]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Extend LRC pinning to cover GPU context writeback
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230                 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 /**
267  * intel_execlists_ctx_id() - get the Execlists Context ID
268  * @ctx_obj: Logical Ring Context backing object.
269  *
270  * Do not confuse with ctx->id! Unfortunately we have a name overload
271  * here: the old context ID we pass to userspace as a handler so that
272  * they can refer to a context, and the new context ID we pass to the
273  * ELSP so that the GPU can inform us of the context status via
274  * interrupts.
275  *
276  * Return: 20-bits globally unique context ID.
277  */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281                         LRC_PPHWSP_PN * PAGE_SIZE;
282
283         /* LRCA is required to be 4K aligned so the more significant 20 bits
284          * are globally unique */
285         return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290         struct drm_device *dev = ring->dev;
291
292         return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293                 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294                (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298                                      struct intel_engine_cs *ring)
299 {
300         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301         uint64_t desc;
302         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303                         LRC_PPHWSP_PN * PAGE_SIZE;
304
305         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307         desc = GEN8_CTX_VALID;
308         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309         if (IS_GEN8(ctx_obj->base.dev))
310                 desc |= GEN8_CTX_L3LLC_COHERENT;
311         desc |= GEN8_CTX_PRIVILEGE;
312         desc |= lrca;
313         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315         /* TODO: WaDisableLiteRestore when we start using semaphore
316          * signalling between Command Streamers */
317         /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321         if (disable_lite_restore_wa(ring))
322                 desc |= GEN8_CTX_FORCE_RESTORE;
323
324         return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328                                  struct drm_i915_gem_request *rq1)
329 {
330
331         struct intel_engine_cs *ring = rq0->ring;
332         struct drm_device *dev = ring->dev;
333         struct drm_i915_private *dev_priv = dev->dev_private;
334         uint64_t desc[2];
335
336         if (rq1) {
337                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338                 rq1->elsp_submitted++;
339         } else {
340                 desc[1] = 0;
341         }
342
343         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344         rq0->elsp_submitted++;
345
346         /* You must always write both descriptors in the order below. */
347         spin_lock(&dev_priv->uncore.lock);
348         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353         /* The context is automatically loaded after the following */
354         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356         /* ELSP is a wo register, use another nearby reg for posting */
357         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359         spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364         struct intel_engine_cs *ring = rq->ring;
365         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368         struct page *page;
369         uint32_t *reg_state;
370
371         BUG_ON(!ctx_obj);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
376         reg_state = kmap_atomic(page);
377
378         reg_state[CTX_RING_TAIL+1] = rq->tail;
379         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382                 /* True 32b PPGTT with dynamic page allocation: update PDP
383                  * registers and point the unallocated PDPs to scratch page.
384                  * PML4 is allocated during ppgtt init, so this is not needed
385                  * in 48-bit mode.
386                  */
387                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391         }
392
393         kunmap_atomic(reg_state);
394
395         return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399                                       struct drm_i915_gem_request *rq1)
400 {
401         execlists_update_context(rq0);
402
403         if (rq1)
404                 execlists_update_context(rq1);
405
406         execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414         assert_spin_locked(&ring->execlist_lock);
415
416         /*
417          * If irqs are not active generate a warning as batches that finish
418          * without the irqs may get lost and a GPU Hang may occur.
419          */
420         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422         if (list_empty(&ring->execlist_queue))
423                 return;
424
425         /* Try to read in pairs */
426         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427                                  execlist_link) {
428                 if (!req0) {
429                         req0 = cursor;
430                 } else if (req0->ctx == cursor->ctx) {
431                         /* Same ctx: ignore first request, as second request
432                          * will update tail past first request's workload */
433                         cursor->elsp_submitted = req0->elsp_submitted;
434                         list_del(&req0->execlist_link);
435                         list_add_tail(&req0->execlist_link,
436                                 &ring->execlist_retired_req_list);
437                         req0 = cursor;
438                 } else {
439                         req1 = cursor;
440                         break;
441                 }
442         }
443
444         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445                 /*
446                  * WaIdleLiteRestore: make sure we never cause a lite
447                  * restore with HEAD==TAIL
448                  */
449                 if (req0->elsp_submitted) {
450                         /*
451                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452                          * as we resubmit the request. See gen8_emit_request()
453                          * for where we prepare the padding after the end of the
454                          * request.
455                          */
456                         struct intel_ringbuffer *ringbuf;
457
458                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
459                         req0->tail += 8;
460                         req0->tail &= ringbuf->size - 1;
461                 }
462         }
463
464         WARN_ON(req1 && req1->elsp_submitted);
465
466         execlists_submit_requests(req0, req1);
467 }
468
469 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470                                            u32 request_id)
471 {
472         struct drm_i915_gem_request *head_req;
473
474         assert_spin_locked(&ring->execlist_lock);
475
476         head_req = list_first_entry_or_null(&ring->execlist_queue,
477                                             struct drm_i915_gem_request,
478                                             execlist_link);
479
480         if (head_req != NULL) {
481                 struct drm_i915_gem_object *ctx_obj =
482                                 head_req->ctx->engine[ring->id].state;
483                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484                         WARN(head_req->elsp_submitted == 0,
485                              "Never submitted head request\n");
486
487                         if (--head_req->elsp_submitted <= 0) {
488                                 list_del(&head_req->execlist_link);
489                                 list_add_tail(&head_req->execlist_link,
490                                         &ring->execlist_retired_req_list);
491                                 return true;
492                         }
493                 }
494         }
495
496         return false;
497 }
498
499 /**
500  * intel_lrc_irq_handler() - handle Context Switch interrupts
501  * @ring: Engine Command Streamer to handle.
502  *
503  * Check the unread Context Status Buffers and manage the submission of new
504  * contexts to the ELSP accordingly.
505  */
506 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 {
508         struct drm_i915_private *dev_priv = ring->dev->dev_private;
509         u32 status_pointer;
510         u8 read_pointer;
511         u8 write_pointer;
512         u32 status = 0;
513         u32 status_id;
514         u32 submit_contexts = 0;
515
516         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518         read_pointer = ring->next_context_status_buffer;
519         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
520         if (read_pointer > write_pointer)
521                 write_pointer += GEN8_CSB_ENTRIES;
522
523         spin_lock(&ring->execlist_lock);
524
525         while (read_pointer < write_pointer) {
526                 read_pointer++;
527                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529
530                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531                         continue;
532
533                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535                                 if (execlists_check_remove_request(ring, status_id))
536                                         WARN(1, "Lite Restored request removed from queue\n");
537                         } else
538                                 WARN(1, "Preemption without Lite Restore\n");
539                 }
540
541                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543                         if (execlists_check_remove_request(ring, status_id))
544                                 submit_contexts++;
545                 }
546         }
547
548         if (disable_lite_restore_wa(ring)) {
549                 /* Prevent a ctx to preempt itself */
550                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551                     (submit_contexts != 0))
552                         execlists_context_unqueue(ring);
553         } else if (submit_contexts != 0) {
554                 execlists_context_unqueue(ring);
555         }
556
557         spin_unlock(&ring->execlist_lock);
558
559         WARN(submit_contexts > 2, "More than two context complete events?\n");
560         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561
562         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
563                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
564                                  ((u32)ring->next_context_status_buffer &
565                                   GEN8_CSB_PTR_MASK) << 8));
566 }
567
568 static int execlists_context_queue(struct drm_i915_gem_request *request)
569 {
570         struct intel_engine_cs *ring = request->ring;
571         struct drm_i915_gem_request *cursor;
572         int num_elements = 0;
573
574         i915_gem_request_reference(request);
575
576         spin_lock_irq(&ring->execlist_lock);
577
578         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579                 if (++num_elements > 2)
580                         break;
581
582         if (num_elements > 2) {
583                 struct drm_i915_gem_request *tail_req;
584
585                 tail_req = list_last_entry(&ring->execlist_queue,
586                                            struct drm_i915_gem_request,
587                                            execlist_link);
588
589                 if (request->ctx == tail_req->ctx) {
590                         WARN(tail_req->elsp_submitted != 0,
591                                 "More than 2 already-submitted reqs queued\n");
592                         list_del(&tail_req->execlist_link);
593                         list_add_tail(&tail_req->execlist_link,
594                                 &ring->execlist_retired_req_list);
595                 }
596         }
597
598         list_add_tail(&request->execlist_link, &ring->execlist_queue);
599         if (num_elements == 0)
600                 execlists_context_unqueue(ring);
601
602         spin_unlock_irq(&ring->execlist_lock);
603
604         return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
608 {
609         struct intel_engine_cs *ring = req->ring;
610         uint32_t flush_domains;
611         int ret;
612
613         flush_domains = 0;
614         if (ring->gpu_caches_dirty)
615                 flush_domains = I915_GEM_GPU_DOMAINS;
616
617         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
618         if (ret)
619                 return ret;
620
621         ring->gpu_caches_dirty = false;
622         return 0;
623 }
624
625 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
626                                  struct list_head *vmas)
627 {
628         const unsigned other_rings = ~intel_ring_flag(req->ring);
629         struct i915_vma *vma;
630         uint32_t flush_domains = 0;
631         bool flush_chipset = false;
632         int ret;
633
634         list_for_each_entry(vma, vmas, exec_list) {
635                 struct drm_i915_gem_object *obj = vma->obj;
636
637                 if (obj->active & other_rings) {
638                         ret = i915_gem_object_sync(obj, req->ring, &req);
639                         if (ret)
640                                 return ret;
641                 }
642
643                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
644                         flush_chipset |= i915_gem_clflush_object(obj, false);
645
646                 flush_domains |= obj->base.write_domain;
647         }
648
649         if (flush_domains & I915_GEM_DOMAIN_GTT)
650                 wmb();
651
652         /* Unconditionally invalidate gpu caches and ensure that we do flush
653          * any residual writes from the previous batch.
654          */
655         return logical_ring_invalidate_all_caches(req);
656 }
657
658 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
659 {
660         int ret;
661
662         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
663
664         if (request->ctx != request->ring->default_context) {
665                 ret = intel_lr_context_pin(request);
666                 if (ret)
667                         return ret;
668         }
669
670         return 0;
671 }
672
673 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
674                                        int bytes)
675 {
676         struct intel_ringbuffer *ringbuf = req->ringbuf;
677         struct intel_engine_cs *ring = req->ring;
678         struct drm_i915_gem_request *target;
679         unsigned space;
680         int ret;
681
682         if (intel_ring_space(ringbuf) >= bytes)
683                 return 0;
684
685         /* The whole point of reserving space is to not wait! */
686         WARN_ON(ringbuf->reserved_in_use);
687
688         list_for_each_entry(target, &ring->request_list, list) {
689                 /*
690                  * The request queue is per-engine, so can contain requests
691                  * from multiple ringbuffers. Here, we must ignore any that
692                  * aren't from the ringbuffer we're considering.
693                  */
694                 if (target->ringbuf != ringbuf)
695                         continue;
696
697                 /* Would completion of this request free enough space? */
698                 space = __intel_ring_space(target->postfix, ringbuf->tail,
699                                            ringbuf->size);
700                 if (space >= bytes)
701                         break;
702         }
703
704         if (WARN_ON(&target->list == &ring->request_list))
705                 return -ENOSPC;
706
707         ret = i915_wait_request(target);
708         if (ret)
709                 return ret;
710
711         ringbuf->space = space;
712         return 0;
713 }
714
715 /*
716  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
717  * @request: Request to advance the logical ringbuffer of.
718  *
719  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
720  * really happens during submission is that the context and current tail will be placed
721  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
722  * point, the tail *inside* the context is updated and the ELSP written to.
723  */
724 static void
725 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
726 {
727         struct intel_engine_cs *ring = request->ring;
728         struct drm_i915_private *dev_priv = request->i915;
729
730         intel_logical_ring_advance(request->ringbuf);
731
732         request->tail = request->ringbuf->tail;
733
734         if (intel_ring_stopped(ring))
735                 return;
736
737         if (request->ctx != ring->default_context) {
738                 if (!request->ctx->engine[ring->id].dirty) {
739                         intel_lr_context_pin(request);
740                         request->ctx->engine[ring->id].dirty = true;
741                 }
742         }
743
744         if (dev_priv->guc.execbuf_client)
745                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
746         else
747                 execlists_context_queue(request);
748 }
749
750 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
751 {
752         uint32_t __iomem *virt;
753         int rem = ringbuf->size - ringbuf->tail;
754
755         virt = ringbuf->virtual_start + ringbuf->tail;
756         rem /= 4;
757         while (rem--)
758                 iowrite32(MI_NOOP, virt++);
759
760         ringbuf->tail = 0;
761         intel_ring_update_space(ringbuf);
762 }
763
764 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
765 {
766         struct intel_ringbuffer *ringbuf = req->ringbuf;
767         int remain_usable = ringbuf->effective_size - ringbuf->tail;
768         int remain_actual = ringbuf->size - ringbuf->tail;
769         int ret, total_bytes, wait_bytes = 0;
770         bool need_wrap = false;
771
772         if (ringbuf->reserved_in_use)
773                 total_bytes = bytes;
774         else
775                 total_bytes = bytes + ringbuf->reserved_size;
776
777         if (unlikely(bytes > remain_usable)) {
778                 /*
779                  * Not enough space for the basic request. So need to flush
780                  * out the remainder and then wait for base + reserved.
781                  */
782                 wait_bytes = remain_actual + total_bytes;
783                 need_wrap = true;
784         } else {
785                 if (unlikely(total_bytes > remain_usable)) {
786                         /*
787                          * The base request will fit but the reserved space
788                          * falls off the end. So only need to to wait for the
789                          * reserved size after flushing out the remainder.
790                          */
791                         wait_bytes = remain_actual + ringbuf->reserved_size;
792                         need_wrap = true;
793                 } else if (total_bytes > ringbuf->space) {
794                         /* No wrapping required, just waiting. */
795                         wait_bytes = total_bytes;
796                 }
797         }
798
799         if (wait_bytes) {
800                 ret = logical_ring_wait_for_space(req, wait_bytes);
801                 if (unlikely(ret))
802                         return ret;
803
804                 if (need_wrap)
805                         __wrap_ring_buffer(ringbuf);
806         }
807
808         return 0;
809 }
810
811 /**
812  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
813  *
814  * @req: The request to start some new work for
815  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
816  *
817  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
818  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
819  * and also preallocates a request (every workload submission is still mediated through
820  * requests, same as it did with legacy ringbuffer submission).
821  *
822  * Return: non-zero if the ringbuffer is not ready to be written to.
823  */
824 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
825 {
826         struct drm_i915_private *dev_priv;
827         int ret;
828
829         WARN_ON(req == NULL);
830         dev_priv = req->ring->dev->dev_private;
831
832         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
833                                    dev_priv->mm.interruptible);
834         if (ret)
835                 return ret;
836
837         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
838         if (ret)
839                 return ret;
840
841         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
842         return 0;
843 }
844
845 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
846 {
847         /*
848          * The first call merely notes the reserve request and is common for
849          * all back ends. The subsequent localised _begin() call actually
850          * ensures that the reservation is available. Without the begin, if
851          * the request creator immediately submitted the request without
852          * adding any commands to it then there might not actually be
853          * sufficient room for the submission commands.
854          */
855         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
856
857         return intel_logical_ring_begin(request, 0);
858 }
859
860 /**
861  * execlists_submission() - submit a batchbuffer for execution, Execlists style
862  * @dev: DRM device.
863  * @file: DRM file.
864  * @ring: Engine Command Streamer to submit to.
865  * @ctx: Context to employ for this submission.
866  * @args: execbuffer call arguments.
867  * @vmas: list of vmas.
868  * @batch_obj: the batchbuffer to submit.
869  * @exec_start: batchbuffer start virtual address pointer.
870  * @dispatch_flags: translated execbuffer call flags.
871  *
872  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
873  * away the submission details of the execbuffer ioctl call.
874  *
875  * Return: non-zero if the submission fails.
876  */
877 int intel_execlists_submission(struct i915_execbuffer_params *params,
878                                struct drm_i915_gem_execbuffer2 *args,
879                                struct list_head *vmas)
880 {
881         struct drm_device       *dev = params->dev;
882         struct intel_engine_cs  *ring = params->ring;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
885         u64 exec_start;
886         int instp_mode;
887         u32 instp_mask;
888         int ret;
889
890         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
891         instp_mask = I915_EXEC_CONSTANTS_MASK;
892         switch (instp_mode) {
893         case I915_EXEC_CONSTANTS_REL_GENERAL:
894         case I915_EXEC_CONSTANTS_ABSOLUTE:
895         case I915_EXEC_CONSTANTS_REL_SURFACE:
896                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
897                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
898                         return -EINVAL;
899                 }
900
901                 if (instp_mode != dev_priv->relative_constants_mode) {
902                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
903                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
904                                 return -EINVAL;
905                         }
906
907                         /* The HW changed the meaning on this bit on gen6 */
908                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
909                 }
910                 break;
911         default:
912                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
913                 return -EINVAL;
914         }
915
916         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
917                 DRM_DEBUG("sol reset is gen7 only\n");
918                 return -EINVAL;
919         }
920
921         ret = execlists_move_to_gpu(params->request, vmas);
922         if (ret)
923                 return ret;
924
925         if (ring == &dev_priv->ring[RCS] &&
926             instp_mode != dev_priv->relative_constants_mode) {
927                 ret = intel_logical_ring_begin(params->request, 4);
928                 if (ret)
929                         return ret;
930
931                 intel_logical_ring_emit(ringbuf, MI_NOOP);
932                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
933                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
934                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
935                 intel_logical_ring_advance(ringbuf);
936
937                 dev_priv->relative_constants_mode = instp_mode;
938         }
939
940         exec_start = params->batch_obj_vm_offset +
941                      args->batch_start_offset;
942
943         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
944         if (ret)
945                 return ret;
946
947         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
948
949         i915_gem_execbuffer_move_to_active(vmas, params->request);
950         i915_gem_execbuffer_retire_commands(params);
951
952         return 0;
953 }
954
955 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
956 {
957         struct drm_i915_gem_request *req, *tmp;
958         struct list_head retired_list;
959
960         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
961         if (list_empty(&ring->execlist_retired_req_list))
962                 return;
963
964         INIT_LIST_HEAD(&retired_list);
965         spin_lock_irq(&ring->execlist_lock);
966         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
967         spin_unlock_irq(&ring->execlist_lock);
968
969         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
970                 list_del(&req->execlist_link);
971                 i915_gem_request_unreference(req);
972         }
973 }
974
975 void intel_logical_ring_stop(struct intel_engine_cs *ring)
976 {
977         struct drm_i915_private *dev_priv = ring->dev->dev_private;
978         int ret;
979
980         if (!intel_ring_initialized(ring))
981                 return;
982
983         ret = intel_ring_idle(ring);
984         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
985                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
986                           ring->name, ret);
987
988         /* TODO: Is this correct with Execlists enabled? */
989         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
990         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
991                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
992                 return;
993         }
994         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
995 }
996
997 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
998 {
999         struct intel_engine_cs *ring = req->ring;
1000         int ret;
1001
1002         if (!ring->gpu_caches_dirty)
1003                 return 0;
1004
1005         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1006         if (ret)
1007                 return ret;
1008
1009         ring->gpu_caches_dirty = false;
1010         return 0;
1011 }
1012
1013 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1014                 struct drm_i915_gem_object *ctx_obj,
1015                 struct intel_ringbuffer *ringbuf)
1016 {
1017         struct drm_device *dev = ring->dev;
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         int ret = 0;
1020
1021         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1022         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1023                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1024         if (ret)
1025                 return ret;
1026
1027         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1028         if (ret)
1029                 goto unpin_ctx_obj;
1030
1031         ctx_obj->dirty = true;
1032
1033         /* Invalidate GuC TLB. */
1034         if (i915.enable_guc_submission)
1035                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1036
1037         return ret;
1038
1039 unpin_ctx_obj:
1040         i915_gem_object_ggtt_unpin(ctx_obj);
1041
1042         return ret;
1043 }
1044
1045 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1046 {
1047         int ret = 0;
1048         struct intel_engine_cs *ring = rq->ring;
1049         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1050         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1051
1052         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1053                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1054                 if (ret)
1055                         goto reset_pin_count;
1056         }
1057         return ret;
1058
1059 reset_pin_count:
1060         rq->ctx->engine[ring->id].pin_count = 0;
1061         return ret;
1062 }
1063
1064 static void __intel_lr_context_unpin(struct intel_engine_cs *ring,
1065                 struct intel_context *ctx)
1066 {
1067         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1068         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1069         if (ctx_obj) {
1070                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1071                 if (--ctx->engine[ring->id].pin_count == 0) {
1072                         intel_unpin_ringbuffer_obj(ringbuf);
1073                         i915_gem_object_ggtt_unpin(ctx_obj);
1074                 }
1075         }
1076 }
1077
1078 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1079 {
1080         __intel_lr_context_unpin(rq->ring, rq->ctx);
1081 }
1082
1083 void intel_lr_context_complete_check(struct drm_i915_gem_request *req)
1084 {
1085         struct intel_engine_cs *ring = req->ring;
1086
1087         if (ring->last_context && ring->last_context != req->ctx &&
1088                         ring->last_context->engine[ring->id].dirty) {
1089                 __intel_lr_context_unpin(
1090                                 ring,
1091                                 ring->last_context);
1092                 ring->last_context->engine[ring->id].dirty = false;
1093         }
1094         ring->last_context = req->ctx;
1095 }
1096
1097 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1098 {
1099         int ret, i;
1100         struct intel_engine_cs *ring = req->ring;
1101         struct intel_ringbuffer *ringbuf = req->ringbuf;
1102         struct drm_device *dev = ring->dev;
1103         struct drm_i915_private *dev_priv = dev->dev_private;
1104         struct i915_workarounds *w = &dev_priv->workarounds;
1105
1106         if (WARN_ON_ONCE(w->count == 0))
1107                 return 0;
1108
1109         ring->gpu_caches_dirty = true;
1110         ret = logical_ring_flush_all_caches(req);
1111         if (ret)
1112                 return ret;
1113
1114         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1115         if (ret)
1116                 return ret;
1117
1118         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1119         for (i = 0; i < w->count; i++) {
1120                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1121                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1122         }
1123         intel_logical_ring_emit(ringbuf, MI_NOOP);
1124
1125         intel_logical_ring_advance(ringbuf);
1126
1127         ring->gpu_caches_dirty = true;
1128         ret = logical_ring_flush_all_caches(req);
1129         if (ret)
1130                 return ret;
1131
1132         return 0;
1133 }
1134
1135 #define wa_ctx_emit(batch, index, cmd)                                  \
1136         do {                                                            \
1137                 int __index = (index)++;                                \
1138                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1139                         return -ENOSPC;                                 \
1140                 }                                                       \
1141                 batch[__index] = (cmd);                                 \
1142         } while (0)
1143
1144 #define wa_ctx_emit_reg(batch, index, reg) \
1145         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1146
1147 /*
1148  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1149  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1150  * but there is a slight complication as this is applied in WA batch where the
1151  * values are only initialized once so we cannot take register value at the
1152  * beginning and reuse it further; hence we save its value to memory, upload a
1153  * constant value with bit21 set and then we restore it back with the saved value.
1154  * To simplify the WA, a constant value is formed by using the default value
1155  * of this register. This shouldn't be a problem because we are only modifying
1156  * it for a short period and this batch in non-premptible. We can ofcourse
1157  * use additional instructions that read the actual value of the register
1158  * at that time and set our bit of interest but it makes the WA complicated.
1159  *
1160  * This WA is also required for Gen9 so extracting as a function avoids
1161  * code duplication.
1162  */
1163 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1164                                                 uint32_t *const batch,
1165                                                 uint32_t index)
1166 {
1167         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1168
1169         /*
1170          * WaDisableLSQCROPERFforOCL:skl
1171          * This WA is implemented in skl_init_clock_gating() but since
1172          * this batch updates GEN8_L3SQCREG4 with default value we need to
1173          * set this bit here to retain the WA during flush.
1174          */
1175         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1176                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1177
1178         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1179                                    MI_SRM_LRM_GLOBAL_GTT));
1180         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1181         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1182         wa_ctx_emit(batch, index, 0);
1183
1184         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1185         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1186         wa_ctx_emit(batch, index, l3sqc4_flush);
1187
1188         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1189         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1190                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1191         wa_ctx_emit(batch, index, 0);
1192         wa_ctx_emit(batch, index, 0);
1193         wa_ctx_emit(batch, index, 0);
1194         wa_ctx_emit(batch, index, 0);
1195
1196         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1197                                    MI_SRM_LRM_GLOBAL_GTT));
1198         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1199         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1200         wa_ctx_emit(batch, index, 0);
1201
1202         return index;
1203 }
1204
1205 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1206                                     uint32_t offset,
1207                                     uint32_t start_alignment)
1208 {
1209         return wa_ctx->offset = ALIGN(offset, start_alignment);
1210 }
1211
1212 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1213                              uint32_t offset,
1214                              uint32_t size_alignment)
1215 {
1216         wa_ctx->size = offset - wa_ctx->offset;
1217
1218         WARN(wa_ctx->size % size_alignment,
1219              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1220              wa_ctx->size, size_alignment);
1221         return 0;
1222 }
1223
1224 /**
1225  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1226  *
1227  * @ring: only applicable for RCS
1228  * @wa_ctx: structure representing wa_ctx
1229  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1230  *    with the offset value received as input.
1231  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1232  * @batch: page in which WA are loaded
1233  * @offset: This field specifies the start of the batch, it should be
1234  *  cache-aligned otherwise it is adjusted accordingly.
1235  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1236  *  initialized at the beginning and shared across all contexts but this field
1237  *  helps us to have multiple batches at different offsets and select them based
1238  *  on a criteria. At the moment this batch always start at the beginning of the page
1239  *  and at this point we don't have multiple wa_ctx batch buffers.
1240  *
1241  *  The number of WA applied are not known at the beginning; we use this field
1242  *  to return the no of DWORDS written.
1243  *
1244  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1245  *  so it adds NOOPs as padding to make it cacheline aligned.
1246  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1247  *  makes a complete batch buffer.
1248  *
1249  * Return: non-zero if we exceed the PAGE_SIZE limit.
1250  */
1251
1252 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1253                                     struct i915_wa_ctx_bb *wa_ctx,
1254                                     uint32_t *const batch,
1255                                     uint32_t *offset)
1256 {
1257         uint32_t scratch_addr;
1258         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1259
1260         /* WaDisableCtxRestoreArbitration:bdw,chv */
1261         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1262
1263         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1264         if (IS_BROADWELL(ring->dev)) {
1265                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1266                 if (rc < 0)
1267                         return rc;
1268                 index = rc;
1269         }
1270
1271         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1272         /* Actual scratch location is at 128 bytes offset */
1273         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1274
1275         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1276         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1277                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1278                                    PIPE_CONTROL_CS_STALL |
1279                                    PIPE_CONTROL_QW_WRITE));
1280         wa_ctx_emit(batch, index, scratch_addr);
1281         wa_ctx_emit(batch, index, 0);
1282         wa_ctx_emit(batch, index, 0);
1283         wa_ctx_emit(batch, index, 0);
1284
1285         /* Pad to end of cacheline */
1286         while (index % CACHELINE_DWORDS)
1287                 wa_ctx_emit(batch, index, MI_NOOP);
1288
1289         /*
1290          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1291          * execution depends on the length specified in terms of cache lines
1292          * in the register CTX_RCS_INDIRECT_CTX
1293          */
1294
1295         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1296 }
1297
1298 /**
1299  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1300  *
1301  * @ring: only applicable for RCS
1302  * @wa_ctx: structure representing wa_ctx
1303  *  offset: specifies start of the batch, should be cache-aligned.
1304  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1305  * @batch: page in which WA are loaded
1306  * @offset: This field specifies the start of this batch.
1307  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1308  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1309  *
1310  *   The number of DWORDS written are returned using this field.
1311  *
1312  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1313  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1314  */
1315 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1316                                struct i915_wa_ctx_bb *wa_ctx,
1317                                uint32_t *const batch,
1318                                uint32_t *offset)
1319 {
1320         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1321
1322         /* WaDisableCtxRestoreArbitration:bdw,chv */
1323         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1324
1325         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1326
1327         return wa_ctx_end(wa_ctx, *offset = index, 1);
1328 }
1329
1330 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1331                                     struct i915_wa_ctx_bb *wa_ctx,
1332                                     uint32_t *const batch,
1333                                     uint32_t *offset)
1334 {
1335         int ret;
1336         struct drm_device *dev = ring->dev;
1337         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1338
1339         /* WaDisableCtxRestoreArbitration:skl,bxt */
1340         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1341             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1342                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1343
1344         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1345         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1346         if (ret < 0)
1347                 return ret;
1348         index = ret;
1349
1350         /* Pad to end of cacheline */
1351         while (index % CACHELINE_DWORDS)
1352                 wa_ctx_emit(batch, index, MI_NOOP);
1353
1354         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1355 }
1356
1357 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1358                                struct i915_wa_ctx_bb *wa_ctx,
1359                                uint32_t *const batch,
1360                                uint32_t *offset)
1361 {
1362         struct drm_device *dev = ring->dev;
1363         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1364
1365         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1366         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1367             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1368                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1369                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1370                 wa_ctx_emit(batch, index,
1371                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1372                 wa_ctx_emit(batch, index, MI_NOOP);
1373         }
1374
1375         /* WaDisableCtxRestoreArbitration:skl,bxt */
1376         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1377             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1378                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1379
1380         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1381
1382         return wa_ctx_end(wa_ctx, *offset = index, 1);
1383 }
1384
1385 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1386 {
1387         int ret;
1388
1389         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1390         if (!ring->wa_ctx.obj) {
1391                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1392                 return -ENOMEM;
1393         }
1394
1395         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1396         if (ret) {
1397                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1398                                  ret);
1399                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1400                 return ret;
1401         }
1402
1403         return 0;
1404 }
1405
1406 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1407 {
1408         if (ring->wa_ctx.obj) {
1409                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1410                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1411                 ring->wa_ctx.obj = NULL;
1412         }
1413 }
1414
1415 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1416 {
1417         int ret;
1418         uint32_t *batch;
1419         uint32_t offset;
1420         struct page *page;
1421         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1422
1423         WARN_ON(ring->id != RCS);
1424
1425         /* update this when WA for higher Gen are added */
1426         if (INTEL_INFO(ring->dev)->gen > 9) {
1427                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1428                           INTEL_INFO(ring->dev)->gen);
1429                 return 0;
1430         }
1431
1432         /* some WA perform writes to scratch page, ensure it is valid */
1433         if (ring->scratch.obj == NULL) {
1434                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1435                 return -EINVAL;
1436         }
1437
1438         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1439         if (ret) {
1440                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1441                 return ret;
1442         }
1443
1444         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1445         batch = kmap_atomic(page);
1446         offset = 0;
1447
1448         if (INTEL_INFO(ring->dev)->gen == 8) {
1449                 ret = gen8_init_indirectctx_bb(ring,
1450                                                &wa_ctx->indirect_ctx,
1451                                                batch,
1452                                                &offset);
1453                 if (ret)
1454                         goto out;
1455
1456                 ret = gen8_init_perctx_bb(ring,
1457                                           &wa_ctx->per_ctx,
1458                                           batch,
1459                                           &offset);
1460                 if (ret)
1461                         goto out;
1462         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1463                 ret = gen9_init_indirectctx_bb(ring,
1464                                                &wa_ctx->indirect_ctx,
1465                                                batch,
1466                                                &offset);
1467                 if (ret)
1468                         goto out;
1469
1470                 ret = gen9_init_perctx_bb(ring,
1471                                           &wa_ctx->per_ctx,
1472                                           batch,
1473                                           &offset);
1474                 if (ret)
1475                         goto out;
1476         }
1477
1478 out:
1479         kunmap_atomic(batch);
1480         if (ret)
1481                 lrc_destroy_wa_ctx_obj(ring);
1482
1483         return ret;
1484 }
1485
1486 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1487 {
1488         struct drm_device *dev = ring->dev;
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490         u8 next_context_status_buffer_hw;
1491
1492         lrc_setup_hardware_status_page(ring,
1493                                 ring->default_context->engine[ring->id].state);
1494
1495         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1496         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1497
1498         I915_WRITE(RING_MODE_GEN7(ring),
1499                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1500                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1501         POSTING_READ(RING_MODE_GEN7(ring));
1502
1503         /*
1504          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1505          * zero, we need to read the write pointer from hardware and use its
1506          * value because "this register is power context save restored".
1507          * Effectively, these states have been observed:
1508          *
1509          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1510          * BDW  | CSB regs not reset       | CSB regs reset       |
1511          * CHT  | CSB regs not reset       | CSB regs not reset   |
1512          */
1513         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1514                                                    & GEN8_CSB_PTR_MASK);
1515
1516         /*
1517          * When the CSB registers are reset (also after power-up / gpu reset),
1518          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1519          * this special case, so the first element read is CSB[0].
1520          */
1521         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1522                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1523
1524         ring->next_context_status_buffer = next_context_status_buffer_hw;
1525         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1526
1527         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1528
1529         return 0;
1530 }
1531
1532 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1533 {
1534         struct drm_device *dev = ring->dev;
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         int ret;
1537
1538         ret = gen8_init_common_ring(ring);
1539         if (ret)
1540                 return ret;
1541
1542         /* We need to disable the AsyncFlip performance optimisations in order
1543          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1544          * programmed to '1' on all products.
1545          *
1546          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1547          */
1548         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1549
1550         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1551
1552         return init_workarounds_ring(ring);
1553 }
1554
1555 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1556 {
1557         int ret;
1558
1559         ret = gen8_init_common_ring(ring);
1560         if (ret)
1561                 return ret;
1562
1563         return init_workarounds_ring(ring);
1564 }
1565
1566 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1567 {
1568         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1569         struct intel_engine_cs *ring = req->ring;
1570         struct intel_ringbuffer *ringbuf = req->ringbuf;
1571         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1572         int i, ret;
1573
1574         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1575         if (ret)
1576                 return ret;
1577
1578         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1579         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1580                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1581
1582                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1583                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1584                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1585                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1586         }
1587
1588         intel_logical_ring_emit(ringbuf, MI_NOOP);
1589         intel_logical_ring_advance(ringbuf);
1590
1591         return 0;
1592 }
1593
1594 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1595                               u64 offset, unsigned dispatch_flags)
1596 {
1597         struct intel_ringbuffer *ringbuf = req->ringbuf;
1598         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1599         int ret;
1600
1601         /* Don't rely in hw updating PDPs, specially in lite-restore.
1602          * Ideally, we should set Force PD Restore in ctx descriptor,
1603          * but we can't. Force Restore would be a second option, but
1604          * it is unsafe in case of lite-restore (because the ctx is
1605          * not idle). PML4 is allocated during ppgtt init so this is
1606          * not needed in 48-bit.*/
1607         if (req->ctx->ppgtt &&
1608             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1609                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1610                     !intel_vgpu_active(req->i915->dev)) {
1611                         ret = intel_logical_ring_emit_pdps(req);
1612                         if (ret)
1613                                 return ret;
1614                 }
1615
1616                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1617         }
1618
1619         ret = intel_logical_ring_begin(req, 4);
1620         if (ret)
1621                 return ret;
1622
1623         /* FIXME(BDW): Address space and security selectors. */
1624         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1625                                 (ppgtt<<8) |
1626                                 (dispatch_flags & I915_DISPATCH_RS ?
1627                                  MI_BATCH_RESOURCE_STREAMER : 0));
1628         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1629         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1630         intel_logical_ring_emit(ringbuf, MI_NOOP);
1631         intel_logical_ring_advance(ringbuf);
1632
1633         return 0;
1634 }
1635
1636 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1637 {
1638         struct drm_device *dev = ring->dev;
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640         unsigned long flags;
1641
1642         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1643                 return false;
1644
1645         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646         if (ring->irq_refcount++ == 0) {
1647                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1648                 POSTING_READ(RING_IMR(ring->mmio_base));
1649         }
1650         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651
1652         return true;
1653 }
1654
1655 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1656 {
1657         struct drm_device *dev = ring->dev;
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659         unsigned long flags;
1660
1661         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1662         if (--ring->irq_refcount == 0) {
1663                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1664                 POSTING_READ(RING_IMR(ring->mmio_base));
1665         }
1666         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1667 }
1668
1669 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1670                            u32 invalidate_domains,
1671                            u32 unused)
1672 {
1673         struct intel_ringbuffer *ringbuf = request->ringbuf;
1674         struct intel_engine_cs *ring = ringbuf->ring;
1675         struct drm_device *dev = ring->dev;
1676         struct drm_i915_private *dev_priv = dev->dev_private;
1677         uint32_t cmd;
1678         int ret;
1679
1680         ret = intel_logical_ring_begin(request, 4);
1681         if (ret)
1682                 return ret;
1683
1684         cmd = MI_FLUSH_DW + 1;
1685
1686         /* We always require a command barrier so that subsequent
1687          * commands, such as breadcrumb interrupts, are strictly ordered
1688          * wrt the contents of the write cache being flushed to memory
1689          * (and thus being coherent from the CPU).
1690          */
1691         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1692
1693         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1694                 cmd |= MI_INVALIDATE_TLB;
1695                 if (ring == &dev_priv->ring[VCS])
1696                         cmd |= MI_INVALIDATE_BSD;
1697         }
1698
1699         intel_logical_ring_emit(ringbuf, cmd);
1700         intel_logical_ring_emit(ringbuf,
1701                                 I915_GEM_HWS_SCRATCH_ADDR |
1702                                 MI_FLUSH_DW_USE_GTT);
1703         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1704         intel_logical_ring_emit(ringbuf, 0); /* value */
1705         intel_logical_ring_advance(ringbuf);
1706
1707         return 0;
1708 }
1709
1710 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1711                                   u32 invalidate_domains,
1712                                   u32 flush_domains)
1713 {
1714         struct intel_ringbuffer *ringbuf = request->ringbuf;
1715         struct intel_engine_cs *ring = ringbuf->ring;
1716         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1717         bool vf_flush_wa;
1718         u32 flags = 0;
1719         int ret;
1720
1721         flags |= PIPE_CONTROL_CS_STALL;
1722
1723         if (flush_domains) {
1724                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1725                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1726                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1727         }
1728
1729         if (invalidate_domains) {
1730                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1731                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1732                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1733                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1734                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1735                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1736                 flags |= PIPE_CONTROL_QW_WRITE;
1737                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1738         }
1739
1740         /*
1741          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1742          * control.
1743          */
1744         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1745                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1746
1747         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1748         if (ret)
1749                 return ret;
1750
1751         if (vf_flush_wa) {
1752                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1753                 intel_logical_ring_emit(ringbuf, 0);
1754                 intel_logical_ring_emit(ringbuf, 0);
1755                 intel_logical_ring_emit(ringbuf, 0);
1756                 intel_logical_ring_emit(ringbuf, 0);
1757                 intel_logical_ring_emit(ringbuf, 0);
1758         }
1759
1760         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1761         intel_logical_ring_emit(ringbuf, flags);
1762         intel_logical_ring_emit(ringbuf, scratch_addr);
1763         intel_logical_ring_emit(ringbuf, 0);
1764         intel_logical_ring_emit(ringbuf, 0);
1765         intel_logical_ring_emit(ringbuf, 0);
1766         intel_logical_ring_advance(ringbuf);
1767
1768         return 0;
1769 }
1770
1771 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1772 {
1773         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1774 }
1775
1776 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1777 {
1778         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1779 }
1780
1781 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1782 {
1783
1784         /*
1785          * On BXT A steppings there is a HW coherency issue whereby the
1786          * MI_STORE_DATA_IMM storing the completed request's seqno
1787          * occasionally doesn't invalidate the CPU cache. Work around this by
1788          * clflushing the corresponding cacheline whenever the caller wants
1789          * the coherency to be guaranteed. Note that this cacheline is known
1790          * to be clean at this point, since we only write it in
1791          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1792          * this clflush in practice becomes an invalidate operation.
1793          */
1794
1795         if (!lazy_coherency)
1796                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1797
1798         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1799 }
1800
1801 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1802 {
1803         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1804
1805         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1806         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1807 }
1808
1809 static int gen8_emit_request(struct drm_i915_gem_request *request)
1810 {
1811         struct intel_ringbuffer *ringbuf = request->ringbuf;
1812         struct intel_engine_cs *ring = ringbuf->ring;
1813         u32 cmd;
1814         int ret;
1815
1816         /*
1817          * Reserve space for 2 NOOPs at the end of each request to be
1818          * used as a workaround for not being allowed to do lite
1819          * restore with HEAD==TAIL (WaIdleLiteRestore).
1820          */
1821         ret = intel_logical_ring_begin(request, 8);
1822         if (ret)
1823                 return ret;
1824
1825         cmd = MI_STORE_DWORD_IMM_GEN4;
1826         cmd |= MI_GLOBAL_GTT;
1827
1828         intel_logical_ring_emit(ringbuf, cmd);
1829         intel_logical_ring_emit(ringbuf,
1830                                 (ring->status_page.gfx_addr +
1831                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1832         intel_logical_ring_emit(ringbuf, 0);
1833         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1834         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1835         intel_logical_ring_emit(ringbuf, MI_NOOP);
1836         intel_logical_ring_advance_and_submit(request);
1837
1838         /*
1839          * Here we add two extra NOOPs as padding to avoid
1840          * lite restore of a context with HEAD==TAIL.
1841          */
1842         intel_logical_ring_emit(ringbuf, MI_NOOP);
1843         intel_logical_ring_emit(ringbuf, MI_NOOP);
1844         intel_logical_ring_advance(ringbuf);
1845
1846         return 0;
1847 }
1848
1849 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1850 {
1851         struct render_state so;
1852         int ret;
1853
1854         ret = i915_gem_render_state_prepare(req->ring, &so);
1855         if (ret)
1856                 return ret;
1857
1858         if (so.rodata == NULL)
1859                 return 0;
1860
1861         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1862                                        I915_DISPATCH_SECURE);
1863         if (ret)
1864                 goto out;
1865
1866         ret = req->ring->emit_bb_start(req,
1867                                        (so.ggtt_offset + so.aux_batch_offset),
1868                                        I915_DISPATCH_SECURE);
1869         if (ret)
1870                 goto out;
1871
1872         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1873
1874 out:
1875         i915_gem_render_state_fini(&so);
1876         return ret;
1877 }
1878
1879 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1880 {
1881         int ret;
1882
1883         ret = intel_logical_ring_workarounds_emit(req);
1884         if (ret)
1885                 return ret;
1886
1887         ret = intel_rcs_context_init_mocs(req);
1888         /*
1889          * Failing to program the MOCS is non-fatal.The system will not
1890          * run at peak performance. So generate an error and carry on.
1891          */
1892         if (ret)
1893                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1894
1895         return intel_lr_context_render_state_init(req);
1896 }
1897
1898 /**
1899  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1900  *
1901  * @ring: Engine Command Streamer.
1902  *
1903  */
1904 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1905 {
1906         struct drm_i915_private *dev_priv;
1907
1908         if (!intel_ring_initialized(ring))
1909                 return;
1910
1911         dev_priv = ring->dev->dev_private;
1912
1913         intel_logical_ring_stop(ring);
1914         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1915
1916         if (ring->cleanup)
1917                 ring->cleanup(ring);
1918
1919         i915_cmd_parser_fini_ring(ring);
1920         i915_gem_batch_pool_fini(&ring->batch_pool);
1921
1922         if (ring->status_page.obj) {
1923                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1924                 ring->status_page.obj = NULL;
1925         }
1926
1927         lrc_destroy_wa_ctx_obj(ring);
1928 }
1929
1930 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1931 {
1932         int ret;
1933
1934         /* Intentionally left blank. */
1935         ring->buffer = NULL;
1936
1937         ring->dev = dev;
1938         INIT_LIST_HEAD(&ring->active_list);
1939         INIT_LIST_HEAD(&ring->request_list);
1940         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1941         init_waitqueue_head(&ring->irq_queue);
1942
1943         INIT_LIST_HEAD(&ring->buffers);
1944         INIT_LIST_HEAD(&ring->execlist_queue);
1945         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1946         spin_lock_init(&ring->execlist_lock);
1947
1948         ret = i915_cmd_parser_init_ring(ring);
1949         if (ret)
1950                 return ret;
1951
1952         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1953         if (ret)
1954                 return ret;
1955
1956         /* As this is the default context, always pin it */
1957         ret = intel_lr_context_do_pin(
1958                         ring,
1959                         ring->default_context->engine[ring->id].state,
1960                         ring->default_context->engine[ring->id].ringbuf);
1961         if (ret) {
1962                 DRM_ERROR(
1963                         "Failed to pin and map ringbuffer %s: %d\n",
1964                         ring->name, ret);
1965                 return ret;
1966         }
1967
1968         return ret;
1969 }
1970
1971 static int logical_render_ring_init(struct drm_device *dev)
1972 {
1973         struct drm_i915_private *dev_priv = dev->dev_private;
1974         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1975         int ret;
1976
1977         ring->name = "render ring";
1978         ring->id = RCS;
1979         ring->mmio_base = RENDER_RING_BASE;
1980         ring->irq_enable_mask =
1981                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1982         ring->irq_keep_mask =
1983                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1984         if (HAS_L3_DPF(dev))
1985                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1986
1987         if (INTEL_INFO(dev)->gen >= 9)
1988                 ring->init_hw = gen9_init_render_ring;
1989         else
1990                 ring->init_hw = gen8_init_render_ring;
1991         ring->init_context = gen8_init_rcs_context;
1992         ring->cleanup = intel_fini_pipe_control;
1993         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1994                 ring->get_seqno = bxt_a_get_seqno;
1995                 ring->set_seqno = bxt_a_set_seqno;
1996         } else {
1997                 ring->get_seqno = gen8_get_seqno;
1998                 ring->set_seqno = gen8_set_seqno;
1999         }
2000         ring->emit_request = gen8_emit_request;
2001         ring->emit_flush = gen8_emit_flush_render;
2002         ring->irq_get = gen8_logical_ring_get_irq;
2003         ring->irq_put = gen8_logical_ring_put_irq;
2004         ring->emit_bb_start = gen8_emit_bb_start;
2005
2006         ring->dev = dev;
2007
2008         ret = intel_init_pipe_control(ring);
2009         if (ret)
2010                 return ret;
2011
2012         ret = intel_init_workaround_bb(ring);
2013         if (ret) {
2014                 /*
2015                  * We continue even if we fail to initialize WA batch
2016                  * because we only expect rare glitches but nothing
2017                  * critical to prevent us from using GPU
2018                  */
2019                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2020                           ret);
2021         }
2022
2023         ret = logical_ring_init(dev, ring);
2024         if (ret) {
2025                 lrc_destroy_wa_ctx_obj(ring);
2026         }
2027
2028         return ret;
2029 }
2030
2031 static int logical_bsd_ring_init(struct drm_device *dev)
2032 {
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2035
2036         ring->name = "bsd ring";
2037         ring->id = VCS;
2038         ring->mmio_base = GEN6_BSD_RING_BASE;
2039         ring->irq_enable_mask =
2040                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2041         ring->irq_keep_mask =
2042                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2043
2044         ring->init_hw = gen8_init_common_ring;
2045         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2046                 ring->get_seqno = bxt_a_get_seqno;
2047                 ring->set_seqno = bxt_a_set_seqno;
2048         } else {
2049                 ring->get_seqno = gen8_get_seqno;
2050                 ring->set_seqno = gen8_set_seqno;
2051         }
2052         ring->emit_request = gen8_emit_request;
2053         ring->emit_flush = gen8_emit_flush;
2054         ring->irq_get = gen8_logical_ring_get_irq;
2055         ring->irq_put = gen8_logical_ring_put_irq;
2056         ring->emit_bb_start = gen8_emit_bb_start;
2057
2058         return logical_ring_init(dev, ring);
2059 }
2060
2061 static int logical_bsd2_ring_init(struct drm_device *dev)
2062 {
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2065
2066         ring->name = "bds2 ring";
2067         ring->id = VCS2;
2068         ring->mmio_base = GEN8_BSD2_RING_BASE;
2069         ring->irq_enable_mask =
2070                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2071         ring->irq_keep_mask =
2072                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2073
2074         ring->init_hw = gen8_init_common_ring;
2075         ring->get_seqno = gen8_get_seqno;
2076         ring->set_seqno = gen8_set_seqno;
2077         ring->emit_request = gen8_emit_request;
2078         ring->emit_flush = gen8_emit_flush;
2079         ring->irq_get = gen8_logical_ring_get_irq;
2080         ring->irq_put = gen8_logical_ring_put_irq;
2081         ring->emit_bb_start = gen8_emit_bb_start;
2082
2083         return logical_ring_init(dev, ring);
2084 }
2085
2086 static int logical_blt_ring_init(struct drm_device *dev)
2087 {
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2090
2091         ring->name = "blitter ring";
2092         ring->id = BCS;
2093         ring->mmio_base = BLT_RING_BASE;
2094         ring->irq_enable_mask =
2095                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2096         ring->irq_keep_mask =
2097                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2098
2099         ring->init_hw = gen8_init_common_ring;
2100         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2101                 ring->get_seqno = bxt_a_get_seqno;
2102                 ring->set_seqno = bxt_a_set_seqno;
2103         } else {
2104                 ring->get_seqno = gen8_get_seqno;
2105                 ring->set_seqno = gen8_set_seqno;
2106         }
2107         ring->emit_request = gen8_emit_request;
2108         ring->emit_flush = gen8_emit_flush;
2109         ring->irq_get = gen8_logical_ring_get_irq;
2110         ring->irq_put = gen8_logical_ring_put_irq;
2111         ring->emit_bb_start = gen8_emit_bb_start;
2112
2113         return logical_ring_init(dev, ring);
2114 }
2115
2116 static int logical_vebox_ring_init(struct drm_device *dev)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2120
2121         ring->name = "video enhancement ring";
2122         ring->id = VECS;
2123         ring->mmio_base = VEBOX_RING_BASE;
2124         ring->irq_enable_mask =
2125                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2126         ring->irq_keep_mask =
2127                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2128
2129         ring->init_hw = gen8_init_common_ring;
2130         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2131                 ring->get_seqno = bxt_a_get_seqno;
2132                 ring->set_seqno = bxt_a_set_seqno;
2133         } else {
2134                 ring->get_seqno = gen8_get_seqno;
2135                 ring->set_seqno = gen8_set_seqno;
2136         }
2137         ring->emit_request = gen8_emit_request;
2138         ring->emit_flush = gen8_emit_flush;
2139         ring->irq_get = gen8_logical_ring_get_irq;
2140         ring->irq_put = gen8_logical_ring_put_irq;
2141         ring->emit_bb_start = gen8_emit_bb_start;
2142
2143         return logical_ring_init(dev, ring);
2144 }
2145
2146 /**
2147  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2148  * @dev: DRM device.
2149  *
2150  * This function inits the engines for an Execlists submission style (the equivalent in the
2151  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2152  * those engines that are present in the hardware.
2153  *
2154  * Return: non-zero if the initialization failed.
2155  */
2156 int intel_logical_rings_init(struct drm_device *dev)
2157 {
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         int ret;
2160
2161         ret = logical_render_ring_init(dev);
2162         if (ret)
2163                 return ret;
2164
2165         if (HAS_BSD(dev)) {
2166                 ret = logical_bsd_ring_init(dev);
2167                 if (ret)
2168                         goto cleanup_render_ring;
2169         }
2170
2171         if (HAS_BLT(dev)) {
2172                 ret = logical_blt_ring_init(dev);
2173                 if (ret)
2174                         goto cleanup_bsd_ring;
2175         }
2176
2177         if (HAS_VEBOX(dev)) {
2178                 ret = logical_vebox_ring_init(dev);
2179                 if (ret)
2180                         goto cleanup_blt_ring;
2181         }
2182
2183         if (HAS_BSD2(dev)) {
2184                 ret = logical_bsd2_ring_init(dev);
2185                 if (ret)
2186                         goto cleanup_vebox_ring;
2187         }
2188
2189         return 0;
2190
2191 cleanup_vebox_ring:
2192         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2193 cleanup_blt_ring:
2194         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2195 cleanup_bsd_ring:
2196         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2197 cleanup_render_ring:
2198         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2199
2200         return ret;
2201 }
2202
2203 static u32
2204 make_rpcs(struct drm_device *dev)
2205 {
2206         u32 rpcs = 0;
2207
2208         /*
2209          * No explicit RPCS request is needed to ensure full
2210          * slice/subslice/EU enablement prior to Gen9.
2211         */
2212         if (INTEL_INFO(dev)->gen < 9)
2213                 return 0;
2214
2215         /*
2216          * Starting in Gen9, render power gating can leave
2217          * slice/subslice/EU in a partially enabled state. We
2218          * must make an explicit request through RPCS for full
2219          * enablement.
2220         */
2221         if (INTEL_INFO(dev)->has_slice_pg) {
2222                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2223                 rpcs |= INTEL_INFO(dev)->slice_total <<
2224                         GEN8_RPCS_S_CNT_SHIFT;
2225                 rpcs |= GEN8_RPCS_ENABLE;
2226         }
2227
2228         if (INTEL_INFO(dev)->has_subslice_pg) {
2229                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2230                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2231                         GEN8_RPCS_SS_CNT_SHIFT;
2232                 rpcs |= GEN8_RPCS_ENABLE;
2233         }
2234
2235         if (INTEL_INFO(dev)->has_eu_pg) {
2236                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2237                         GEN8_RPCS_EU_MIN_SHIFT;
2238                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2239                         GEN8_RPCS_EU_MAX_SHIFT;
2240                 rpcs |= GEN8_RPCS_ENABLE;
2241         }
2242
2243         return rpcs;
2244 }
2245
2246 static int
2247 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2248                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2249 {
2250         struct drm_device *dev = ring->dev;
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2253         struct page *page;
2254         uint32_t *reg_state;
2255         int ret;
2256
2257         if (!ppgtt)
2258                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2259
2260         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2261         if (ret) {
2262                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2263                 return ret;
2264         }
2265
2266         ret = i915_gem_object_get_pages(ctx_obj);
2267         if (ret) {
2268                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2269                 return ret;
2270         }
2271
2272         i915_gem_object_pin_pages(ctx_obj);
2273
2274         /* The second page of the context object contains some fields which must
2275          * be set up prior to the first execution. */
2276         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2277         reg_state = kmap_atomic(page);
2278
2279         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2280          * commands followed by (reg, value) pairs. The values we are setting here are
2281          * only for the first context restore: on a subsequent save, the GPU will
2282          * recreate this batchbuffer with new values (including all the missing
2283          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2284         reg_state[CTX_LRI_HEADER_0] =
2285                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2286         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2287                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2288                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2289                                           CTX_CTRL_RS_CTX_ENABLE));
2290         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2291         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2292         /* Ring buffer start address is not known until the buffer is pinned.
2293          * It is written to the context image in execlists_update_context()
2294          */
2295         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2296         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2297                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2298         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2299         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2300         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2301                        RING_BB_PPGTT);
2302         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2303         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2304         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2305         if (ring->id == RCS) {
2306                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2307                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2308                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2309                 if (ring->wa_ctx.obj) {
2310                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2311                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2312
2313                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2314                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2315                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2316
2317                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2318                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2319
2320                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2321                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2322                                 0x01;
2323                 }
2324         }
2325         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2326         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2327         /* PDP values well be assigned later if needed */
2328         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2329         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2330         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2331         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2332         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2333         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2334         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2335         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2336
2337         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2338                 /* 64b PPGTT (48bit canonical)
2339                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2340                  * other PDP Descriptors are ignored.
2341                  */
2342                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2343         } else {
2344                 /* 32b PPGTT
2345                  * PDP*_DESCRIPTOR contains the base address of space supported.
2346                  * With dynamic page allocation, PDPs may not be allocated at
2347                  * this point. Point the unallocated PDPs to the scratch page
2348                  */
2349                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2350                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2353         }
2354
2355         if (ring->id == RCS) {
2356                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2357                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2358                                make_rpcs(dev));
2359         }
2360
2361         kunmap_atomic(reg_state);
2362
2363         ctx_obj->dirty = 1;
2364         set_page_dirty(page);
2365         i915_gem_object_unpin_pages(ctx_obj);
2366
2367         return 0;
2368 }
2369
2370 /**
2371  * intel_lr_context_clean_ring() - clean the ring specific parts of an LRC
2372  * @ctx: the LR context being freed.
2373  * @ring: the engine being cleaned
2374  * @ctx_obj: the hw context being unreferenced
2375  * @ringbuf: the ringbuf being freed
2376  *
2377  * Take care of cleaning up the per-engine backing
2378  * objects and the logical ringbuffer.
2379  */
2380 static void
2381 intel_lr_context_clean_ring(struct intel_context *ctx,
2382                             struct intel_engine_cs *ring,
2383                             struct drm_i915_gem_object *ctx_obj,
2384                             struct intel_ringbuffer *ringbuf)
2385 {
2386         int ret;
2387
2388         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2389
2390         if (ctx == ring->default_context) {
2391                 intel_unpin_ringbuffer_obj(ringbuf);
2392                 i915_gem_object_ggtt_unpin(ctx_obj);
2393         }
2394
2395         if (ctx->engine[ring->id].dirty) {
2396                 struct drm_i915_gem_request *req = NULL;
2397
2398                 /**
2399                  * If there is already a request pending on
2400                  * this ring, wait for that to complete,
2401                  * otherwise create a switch to idle request
2402                  */
2403                 if (list_empty(&ring->request_list)) {
2404                         int ret;
2405
2406                         ret = i915_gem_request_alloc(
2407                                         ring,
2408                                         ring->default_context,
2409                                         &req);
2410                         if (!ret)
2411                                 i915_add_request(req);
2412                         else
2413                                 DRM_DEBUG("Failed to ensure context saved");
2414                 } else {
2415                         req = list_first_entry(
2416                                         &ring->request_list,
2417                                         typeof(*req), list);
2418                 }
2419                 if (req) {
2420                         ret = i915_wait_request(req);
2421                         if (ret != 0) {
2422                                 /**
2423                                  * If we get here, there's probably been a ring
2424                                  * reset, so we just clean up the dirty flag.&
2425                                  * pin count.
2426                                  */
2427                                 ctx->engine[ring->id].dirty = false;
2428                                 __intel_lr_context_unpin(
2429                                         ring,
2430                                         ctx);
2431                         }
2432                 }
2433         }
2434
2435         WARN_ON(ctx->engine[ring->id].pin_count);
2436         intel_ringbuffer_free(ringbuf);
2437         drm_gem_object_unreference(&ctx_obj->base);
2438 }
2439
2440 /**
2441  * intel_lr_context_free() - free the LRC specific bits of a context
2442  * @ctx: the LR context to free.
2443  *
2444  * The real context freeing is done in i915_gem_context_free: this only
2445  * takes care of the bits that are LRC related: the per-engine backing
2446  * objects and the logical ringbuffer.
2447  */
2448 void intel_lr_context_free(struct intel_context *ctx)
2449 {
2450         int i;
2451
2452         for (i = 0; i < I915_NUM_RINGS; ++i) {
2453                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2454
2455                 if (ctx_obj) {
2456                         struct intel_ringbuffer *ringbuf =
2457                                         ctx->engine[i].ringbuf;
2458                         struct intel_engine_cs *ring = ringbuf->ring;
2459
2460                         intel_lr_context_clean_ring(ctx,
2461                                                     ring,
2462                                                     ctx_obj,
2463                                                     ringbuf);
2464                 }
2465         }
2466 }
2467
2468 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2469 {
2470         int ret = 0;
2471
2472         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2473
2474         switch (ring->id) {
2475         case RCS:
2476                 if (INTEL_INFO(ring->dev)->gen >= 9)
2477                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2478                 else
2479                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2480                 break;
2481         case VCS:
2482         case BCS:
2483         case VECS:
2484         case VCS2:
2485                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2486                 break;
2487         }
2488
2489         return ret;
2490 }
2491
2492 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2493                 struct drm_i915_gem_object *default_ctx_obj)
2494 {
2495         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2496         struct page *page;
2497
2498         /* The HWSP is part of the default context object in LRC mode. */
2499         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2500                         + LRC_PPHWSP_PN * PAGE_SIZE;
2501         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2502         ring->status_page.page_addr = kmap(page);
2503         ring->status_page.obj = default_ctx_obj;
2504
2505         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2506                         (u32)ring->status_page.gfx_addr);
2507         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2508 }
2509
2510 /**
2511  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2512  * @ctx: LR context to create.
2513  * @ring: engine to be used with the context.
2514  *
2515  * This function can be called more than once, with different engines, if we plan
2516  * to use the context with them. The context backing objects and the ringbuffers
2517  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2518  * the creation is a deferred call: it's better to make sure first that we need to use
2519  * a given ring with the context.
2520  *
2521  * Return: non-zero on error.
2522  */
2523
2524 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2525                                      struct intel_engine_cs *ring)
2526 {
2527         struct drm_device *dev = ring->dev;
2528         struct drm_i915_gem_object *ctx_obj;
2529         uint32_t context_size;
2530         struct intel_ringbuffer *ringbuf;
2531         int ret;
2532
2533         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2534         WARN_ON(ctx->engine[ring->id].state);
2535
2536         context_size = round_up(get_lr_context_size(ring), 4096);
2537
2538         /* One extra page as the sharing data between driver and GuC */
2539         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2540
2541         ctx_obj = i915_gem_alloc_object(dev, context_size);
2542         if (!ctx_obj) {
2543                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2544                 return -ENOMEM;
2545         }
2546
2547         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2548         if (IS_ERR(ringbuf)) {
2549                 ret = PTR_ERR(ringbuf);
2550                 goto error_deref_obj;
2551         }
2552
2553         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2554         if (ret) {
2555                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2556                 goto error_ringbuf;
2557         }
2558
2559         ctx->engine[ring->id].ringbuf = ringbuf;
2560         ctx->engine[ring->id].state = ctx_obj;
2561
2562         if (ctx != ring->default_context && ring->init_context) {
2563                 struct drm_i915_gem_request *req;
2564
2565                 ret = i915_gem_request_alloc(ring,
2566                         ctx, &req);
2567                 if (ret) {
2568                         DRM_ERROR("ring create req: %d\n",
2569                                 ret);
2570                         goto error_ringbuf;
2571                 }
2572
2573                 ret = ring->init_context(req);
2574                 if (ret) {
2575                         DRM_ERROR("ring init context: %d\n",
2576                                 ret);
2577                         i915_gem_request_cancel(req);
2578                         goto error_ringbuf;
2579                 }
2580                 i915_add_request_no_flush(req);
2581         }
2582         return 0;
2583
2584 error_ringbuf:
2585         intel_ringbuffer_free(ringbuf);
2586 error_deref_obj:
2587         drm_gem_object_unreference(&ctx_obj->base);
2588         ctx->engine[ring->id].ringbuf = NULL;
2589         ctx->engine[ring->id].state = NULL;
2590         return ret;
2591 }
2592
2593 void intel_lr_context_reset(struct drm_device *dev,
2594                         struct intel_context *ctx)
2595 {
2596         struct drm_i915_private *dev_priv = dev->dev_private;
2597         struct intel_engine_cs *ring;
2598         int i;
2599
2600         for_each_ring(ring, dev_priv, i) {
2601                 struct drm_i915_gem_object *ctx_obj =
2602                                 ctx->engine[ring->id].state;
2603                 struct intel_ringbuffer *ringbuf =
2604                                 ctx->engine[ring->id].ringbuf;
2605                 uint32_t *reg_state;
2606                 struct page *page;
2607
2608                 if (!ctx_obj)
2609                         continue;
2610
2611                 if (i915_gem_object_get_pages(ctx_obj)) {
2612                         WARN(1, "Failed get_pages for context obj\n");
2613                         continue;
2614                 }
2615                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2616                 reg_state = kmap_atomic(page);
2617
2618                 reg_state[CTX_RING_HEAD+1] = 0;
2619                 reg_state[CTX_RING_TAIL+1] = 0;
2620
2621                 kunmap_atomic(reg_state);
2622
2623                 ringbuf->head = 0;
2624                 ringbuf->tail = 0;
2625
2626                 if (ctx->engine[ring->id].dirty) {
2627                         __intel_lr_context_unpin(
2628                                         ring,
2629                                         ctx);
2630                         ctx->engine[ring->id].dirty = false;
2631                 }
2632         }
2633 }