_t __iomem *virt;
1020         int rem = ringbuf->size - ringbuf->tail;
1021
1022         if (ringbuf->space < rem) {
1023                 int ret = logical_ring_wait_for_space(ringbuf, rem);
1024
1025                 if (ret)
1026                         return ret;
1027         }
1028
1029         virt = ringbuf->virtual_start + ringbuf->tail;
1030         rem /= 4;
1031         while (rem--)
1032                 iowrite32(MI_NOOP, virt++);
1033
1034         ringbuf->tail = 0;
1035         ringbuf->space = intel_ring_space(ringbuf);
1036
1037         return 0;
1038 }
1039
1040 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1041 {
1042         int ret;
1043
1044         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1045                 ret = logical_ring_wrap_buffer(ringbuf);
1046                 if (unlikely(ret))
1047                         return ret;
1048         }
1049
1050         if (unlikely(ringbuf->space < bytes)) {
1051                 ret = logical_ring_wait_for_space(ringbuf, bytes);
1052                 if (unlikely(ret))
1053                         return ret;
1054         }
1055
1056         return 0;
1057 }
1058
1059 /**
1060  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1061  *
1062  * @ringbuf: Logical ringbuffer.
1063  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1064  *
1065  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1066  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1067  * and also preallocates a request (every workload submission is still mediated through
1068  * requests, same as it did with legacy ringbuffer submission).
1069  *
1070  * Return: non-zero if the ringbuffer is not ready to be written to.
1071  */
1072 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1073 {
1074         struct intel_engine_cs *ring = ringbuf->ring;
1075         struct drm_device *dev = ring->dev;
1076         struct drm_i915_private *dev_priv = dev->dev_private;
1077         int ret;
1078
1079         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1080                                    dev_priv->mm.interruptible);
1081         if (ret)
1082                 return ret;
1083
1084         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1085         if (ret)
1086                 return ret;
1087
1088         /* Preallocate the olr before touching the ring */
1089         ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
1090         if (ret)
1091                 return ret;
1092
1093         ringbuf->space -= num_dwords * sizeof(uint32_t);
1094         return 0;
1095 }
1096
1097 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1098                                                struct intel_context *ctx)
1099 {
1100         int ret, i;
1101         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1102         struct drm_device *dev = ring->dev;
1103         struct drm_i915_private *dev_priv = dev->dev_private;
1104         struct i915_workarounds *w = &dev_priv->workarounds;
1105
1106         if (WARN_ON(w->count == 0))
1107                 return 0;
1108
1109         ring->gpu_caches_dirty = true;
1110         ret = logical_ring_flush_all_caches(ringbuf);
1111         if (ret)
1112                 return ret;
1113
1114         ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1115         if (ret)
1116                 return ret;
1117
1118         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1119         for (i = 0; i < w->count; i++) {
1120                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1121                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1122         }
1123         intel_logical_ring_emit(ringbuf, MI_NOOP);
1124
1125         intel_logical_ring_advance(ringbuf);
1126
1127         ring->gpu_caches_dirty = true;
1128         ret = logical_ring_flush_all_caches(ringbuf);
1129         if (ret)
1130                 return ret;
1131
1132         return 0;
1133 }
1134
1135 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1136 {
1137         struct drm_device *dev = ring->dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139
1140         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1141         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1142
1143         I915_WRITE(RING_MODE_GEN7(ring),
1144                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1145                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1146         POSTING_READ(RING_MODE_GEN7(ring));
1147         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1148
1149         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1150
1151         return 0;
1152 }
1153
1154 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1155 {
1156         struct drm_device *dev = ring->dev;
1157         struct drm_i915_private *dev_priv = dev->dev_private;
1158         int ret;
1159
1160         ret = gen8_init_common_ring(ring);
1161         if (ret)
1162                 return ret;
1163
1164         /* We need to disable the AsyncFlip performance optimisations in order
1165          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1166          * programmed to '1' on all products.
1167          *
1168          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1169          */
1170         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1171
1172         ret = intel_init_pipe_control(ring);
1173         if (ret)
1174                 return ret;
1175
1176         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1177
1178         return init_workarounds_ring(ring);
1179 }
1180
1181 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1182                               u64 offset, unsigned flags)
1183 {
1184         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1185         int ret;
1186
1187         ret = intel_logical_ring_begin(ringbuf, 4);
1188         if (ret)
1189                 return ret;
1190
1191         /* FIXME(BDW): Address space and security selectors. */
1192         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1193         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1194         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1195         intel_logical_ring_emit(ringbuf, MI_NOOP);
1196         intel_logical_ring_advance(ringbuf);
1197
1198         return 0;
1199 }
1200
1201 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1202 {
1203         struct drm_device *dev = ring->dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         unsigned long flags;
1206
1207         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1208                 return false;
1209
1210         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1211         if (ring->irq_refcount++ == 0) {
1212                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1213                 POSTING_READ(RING_IMR(ring->mmio_base));
1214         }
1215         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1216
1217         return true;
1218 }
1219
1220 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1221 {
1222         struct drm_device *dev = ring->dev;
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         unsigned long flags;
1225
1226         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1227         if (--ring->irq_refcount == 0) {
1228                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1229                 POSTING_READ(RING_IMR(ring->mmio_base));
1230         }
1231         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1232 }
1233
1234 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1235                            u32 invalidate_domains,
1236                            u32 unused)
1237 {
1238         struct intel_engine_cs *ring = ringbuf->ring;
1239         struct drm_device *dev = ring->dev;
1240         struct drm_i915_private *dev_priv = dev->dev_private;
1241         uint32_t cmd;
1242         int ret;
1243
1244         ret = intel_logical_ring_begin(ringbuf, 4);
1245         if (ret)
1246                 return ret;
1247
1248         cmd = MI_FLUSH_DW + 1;
1249
1250         if (ring == &dev_priv->ring[VCS]) {
1251                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1252                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1253                                 MI_FLUSH_DW_STORE_INDEX |
1254                                 MI_FLUSH_DW_OP_STOREDW;
1255         } else {
1256                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1257                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1258                                 MI_FLUSH_DW_OP_STOREDW;
1259         }
1260
1261         intel_logical_ring_emit(ringbuf, cmd);
1262         intel_logical_ring_emit(ringbuf,
1263                                 I915_GEM_HWS_SCRATCH_ADDR |
1264                                 MI_FLUSH_DW_USE_GTT);
1265         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1266         intel_logical_ring_emit(ringbuf, 0); /* value */
1267         intel_logical_ring_advance(ringbuf);
1268
1269         return 0;
1270 }
1271
1272 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1273                                   u32 invalidate_domains,
1274                                   u32 flush_domains)
1275 {
1276         struct intel_engine_cs *ring = ringbuf->ring;
1277         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1278         u32 flags = 0;
1279         int ret;
1280
1281         flags |= PIPE_CONTROL_CS_STALL;
1282
1283         if (flush_domains) {
1284                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1285                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1286         }
1287
1288         if (invalidate_domains) {
1289                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1290                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1291                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1292                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1293                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1294                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1295                 flags |= PIPE_CONTROL_QW_WRITE;
1296                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1297         }
1298
1299         ret = intel_logical_ring_begin(ringbuf, 6);
1300         if (ret)
1301                 return ret;
1302
1303         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1304         intel_logical_ring_emit(ringbuf, flags);
1305         intel_logical_ring_emit(ringbuf, scratch_addr);
1306         intel_logical_ring_emit(ringbuf, 0);
1307         intel_logical_ring_emit(ringbuf, 0);
1308         intel_logical_ring_emit(ringbuf, 0);
1309         intel_logical_ring_advance(ringbuf);
1310
1311         return 0;
1312 }
1313
1314 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1315 {
1316         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1317 }
1318
1319 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1320 {
1321         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1322 }
1323
1324 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1325 {
1326         struct intel_engine_cs *ring = ringbuf->ring;
1327         u32 cmd;
1328         int ret;
1329
1330         ret = intel_logical_ring_begin(ringbuf, 6);
1331         if (ret)
1332                 return ret;
1333
1334         cmd = MI_STORE_DWORD_IMM_GEN8;
1335         cmd |= MI_GLOBAL_GTT;
1336
1337         intel_logical_ring_emit(ringbuf, cmd);
1338         intel_logical_ring_emit(ringbuf,
1339                                 (ring->status_page.gfx_addr +
1340                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1341         intel_logical_ring_emit(ringbuf, 0);
1342         intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1343         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1344         intel_logical_ring_emit(ringbuf, MI_NOOP);
1345         intel_logical_ring_advance_and_submit(ringbuf);
1346
1347         return 0;
1348 }
1349
1350 /**
1351  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1352  *
1353  * @ring: Engine Command Streamer.
1354  *
1355  */
1356 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1357 {
1358         struct drm_i915_private *dev_priv;
1359
1360         if (!intel_ring_initialized(ring))
1361                 return;
1362
1363         dev_priv = ring->dev->dev_private;
1364
1365         intel_logical_ring_stop(ring);
1366         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1367         ring->preallocated_lazy_request = NULL;
1368         ring->outstanding_lazy_seqno = 0;
1369
1370         if (ring->cleanup)
1371                 ring->cleanup(ring);
1372
1373         i915_cmd_parser_fini_ring(ring);
1374
1375         if (ring->status_page.obj) {
1376                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1377                 ring->status_page.obj = NULL;
1378         }
1379 }
1380
1381 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1382 {
1383         int ret;
1384
1385         /* Intentionally left blank. */
1386         ring->buffer = NULL;
1387
1388         ring->dev = dev;
1389         INIT_LIST_HEAD(&ring->active_list);
1390         INIT_LIST_HEAD(&ring->request_list);
1391         init_waitqueue_head(&ring->irq_queue);
1392
1393         INIT_LIST_HEAD(&ring->execlist_queue);
1394         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1395         spin_lock_init(&ring->execlist_lock);
1396         ring->next_context_status_buffer = 0;
1397
1398         ret = i915_cmd_parser_init_ring(ring);
1399         if (ret)
1400                 return ret;
1401
1402         if (ring->init) {
1403                 ret = ring->init(ring);
1404                 if (ret)
1405                         return ret;
1406         }
1407
1408         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1409
1410         return ret;
1411 }
1412
1413 static int logical_render_ring_init(struct drm_device *dev)
1414 {
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1417
1418         ring->name = "render ring";
1419         ring->id = RCS;
1420         ring->mmio_base = RENDER_RING_BASE;
1421         ring->irq_enable_mask =
1422                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1423         ring->irq_keep_mask =
1424                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1425         if (HAS_L3_DPF(dev))
1426                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1427
1428         ring->init = gen8_init_render_ring;
1429         ring->init_context = intel_logical_ring_workarounds_emit;
1430         ring->cleanup = intel_fini_pipe_control;
1431         ring->get_seqno = gen8_get_seqno;
1432         ring->set_seqno = gen8_set_seqno;
1433         ring->emit_request = gen8_emit_request;
1434         ring->emit_flush = gen8_emit_flush_render;
1435         ring->irq_get = gen8_logical_ring_get_irq;
1436         ring->irq_put = gen8_logical_ring_put_irq;
1437         ring->emit_bb_start = gen8_emit_bb_start;
1438
1439         return logical_ring_init(dev, ring);
1440 }
1441
1442 static int logical_bsd_ring_init(struct drm_device *dev)
1443 {
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1446
1447         ring->name = "bsd ring";
1448         ring->id = VCS;
1449         ring->mmio_base = GEN6_BSD_RING_BASE;
1450         ring->irq_enable_mask =
1451                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1452         ring->irq_keep_mask =
1453                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1454
1455         ring->init = gen8_init_common_ring;
1456         ring->get_seqno = gen8_get_seqno;
1457         ring->set_seqno = gen8_set_seqno;
1458         ring->emit_request = gen8_emit_request;
1459         ring->emit_flush = gen8_emit_flush;
1460         ring->irq_get = gen8_logical_ring_get_irq;
1461         ring->irq_put = gen8_logical_ring_put_irq;
1462         ring->emit_bb_start = gen8_emit_bb_start;
1463
1464         return logical_ring_init(dev, ring);
1465 }
1466
1467 static int logical_bsd2_ring_init(struct drm_device *dev)
1468 {
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1471
1472         ring->name = "bds2 ring";
1473         ring->id = VCS2;
1474         ring->mmio_base = GEN8_BSD2_RING_BASE;
1475         ring->irq_enable_mask =
1476                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1477         ring->irq_keep_mask =
1478                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1479
1480         ring->init = gen8_init_common_ring;
1481         ring->get_seqno = gen8_get_seqno;
1482         ring->set_seqno = gen8_set_seqno;
1483         ring->emit_request = gen8_emit_request;
1484         ring->emit_flush = gen8_emit_flush;
1485         ring->irq_get = gen8_logical_ring_get_irq;
1486         ring->irq_put = gen8_logical_ring_put_irq;
1487         ring->emit_bb_start = gen8_emit_bb_start;
1488
1489         return logical_ring_init(dev, ring);
1490 }
1491
1492 static int logical_blt_ring_init(struct drm_device *dev)
1493 {
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1496
1497         ring->name = "blitter ring";
1498         ring->id = BCS;
1499         ring->mmio_base = BLT_RING_BASE;
1500         ring->irq_enable_mask =
1501                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1502         ring->irq_keep_mask =
1503                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1504
1505         ring->init = gen8_init_common_ring;
1506         ring->get_seqno = gen8_get_seqno;
1507         ring->set_seqno = gen8_set_seqno;
1508         ring->emit_request = gen8_emit_request;
1509         ring->emit_flush = gen8_emit_flush;
1510         ring->irq_get = gen8_logical_ring_get_irq;
1511         ring->irq_put = gen8_logical_ring_put_irq;
1512         ring->emit_bb_start = gen8_emit_bb_start;
1513
1514         return logical_ring_init(dev, ring);
1515 }
1516
1517 static int logical_vebox_ring_init(struct drm_device *dev)
1518 {
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1521
1522         ring->name = "video enhancement ring";
1523         ring->id = VECS;
1524         ring->mmio_base = VEBOX_RING_BASE;
1525         ring->irq_enable_mask =
1526                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1527         ring->irq_keep_mask =
1528                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1529
1530         ring->init = gen8_init_common_ring;
1531         ring->get_seqno = gen8_get_seqno;
1532         ring->set_seqno = gen8_set_seqno;
1533         ring->emit_request = gen8_emit_request;
1534         ring->emit_flush = gen8_emit_flush;
1535         ring->irq_get = gen8_logical_ring_get_irq;
1536         ring->irq_put = gen8_logical_ring_put_irq;
1537         ring->emit_bb_start = gen8_emit_bb_start;
1538
1539         return logical_ring_init(dev, ring);
1540 }
1541
1542 /**
1543  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1544  * @dev: DRM device.
1545  *
1546  * This function inits the engines for an Execlists submission style (the equivalent in the
1547  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1548  * those engines that are present in the hardware.
1549  *
1550  * Return: non-zero if the initialization failed.
1551  */
1552 int intel_logical_rings_init(struct drm_device *dev)
1553 {
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         int ret;
1556
1557         ret = logical_render_ring_init(dev);
1558         if (ret)
1559                 return ret;
1560
1561         if (HAS_BSD(dev)) {
1562                 ret = logical_bsd_ring_init(dev);
1563                 if (ret)
1564                         goto cleanup_render_ring;
1565         }
1566
1567         if (HAS_BLT(dev)) {
1568                 ret = logical_blt_ring_init(dev);
1569                 if (ret)
1570                         goto cleanup_bsd_ring;
1571         }
1572
1573         if (HAS_VEBOX(dev)) {
1574                 ret = logical_vebox_ring_init(dev);
1575                 if (ret)
1576                         goto cleanup_blt_ring;
1577         }
1578
1579         if (HAS_BSD2(dev)) {
1580                 ret = logical_bsd2_ring_init(dev);
1581                 if (ret)
1582                         goto cleanup_vebox_ring;
1583         }
1584
1585         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1586         if (ret)
1587                 goto cleanup_bsd2_ring;
1588
1589         return 0;
1590
1591 cleanup_bsd2_ring:
1592         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1593 cleanup_vebox_ring:
1594         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1595 cleanup_blt_ring:
1596         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1597 cleanup_bsd_ring:
1598         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1599 cleanup_render_ring:
1600         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1601
1602         return ret;
1603 }
1604
1605 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1606                                        struct intel_context *ctx)
1607 {
1608         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1609         struct render_state so;
1610         struct drm_i915_file_private *file_priv = ctx->file_priv;
1611         struct drm_file *file = file_priv ? file_priv->file : NULL;
1612         int ret;
1613
1614         ret = i915_gem_render_state_prepare(ring, &so);
1615         if (ret)
1616                 return ret;
1617
1618         if (so.rodata == NULL)
1619                 return 0;
1620
1621         ret = ring->emit_bb_start(ringbuf,
1622                         so.ggtt_offset,
1623                         I915_DISPATCH_SECURE);
1624         if (ret)
1625                 goto out;
1626
1627         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1628
1629         ret = __i915_add_request(ring, file, so.obj, NULL);
1630         /* intel_logical_ring_add_request moves object to inactive if it
1631          * fails */
1632 out:
1633         i915_gem_render_state_fini(&so);
1634         return ret;
1635 }
1636
1637 static int
1638 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1639                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1640 {
1641         struct drm_device *dev = ring->dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1644         struct page *page;
1645         uint32_t *reg_state;
1646         int ret;
1647
1648         if (!ppgtt)
1649                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1650
1651         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1652         if (ret) {
1653                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1654                 return ret;
1655         }
1656
1657         ret = i915_gem_object_get_pages(ctx_obj);
1658         if (ret) {
1659                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1660                 return ret;
1661         }
1662
1663         i915_gem_object_pin_pages(ctx_obj);
1664
1665         /* The second page of the context object contains some fields which must
1666          * be set up prior to the first execution. */
1667         page = i915_gem_object_get_page(ctx_obj, 1);
1668         reg_state = kmap_atomic(page);
1669
1670         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1671          * commands followed by (reg, value) pairs. The values we are setting here are
1672          * only for the first context restore: on a subsequent save, the GPU will
1673          * recreate this batchbuffer with new values (including all the missing
1674          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1675         if (ring->id == RCS)
1676                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1677         else
1678                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1679         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1680         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1681         reg_state[CTX_CONTEXT_CONTROL+1] =
1682                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1683         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1684         reg_state[CTX_RING_HEAD+1] = 0;
1685         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1686         reg_state[CTX_RING_TAIL+1] = 0;
1687         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1688         /* Ring buffer start address is not known until the buffer is pinned.
1689          * It is written to the context image in execlists_update_context()
1690          */
1691         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1692         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1693                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1694         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1695         reg_state[CTX_BB_HEAD_U+1] = 0;
1696         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1697         reg_state[CTX_BB_HEAD_L+1] = 0;
1698         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1699         reg_state[CTX_BB_STATE+1] = (1<<5);
1700         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1701         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1702         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1703         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1704         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1705         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1706         if (ring->id == RCS) {
1707                 /* TODO: according to BSpec, the register state context
1708                  * for CHV does not have these. OTOH, these registers do
1709                  * exist in CHV. I'm waiting for a clarification */
1710                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1711                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1712                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1713                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1714                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1715                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1716         }
1717         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1718         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1719         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1720         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1721         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1722         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1723         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1724         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1725         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1726         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1727         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1728         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1729         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1730         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1731         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1732         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1733         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1734         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1735         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1736         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1737         if (ring->id == RCS) {
1738                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1739                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1740                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1741         }
1742
1743         kunmap_atomic(reg_state);
1744
1745         ctx_obj->dirty = 1;
1746         set_page_dirty(page);
1747         i915_gem_object_unpin_pages(ctx_obj);
1748
1749         return 0;
1750 }
1751
1752 /**
1753  * intel_lr_context_free() - free the LRC specific bits of a context
1754  * @ctx: the LR context to free.
1755  *
1756  * The real context freeing is done in i915_gem_context_free: this only
1757  * takes care of the bits that are LRC related: the per-engine backing
1758  * objects and the logical ringbuffer.
1759  */
1760 void intel_lr_context_free(struct intel_context *ctx)
1761 {
1762         int i;
1763
1764         for (i = 0; i < I915_NUM_RINGS; i++) {
1765                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1766
1767                 if (ctx_obj) {
1768                         struct intel_ringbuffer *ringbuf =
1769                                         ctx->engine[i].ringbuf;
1770                         struct intel_engine_cs *ring = ringbuf->ring;
1771
1772                         if (ctx == ring->default_context) {
1773                                 intel_unpin_ringbuffer_obj(ringbuf);
1774                                 i915_gem_object_ggtt_unpin(ctx_obj);
1775                         }
1776                         intel_destroy_ringbuffer_obj(ringbuf);
1777                         kfree(ringbuf);
1778                         drm_gem_object_unreference(&ctx_obj->base);
1779                 }
1780         }
1781 }
1782
1783 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1784 {
1785         int ret = 0;
1786
1787         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1788
1789         switch (ring->id) {
1790         case RCS:
1791                 if (INTEL_INFO(ring->dev)->gen >= 9)
1792                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1793                 else
1794                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1795                 break;
1796         case VCS:
1797         case BCS:
1798         case VECS:
1799         case VCS2:
1800                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1801                 break;
1802         }
1803
1804         return ret;
1805 }
1806
1807 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1808                 struct drm_i915_gem_object *default_ctx_obj)
1809 {
1810         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1811
1812         /* The status page is offset 0 from the default context object
1813          * in LRC mode. */
1814         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1815         ring->status_page.page_addr =
1816                         kmap(sg_page(default_ctx_obj->pages->sgl));
1817         ring->status_page.obj = default_ctx_obj;
1818
1819         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1820                         (u32)ring->status_page.gfx_addr);
1821         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1822 }
1823
1824 /**
1825  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1826  * @ctx: LR context to create.
1827  * @ring: engine to be used with the context.
1828  *
1829  * This function can be called more than once, with different engines, if we plan
1830  * to use the context with them. The context backing objects and the ringbuffers
1831  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1832  * the creation is a deferred call: it's better to make sure first that we need to use
1833  * a given ring with the context.
1834  *
1835  * Return: non-zero on error.
1836  */
1837 int intel_lr_context_deferred_create(struct intel_context *ctx,
1838                                      struct intel_engine_cs *ring)
1839 {
1840         const bool is_global_default_ctx = (ctx == ring->default_context);
1841         struct drm_device *dev = ring->dev;
1842         struct drm_i915_gem_object *ctx_obj;
1843         uint32_t context_size;
1844         struct intel_ringbuffer *ringbuf;
1845         int ret;
1846
1847         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1848         if (ctx->engine[ring->id].state)
1849                 return 0;
1850
1851         context_size = round_up(get_lr_context_size(ring), 4096);
1852
1853         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1854         if (IS_ERR(ctx_obj)) {
1855                 ret = PTR_ERR(ctx_obj);
1856                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1857                 return ret;
1858         }
1859
1860         if (is_global_default_ctx) {
1861                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1862                 if (ret) {
1863                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1864                                         ret);
1865                         drm_gem_object_unreference(&ctx_obj->base);
1866                         return ret;
1867                 }
1868         }
1869
1870         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1871         if (!ringbuf) {
1872                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1873                                 ring->name);
1874                 ret = -ENOMEM;
1875                 goto error_unpin_ctx;
1876         }
1877
1878         ringbuf->ring = ring;
1879         ringbuf->FIXME_lrc_ctx = ctx;
1880
1881         ringbuf->size = 32 * PAGE_SIZE;
1882         ringbuf->effective_size = ringbuf->size;
1883         ringbuf->head = 0;
1884         ringbuf->tail = 0;
1885         ringbuf->space = ringbuf->size;
1886         ringbuf->last_retired_head = -1;
1887
1888         if (ringbuf->obj == NULL) {
1889                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1890                 if (ret) {
1891                         DRM_DEBUG_DRIVER(
1892                                 "Failed to allocate ringbuffer obj %s: %d\n",
1893                                 ring->name, ret);
1894                         goto error_free_rbuf;
1895                 }
1896
1897                 if (is_global_default_ctx) {
1898                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1899                         if (ret) {
1900                                 DRM_ERROR(
1901                                         "Failed to pin and map ringbuffer %s: %d\n",
1902                                         ring->name, ret);
1903                                 goto error_destroy_rbuf;
1904                         }
1905                 }
1906
1907         }
1908
1909         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1910         if (ret) {
1911                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1912                 goto error;
1913         }
1914
1915         ctx->engine[ring->id].ringbuf = ringbuf;
1916         ctx->engine[ring->id].state = ctx_obj;
1917
1918         if (ctx == ring->default_context)
1919                 lrc_setup_hardware_status_page(ring, ctx_obj);
1920
1921         if (ring->id == RCS && !ctx->rcs_initialized) {
1922                 if (ring->init_context) {
1923                         ret = ring->init_context(ring, ctx);
1924                         if (ret)
1925                                 DRM_ERROR("ring init context: %d\n", ret);
1926                 }
1927
1928                 ret = intel_lr_context_render_state_init(ring, ctx);
1929                 if (ret) {
1930                         DRM_ERROR("Init render state failed: %d\n", ret);
1931                         ctx->engine[ring->id].ringbuf = NULL;
1932                         ctx->engine[ring->id].state = NULL;
1933                         goto error;
1934                 }
1935                 ctx->rcs_initialized = true;
1936         }
1937
1938         return 0;
1939
1940 error:
1941         if (is_global_default_ctx)
1942                 intel_unpin_ringbuffer_obj(ringbuf);
1943 error_destroy_rbuf:
1944         intel_destroy_ringbuffer_obj(ringbuf);
1945 error_free_rbuf:
1946         kfree(ringbuf);
1947 error_unpin_ctx:
1948         if (is_global_default_ctx)
1949                 i915_gem_object_ggtt_unpin(ctx_obj);
1950         drm_gem_object_unreference(&ctx_obj->base);
1951         return ret;
1952 }