]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Add wa_ctx_emit_reg()
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205         ADVANCED_CONTEXT = 0,
206         LEGACY_32B_CONTEXT,
207         ADVANCED_AD_CONTEXT,
208         LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
212                 LEGACY_64B_CONTEXT :\
213                 LEGACY_32B_CONTEXT)
214 enum {
215         FAULT_AND_HANG = 0,
216         FAULT_AND_HALT, /* Debug only */
217         FAULT_AND_STREAM,
218         FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225                 struct drm_i915_gem_object *default_ctx_obj);
226
227
228 /**
229  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230  * @dev: DRM device.
231  * @enable_execlists: value of i915.enable_execlists module parameter.
232  *
233  * Only certain platforms support Execlists (the prerequisites being
234  * support for Logical Ring Contexts and Aliasing PPGTT or better).
235  *
236  * Return: 1 if Execlists is supported and has to be enabled.
237  */
238 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 {
240         WARN_ON(i915.enable_ppgtt == -1);
241
242         /* On platforms with execlist available, vGPU will only
243          * support execlist mode, no ring buffer mode.
244          */
245         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246                 return 1;
247
248         if (INTEL_INFO(dev)->gen >= 9)
249                 return 1;
250
251         if (enable_execlists == 0)
252                 return 0;
253
254         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255             i915.use_mmio_flip >= 0)
256                 return 1;
257
258         return 0;
259 }
260
261 /**
262  * intel_execlists_ctx_id() - get the Execlists Context ID
263  * @ctx_obj: Logical Ring Context backing object.
264  *
265  * Do not confuse with ctx->id! Unfortunately we have a name overload
266  * here: the old context ID we pass to userspace as a handler so that
267  * they can refer to a context, and the new context ID we pass to the
268  * ELSP so that the GPU can inform us of the context status via
269  * interrupts.
270  *
271  * Return: 20-bits globally unique context ID.
272  */
273 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 {
275         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276                         LRC_PPHWSP_PN * PAGE_SIZE;
277
278         /* LRCA is required to be 4K aligned so the more significant 20 bits
279          * are globally unique */
280         return lrca >> 12;
281 }
282
283 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 {
285         struct drm_device *dev = ring->dev;
286
287         return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
288                 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
289                (ring->id == VCS || ring->id == VCS2);
290 }
291
292 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293                                      struct intel_engine_cs *ring)
294 {
295         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296         uint64_t desc;
297         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298                         LRC_PPHWSP_PN * PAGE_SIZE;
299
300         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301
302         desc = GEN8_CTX_VALID;
303         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304         if (IS_GEN8(ctx_obj->base.dev))
305                 desc |= GEN8_CTX_L3LLC_COHERENT;
306         desc |= GEN8_CTX_PRIVILEGE;
307         desc |= lrca;
308         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310         /* TODO: WaDisableLiteRestore when we start using semaphore
311          * signalling between Command Streamers */
312         /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
314         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
315         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316         if (disable_lite_restore_wa(ring))
317                 desc |= GEN8_CTX_FORCE_RESTORE;
318
319         return desc;
320 }
321
322 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323                                  struct drm_i915_gem_request *rq1)
324 {
325
326         struct intel_engine_cs *ring = rq0->ring;
327         struct drm_device *dev = ring->dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329         uint64_t desc[2];
330
331         if (rq1) {
332                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333                 rq1->elsp_submitted++;
334         } else {
335                 desc[1] = 0;
336         }
337
338         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339         rq0->elsp_submitted++;
340
341         /* You must always write both descriptors in the order below. */
342         spin_lock(&dev_priv->uncore.lock);
343         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346
347         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348         /* The context is automatically loaded after the following */
349         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350
351         /* ELSP is a wo register, use another nearby reg for posting */
352         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354         spin_unlock(&dev_priv->uncore.lock);
355 }
356
357 static int execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359         struct intel_engine_cs *ring = rq->ring;
360         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363         struct page *page;
364         uint32_t *reg_state;
365
366         BUG_ON(!ctx_obj);
367         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
370         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371         reg_state = kmap_atomic(page);
372
373         reg_state[CTX_RING_TAIL+1] = rq->tail;
374         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375
376         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377                 /* True 32b PPGTT with dynamic page allocation: update PDP
378                  * registers and point the unallocated PDPs to scratch page.
379                  * PML4 is allocated during ppgtt init, so this is not needed
380                  * in 48-bit mode.
381                  */
382                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386         }
387
388         kunmap_atomic(reg_state);
389
390         return 0;
391 }
392
393 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394                                       struct drm_i915_gem_request *rq1)
395 {
396         execlists_update_context(rq0);
397
398         if (rq1)
399                 execlists_update_context(rq1);
400
401         execlists_elsp_write(rq0, rq1);
402 }
403
404 static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 {
406         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408
409         assert_spin_locked(&ring->execlist_lock);
410
411         /*
412          * If irqs are not active generate a warning as batches that finish
413          * without the irqs may get lost and a GPU Hang may occur.
414          */
415         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
417         if (list_empty(&ring->execlist_queue))
418                 return;
419
420         /* Try to read in pairs */
421         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422                                  execlist_link) {
423                 if (!req0) {
424                         req0 = cursor;
425                 } else if (req0->ctx == cursor->ctx) {
426                         /* Same ctx: ignore first request, as second request
427                          * will update tail past first request's workload */
428                         cursor->elsp_submitted = req0->elsp_submitted;
429                         list_del(&req0->execlist_link);
430                         list_add_tail(&req0->execlist_link,
431                                 &ring->execlist_retired_req_list);
432                         req0 = cursor;
433                 } else {
434                         req1 = cursor;
435                         break;
436                 }
437         }
438
439         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440                 /*
441                  * WaIdleLiteRestore: make sure we never cause a lite
442                  * restore with HEAD==TAIL
443                  */
444                 if (req0->elsp_submitted) {
445                         /*
446                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447                          * as we resubmit the request. See gen8_emit_request()
448                          * for where we prepare the padding after the end of the
449                          * request.
450                          */
451                         struct intel_ringbuffer *ringbuf;
452
453                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
454                         req0->tail += 8;
455                         req0->tail &= ringbuf->size - 1;
456                 }
457         }
458
459         WARN_ON(req1 && req1->elsp_submitted);
460
461         execlists_submit_requests(req0, req1);
462 }
463
464 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465                                            u32 request_id)
466 {
467         struct drm_i915_gem_request *head_req;
468
469         assert_spin_locked(&ring->execlist_lock);
470
471         head_req = list_first_entry_or_null(&ring->execlist_queue,
472                                             struct drm_i915_gem_request,
473                                             execlist_link);
474
475         if (head_req != NULL) {
476                 struct drm_i915_gem_object *ctx_obj =
477                                 head_req->ctx->engine[ring->id].state;
478                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479                         WARN(head_req->elsp_submitted == 0,
480                              "Never submitted head request\n");
481
482                         if (--head_req->elsp_submitted <= 0) {
483                                 list_del(&head_req->execlist_link);
484                                 list_add_tail(&head_req->execlist_link,
485                                         &ring->execlist_retired_req_list);
486                                 return true;
487                         }
488                 }
489         }
490
491         return false;
492 }
493
494 /**
495  * intel_lrc_irq_handler() - handle Context Switch interrupts
496  * @ring: Engine Command Streamer to handle.
497  *
498  * Check the unread Context Status Buffers and manage the submission of new
499  * contexts to the ELSP accordingly.
500  */
501 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 {
503         struct drm_i915_private *dev_priv = ring->dev->dev_private;
504         u32 status_pointer;
505         u8 read_pointer;
506         u8 write_pointer;
507         u32 status = 0;
508         u32 status_id;
509         u32 submit_contexts = 0;
510
511         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513         read_pointer = ring->next_context_status_buffer;
514         write_pointer = status_pointer & 0x07;
515         if (read_pointer > write_pointer)
516                 write_pointer += 6;
517
518         spin_lock(&ring->execlist_lock);
519
520         while (read_pointer < write_pointer) {
521                 read_pointer++;
522                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
523                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
524
525                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526                         continue;
527
528                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
529                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530                                 if (execlists_check_remove_request(ring, status_id))
531                                         WARN(1, "Lite Restored request removed from queue\n");
532                         } else
533                                 WARN(1, "Preemption without Lite Restore\n");
534                 }
535
536                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538                         if (execlists_check_remove_request(ring, status_id))
539                                 submit_contexts++;
540                 }
541         }
542
543         if (disable_lite_restore_wa(ring)) {
544                 /* Prevent a ctx to preempt itself */
545                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546                     (submit_contexts != 0))
547                         execlists_context_unqueue(ring);
548         } else if (submit_contexts != 0) {
549                 execlists_context_unqueue(ring);
550         }
551
552         spin_unlock(&ring->execlist_lock);
553
554         WARN(submit_contexts > 2, "More than two context complete events?\n");
555         ring->next_context_status_buffer = write_pointer % 6;
556
557         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558                    _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
559 }
560
561 static int execlists_context_queue(struct drm_i915_gem_request *request)
562 {
563         struct intel_engine_cs *ring = request->ring;
564         struct drm_i915_gem_request *cursor;
565         int num_elements = 0;
566
567         if (request->ctx != ring->default_context)
568                 intel_lr_context_pin(request);
569
570         i915_gem_request_reference(request);
571
572         spin_lock_irq(&ring->execlist_lock);
573
574         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
575                 if (++num_elements > 2)
576                         break;
577
578         if (num_elements > 2) {
579                 struct drm_i915_gem_request *tail_req;
580
581                 tail_req = list_last_entry(&ring->execlist_queue,
582                                            struct drm_i915_gem_request,
583                                            execlist_link);
584
585                 if (request->ctx == tail_req->ctx) {
586                         WARN(tail_req->elsp_submitted != 0,
587                                 "More than 2 already-submitted reqs queued\n");
588                         list_del(&tail_req->execlist_link);
589                         list_add_tail(&tail_req->execlist_link,
590                                 &ring->execlist_retired_req_list);
591                 }
592         }
593
594         list_add_tail(&request->execlist_link, &ring->execlist_queue);
595         if (num_elements == 0)
596                 execlists_context_unqueue(ring);
597
598         spin_unlock_irq(&ring->execlist_lock);
599
600         return 0;
601 }
602
603 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
604 {
605         struct intel_engine_cs *ring = req->ring;
606         uint32_t flush_domains;
607         int ret;
608
609         flush_domains = 0;
610         if (ring->gpu_caches_dirty)
611                 flush_domains = I915_GEM_GPU_DOMAINS;
612
613         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
614         if (ret)
615                 return ret;
616
617         ring->gpu_caches_dirty = false;
618         return 0;
619 }
620
621 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
622                                  struct list_head *vmas)
623 {
624         const unsigned other_rings = ~intel_ring_flag(req->ring);
625         struct i915_vma *vma;
626         uint32_t flush_domains = 0;
627         bool flush_chipset = false;
628         int ret;
629
630         list_for_each_entry(vma, vmas, exec_list) {
631                 struct drm_i915_gem_object *obj = vma->obj;
632
633                 if (obj->active & other_rings) {
634                         ret = i915_gem_object_sync(obj, req->ring, &req);
635                         if (ret)
636                                 return ret;
637                 }
638
639                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
640                         flush_chipset |= i915_gem_clflush_object(obj, false);
641
642                 flush_domains |= obj->base.write_domain;
643         }
644
645         if (flush_domains & I915_GEM_DOMAIN_GTT)
646                 wmb();
647
648         /* Unconditionally invalidate gpu caches and ensure that we do flush
649          * any residual writes from the previous batch.
650          */
651         return logical_ring_invalidate_all_caches(req);
652 }
653
654 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
655 {
656         int ret;
657
658         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
659
660         if (request->ctx != request->ring->default_context) {
661                 ret = intel_lr_context_pin(request);
662                 if (ret)
663                         return ret;
664         }
665
666         return 0;
667 }
668
669 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
670                                        int bytes)
671 {
672         struct intel_ringbuffer *ringbuf = req->ringbuf;
673         struct intel_engine_cs *ring = req->ring;
674         struct drm_i915_gem_request *target;
675         unsigned space;
676         int ret;
677
678         if (intel_ring_space(ringbuf) >= bytes)
679                 return 0;
680
681         /* The whole point of reserving space is to not wait! */
682         WARN_ON(ringbuf->reserved_in_use);
683
684         list_for_each_entry(target, &ring->request_list, list) {
685                 /*
686                  * The request queue is per-engine, so can contain requests
687                  * from multiple ringbuffers. Here, we must ignore any that
688                  * aren't from the ringbuffer we're considering.
689                  */
690                 if (target->ringbuf != ringbuf)
691                         continue;
692
693                 /* Would completion of this request free enough space? */
694                 space = __intel_ring_space(target->postfix, ringbuf->tail,
695                                            ringbuf->size);
696                 if (space >= bytes)
697                         break;
698         }
699
700         if (WARN_ON(&target->list == &ring->request_list))
701                 return -ENOSPC;
702
703         ret = i915_wait_request(target);
704         if (ret)
705                 return ret;
706
707         ringbuf->space = space;
708         return 0;
709 }
710
711 /*
712  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
713  * @request: Request to advance the logical ringbuffer of.
714  *
715  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
716  * really happens during submission is that the context and current tail will be placed
717  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
718  * point, the tail *inside* the context is updated and the ELSP written to.
719  */
720 static void
721 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
722 {
723         struct intel_engine_cs *ring = request->ring;
724         struct drm_i915_private *dev_priv = request->i915;
725
726         intel_logical_ring_advance(request->ringbuf);
727
728         request->tail = request->ringbuf->tail;
729
730         if (intel_ring_stopped(ring))
731                 return;
732
733         if (dev_priv->guc.execbuf_client)
734                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
735         else
736                 execlists_context_queue(request);
737 }
738
739 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
740 {
741         uint32_t __iomem *virt;
742         int rem = ringbuf->size - ringbuf->tail;
743
744         virt = ringbuf->virtual_start + ringbuf->tail;
745         rem /= 4;
746         while (rem--)
747                 iowrite32(MI_NOOP, virt++);
748
749         ringbuf->tail = 0;
750         intel_ring_update_space(ringbuf);
751 }
752
753 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
754 {
755         struct intel_ringbuffer *ringbuf = req->ringbuf;
756         int remain_usable = ringbuf->effective_size - ringbuf->tail;
757         int remain_actual = ringbuf->size - ringbuf->tail;
758         int ret, total_bytes, wait_bytes = 0;
759         bool need_wrap = false;
760
761         if (ringbuf->reserved_in_use)
762                 total_bytes = bytes;
763         else
764                 total_bytes = bytes + ringbuf->reserved_size;
765
766         if (unlikely(bytes > remain_usable)) {
767                 /*
768                  * Not enough space for the basic request. So need to flush
769                  * out the remainder and then wait for base + reserved.
770                  */
771                 wait_bytes = remain_actual + total_bytes;
772                 need_wrap = true;
773         } else {
774                 if (unlikely(total_bytes > remain_usable)) {
775                         /*
776                          * The base request will fit but the reserved space
777                          * falls off the end. So only need to to wait for the
778                          * reserved size after flushing out the remainder.
779                          */
780                         wait_bytes = remain_actual + ringbuf->reserved_size;
781                         need_wrap = true;
782                 } else if (total_bytes > ringbuf->space) {
783                         /* No wrapping required, just waiting. */
784                         wait_bytes = total_bytes;
785                 }
786         }
787
788         if (wait_bytes) {
789                 ret = logical_ring_wait_for_space(req, wait_bytes);
790                 if (unlikely(ret))
791                         return ret;
792
793                 if (need_wrap)
794                         __wrap_ring_buffer(ringbuf);
795         }
796
797         return 0;
798 }
799
800 /**
801  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
802  *
803  * @req: The request to start some new work for
804  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
805  *
806  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
807  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
808  * and also preallocates a request (every workload submission is still mediated through
809  * requests, same as it did with legacy ringbuffer submission).
810  *
811  * Return: non-zero if the ringbuffer is not ready to be written to.
812  */
813 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
814 {
815         struct drm_i915_private *dev_priv;
816         int ret;
817
818         WARN_ON(req == NULL);
819         dev_priv = req->ring->dev->dev_private;
820
821         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
822                                    dev_priv->mm.interruptible);
823         if (ret)
824                 return ret;
825
826         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
827         if (ret)
828                 return ret;
829
830         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
831         return 0;
832 }
833
834 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
835 {
836         /*
837          * The first call merely notes the reserve request and is common for
838          * all back ends. The subsequent localised _begin() call actually
839          * ensures that the reservation is available. Without the begin, if
840          * the request creator immediately submitted the request without
841          * adding any commands to it then there might not actually be
842          * sufficient room for the submission commands.
843          */
844         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
845
846         return intel_logical_ring_begin(request, 0);
847 }
848
849 /**
850  * execlists_submission() - submit a batchbuffer for execution, Execlists style
851  * @dev: DRM device.
852  * @file: DRM file.
853  * @ring: Engine Command Streamer to submit to.
854  * @ctx: Context to employ for this submission.
855  * @args: execbuffer call arguments.
856  * @vmas: list of vmas.
857  * @batch_obj: the batchbuffer to submit.
858  * @exec_start: batchbuffer start virtual address pointer.
859  * @dispatch_flags: translated execbuffer call flags.
860  *
861  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
862  * away the submission details of the execbuffer ioctl call.
863  *
864  * Return: non-zero if the submission fails.
865  */
866 int intel_execlists_submission(struct i915_execbuffer_params *params,
867                                struct drm_i915_gem_execbuffer2 *args,
868                                struct list_head *vmas)
869 {
870         struct drm_device       *dev = params->dev;
871         struct intel_engine_cs  *ring = params->ring;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
874         u64 exec_start;
875         int instp_mode;
876         u32 instp_mask;
877         int ret;
878
879         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880         instp_mask = I915_EXEC_CONSTANTS_MASK;
881         switch (instp_mode) {
882         case I915_EXEC_CONSTANTS_REL_GENERAL:
883         case I915_EXEC_CONSTANTS_ABSOLUTE:
884         case I915_EXEC_CONSTANTS_REL_SURFACE:
885                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887                         return -EINVAL;
888                 }
889
890                 if (instp_mode != dev_priv->relative_constants_mode) {
891                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893                                 return -EINVAL;
894                         }
895
896                         /* The HW changed the meaning on this bit on gen6 */
897                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898                 }
899                 break;
900         default:
901                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902                 return -EINVAL;
903         }
904
905         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
906                 DRM_DEBUG("sol reset is gen7 only\n");
907                 return -EINVAL;
908         }
909
910         ret = execlists_move_to_gpu(params->request, vmas);
911         if (ret)
912                 return ret;
913
914         if (ring == &dev_priv->ring[RCS] &&
915             instp_mode != dev_priv->relative_constants_mode) {
916                 ret = intel_logical_ring_begin(params->request, 4);
917                 if (ret)
918                         return ret;
919
920                 intel_logical_ring_emit(ringbuf, MI_NOOP);
921                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
922                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
923                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
924                 intel_logical_ring_advance(ringbuf);
925
926                 dev_priv->relative_constants_mode = instp_mode;
927         }
928
929         exec_start = params->batch_obj_vm_offset +
930                      args->batch_start_offset;
931
932         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
933         if (ret)
934                 return ret;
935
936         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
937
938         i915_gem_execbuffer_move_to_active(vmas, params->request);
939         i915_gem_execbuffer_retire_commands(params);
940
941         return 0;
942 }
943
944 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
945 {
946         struct drm_i915_gem_request *req, *tmp;
947         struct list_head retired_list;
948
949         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
950         if (list_empty(&ring->execlist_retired_req_list))
951                 return;
952
953         INIT_LIST_HEAD(&retired_list);
954         spin_lock_irq(&ring->execlist_lock);
955         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
956         spin_unlock_irq(&ring->execlist_lock);
957
958         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
959                 struct intel_context *ctx = req->ctx;
960                 struct drm_i915_gem_object *ctx_obj =
961                                 ctx->engine[ring->id].state;
962
963                 if (ctx_obj && (ctx != ring->default_context))
964                         intel_lr_context_unpin(req);
965                 list_del(&req->execlist_link);
966                 i915_gem_request_unreference(req);
967         }
968 }
969
970 void intel_logical_ring_stop(struct intel_engine_cs *ring)
971 {
972         struct drm_i915_private *dev_priv = ring->dev->dev_private;
973         int ret;
974
975         if (!intel_ring_initialized(ring))
976                 return;
977
978         ret = intel_ring_idle(ring);
979         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
980                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
981                           ring->name, ret);
982
983         /* TODO: Is this correct with Execlists enabled? */
984         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
985         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
986                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
987                 return;
988         }
989         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
990 }
991
992 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
993 {
994         struct intel_engine_cs *ring = req->ring;
995         int ret;
996
997         if (!ring->gpu_caches_dirty)
998                 return 0;
999
1000         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1001         if (ret)
1002                 return ret;
1003
1004         ring->gpu_caches_dirty = false;
1005         return 0;
1006 }
1007
1008 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1009                 struct drm_i915_gem_object *ctx_obj,
1010                 struct intel_ringbuffer *ringbuf)
1011 {
1012         struct drm_device *dev = ring->dev;
1013         struct drm_i915_private *dev_priv = dev->dev_private;
1014         int ret = 0;
1015
1016         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1017         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1018                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1019         if (ret)
1020                 return ret;
1021
1022         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1023         if (ret)
1024                 goto unpin_ctx_obj;
1025
1026         ctx_obj->dirty = true;
1027
1028         /* Invalidate GuC TLB. */
1029         if (i915.enable_guc_submission)
1030                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1031
1032         return ret;
1033
1034 unpin_ctx_obj:
1035         i915_gem_object_ggtt_unpin(ctx_obj);
1036
1037         return ret;
1038 }
1039
1040 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1041 {
1042         int ret = 0;
1043         struct intel_engine_cs *ring = rq->ring;
1044         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1045         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1046
1047         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1048                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1049                 if (ret)
1050                         goto reset_pin_count;
1051         }
1052         return ret;
1053
1054 reset_pin_count:
1055         rq->ctx->engine[ring->id].pin_count = 0;
1056         return ret;
1057 }
1058
1059 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1060 {
1061         struct intel_engine_cs *ring = rq->ring;
1062         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1063         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1064
1065         if (ctx_obj) {
1066                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1067                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1068                         intel_unpin_ringbuffer_obj(ringbuf);
1069                         i915_gem_object_ggtt_unpin(ctx_obj);
1070                 }
1071         }
1072 }
1073
1074 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1075 {
1076         int ret, i;
1077         struct intel_engine_cs *ring = req->ring;
1078         struct intel_ringbuffer *ringbuf = req->ringbuf;
1079         struct drm_device *dev = ring->dev;
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         struct i915_workarounds *w = &dev_priv->workarounds;
1082
1083         if (WARN_ON_ONCE(w->count == 0))
1084                 return 0;
1085
1086         ring->gpu_caches_dirty = true;
1087         ret = logical_ring_flush_all_caches(req);
1088         if (ret)
1089                 return ret;
1090
1091         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1092         if (ret)
1093                 return ret;
1094
1095         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1096         for (i = 0; i < w->count; i++) {
1097                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1098                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1099         }
1100         intel_logical_ring_emit(ringbuf, MI_NOOP);
1101
1102         intel_logical_ring_advance(ringbuf);
1103
1104         ring->gpu_caches_dirty = true;
1105         ret = logical_ring_flush_all_caches(req);
1106         if (ret)
1107                 return ret;
1108
1109         return 0;
1110 }
1111
1112 #define wa_ctx_emit(batch, index, cmd)                                  \
1113         do {                                                            \
1114                 int __index = (index)++;                                \
1115                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1116                         return -ENOSPC;                                 \
1117                 }                                                       \
1118                 batch[__index] = (cmd);                                 \
1119         } while (0)
1120
1121 #define wa_ctx_emit_reg(batch, index, reg) \
1122         wa_ctx_emit((batch), (index), (reg))
1123
1124 /*
1125  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1126  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1127  * but there is a slight complication as this is applied in WA batch where the
1128  * values are only initialized once so we cannot take register value at the
1129  * beginning and reuse it further; hence we save its value to memory, upload a
1130  * constant value with bit21 set and then we restore it back with the saved value.
1131  * To simplify the WA, a constant value is formed by using the default value
1132  * of this register. This shouldn't be a problem because we are only modifying
1133  * it for a short period and this batch in non-premptible. We can ofcourse
1134  * use additional instructions that read the actual value of the register
1135  * at that time and set our bit of interest but it makes the WA complicated.
1136  *
1137  * This WA is also required for Gen9 so extracting as a function avoids
1138  * code duplication.
1139  */
1140 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1141                                                 uint32_t *const batch,
1142                                                 uint32_t index)
1143 {
1144         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1145
1146         /*
1147          * WaDisableLSQCROPERFforOCL:skl
1148          * This WA is implemented in skl_init_clock_gating() but since
1149          * this batch updates GEN8_L3SQCREG4 with default value we need to
1150          * set this bit here to retain the WA during flush.
1151          */
1152         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1153                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1154
1155         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1156                                    MI_SRM_LRM_GLOBAL_GTT));
1157         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1158         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1159         wa_ctx_emit(batch, index, 0);
1160
1161         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1162         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1163         wa_ctx_emit(batch, index, l3sqc4_flush);
1164
1165         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1166         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1167                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1168         wa_ctx_emit(batch, index, 0);
1169         wa_ctx_emit(batch, index, 0);
1170         wa_ctx_emit(batch, index, 0);
1171         wa_ctx_emit(batch, index, 0);
1172
1173         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1174                                    MI_SRM_LRM_GLOBAL_GTT));
1175         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1176         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1177         wa_ctx_emit(batch, index, 0);
1178
1179         return index;
1180 }
1181
1182 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1183                                     uint32_t offset,
1184                                     uint32_t start_alignment)
1185 {
1186         return wa_ctx->offset = ALIGN(offset, start_alignment);
1187 }
1188
1189 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1190                              uint32_t offset,
1191                              uint32_t size_alignment)
1192 {
1193         wa_ctx->size = offset - wa_ctx->offset;
1194
1195         WARN(wa_ctx->size % size_alignment,
1196              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1197              wa_ctx->size, size_alignment);
1198         return 0;
1199 }
1200
1201 /**
1202  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1203  *
1204  * @ring: only applicable for RCS
1205  * @wa_ctx: structure representing wa_ctx
1206  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1207  *    with the offset value received as input.
1208  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1209  * @batch: page in which WA are loaded
1210  * @offset: This field specifies the start of the batch, it should be
1211  *  cache-aligned otherwise it is adjusted accordingly.
1212  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1213  *  initialized at the beginning and shared across all contexts but this field
1214  *  helps us to have multiple batches at different offsets and select them based
1215  *  on a criteria. At the moment this batch always start at the beginning of the page
1216  *  and at this point we don't have multiple wa_ctx batch buffers.
1217  *
1218  *  The number of WA applied are not known at the beginning; we use this field
1219  *  to return the no of DWORDS written.
1220  *
1221  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1222  *  so it adds NOOPs as padding to make it cacheline aligned.
1223  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1224  *  makes a complete batch buffer.
1225  *
1226  * Return: non-zero if we exceed the PAGE_SIZE limit.
1227  */
1228
1229 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1230                                     struct i915_wa_ctx_bb *wa_ctx,
1231                                     uint32_t *const batch,
1232                                     uint32_t *offset)
1233 {
1234         uint32_t scratch_addr;
1235         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1236
1237         /* WaDisableCtxRestoreArbitration:bdw,chv */
1238         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1239
1240         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1241         if (IS_BROADWELL(ring->dev)) {
1242                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1243                 if (rc < 0)
1244                         return rc;
1245                 index = rc;
1246         }
1247
1248         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249         /* Actual scratch location is at 128 bytes offset */
1250         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1251
1252         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1253         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1254                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1255                                    PIPE_CONTROL_CS_STALL |
1256                                    PIPE_CONTROL_QW_WRITE));
1257         wa_ctx_emit(batch, index, scratch_addr);
1258         wa_ctx_emit(batch, index, 0);
1259         wa_ctx_emit(batch, index, 0);
1260         wa_ctx_emit(batch, index, 0);
1261
1262         /* Pad to end of cacheline */
1263         while (index % CACHELINE_DWORDS)
1264                 wa_ctx_emit(batch, index, MI_NOOP);
1265
1266         /*
1267          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1268          * execution depends on the length specified in terms of cache lines
1269          * in the register CTX_RCS_INDIRECT_CTX
1270          */
1271
1272         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1273 }
1274
1275 /**
1276  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1277  *
1278  * @ring: only applicable for RCS
1279  * @wa_ctx: structure representing wa_ctx
1280  *  offset: specifies start of the batch, should be cache-aligned.
1281  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1282  * @batch: page in which WA are loaded
1283  * @offset: This field specifies the start of this batch.
1284  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1285  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1286  *
1287  *   The number of DWORDS written are returned using this field.
1288  *
1289  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1290  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1291  */
1292 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1293                                struct i915_wa_ctx_bb *wa_ctx,
1294                                uint32_t *const batch,
1295                                uint32_t *offset)
1296 {
1297         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
1299         /* WaDisableCtxRestoreArbitration:bdw,chv */
1300         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1301
1302         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1303
1304         return wa_ctx_end(wa_ctx, *offset = index, 1);
1305 }
1306
1307 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1308                                     struct i915_wa_ctx_bb *wa_ctx,
1309                                     uint32_t *const batch,
1310                                     uint32_t *offset)
1311 {
1312         int ret;
1313         struct drm_device *dev = ring->dev;
1314         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1315
1316         /* WaDisableCtxRestoreArbitration:skl,bxt */
1317         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1318             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1319                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1320
1321         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1322         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1323         if (ret < 0)
1324                 return ret;
1325         index = ret;
1326
1327         /* Pad to end of cacheline */
1328         while (index % CACHELINE_DWORDS)
1329                 wa_ctx_emit(batch, index, MI_NOOP);
1330
1331         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1332 }
1333
1334 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1335                                struct i915_wa_ctx_bb *wa_ctx,
1336                                uint32_t *const batch,
1337                                uint32_t *offset)
1338 {
1339         struct drm_device *dev = ring->dev;
1340         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1341
1342         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1343         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1344             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1345                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1346                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1347                 wa_ctx_emit(batch, index,
1348                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1349                 wa_ctx_emit(batch, index, MI_NOOP);
1350         }
1351
1352         /* WaDisableCtxRestoreArbitration:skl,bxt */
1353         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1354             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1355                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1356
1357         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1358
1359         return wa_ctx_end(wa_ctx, *offset = index, 1);
1360 }
1361
1362 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1363 {
1364         int ret;
1365
1366         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1367         if (!ring->wa_ctx.obj) {
1368                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1369                 return -ENOMEM;
1370         }
1371
1372         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1373         if (ret) {
1374                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1375                                  ret);
1376                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1377                 return ret;
1378         }
1379
1380         return 0;
1381 }
1382
1383 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1384 {
1385         if (ring->wa_ctx.obj) {
1386                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1387                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1388                 ring->wa_ctx.obj = NULL;
1389         }
1390 }
1391
1392 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1393 {
1394         int ret;
1395         uint32_t *batch;
1396         uint32_t offset;
1397         struct page *page;
1398         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1399
1400         WARN_ON(ring->id != RCS);
1401
1402         /* update this when WA for higher Gen are added */
1403         if (INTEL_INFO(ring->dev)->gen > 9) {
1404                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1405                           INTEL_INFO(ring->dev)->gen);
1406                 return 0;
1407         }
1408
1409         /* some WA perform writes to scratch page, ensure it is valid */
1410         if (ring->scratch.obj == NULL) {
1411                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1412                 return -EINVAL;
1413         }
1414
1415         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1416         if (ret) {
1417                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1418                 return ret;
1419         }
1420
1421         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1422         batch = kmap_atomic(page);
1423         offset = 0;
1424
1425         if (INTEL_INFO(ring->dev)->gen == 8) {
1426                 ret = gen8_init_indirectctx_bb(ring,
1427                                                &wa_ctx->indirect_ctx,
1428                                                batch,
1429                                                &offset);
1430                 if (ret)
1431                         goto out;
1432
1433                 ret = gen8_init_perctx_bb(ring,
1434                                           &wa_ctx->per_ctx,
1435                                           batch,
1436                                           &offset);
1437                 if (ret)
1438                         goto out;
1439         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1440                 ret = gen9_init_indirectctx_bb(ring,
1441                                                &wa_ctx->indirect_ctx,
1442                                                batch,
1443                                                &offset);
1444                 if (ret)
1445                         goto out;
1446
1447                 ret = gen9_init_perctx_bb(ring,
1448                                           &wa_ctx->per_ctx,
1449                                           batch,
1450                                           &offset);
1451                 if (ret)
1452                         goto out;
1453         }
1454
1455 out:
1456         kunmap_atomic(batch);
1457         if (ret)
1458                 lrc_destroy_wa_ctx_obj(ring);
1459
1460         return ret;
1461 }
1462
1463 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1464 {
1465         struct drm_device *dev = ring->dev;
1466         struct drm_i915_private *dev_priv = dev->dev_private;
1467
1468         lrc_setup_hardware_status_page(ring,
1469                                 ring->default_context->engine[ring->id].state);
1470
1471         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1472         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1473
1474         if (ring->status_page.obj) {
1475                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1476                            (u32)ring->status_page.gfx_addr);
1477                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1478         }
1479
1480         I915_WRITE(RING_MODE_GEN7(ring),
1481                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1482                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1483         POSTING_READ(RING_MODE_GEN7(ring));
1484         ring->next_context_status_buffer = 0;
1485         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1486
1487         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1488
1489         return 0;
1490 }
1491
1492 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1493 {
1494         struct drm_device *dev = ring->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         int ret;
1497
1498         ret = gen8_init_common_ring(ring);
1499         if (ret)
1500                 return ret;
1501
1502         /* We need to disable the AsyncFlip performance optimisations in order
1503          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1504          * programmed to '1' on all products.
1505          *
1506          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1507          */
1508         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1509
1510         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1511
1512         return init_workarounds_ring(ring);
1513 }
1514
1515 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1516 {
1517         int ret;
1518
1519         ret = gen8_init_common_ring(ring);
1520         if (ret)
1521                 return ret;
1522
1523         return init_workarounds_ring(ring);
1524 }
1525
1526 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1527 {
1528         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1529         struct intel_engine_cs *ring = req->ring;
1530         struct intel_ringbuffer *ringbuf = req->ringbuf;
1531         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1532         int i, ret;
1533
1534         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1535         if (ret)
1536                 return ret;
1537
1538         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1539         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1540                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1541
1542                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1543                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1544                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1545                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1546         }
1547
1548         intel_logical_ring_emit(ringbuf, MI_NOOP);
1549         intel_logical_ring_advance(ringbuf);
1550
1551         return 0;
1552 }
1553
1554 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1555                               u64 offset, unsigned dispatch_flags)
1556 {
1557         struct intel_ringbuffer *ringbuf = req->ringbuf;
1558         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1559         int ret;
1560
1561         /* Don't rely in hw updating PDPs, specially in lite-restore.
1562          * Ideally, we should set Force PD Restore in ctx descriptor,
1563          * but we can't. Force Restore would be a second option, but
1564          * it is unsafe in case of lite-restore (because the ctx is
1565          * not idle). PML4 is allocated during ppgtt init so this is
1566          * not needed in 48-bit.*/
1567         if (req->ctx->ppgtt &&
1568             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1569                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1570                     !intel_vgpu_active(req->i915->dev)) {
1571                         ret = intel_logical_ring_emit_pdps(req);
1572                         if (ret)
1573                                 return ret;
1574                 }
1575
1576                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1577         }
1578
1579         ret = intel_logical_ring_begin(req, 4);
1580         if (ret)
1581                 return ret;
1582
1583         /* FIXME(BDW): Address space and security selectors. */
1584         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1585                                 (ppgtt<<8) |
1586                                 (dispatch_flags & I915_DISPATCH_RS ?
1587                                  MI_BATCH_RESOURCE_STREAMER : 0));
1588         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1589         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1590         intel_logical_ring_emit(ringbuf, MI_NOOP);
1591         intel_logical_ring_advance(ringbuf);
1592
1593         return 0;
1594 }
1595
1596 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1597 {
1598         struct drm_device *dev = ring->dev;
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         unsigned long flags;
1601
1602         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1603                 return false;
1604
1605         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1606         if (ring->irq_refcount++ == 0) {
1607                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1608                 POSTING_READ(RING_IMR(ring->mmio_base));
1609         }
1610         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611
1612         return true;
1613 }
1614
1615 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1616 {
1617         struct drm_device *dev = ring->dev;
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619         unsigned long flags;
1620
1621         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1622         if (--ring->irq_refcount == 0) {
1623                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1624                 POSTING_READ(RING_IMR(ring->mmio_base));
1625         }
1626         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1627 }
1628
1629 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1630                            u32 invalidate_domains,
1631                            u32 unused)
1632 {
1633         struct intel_ringbuffer *ringbuf = request->ringbuf;
1634         struct intel_engine_cs *ring = ringbuf->ring;
1635         struct drm_device *dev = ring->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         uint32_t cmd;
1638         int ret;
1639
1640         ret = intel_logical_ring_begin(request, 4);
1641         if (ret)
1642                 return ret;
1643
1644         cmd = MI_FLUSH_DW + 1;
1645
1646         /* We always require a command barrier so that subsequent
1647          * commands, such as breadcrumb interrupts, are strictly ordered
1648          * wrt the contents of the write cache being flushed to memory
1649          * (and thus being coherent from the CPU).
1650          */
1651         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1652
1653         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1654                 cmd |= MI_INVALIDATE_TLB;
1655                 if (ring == &dev_priv->ring[VCS])
1656                         cmd |= MI_INVALIDATE_BSD;
1657         }
1658
1659         intel_logical_ring_emit(ringbuf, cmd);
1660         intel_logical_ring_emit(ringbuf,
1661                                 I915_GEM_HWS_SCRATCH_ADDR |
1662                                 MI_FLUSH_DW_USE_GTT);
1663         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1664         intel_logical_ring_emit(ringbuf, 0); /* value */
1665         intel_logical_ring_advance(ringbuf);
1666
1667         return 0;
1668 }
1669
1670 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1671                                   u32 invalidate_domains,
1672                                   u32 flush_domains)
1673 {
1674         struct intel_ringbuffer *ringbuf = request->ringbuf;
1675         struct intel_engine_cs *ring = ringbuf->ring;
1676         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1677         bool vf_flush_wa;
1678         u32 flags = 0;
1679         int ret;
1680
1681         flags |= PIPE_CONTROL_CS_STALL;
1682
1683         if (flush_domains) {
1684                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1685                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1686         }
1687
1688         if (invalidate_domains) {
1689                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1690                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1691                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1692                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1693                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1694                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1695                 flags |= PIPE_CONTROL_QW_WRITE;
1696                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1697         }
1698
1699         /*
1700          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1701          * control.
1702          */
1703         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1704                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1705
1706         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1707         if (ret)
1708                 return ret;
1709
1710         if (vf_flush_wa) {
1711                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1712                 intel_logical_ring_emit(ringbuf, 0);
1713                 intel_logical_ring_emit(ringbuf, 0);
1714                 intel_logical_ring_emit(ringbuf, 0);
1715                 intel_logical_ring_emit(ringbuf, 0);
1716                 intel_logical_ring_emit(ringbuf, 0);
1717         }
1718
1719         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1720         intel_logical_ring_emit(ringbuf, flags);
1721         intel_logical_ring_emit(ringbuf, scratch_addr);
1722         intel_logical_ring_emit(ringbuf, 0);
1723         intel_logical_ring_emit(ringbuf, 0);
1724         intel_logical_ring_emit(ringbuf, 0);
1725         intel_logical_ring_advance(ringbuf);
1726
1727         return 0;
1728 }
1729
1730 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1731 {
1732         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1733 }
1734
1735 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1736 {
1737         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1738 }
1739
1740 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1741 {
1742
1743         /*
1744          * On BXT A steppings there is a HW coherency issue whereby the
1745          * MI_STORE_DATA_IMM storing the completed request's seqno
1746          * occasionally doesn't invalidate the CPU cache. Work around this by
1747          * clflushing the corresponding cacheline whenever the caller wants
1748          * the coherency to be guaranteed. Note that this cacheline is known
1749          * to be clean at this point, since we only write it in
1750          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1751          * this clflush in practice becomes an invalidate operation.
1752          */
1753
1754         if (!lazy_coherency)
1755                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1756
1757         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1758 }
1759
1760 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1761 {
1762         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1763
1764         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1765         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1766 }
1767
1768 static int gen8_emit_request(struct drm_i915_gem_request *request)
1769 {
1770         struct intel_ringbuffer *ringbuf = request->ringbuf;
1771         struct intel_engine_cs *ring = ringbuf->ring;
1772         u32 cmd;
1773         int ret;
1774
1775         /*
1776          * Reserve space for 2 NOOPs at the end of each request to be
1777          * used as a workaround for not being allowed to do lite
1778          * restore with HEAD==TAIL (WaIdleLiteRestore).
1779          */
1780         ret = intel_logical_ring_begin(request, 8);
1781         if (ret)
1782                 return ret;
1783
1784         cmd = MI_STORE_DWORD_IMM_GEN4;
1785         cmd |= MI_GLOBAL_GTT;
1786
1787         intel_logical_ring_emit(ringbuf, cmd);
1788         intel_logical_ring_emit(ringbuf,
1789                                 (ring->status_page.gfx_addr +
1790                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1791         intel_logical_ring_emit(ringbuf, 0);
1792         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1793         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1794         intel_logical_ring_emit(ringbuf, MI_NOOP);
1795         intel_logical_ring_advance_and_submit(request);
1796
1797         /*
1798          * Here we add two extra NOOPs as padding to avoid
1799          * lite restore of a context with HEAD==TAIL.
1800          */
1801         intel_logical_ring_emit(ringbuf, MI_NOOP);
1802         intel_logical_ring_emit(ringbuf, MI_NOOP);
1803         intel_logical_ring_advance(ringbuf);
1804
1805         return 0;
1806 }
1807
1808 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1809 {
1810         struct render_state so;
1811         int ret;
1812
1813         ret = i915_gem_render_state_prepare(req->ring, &so);
1814         if (ret)
1815                 return ret;
1816
1817         if (so.rodata == NULL)
1818                 return 0;
1819
1820         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1821                                        I915_DISPATCH_SECURE);
1822         if (ret)
1823                 goto out;
1824
1825         ret = req->ring->emit_bb_start(req,
1826                                        (so.ggtt_offset + so.aux_batch_offset),
1827                                        I915_DISPATCH_SECURE);
1828         if (ret)
1829                 goto out;
1830
1831         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1832
1833 out:
1834         i915_gem_render_state_fini(&so);
1835         return ret;
1836 }
1837
1838 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1839 {
1840         int ret;
1841
1842         ret = intel_logical_ring_workarounds_emit(req);
1843         if (ret)
1844                 return ret;
1845
1846         ret = intel_rcs_context_init_mocs(req);
1847         /*
1848          * Failing to program the MOCS is non-fatal.The system will not
1849          * run at peak performance. So generate an error and carry on.
1850          */
1851         if (ret)
1852                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1853
1854         return intel_lr_context_render_state_init(req);
1855 }
1856
1857 /**
1858  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1859  *
1860  * @ring: Engine Command Streamer.
1861  *
1862  */
1863 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1864 {
1865         struct drm_i915_private *dev_priv;
1866
1867         if (!intel_ring_initialized(ring))
1868                 return;
1869
1870         dev_priv = ring->dev->dev_private;
1871
1872         intel_logical_ring_stop(ring);
1873         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1874
1875         if (ring->cleanup)
1876                 ring->cleanup(ring);
1877
1878         i915_cmd_parser_fini_ring(ring);
1879         i915_gem_batch_pool_fini(&ring->batch_pool);
1880
1881         if (ring->status_page.obj) {
1882                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1883                 ring->status_page.obj = NULL;
1884         }
1885
1886         lrc_destroy_wa_ctx_obj(ring);
1887 }
1888
1889 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1890 {
1891         int ret;
1892
1893         /* Intentionally left blank. */
1894         ring->buffer = NULL;
1895
1896         ring->dev = dev;
1897         INIT_LIST_HEAD(&ring->active_list);
1898         INIT_LIST_HEAD(&ring->request_list);
1899         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1900         init_waitqueue_head(&ring->irq_queue);
1901
1902         INIT_LIST_HEAD(&ring->buffers);
1903         INIT_LIST_HEAD(&ring->execlist_queue);
1904         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1905         spin_lock_init(&ring->execlist_lock);
1906
1907         ret = i915_cmd_parser_init_ring(ring);
1908         if (ret)
1909                 return ret;
1910
1911         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1912         if (ret)
1913                 return ret;
1914
1915         /* As this is the default context, always pin it */
1916         ret = intel_lr_context_do_pin(
1917                         ring,
1918                         ring->default_context->engine[ring->id].state,
1919                         ring->default_context->engine[ring->id].ringbuf);
1920         if (ret) {
1921                 DRM_ERROR(
1922                         "Failed to pin and map ringbuffer %s: %d\n",
1923                         ring->name, ret);
1924                 return ret;
1925         }
1926
1927         return ret;
1928 }
1929
1930 static int logical_render_ring_init(struct drm_device *dev)
1931 {
1932         struct drm_i915_private *dev_priv = dev->dev_private;
1933         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1934         int ret;
1935
1936         ring->name = "render ring";
1937         ring->id = RCS;
1938         ring->mmio_base = RENDER_RING_BASE;
1939         ring->irq_enable_mask =
1940                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1941         ring->irq_keep_mask =
1942                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1943         if (HAS_L3_DPF(dev))
1944                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1945
1946         if (INTEL_INFO(dev)->gen >= 9)
1947                 ring->init_hw = gen9_init_render_ring;
1948         else
1949                 ring->init_hw = gen8_init_render_ring;
1950         ring->init_context = gen8_init_rcs_context;
1951         ring->cleanup = intel_fini_pipe_control;
1952         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1953                 ring->get_seqno = bxt_a_get_seqno;
1954                 ring->set_seqno = bxt_a_set_seqno;
1955         } else {
1956                 ring->get_seqno = gen8_get_seqno;
1957                 ring->set_seqno = gen8_set_seqno;
1958         }
1959         ring->emit_request = gen8_emit_request;
1960         ring->emit_flush = gen8_emit_flush_render;
1961         ring->irq_get = gen8_logical_ring_get_irq;
1962         ring->irq_put = gen8_logical_ring_put_irq;
1963         ring->emit_bb_start = gen8_emit_bb_start;
1964
1965         ring->dev = dev;
1966
1967         ret = intel_init_pipe_control(ring);
1968         if (ret)
1969                 return ret;
1970
1971         ret = intel_init_workaround_bb(ring);
1972         if (ret) {
1973                 /*
1974                  * We continue even if we fail to initialize WA batch
1975                  * because we only expect rare glitches but nothing
1976                  * critical to prevent us from using GPU
1977                  */
1978                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1979                           ret);
1980         }
1981
1982         ret = logical_ring_init(dev, ring);
1983         if (ret) {
1984                 lrc_destroy_wa_ctx_obj(ring);
1985         }
1986
1987         return ret;
1988 }
1989
1990 static int logical_bsd_ring_init(struct drm_device *dev)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1994
1995         ring->name = "bsd ring";
1996         ring->id = VCS;
1997         ring->mmio_base = GEN6_BSD_RING_BASE;
1998         ring->irq_enable_mask =
1999                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2000         ring->irq_keep_mask =
2001                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2002
2003         ring->init_hw = gen8_init_common_ring;
2004         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2005                 ring->get_seqno = bxt_a_get_seqno;
2006                 ring->set_seqno = bxt_a_set_seqno;
2007         } else {
2008                 ring->get_seqno = gen8_get_seqno;
2009                 ring->set_seqno = gen8_set_seqno;
2010         }
2011         ring->emit_request = gen8_emit_request;
2012         ring->emit_flush = gen8_emit_flush;
2013         ring->irq_get = gen8_logical_ring_get_irq;
2014         ring->irq_put = gen8_logical_ring_put_irq;
2015         ring->emit_bb_start = gen8_emit_bb_start;
2016
2017         return logical_ring_init(dev, ring);
2018 }
2019
2020 static int logical_bsd2_ring_init(struct drm_device *dev)
2021 {
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2024
2025         ring->name = "bds2 ring";
2026         ring->id = VCS2;
2027         ring->mmio_base = GEN8_BSD2_RING_BASE;
2028         ring->irq_enable_mask =
2029                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2030         ring->irq_keep_mask =
2031                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2032
2033         ring->init_hw = gen8_init_common_ring;
2034         ring->get_seqno = gen8_get_seqno;
2035         ring->set_seqno = gen8_set_seqno;
2036         ring->emit_request = gen8_emit_request;
2037         ring->emit_flush = gen8_emit_flush;
2038         ring->irq_get = gen8_logical_ring_get_irq;
2039         ring->irq_put = gen8_logical_ring_put_irq;
2040         ring->emit_bb_start = gen8_emit_bb_start;
2041
2042         return logical_ring_init(dev, ring);
2043 }
2044
2045 static int logical_blt_ring_init(struct drm_device *dev)
2046 {
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2049
2050         ring->name = "blitter ring";
2051         ring->id = BCS;
2052         ring->mmio_base = BLT_RING_BASE;
2053         ring->irq_enable_mask =
2054                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2055         ring->irq_keep_mask =
2056                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2057
2058         ring->init_hw = gen8_init_common_ring;
2059         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2060                 ring->get_seqno = bxt_a_get_seqno;
2061                 ring->set_seqno = bxt_a_set_seqno;
2062         } else {
2063                 ring->get_seqno = gen8_get_seqno;
2064                 ring->set_seqno = gen8_set_seqno;
2065         }
2066         ring->emit_request = gen8_emit_request;
2067         ring->emit_flush = gen8_emit_flush;
2068         ring->irq_get = gen8_logical_ring_get_irq;
2069         ring->irq_put = gen8_logical_ring_put_irq;
2070         ring->emit_bb_start = gen8_emit_bb_start;
2071
2072         return logical_ring_init(dev, ring);
2073 }
2074
2075 static int logical_vebox_ring_init(struct drm_device *dev)
2076 {
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2079
2080         ring->name = "video enhancement ring";
2081         ring->id = VECS;
2082         ring->mmio_base = VEBOX_RING_BASE;
2083         ring->irq_enable_mask =
2084                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2085         ring->irq_keep_mask =
2086                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2087
2088         ring->init_hw = gen8_init_common_ring;
2089         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2090                 ring->get_seqno = bxt_a_get_seqno;
2091                 ring->set_seqno = bxt_a_set_seqno;
2092         } else {
2093                 ring->get_seqno = gen8_get_seqno;
2094                 ring->set_seqno = gen8_set_seqno;
2095         }
2096         ring->emit_request = gen8_emit_request;
2097         ring->emit_flush = gen8_emit_flush;
2098         ring->irq_get = gen8_logical_ring_get_irq;
2099         ring->irq_put = gen8_logical_ring_put_irq;
2100         ring->emit_bb_start = gen8_emit_bb_start;
2101
2102         return logical_ring_init(dev, ring);
2103 }
2104
2105 /**
2106  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2107  * @dev: DRM device.
2108  *
2109  * This function inits the engines for an Execlists submission style (the equivalent in the
2110  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2111  * those engines that are present in the hardware.
2112  *
2113  * Return: non-zero if the initialization failed.
2114  */
2115 int intel_logical_rings_init(struct drm_device *dev)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         int ret;
2119
2120         ret = logical_render_ring_init(dev);
2121         if (ret)
2122                 return ret;
2123
2124         if (HAS_BSD(dev)) {
2125                 ret = logical_bsd_ring_init(dev);
2126                 if (ret)
2127                         goto cleanup_render_ring;
2128         }
2129
2130         if (HAS_BLT(dev)) {
2131                 ret = logical_blt_ring_init(dev);
2132                 if (ret)
2133                         goto cleanup_bsd_ring;
2134         }
2135
2136         if (HAS_VEBOX(dev)) {
2137                 ret = logical_vebox_ring_init(dev);
2138                 if (ret)
2139                         goto cleanup_blt_ring;
2140         }
2141
2142         if (HAS_BSD2(dev)) {
2143                 ret = logical_bsd2_ring_init(dev);
2144                 if (ret)
2145                         goto cleanup_vebox_ring;
2146         }
2147
2148         return 0;
2149
2150 cleanup_vebox_ring:
2151         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2152 cleanup_blt_ring:
2153         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2154 cleanup_bsd_ring:
2155         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2156 cleanup_render_ring:
2157         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2158
2159         return ret;
2160 }
2161
2162 static u32
2163 make_rpcs(struct drm_device *dev)
2164 {
2165         u32 rpcs = 0;
2166
2167         /*
2168          * No explicit RPCS request is needed to ensure full
2169          * slice/subslice/EU enablement prior to Gen9.
2170         */
2171         if (INTEL_INFO(dev)->gen < 9)
2172                 return 0;
2173
2174         /*
2175          * Starting in Gen9, render power gating can leave
2176          * slice/subslice/EU in a partially enabled state. We
2177          * must make an explicit request through RPCS for full
2178          * enablement.
2179         */
2180         if (INTEL_INFO(dev)->has_slice_pg) {
2181                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2182                 rpcs |= INTEL_INFO(dev)->slice_total <<
2183                         GEN8_RPCS_S_CNT_SHIFT;
2184                 rpcs |= GEN8_RPCS_ENABLE;
2185         }
2186
2187         if (INTEL_INFO(dev)->has_subslice_pg) {
2188                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2189                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2190                         GEN8_RPCS_SS_CNT_SHIFT;
2191                 rpcs |= GEN8_RPCS_ENABLE;
2192         }
2193
2194         if (INTEL_INFO(dev)->has_eu_pg) {
2195                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2196                         GEN8_RPCS_EU_MIN_SHIFT;
2197                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2198                         GEN8_RPCS_EU_MAX_SHIFT;
2199                 rpcs |= GEN8_RPCS_ENABLE;
2200         }
2201
2202         return rpcs;
2203 }
2204
2205 static int
2206 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2207                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2208 {
2209         struct drm_device *dev = ring->dev;
2210         struct drm_i915_private *dev_priv = dev->dev_private;
2211         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2212         struct page *page;
2213         uint32_t *reg_state;
2214         int ret;
2215
2216         if (!ppgtt)
2217                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2218
2219         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2220         if (ret) {
2221                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2222                 return ret;
2223         }
2224
2225         ret = i915_gem_object_get_pages(ctx_obj);
2226         if (ret) {
2227                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2228                 return ret;
2229         }
2230
2231         i915_gem_object_pin_pages(ctx_obj);
2232
2233         /* The second page of the context object contains some fields which must
2234          * be set up prior to the first execution. */
2235         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2236         reg_state = kmap_atomic(page);
2237
2238         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2239          * commands followed by (reg, value) pairs. The values we are setting here are
2240          * only for the first context restore: on a subsequent save, the GPU will
2241          * recreate this batchbuffer with new values (including all the missing
2242          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2243         if (ring->id == RCS)
2244                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2245         else
2246                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2247         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2248         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2249         reg_state[CTX_CONTEXT_CONTROL+1] =
2250                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2251                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2252                                    CTX_CTRL_RS_CTX_ENABLE);
2253         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2254         reg_state[CTX_RING_HEAD+1] = 0;
2255         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2256         reg_state[CTX_RING_TAIL+1] = 0;
2257         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2258         /* Ring buffer start address is not known until the buffer is pinned.
2259          * It is written to the context image in execlists_update_context()
2260          */
2261         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2262         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2263                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2264         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2265         reg_state[CTX_BB_HEAD_U+1] = 0;
2266         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2267         reg_state[CTX_BB_HEAD_L+1] = 0;
2268         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2269         reg_state[CTX_BB_STATE+1] = (1<<5);
2270         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2271         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2272         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2273         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2274         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2275         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2276         if (ring->id == RCS) {
2277                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2278                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2279                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2280                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2281                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2282                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2283                 if (ring->wa_ctx.obj) {
2284                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2285                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2286
2287                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2288                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2289                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2290
2291                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2292                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2293
2294                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2295                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2296                                 0x01;
2297                 }
2298         }
2299         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2300         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2301         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2302         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2303         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2304         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2305         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2306         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2307         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2308         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2309         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2310         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2311
2312         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2313                 /* 64b PPGTT (48bit canonical)
2314                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2315                  * other PDP Descriptors are ignored.
2316                  */
2317                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2318         } else {
2319                 /* 32b PPGTT
2320                  * PDP*_DESCRIPTOR contains the base address of space supported.
2321                  * With dynamic page allocation, PDPs may not be allocated at
2322                  * this point. Point the unallocated PDPs to the scratch page
2323                  */
2324                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2325                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2326                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2327                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2328         }
2329
2330         if (ring->id == RCS) {
2331                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2332                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2333                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2334         }
2335
2336         kunmap_atomic(reg_state);
2337
2338         ctx_obj->dirty = 1;
2339         set_page_dirty(page);
2340         i915_gem_object_unpin_pages(ctx_obj);
2341
2342         return 0;
2343 }
2344
2345 /**
2346  * intel_lr_context_free() - free the LRC specific bits of a context
2347  * @ctx: the LR context to free.
2348  *
2349  * The real context freeing is done in i915_gem_context_free: this only
2350  * takes care of the bits that are LRC related: the per-engine backing
2351  * objects and the logical ringbuffer.
2352  */
2353 void intel_lr_context_free(struct intel_context *ctx)
2354 {
2355         int i;
2356
2357         for (i = 0; i < I915_NUM_RINGS; i++) {
2358                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2359
2360                 if (ctx_obj) {
2361                         struct intel_ringbuffer *ringbuf =
2362                                         ctx->engine[i].ringbuf;
2363                         struct intel_engine_cs *ring = ringbuf->ring;
2364
2365                         if (ctx == ring->default_context) {
2366                                 intel_unpin_ringbuffer_obj(ringbuf);
2367                                 i915_gem_object_ggtt_unpin(ctx_obj);
2368                         }
2369                         WARN_ON(ctx->engine[ring->id].pin_count);
2370                         intel_ringbuffer_free(ringbuf);
2371                         drm_gem_object_unreference(&ctx_obj->base);
2372                 }
2373         }
2374 }
2375
2376 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2377 {
2378         int ret = 0;
2379
2380         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2381
2382         switch (ring->id) {
2383         case RCS:
2384                 if (INTEL_INFO(ring->dev)->gen >= 9)
2385                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2386                 else
2387                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2388                 break;
2389         case VCS:
2390         case BCS:
2391         case VECS:
2392         case VCS2:
2393                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2394                 break;
2395         }
2396
2397         return ret;
2398 }
2399
2400 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2401                 struct drm_i915_gem_object *default_ctx_obj)
2402 {
2403         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2404         struct page *page;
2405
2406         /* The HWSP is part of the default context object in LRC mode. */
2407         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2408                         + LRC_PPHWSP_PN * PAGE_SIZE;
2409         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2410         ring->status_page.page_addr = kmap(page);
2411         ring->status_page.obj = default_ctx_obj;
2412
2413         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2414                         (u32)ring->status_page.gfx_addr);
2415         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2416 }
2417
2418 /**
2419  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2420  * @ctx: LR context to create.
2421  * @ring: engine to be used with the context.
2422  *
2423  * This function can be called more than once, with different engines, if we plan
2424  * to use the context with them. The context backing objects and the ringbuffers
2425  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2426  * the creation is a deferred call: it's better to make sure first that we need to use
2427  * a given ring with the context.
2428  *
2429  * Return: non-zero on error.
2430  */
2431
2432 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2433                                      struct intel_engine_cs *ring)
2434 {
2435         struct drm_device *dev = ring->dev;
2436         struct drm_i915_gem_object *ctx_obj;
2437         uint32_t context_size;
2438         struct intel_ringbuffer *ringbuf;
2439         int ret;
2440
2441         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2442         WARN_ON(ctx->engine[ring->id].state);
2443
2444         context_size = round_up(get_lr_context_size(ring), 4096);
2445
2446         /* One extra page as the sharing data between driver and GuC */
2447         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2448
2449         ctx_obj = i915_gem_alloc_object(dev, context_size);
2450         if (!ctx_obj) {
2451                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2452                 return -ENOMEM;
2453         }
2454
2455         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2456         if (IS_ERR(ringbuf)) {
2457                 ret = PTR_ERR(ringbuf);
2458                 goto error_deref_obj;
2459         }
2460
2461         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2462         if (ret) {
2463                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2464                 goto error_ringbuf;
2465         }
2466
2467         ctx->engine[ring->id].ringbuf = ringbuf;
2468         ctx->engine[ring->id].state = ctx_obj;
2469
2470         if (ctx != ring->default_context && ring->init_context) {
2471                 struct drm_i915_gem_request *req;
2472
2473                 ret = i915_gem_request_alloc(ring,
2474                         ctx, &req);
2475                 if (ret) {
2476                         DRM_ERROR("ring create req: %d\n",
2477                                 ret);
2478                         goto error_ringbuf;
2479                 }
2480
2481                 ret = ring->init_context(req);
2482                 if (ret) {
2483                         DRM_ERROR("ring init context: %d\n",
2484                                 ret);
2485                         i915_gem_request_cancel(req);
2486                         goto error_ringbuf;
2487                 }
2488                 i915_add_request_no_flush(req);
2489         }
2490         return 0;
2491
2492 error_ringbuf:
2493         intel_ringbuffer_free(ringbuf);
2494 error_deref_obj:
2495         drm_gem_object_unreference(&ctx_obj->base);
2496         ctx->engine[ring->id].ringbuf = NULL;
2497         ctx->engine[ring->id].state = NULL;
2498         return ret;
2499 }
2500
2501 void intel_lr_context_reset(struct drm_device *dev,
2502                         struct intel_context *ctx)
2503 {
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505         struct intel_engine_cs *ring;
2506         int i;
2507
2508         for_each_ring(ring, dev_priv, i) {
2509                 struct drm_i915_gem_object *ctx_obj =
2510                                 ctx->engine[ring->id].state;
2511                 struct intel_ringbuffer *ringbuf =
2512                                 ctx->engine[ring->id].ringbuf;
2513                 uint32_t *reg_state;
2514                 struct page *page;
2515
2516                 if (!ctx_obj)
2517                         continue;
2518
2519                 if (i915_gem_object_get_pages(ctx_obj)) {
2520                         WARN(1, "Failed get_pages for context obj\n");
2521                         continue;
2522                 }
2523                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2524                 reg_state = kmap_atomic(page);
2525
2526                 reg_state[CTX_RING_HEAD+1] = 0;
2527                 reg_state[CTX_RING_TAIL+1] = 0;
2528
2529                 kunmap_atomic(reg_state);
2530
2531                 ringbuf->head = 0;
2532                 ringbuf->tail = 0;
2533         }
2534 }