]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge branch 'WIP.x86/process' into perf/core
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static void execlists_init_reg_state(u32 *reg_state,
234                                      struct i915_gem_context *ctx,
235                                      struct intel_engine_cs *engine,
236                                      struct intel_ring *ring);
237
238 /**
239  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240  * @dev_priv: i915 device private
241  * @enable_execlists: value of i915.enable_execlists module parameter.
242  *
243  * Only certain platforms support Execlists (the prerequisites being
244  * support for Logical Ring Contexts and Aliasing PPGTT or better).
245  *
246  * Return: 1 if Execlists is supported and has to be enabled.
247  */
248 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249 {
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254                 return 1;
255
256         if (INTEL_GEN(dev_priv) >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
263             USES_PPGTT(dev_priv) &&
264             i915.use_mmio_flip >= 0)
265                 return 1;
266
267         return 0;
268 }
269
270 static void
271 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272 {
273         struct drm_i915_private *dev_priv = engine->i915;
274
275         engine->disable_lite_restore_wa =
276                 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277                 (engine->id == VCS || engine->id == VCS2);
278
279         engine->ctx_desc_template = GEN8_CTX_VALID;
280         if (IS_GEN8(dev_priv))
281                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
282         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290         if (engine->disable_lite_restore_wa)
291                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 }
293
294 /**
295  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296  *                                        descriptor for a pinned context
297  * @ctx: Context to work on
298  * @engine: Engine the descriptor will be used with
299  *
300  * The context descriptor encodes various attributes of a context,
301  * including its GTT address and some flags. Because it's fairly
302  * expensive to calculate, we'll just do it once and cache the result,
303  * which remains valid until the context is unpinned.
304  *
305  * This is what a descriptor looks like, from LSB to MSB::
306  *
307  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
308  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
309  *      bits 32-52:    ctx ID, a globally unique tag
310  *      bits 53-54:    mbz, reserved for use by hardware
311  *      bits 55-63:    group ID, currently unused and set to 0
312  */
313 static void
314 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315                                    struct intel_engine_cs *engine)
316 {
317         struct intel_context *ce = &ctx->engine[engine->id];
318         u64 desc;
319
320         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321
322         desc = ctx->desc_template;                              /* bits  3-4  */
323         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
324         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325                                                                 /* bits 12-31 */
326         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
327
328         ce->lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332                                      struct intel_engine_cs *engine)
333 {
334         return ctx->engine[engine->id].lrc_desc;
335 }
336
337 static inline void
338 execlists_context_status_change(struct drm_i915_gem_request *rq,
339                                 unsigned long status)
340 {
341         /*
342          * Only used when GVT-g is enabled now. When GVT-g is disabled,
343          * The compiler should eliminate this function as dead-code.
344          */
345         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
346                 return;
347
348         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
349                                    status, rq);
350 }
351
352 static void
353 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
354 {
355         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
356         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
358         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
359 }
360
361 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
362 {
363         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
364         struct i915_hw_ppgtt *ppgtt =
365                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
366         u32 *reg_state = ce->lrc_reg_state;
367
368         reg_state[CTX_RING_TAIL+1] = rq->tail;
369
370         /* True 32b PPGTT with dynamic page allocation: update PDP
371          * registers and point the unallocated PDPs to scratch page.
372          * PML4 is allocated during ppgtt init, so this is not needed
373          * in 48-bit mode.
374          */
375         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376                 execlists_update_context_pdps(ppgtt, reg_state);
377
378         return ce->lrc_desc;
379 }
380
381 static void execlists_submit_ports(struct intel_engine_cs *engine)
382 {
383         struct drm_i915_private *dev_priv = engine->i915;
384         struct execlist_port *port = engine->execlist_port;
385         u32 __iomem *elsp =
386                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387         u64 desc[2];
388
389         if (!port[0].count)
390                 execlists_context_status_change(port[0].request,
391                                                 INTEL_CONTEXT_SCHEDULE_IN);
392         desc[0] = execlists_update_context(port[0].request);
393         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395         if (port[1].request) {
396                 GEM_BUG_ON(port[1].count);
397                 execlists_context_status_change(port[1].request,
398                                                 INTEL_CONTEXT_SCHEDULE_IN);
399                 desc[1] = execlists_update_context(port[1].request);
400                 port[1].count = 1;
401         } else {
402                 desc[1] = 0;
403         }
404         GEM_BUG_ON(desc[0] == desc[1]);
405
406         /* You must always write both descriptors in the order below. */
407         writel(upper_32_bits(desc[1]), elsp);
408         writel(lower_32_bits(desc[1]), elsp);
409
410         writel(upper_32_bits(desc[0]), elsp);
411         /* The context is automatically loaded after the following */
412         writel(lower_32_bits(desc[0]), elsp);
413 }
414
415 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416 {
417         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418                 i915_gem_context_force_single_submission(ctx));
419 }
420
421 static bool can_merge_ctx(const struct i915_gem_context *prev,
422                           const struct i915_gem_context *next)
423 {
424         if (prev != next)
425                 return false;
426
427         if (ctx_single_port_submission(prev))
428                 return false;
429
430         return true;
431 }
432
433 static void execlists_dequeue(struct intel_engine_cs *engine)
434 {
435         struct drm_i915_gem_request *last;
436         struct execlist_port *port = engine->execlist_port;
437         unsigned long flags;
438         struct rb_node *rb;
439         bool submit = false;
440
441         last = port->request;
442         if (last)
443                 /* WaIdleLiteRestore:bdw,skl
444                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445                  * as we resubmit the request. See gen8_emit_breadcrumb()
446                  * for where we prepare the padding after the end of the
447                  * request.
448                  */
449                 last->tail = last->wa_tail;
450
451         GEM_BUG_ON(port[1].request);
452
453         /* Hardware submission is through 2 ports. Conceptually each port
454          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
455          * static for a context, and unique to each, so we only execute
456          * requests belonging to a single context from each ring. RING_HEAD
457          * is maintained by the CS in the context image, it marks the place
458          * where it got up to last time, and through RING_TAIL we tell the CS
459          * where we want to execute up to this time.
460          *
461          * In this list the requests are in order of execution. Consecutive
462          * requests from the same context are adjacent in the ringbuffer. We
463          * can combine these requests into a single RING_TAIL update:
464          *
465          *              RING_HEAD...req1...req2
466          *                                    ^- RING_TAIL
467          * since to execute req2 the CS must first execute req1.
468          *
469          * Our goal then is to point each port to the end of a consecutive
470          * sequence of requests as being the most optimal (fewest wake ups
471          * and context switches) submission.
472          */
473
474         spin_lock_irqsave(&engine->timeline->lock, flags);
475         rb = engine->execlist_first;
476         while (rb) {
477                 struct drm_i915_gem_request *cursor =
478                         rb_entry(rb, typeof(*cursor), priotree.node);
479
480                 /* Can we combine this request with the current port? It has to
481                  * be the same context/ringbuffer and not have any exceptions
482                  * (e.g. GVT saying never to combine contexts).
483                  *
484                  * If we can combine the requests, we can execute both by
485                  * updating the RING_TAIL to point to the end of the second
486                  * request, and so we never need to tell the hardware about
487                  * the first.
488                  */
489                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
490                         /* If we are on the second port and cannot combine
491                          * this request with the last, then we are done.
492                          */
493                         if (port != engine->execlist_port)
494                                 break;
495
496                         /* If GVT overrides us we only ever submit port[0],
497                          * leaving port[1] empty. Note that we also have
498                          * to be careful that we don't queue the same
499                          * context (even though a different request) to
500                          * the second port.
501                          */
502                         if (ctx_single_port_submission(last->ctx) ||
503                             ctx_single_port_submission(cursor->ctx))
504                                 break;
505
506                         GEM_BUG_ON(last->ctx == cursor->ctx);
507
508                         i915_gem_request_assign(&port->request, last);
509                         port++;
510                 }
511
512                 rb = rb_next(rb);
513                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
514                 RB_CLEAR_NODE(&cursor->priotree.node);
515                 cursor->priotree.priority = INT_MAX;
516
517                 __i915_gem_request_submit(cursor);
518                 last = cursor;
519                 submit = true;
520         }
521         if (submit) {
522                 i915_gem_request_assign(&port->request, last);
523                 engine->execlist_first = rb;
524         }
525         spin_unlock_irqrestore(&engine->timeline->lock, flags);
526
527         if (submit)
528                 execlists_submit_ports(engine);
529 }
530
531 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
532 {
533         return !engine->execlist_port[0].request;
534 }
535
536 /**
537  * intel_execlists_idle() - Determine if all engine submission ports are idle
538  * @dev_priv: i915 device private
539  *
540  * Return true if there are no requests pending on any of the submission ports
541  * of any engines.
542  */
543 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
544 {
545         struct intel_engine_cs *engine;
546         enum intel_engine_id id;
547
548         if (!i915.enable_execlists)
549                 return true;
550
551         for_each_engine(engine, dev_priv, id)
552                 if (!execlists_elsp_idle(engine))
553                         return false;
554
555         return true;
556 }
557
558 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
559 {
560         int port;
561
562         port = 1; /* wait for a free slot */
563         if (engine->disable_lite_restore_wa || engine->preempt_wa)
564                 port = 0; /* wait for GPU to be idle before continuing */
565
566         return !engine->execlist_port[port].request;
567 }
568
569 /*
570  * Check the unread Context Status Buffers and manage the submission of new
571  * contexts to the ELSP accordingly.
572  */
573 static void intel_lrc_irq_handler(unsigned long data)
574 {
575         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
576         struct execlist_port *port = engine->execlist_port;
577         struct drm_i915_private *dev_priv = engine->i915;
578
579         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
580
581         if (!execlists_elsp_idle(engine)) {
582                 u32 __iomem *csb_mmio =
583                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
584                 u32 __iomem *buf =
585                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
586                 unsigned int csb, head, tail;
587
588                 csb = readl(csb_mmio);
589                 head = GEN8_CSB_READ_PTR(csb);
590                 tail = GEN8_CSB_WRITE_PTR(csb);
591                 if (tail < head)
592                         tail += GEN8_CSB_ENTRIES;
593                 while (head < tail) {
594                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
595                         unsigned int status = readl(buf + 2 * idx);
596
597                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
598                                 continue;
599
600                         GEM_BUG_ON(port[0].count == 0);
601                         if (--port[0].count == 0) {
602                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
603                                 execlists_context_status_change(port[0].request,
604                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
605
606                                 i915_gem_request_put(port[0].request);
607                                 port[0] = port[1];
608                                 memset(&port[1], 0, sizeof(port[1]));
609
610                                 engine->preempt_wa = false;
611                         }
612
613                         GEM_BUG_ON(port[0].count == 0 &&
614                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
615                 }
616
617                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
618                                      GEN8_CSB_WRITE_PTR(csb) << 8),
619                        csb_mmio);
620         }
621
622         if (execlists_elsp_ready(engine))
623                 execlists_dequeue(engine);
624
625         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
626 }
627
628 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
629 {
630         struct rb_node **p, *rb;
631         bool first = true;
632
633         /* most positive priority is scheduled first, equal priorities fifo */
634         rb = NULL;
635         p = &root->rb_node;
636         while (*p) {
637                 struct i915_priotree *pos;
638
639                 rb = *p;
640                 pos = rb_entry(rb, typeof(*pos), node);
641                 if (pt->priority > pos->priority) {
642                         p = &rb->rb_left;
643                 } else {
644                         p = &rb->rb_right;
645                         first = false;
646                 }
647         }
648         rb_link_node(&pt->node, rb, p);
649         rb_insert_color(&pt->node, root);
650
651         return first;
652 }
653
654 static void execlists_submit_request(struct drm_i915_gem_request *request)
655 {
656         struct intel_engine_cs *engine = request->engine;
657         unsigned long flags;
658
659         /* Will be called from irq-context when using foreign fences. */
660         spin_lock_irqsave(&engine->timeline->lock, flags);
661
662         if (insert_request(&request->priotree, &engine->execlist_queue))
663                 engine->execlist_first = &request->priotree.node;
664         if (execlists_elsp_idle(engine))
665                 tasklet_hi_schedule(&engine->irq_tasklet);
666
667         spin_unlock_irqrestore(&engine->timeline->lock, flags);
668 }
669
670 static struct intel_engine_cs *
671 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
672 {
673         struct intel_engine_cs *engine;
674
675         engine = container_of(pt,
676                               struct drm_i915_gem_request,
677                               priotree)->engine;
678         if (engine != locked) {
679                 if (locked)
680                         spin_unlock_irq(&locked->timeline->lock);
681                 spin_lock_irq(&engine->timeline->lock);
682         }
683
684         return engine;
685 }
686
687 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
688 {
689         struct intel_engine_cs *engine = NULL;
690         struct i915_dependency *dep, *p;
691         struct i915_dependency stack;
692         LIST_HEAD(dfs);
693
694         if (prio <= READ_ONCE(request->priotree.priority))
695                 return;
696
697         /* Need BKL in order to use the temporary link inside i915_dependency */
698         lockdep_assert_held(&request->i915->drm.struct_mutex);
699
700         stack.signaler = &request->priotree;
701         list_add(&stack.dfs_link, &dfs);
702
703         /* Recursively bump all dependent priorities to match the new request.
704          *
705          * A naive approach would be to use recursion:
706          * static void update_priorities(struct i915_priotree *pt, prio) {
707          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
708          *              update_priorities(dep->signal, prio)
709          *      insert_request(pt);
710          * }
711          * but that may have unlimited recursion depth and so runs a very
712          * real risk of overunning the kernel stack. Instead, we build
713          * a flat list of all dependencies starting with the current request.
714          * As we walk the list of dependencies, we add all of its dependencies
715          * to the end of the list (this may include an already visited
716          * request) and continue to walk onwards onto the new dependencies. The
717          * end result is a topological list of requests in reverse order, the
718          * last element in the list is the request we must execute first.
719          */
720         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
721                 struct i915_priotree *pt = dep->signaler;
722
723                 list_for_each_entry(p, &pt->signalers_list, signal_link)
724                         if (prio > READ_ONCE(p->signaler->priority))
725                                 list_move_tail(&p->dfs_link, &dfs);
726
727                 list_safe_reset_next(dep, p, dfs_link);
728                 if (!RB_EMPTY_NODE(&pt->node))
729                         continue;
730
731                 engine = pt_lock_engine(pt, engine);
732
733                 /* If it is not already in the rbtree, we can update the
734                  * priority inplace and skip over it (and its dependencies)
735                  * if it is referenced *again* as we descend the dfs.
736                  */
737                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
738                         pt->priority = prio;
739                         list_del_init(&dep->dfs_link);
740                 }
741         }
742
743         /* Fifo and depth-first replacement ensure our deps execute before us */
744         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
745                 struct i915_priotree *pt = dep->signaler;
746
747                 INIT_LIST_HEAD(&dep->dfs_link);
748
749                 engine = pt_lock_engine(pt, engine);
750
751                 if (prio <= pt->priority)
752                         continue;
753
754                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
755
756                 pt->priority = prio;
757                 rb_erase(&pt->node, &engine->execlist_queue);
758                 if (insert_request(pt, &engine->execlist_queue))
759                         engine->execlist_first = &pt->node;
760         }
761
762         if (engine)
763                 spin_unlock_irq(&engine->timeline->lock);
764
765         /* XXX Do we need to preempt to make room for us and our deps? */
766 }
767
768 static int execlists_context_pin(struct intel_engine_cs *engine,
769                                  struct i915_gem_context *ctx)
770 {
771         struct intel_context *ce = &ctx->engine[engine->id];
772         unsigned int flags;
773         void *vaddr;
774         int ret;
775
776         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
777
778         if (ce->pin_count++)
779                 return 0;
780
781         if (!ce->state) {
782                 ret = execlists_context_deferred_alloc(ctx, engine);
783                 if (ret)
784                         goto err;
785         }
786         GEM_BUG_ON(!ce->state);
787
788         flags = PIN_GLOBAL;
789         if (ctx->ggtt_offset_bias)
790                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
791         if (i915_gem_context_is_kernel(ctx))
792                 flags |= PIN_HIGH;
793
794         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
795         if (ret)
796                 goto err;
797
798         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
799         if (IS_ERR(vaddr)) {
800                 ret = PTR_ERR(vaddr);
801                 goto unpin_vma;
802         }
803
804         ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
805         if (ret)
806                 goto unpin_map;
807
808         intel_lr_context_descriptor_update(ctx, engine);
809
810         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
811         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
812                 i915_ggtt_offset(ce->ring->vma);
813
814         ce->state->obj->mm.dirty = true;
815
816         i915_gem_context_get(ctx);
817         return 0;
818
819 unpin_map:
820         i915_gem_object_unpin_map(ce->state->obj);
821 unpin_vma:
822         __i915_vma_unpin(ce->state);
823 err:
824         ce->pin_count = 0;
825         return ret;
826 }
827
828 static void execlists_context_unpin(struct intel_engine_cs *engine,
829                                     struct i915_gem_context *ctx)
830 {
831         struct intel_context *ce = &ctx->engine[engine->id];
832
833         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
834         GEM_BUG_ON(ce->pin_count == 0);
835
836         if (--ce->pin_count)
837                 return;
838
839         intel_ring_unpin(ce->ring);
840
841         i915_gem_object_unpin_map(ce->state->obj);
842         i915_vma_unpin(ce->state);
843
844         i915_gem_context_put(ctx);
845 }
846
847 static int execlists_request_alloc(struct drm_i915_gem_request *request)
848 {
849         struct intel_engine_cs *engine = request->engine;
850         struct intel_context *ce = &request->ctx->engine[engine->id];
851         int ret;
852
853         GEM_BUG_ON(!ce->pin_count);
854
855         /* Flush enough space to reduce the likelihood of waiting after
856          * we start building the request - in which case we will just
857          * have to repeat work.
858          */
859         request->reserved_space += EXECLISTS_REQUEST_SIZE;
860
861         GEM_BUG_ON(!ce->ring);
862         request->ring = ce->ring;
863
864         if (i915.enable_guc_submission) {
865                 /*
866                  * Check that the GuC has space for the request before
867                  * going any further, as the i915_add_request() call
868                  * later on mustn't fail ...
869                  */
870                 ret = i915_guc_wq_reserve(request);
871                 if (ret)
872                         goto err;
873         }
874
875         ret = intel_ring_begin(request, 0);
876         if (ret)
877                 goto err_unreserve;
878
879         if (!ce->initialised) {
880                 ret = engine->init_context(request);
881                 if (ret)
882                         goto err_unreserve;
883
884                 ce->initialised = true;
885         }
886
887         /* Note that after this point, we have committed to using
888          * this request as it is being used to both track the
889          * state of engine initialisation and liveness of the
890          * golden renderstate above. Think twice before you try
891          * to cancel/unwind this request now.
892          */
893
894         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
895         return 0;
896
897 err_unreserve:
898         if (i915.enable_guc_submission)
899                 i915_guc_wq_unreserve(request);
900 err:
901         return ret;
902 }
903
904 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
905 {
906         int ret, i;
907         struct intel_ring *ring = req->ring;
908         struct i915_workarounds *w = &req->i915->workarounds;
909
910         if (w->count == 0)
911                 return 0;
912
913         ret = req->engine->emit_flush(req, EMIT_BARRIER);
914         if (ret)
915                 return ret;
916
917         ret = intel_ring_begin(req, w->count * 2 + 2);
918         if (ret)
919                 return ret;
920
921         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
922         for (i = 0; i < w->count; i++) {
923                 intel_ring_emit_reg(ring, w->reg[i].addr);
924                 intel_ring_emit(ring, w->reg[i].value);
925         }
926         intel_ring_emit(ring, MI_NOOP);
927
928         intel_ring_advance(ring);
929
930         ret = req->engine->emit_flush(req, EMIT_BARRIER);
931         if (ret)
932                 return ret;
933
934         return 0;
935 }
936
937 #define wa_ctx_emit(batch, index, cmd)                                  \
938         do {                                                            \
939                 int __index = (index)++;                                \
940                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
941                         return -ENOSPC;                                 \
942                 }                                                       \
943                 batch[__index] = (cmd);                                 \
944         } while (0)
945
946 #define wa_ctx_emit_reg(batch, index, reg) \
947         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
948
949 /*
950  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
951  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
952  * but there is a slight complication as this is applied in WA batch where the
953  * values are only initialized once so we cannot take register value at the
954  * beginning and reuse it further; hence we save its value to memory, upload a
955  * constant value with bit21 set and then we restore it back with the saved value.
956  * To simplify the WA, a constant value is formed by using the default value
957  * of this register. This shouldn't be a problem because we are only modifying
958  * it for a short period and this batch in non-premptible. We can ofcourse
959  * use additional instructions that read the actual value of the register
960  * at that time and set our bit of interest but it makes the WA complicated.
961  *
962  * This WA is also required for Gen9 so extracting as a function avoids
963  * code duplication.
964  */
965 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
966                                                 uint32_t *batch,
967                                                 uint32_t index)
968 {
969         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
970
971         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
972                                    MI_SRM_LRM_GLOBAL_GTT));
973         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
974         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
975         wa_ctx_emit(batch, index, 0);
976
977         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
978         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
979         wa_ctx_emit(batch, index, l3sqc4_flush);
980
981         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
982         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
983                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
984         wa_ctx_emit(batch, index, 0);
985         wa_ctx_emit(batch, index, 0);
986         wa_ctx_emit(batch, index, 0);
987         wa_ctx_emit(batch, index, 0);
988
989         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
990                                    MI_SRM_LRM_GLOBAL_GTT));
991         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
992         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
993         wa_ctx_emit(batch, index, 0);
994
995         return index;
996 }
997
998 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
999                                     uint32_t offset,
1000                                     uint32_t start_alignment)
1001 {
1002         return wa_ctx->offset = ALIGN(offset, start_alignment);
1003 }
1004
1005 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1006                              uint32_t offset,
1007                              uint32_t size_alignment)
1008 {
1009         wa_ctx->size = offset - wa_ctx->offset;
1010
1011         WARN(wa_ctx->size % size_alignment,
1012              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1013              wa_ctx->size, size_alignment);
1014         return 0;
1015 }
1016
1017 /*
1018  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1019  * initialized at the beginning and shared across all contexts but this field
1020  * helps us to have multiple batches at different offsets and select them based
1021  * on a criteria. At the moment this batch always start at the beginning of the page
1022  * and at this point we don't have multiple wa_ctx batch buffers.
1023  *
1024  * The number of WA applied are not known at the beginning; we use this field
1025  * to return the no of DWORDS written.
1026  *
1027  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1028  * so it adds NOOPs as padding to make it cacheline aligned.
1029  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1030  * makes a complete batch buffer.
1031  */
1032 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1033                                     struct i915_wa_ctx_bb *wa_ctx,
1034                                     uint32_t *batch,
1035                                     uint32_t *offset)
1036 {
1037         uint32_t scratch_addr;
1038         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1039
1040         /* WaDisableCtxRestoreArbitration:bdw,chv */
1041         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1042
1043         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1044         if (IS_BROADWELL(engine->i915)) {
1045                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1046                 if (rc < 0)
1047                         return rc;
1048                 index = rc;
1049         }
1050
1051         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1052         /* Actual scratch location is at 128 bytes offset */
1053         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1054
1055         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1056         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1057                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1058                                    PIPE_CONTROL_CS_STALL |
1059                                    PIPE_CONTROL_QW_WRITE));
1060         wa_ctx_emit(batch, index, scratch_addr);
1061         wa_ctx_emit(batch, index, 0);
1062         wa_ctx_emit(batch, index, 0);
1063         wa_ctx_emit(batch, index, 0);
1064
1065         /* Pad to end of cacheline */
1066         while (index % CACHELINE_DWORDS)
1067                 wa_ctx_emit(batch, index, MI_NOOP);
1068
1069         /*
1070          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1071          * execution depends on the length specified in terms of cache lines
1072          * in the register CTX_RCS_INDIRECT_CTX
1073          */
1074
1075         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1076 }
1077
1078 /*
1079  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1080  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1081  *
1082  *  The number of DWORDS written are returned using this field.
1083  *
1084  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1085  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1086  */
1087 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1088                                struct i915_wa_ctx_bb *wa_ctx,
1089                                uint32_t *batch,
1090                                uint32_t *offset)
1091 {
1092         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1093
1094         /* WaDisableCtxRestoreArbitration:bdw,chv */
1095         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1096
1097         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1098
1099         return wa_ctx_end(wa_ctx, *offset = index, 1);
1100 }
1101
1102 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1103                                     struct i915_wa_ctx_bb *wa_ctx,
1104                                     uint32_t *batch,
1105                                     uint32_t *offset)
1106 {
1107         int ret;
1108         struct drm_i915_private *dev_priv = engine->i915;
1109         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1110
1111         /* WaDisableCtxRestoreArbitration:bxt */
1112         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1113                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1114
1115         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1116         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1117         if (ret < 0)
1118                 return ret;
1119         index = ret;
1120
1121         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1122         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1123         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1124         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1125                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1126         wa_ctx_emit(batch, index, MI_NOOP);
1127
1128         /* WaClearSlmSpaceAtContextSwitch:kbl */
1129         /* Actual scratch location is at 128 bytes offset */
1130         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1131                 u32 scratch_addr =
1132                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1133
1134                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1135                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1136                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1137                                            PIPE_CONTROL_CS_STALL |
1138                                            PIPE_CONTROL_QW_WRITE));
1139                 wa_ctx_emit(batch, index, scratch_addr);
1140                 wa_ctx_emit(batch, index, 0);
1141                 wa_ctx_emit(batch, index, 0);
1142                 wa_ctx_emit(batch, index, 0);
1143         }
1144
1145         /* WaMediaPoolStateCmdInWABB:bxt */
1146         if (HAS_POOLED_EU(engine->i915)) {
1147                 /*
1148                  * EU pool configuration is setup along with golden context
1149                  * during context initialization. This value depends on
1150                  * device type (2x6 or 3x6) and needs to be updated based
1151                  * on which subslice is disabled especially for 2x6
1152                  * devices, however it is safe to load default
1153                  * configuration of 3x6 device instead of masking off
1154                  * corresponding bits because HW ignores bits of a disabled
1155                  * subslice and drops down to appropriate config. Please
1156                  * see render_state_setup() in i915_gem_render_state.c for
1157                  * possible configurations, to avoid duplication they are
1158                  * not shown here again.
1159                  */
1160                 u32 eu_pool_config = 0x00777000;
1161                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1162                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1163                 wa_ctx_emit(batch, index, eu_pool_config);
1164                 wa_ctx_emit(batch, index, 0);
1165                 wa_ctx_emit(batch, index, 0);
1166                 wa_ctx_emit(batch, index, 0);
1167         }
1168
1169         /* Pad to end of cacheline */
1170         while (index % CACHELINE_DWORDS)
1171                 wa_ctx_emit(batch, index, MI_NOOP);
1172
1173         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1174 }
1175
1176 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1177                                struct i915_wa_ctx_bb *wa_ctx,
1178                                uint32_t *batch,
1179                                uint32_t *offset)
1180 {
1181         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1182
1183         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1184         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1185                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1186                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1187                 wa_ctx_emit(batch, index,
1188                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1189                 wa_ctx_emit(batch, index, MI_NOOP);
1190         }
1191
1192         /* WaClearTdlStateAckDirtyBits:bxt */
1193         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1194                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1195
1196                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1197                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1198
1199                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1200                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1201
1202                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1203                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1204
1205                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1206                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1207                 wa_ctx_emit(batch, index, 0x0);
1208                 wa_ctx_emit(batch, index, MI_NOOP);
1209         }
1210
1211         /* WaDisableCtxRestoreArbitration:bxt */
1212         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1213                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1214
1215         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1216
1217         return wa_ctx_end(wa_ctx, *offset = index, 1);
1218 }
1219
1220 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1221 {
1222         struct drm_i915_gem_object *obj;
1223         struct i915_vma *vma;
1224         int err;
1225
1226         obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1227         if (IS_ERR(obj))
1228                 return PTR_ERR(obj);
1229
1230         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1231         if (IS_ERR(vma)) {
1232                 err = PTR_ERR(vma);
1233                 goto err;
1234         }
1235
1236         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1237         if (err)
1238                 goto err;
1239
1240         engine->wa_ctx.vma = vma;
1241         return 0;
1242
1243 err:
1244         i915_gem_object_put(obj);
1245         return err;
1246 }
1247
1248 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1249 {
1250         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1251 }
1252
1253 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1254 {
1255         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1256         uint32_t *batch;
1257         uint32_t offset;
1258         struct page *page;
1259         int ret;
1260
1261         WARN_ON(engine->id != RCS);
1262
1263         /* update this when WA for higher Gen are added */
1264         if (INTEL_GEN(engine->i915) > 9) {
1265                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1266                           INTEL_GEN(engine->i915));
1267                 return 0;
1268         }
1269
1270         /* some WA perform writes to scratch page, ensure it is valid */
1271         if (!engine->scratch) {
1272                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1273                 return -EINVAL;
1274         }
1275
1276         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1277         if (ret) {
1278                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1279                 return ret;
1280         }
1281
1282         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1283         batch = kmap_atomic(page);
1284         offset = 0;
1285
1286         if (IS_GEN8(engine->i915)) {
1287                 ret = gen8_init_indirectctx_bb(engine,
1288                                                &wa_ctx->indirect_ctx,
1289                                                batch,
1290                                                &offset);
1291                 if (ret)
1292                         goto out;
1293
1294                 ret = gen8_init_perctx_bb(engine,
1295                                           &wa_ctx->per_ctx,
1296                                           batch,
1297                                           &offset);
1298                 if (ret)
1299                         goto out;
1300         } else if (IS_GEN9(engine->i915)) {
1301                 ret = gen9_init_indirectctx_bb(engine,
1302                                                &wa_ctx->indirect_ctx,
1303                                                batch,
1304                                                &offset);
1305                 if (ret)
1306                         goto out;
1307
1308                 ret = gen9_init_perctx_bb(engine,
1309                                           &wa_ctx->per_ctx,
1310                                           batch,
1311                                           &offset);
1312                 if (ret)
1313                         goto out;
1314         }
1315
1316 out:
1317         kunmap_atomic(batch);
1318         if (ret)
1319                 lrc_destroy_wa_ctx_obj(engine);
1320
1321         return ret;
1322 }
1323
1324 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1325 {
1326         struct drm_i915_private *dev_priv = engine->i915;
1327         int ret;
1328
1329         ret = intel_mocs_init_engine(engine);
1330         if (ret)
1331                 return ret;
1332
1333         intel_engine_reset_breadcrumbs(engine);
1334         intel_engine_init_hangcheck(engine);
1335
1336         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1337         I915_WRITE(RING_MODE_GEN7(engine),
1338                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1339                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1340         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1341                    engine->status_page.ggtt_offset);
1342         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1343
1344         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1345
1346         /* After a GPU reset, we may have requests to replay */
1347         if (!execlists_elsp_idle(engine)) {
1348                 engine->execlist_port[0].count = 0;
1349                 engine->execlist_port[1].count = 0;
1350                 execlists_submit_ports(engine);
1351         }
1352
1353         return 0;
1354 }
1355
1356 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1357 {
1358         struct drm_i915_private *dev_priv = engine->i915;
1359         int ret;
1360
1361         ret = gen8_init_common_ring(engine);
1362         if (ret)
1363                 return ret;
1364
1365         /* We need to disable the AsyncFlip performance optimisations in order
1366          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1367          * programmed to '1' on all products.
1368          *
1369          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1370          */
1371         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1372
1373         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1374
1375         return init_workarounds_ring(engine);
1376 }
1377
1378 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1379 {
1380         int ret;
1381
1382         ret = gen8_init_common_ring(engine);
1383         if (ret)
1384                 return ret;
1385
1386         return init_workarounds_ring(engine);
1387 }
1388
1389 static void reset_common_ring(struct intel_engine_cs *engine,
1390                               struct drm_i915_gem_request *request)
1391 {
1392         struct drm_i915_private *dev_priv = engine->i915;
1393         struct execlist_port *port = engine->execlist_port;
1394         struct intel_context *ce;
1395
1396         /* If the request was innocent, we leave the request in the ELSP
1397          * and will try to replay it on restarting. The context image may
1398          * have been corrupted by the reset, in which case we may have
1399          * to service a new GPU hang, but more likely we can continue on
1400          * without impact.
1401          *
1402          * If the request was guilty, we presume the context is corrupt
1403          * and have to at least restore the RING register in the context
1404          * image back to the expected values to skip over the guilty request.
1405          */
1406         if (!request || request->fence.error != -EIO)
1407                 return;
1408
1409         /* We want a simple context + ring to execute the breadcrumb update.
1410          * We cannot rely on the context being intact across the GPU hang,
1411          * so clear it and rebuild just what we need for the breadcrumb.
1412          * All pending requests for this context will be zapped, and any
1413          * future request will be after userspace has had the opportunity
1414          * to recreate its own state.
1415          */
1416         ce = &request->ctx->engine[engine->id];
1417         execlists_init_reg_state(ce->lrc_reg_state,
1418                                  request->ctx, engine, ce->ring);
1419
1420         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1421         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1422                 i915_ggtt_offset(ce->ring->vma);
1423         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1424
1425         request->ring->head = request->postfix;
1426         request->ring->last_retired_head = -1;
1427         intel_ring_update_space(request->ring);
1428
1429         if (i915.enable_guc_submission)
1430                 return;
1431
1432         /* Catch up with any missed context-switch interrupts */
1433         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1434         if (request->ctx != port[0].request->ctx) {
1435                 i915_gem_request_put(port[0].request);
1436                 port[0] = port[1];
1437                 memset(&port[1], 0, sizeof(port[1]));
1438         }
1439
1440         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1441
1442         /* Reset WaIdleLiteRestore:bdw,skl as well */
1443         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1444 }
1445
1446 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1447 {
1448         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1449         struct intel_ring *ring = req->ring;
1450         struct intel_engine_cs *engine = req->engine;
1451         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1452         int i, ret;
1453
1454         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1455         if (ret)
1456                 return ret;
1457
1458         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1459         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1460                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1461
1462                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1463                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1464                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1465                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1466         }
1467
1468         intel_ring_emit(ring, MI_NOOP);
1469         intel_ring_advance(ring);
1470
1471         return 0;
1472 }
1473
1474 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1475                               u64 offset, u32 len,
1476                               unsigned int dispatch_flags)
1477 {
1478         struct intel_ring *ring = req->ring;
1479         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1480         int ret;
1481
1482         /* Don't rely in hw updating PDPs, specially in lite-restore.
1483          * Ideally, we should set Force PD Restore in ctx descriptor,
1484          * but we can't. Force Restore would be a second option, but
1485          * it is unsafe in case of lite-restore (because the ctx is
1486          * not idle). PML4 is allocated during ppgtt init so this is
1487          * not needed in 48-bit.*/
1488         if (req->ctx->ppgtt &&
1489             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1490                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1491                     !intel_vgpu_active(req->i915)) {
1492                         ret = intel_logical_ring_emit_pdps(req);
1493                         if (ret)
1494                                 return ret;
1495                 }
1496
1497                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1498         }
1499
1500         ret = intel_ring_begin(req, 4);
1501         if (ret)
1502                 return ret;
1503
1504         /* FIXME(BDW): Address space and security selectors. */
1505         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1506                         (ppgtt<<8) |
1507                         (dispatch_flags & I915_DISPATCH_RS ?
1508                          MI_BATCH_RESOURCE_STREAMER : 0));
1509         intel_ring_emit(ring, lower_32_bits(offset));
1510         intel_ring_emit(ring, upper_32_bits(offset));
1511         intel_ring_emit(ring, MI_NOOP);
1512         intel_ring_advance(ring);
1513
1514         return 0;
1515 }
1516
1517 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1518 {
1519         struct drm_i915_private *dev_priv = engine->i915;
1520         I915_WRITE_IMR(engine,
1521                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1522         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1523 }
1524
1525 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1526 {
1527         struct drm_i915_private *dev_priv = engine->i915;
1528         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1529 }
1530
1531 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1532 {
1533         struct intel_ring *ring = request->ring;
1534         u32 cmd;
1535         int ret;
1536
1537         ret = intel_ring_begin(request, 4);
1538         if (ret)
1539                 return ret;
1540
1541         cmd = MI_FLUSH_DW + 1;
1542
1543         /* We always require a command barrier so that subsequent
1544          * commands, such as breadcrumb interrupts, are strictly ordered
1545          * wrt the contents of the write cache being flushed to memory
1546          * (and thus being coherent from the CPU).
1547          */
1548         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1549
1550         if (mode & EMIT_INVALIDATE) {
1551                 cmd |= MI_INVALIDATE_TLB;
1552                 if (request->engine->id == VCS)
1553                         cmd |= MI_INVALIDATE_BSD;
1554         }
1555
1556         intel_ring_emit(ring, cmd);
1557         intel_ring_emit(ring,
1558                         I915_GEM_HWS_SCRATCH_ADDR |
1559                         MI_FLUSH_DW_USE_GTT);
1560         intel_ring_emit(ring, 0); /* upper addr */
1561         intel_ring_emit(ring, 0); /* value */
1562         intel_ring_advance(ring);
1563
1564         return 0;
1565 }
1566
1567 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1568                                   u32 mode)
1569 {
1570         struct intel_ring *ring = request->ring;
1571         struct intel_engine_cs *engine = request->engine;
1572         u32 scratch_addr =
1573                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1574         bool vf_flush_wa = false, dc_flush_wa = false;
1575         u32 flags = 0;
1576         int ret;
1577         int len;
1578
1579         flags |= PIPE_CONTROL_CS_STALL;
1580
1581         if (mode & EMIT_FLUSH) {
1582                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1583                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1584                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1585                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1586         }
1587
1588         if (mode & EMIT_INVALIDATE) {
1589                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1590                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1591                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1592                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1593                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1594                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1595                 flags |= PIPE_CONTROL_QW_WRITE;
1596                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1597
1598                 /*
1599                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1600                  * pipe control.
1601                  */
1602                 if (IS_GEN9(request->i915))
1603                         vf_flush_wa = true;
1604
1605                 /* WaForGAMHang:kbl */
1606                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1607                         dc_flush_wa = true;
1608         }
1609
1610         len = 6;
1611
1612         if (vf_flush_wa)
1613                 len += 6;
1614
1615         if (dc_flush_wa)
1616                 len += 12;
1617
1618         ret = intel_ring_begin(request, len);
1619         if (ret)
1620                 return ret;
1621
1622         if (vf_flush_wa) {
1623                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1624                 intel_ring_emit(ring, 0);
1625                 intel_ring_emit(ring, 0);
1626                 intel_ring_emit(ring, 0);
1627                 intel_ring_emit(ring, 0);
1628                 intel_ring_emit(ring, 0);
1629         }
1630
1631         if (dc_flush_wa) {
1632                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1633                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1634                 intel_ring_emit(ring, 0);
1635                 intel_ring_emit(ring, 0);
1636                 intel_ring_emit(ring, 0);
1637                 intel_ring_emit(ring, 0);
1638         }
1639
1640         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1641         intel_ring_emit(ring, flags);
1642         intel_ring_emit(ring, scratch_addr);
1643         intel_ring_emit(ring, 0);
1644         intel_ring_emit(ring, 0);
1645         intel_ring_emit(ring, 0);
1646
1647         if (dc_flush_wa) {
1648                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1649                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1650                 intel_ring_emit(ring, 0);
1651                 intel_ring_emit(ring, 0);
1652                 intel_ring_emit(ring, 0);
1653                 intel_ring_emit(ring, 0);
1654         }
1655
1656         intel_ring_advance(ring);
1657
1658         return 0;
1659 }
1660
1661 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1662 {
1663         /*
1664          * On BXT A steppings there is a HW coherency issue whereby the
1665          * MI_STORE_DATA_IMM storing the completed request's seqno
1666          * occasionally doesn't invalidate the CPU cache. Work around this by
1667          * clflushing the corresponding cacheline whenever the caller wants
1668          * the coherency to be guaranteed. Note that this cacheline is known
1669          * to be clean at this point, since we only write it in
1670          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1671          * this clflush in practice becomes an invalidate operation.
1672          */
1673         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1674 }
1675
1676 /*
1677  * Reserve space for 2 NOOPs at the end of each request to be
1678  * used as a workaround for not being allowed to do lite
1679  * restore with HEAD==TAIL (WaIdleLiteRestore).
1680  */
1681 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1682 {
1683         *out++ = MI_NOOP;
1684         *out++ = MI_NOOP;
1685         request->wa_tail = intel_ring_offset(request->ring, out);
1686 }
1687
1688 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1689                                  u32 *out)
1690 {
1691         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1692         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1693
1694         *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1695         *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1696         *out++ = 0;
1697         *out++ = request->global_seqno;
1698         *out++ = MI_USER_INTERRUPT;
1699         *out++ = MI_NOOP;
1700         request->tail = intel_ring_offset(request->ring, out);
1701
1702         gen8_emit_wa_tail(request, out);
1703 }
1704
1705 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1706
1707 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1708                                         u32 *out)
1709 {
1710         /* We're using qword write, seqno should be aligned to 8 bytes. */
1711         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1712
1713         /* w/a for post sync ops following a GPGPU operation we
1714          * need a prior CS_STALL, which is emitted by the flush
1715          * following the batch.
1716          */
1717         *out++ = GFX_OP_PIPE_CONTROL(6);
1718         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1719                   PIPE_CONTROL_CS_STALL |
1720                   PIPE_CONTROL_QW_WRITE);
1721         *out++ = intel_hws_seqno_address(request->engine);
1722         *out++ = 0;
1723         *out++ = request->global_seqno;
1724         /* We're thrashing one dword of HWS. */
1725         *out++ = 0;
1726         *out++ = MI_USER_INTERRUPT;
1727         *out++ = MI_NOOP;
1728         request->tail = intel_ring_offset(request->ring, out);
1729
1730         gen8_emit_wa_tail(request, out);
1731 }
1732
1733 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1734
1735 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1736 {
1737         int ret;
1738
1739         ret = intel_logical_ring_workarounds_emit(req);
1740         if (ret)
1741                 return ret;
1742
1743         ret = intel_rcs_context_init_mocs(req);
1744         /*
1745          * Failing to program the MOCS is non-fatal.The system will not
1746          * run at peak performance. So generate an error and carry on.
1747          */
1748         if (ret)
1749                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1750
1751         return i915_gem_render_state_emit(req);
1752 }
1753
1754 /**
1755  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1756  * @engine: Engine Command Streamer.
1757  */
1758 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1759 {
1760         struct drm_i915_private *dev_priv;
1761
1762         /*
1763          * Tasklet cannot be active at this point due intel_mark_active/idle
1764          * so this is just for documentation.
1765          */
1766         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1767                 tasklet_kill(&engine->irq_tasklet);
1768
1769         dev_priv = engine->i915;
1770
1771         if (engine->buffer) {
1772                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1773         }
1774
1775         if (engine->cleanup)
1776                 engine->cleanup(engine);
1777
1778         if (engine->status_page.vma) {
1779                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1780                 engine->status_page.vma = NULL;
1781         }
1782
1783         intel_engine_cleanup_common(engine);
1784
1785         lrc_destroy_wa_ctx_obj(engine);
1786         engine->i915 = NULL;
1787         dev_priv->engine[engine->id] = NULL;
1788         kfree(engine);
1789 }
1790
1791 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1792 {
1793         struct intel_engine_cs *engine;
1794         enum intel_engine_id id;
1795
1796         for_each_engine(engine, dev_priv, id) {
1797                 engine->submit_request = execlists_submit_request;
1798                 engine->schedule = execlists_schedule;
1799         }
1800 }
1801
1802 static void
1803 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1804 {
1805         /* Default vfuncs which can be overriden by each engine. */
1806         engine->init_hw = gen8_init_common_ring;
1807         engine->reset_hw = reset_common_ring;
1808
1809         engine->context_pin = execlists_context_pin;
1810         engine->context_unpin = execlists_context_unpin;
1811
1812         engine->request_alloc = execlists_request_alloc;
1813
1814         engine->emit_flush = gen8_emit_flush;
1815         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1816         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1817         engine->submit_request = execlists_submit_request;
1818         engine->schedule = execlists_schedule;
1819
1820         engine->irq_enable = gen8_logical_ring_enable_irq;
1821         engine->irq_disable = gen8_logical_ring_disable_irq;
1822         engine->emit_bb_start = gen8_emit_bb_start;
1823         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1824                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1825 }
1826
1827 static inline void
1828 logical_ring_default_irqs(struct intel_engine_cs *engine)
1829 {
1830         unsigned shift = engine->irq_shift;
1831         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1832         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1833 }
1834
1835 static int
1836 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1837 {
1838         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1839         void *hws;
1840
1841         /* The HWSP is part of the default context object in LRC mode. */
1842         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1843         if (IS_ERR(hws))
1844                 return PTR_ERR(hws);
1845
1846         engine->status_page.page_addr = hws + hws_offset;
1847         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1848         engine->status_page.vma = vma;
1849
1850         return 0;
1851 }
1852
1853 static void
1854 logical_ring_setup(struct intel_engine_cs *engine)
1855 {
1856         struct drm_i915_private *dev_priv = engine->i915;
1857         enum forcewake_domains fw_domains;
1858
1859         intel_engine_setup_common(engine);
1860
1861         /* Intentionally left blank. */
1862         engine->buffer = NULL;
1863
1864         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1865                                                     RING_ELSP(engine),
1866                                                     FW_REG_WRITE);
1867
1868         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1869                                                      RING_CONTEXT_STATUS_PTR(engine),
1870                                                      FW_REG_READ | FW_REG_WRITE);
1871
1872         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1873                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1874                                                      FW_REG_READ);
1875
1876         engine->fw_domains = fw_domains;
1877
1878         tasklet_init(&engine->irq_tasklet,
1879                      intel_lrc_irq_handler, (unsigned long)engine);
1880
1881         logical_ring_init_platform_invariants(engine);
1882         logical_ring_default_vfuncs(engine);
1883         logical_ring_default_irqs(engine);
1884 }
1885
1886 static int
1887 logical_ring_init(struct intel_engine_cs *engine)
1888 {
1889         struct i915_gem_context *dctx = engine->i915->kernel_context;
1890         int ret;
1891
1892         ret = intel_engine_init_common(engine);
1893         if (ret)
1894                 goto error;
1895
1896         /* And setup the hardware status page. */
1897         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1898         if (ret) {
1899                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1900                 goto error;
1901         }
1902
1903         return 0;
1904
1905 error:
1906         intel_logical_ring_cleanup(engine);
1907         return ret;
1908 }
1909
1910 int logical_render_ring_init(struct intel_engine_cs *engine)
1911 {
1912         struct drm_i915_private *dev_priv = engine->i915;
1913         int ret;
1914
1915         logical_ring_setup(engine);
1916
1917         if (HAS_L3_DPF(dev_priv))
1918                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1919
1920         /* Override some for render ring. */
1921         if (INTEL_GEN(dev_priv) >= 9)
1922                 engine->init_hw = gen9_init_render_ring;
1923         else
1924                 engine->init_hw = gen8_init_render_ring;
1925         engine->init_context = gen8_init_rcs_context;
1926         engine->emit_flush = gen8_emit_flush_render;
1927         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1928         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1929
1930         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1931         if (ret)
1932                 return ret;
1933
1934         ret = intel_init_workaround_bb(engine);
1935         if (ret) {
1936                 /*
1937                  * We continue even if we fail to initialize WA batch
1938                  * because we only expect rare glitches but nothing
1939                  * critical to prevent us from using GPU
1940                  */
1941                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1942                           ret);
1943         }
1944
1945         return logical_ring_init(engine);
1946 }
1947
1948 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1949 {
1950         logical_ring_setup(engine);
1951
1952         return logical_ring_init(engine);
1953 }
1954
1955 static u32
1956 make_rpcs(struct drm_i915_private *dev_priv)
1957 {
1958         u32 rpcs = 0;
1959
1960         /*
1961          * No explicit RPCS request is needed to ensure full
1962          * slice/subslice/EU enablement prior to Gen9.
1963         */
1964         if (INTEL_GEN(dev_priv) < 9)
1965                 return 0;
1966
1967         /*
1968          * Starting in Gen9, render power gating can leave
1969          * slice/subslice/EU in a partially enabled state. We
1970          * must make an explicit request through RPCS for full
1971          * enablement.
1972         */
1973         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1974                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1975                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1976                         GEN8_RPCS_S_CNT_SHIFT;
1977                 rpcs |= GEN8_RPCS_ENABLE;
1978         }
1979
1980         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1981                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1982                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1983                         GEN8_RPCS_SS_CNT_SHIFT;
1984                 rpcs |= GEN8_RPCS_ENABLE;
1985         }
1986
1987         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1988                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1989                         GEN8_RPCS_EU_MIN_SHIFT;
1990                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1991                         GEN8_RPCS_EU_MAX_SHIFT;
1992                 rpcs |= GEN8_RPCS_ENABLE;
1993         }
1994
1995         return rpcs;
1996 }
1997
1998 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1999 {
2000         u32 indirect_ctx_offset;
2001
2002         switch (INTEL_GEN(engine->i915)) {
2003         default:
2004                 MISSING_CASE(INTEL_GEN(engine->i915));
2005                 /* fall through */
2006         case 9:
2007                 indirect_ctx_offset =
2008                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2009                 break;
2010         case 8:
2011                 indirect_ctx_offset =
2012                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2013                 break;
2014         }
2015
2016         return indirect_ctx_offset;
2017 }
2018
2019 static void execlists_init_reg_state(u32 *reg_state,
2020                                      struct i915_gem_context *ctx,
2021                                      struct intel_engine_cs *engine,
2022                                      struct intel_ring *ring)
2023 {
2024         struct drm_i915_private *dev_priv = engine->i915;
2025         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2026
2027         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2028          * commands followed by (reg, value) pairs. The values we are setting here are
2029          * only for the first context restore: on a subsequent save, the GPU will
2030          * recreate this batchbuffer with new values (including all the missing
2031          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2032         reg_state[CTX_LRI_HEADER_0] =
2033                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2034         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2035                        RING_CONTEXT_CONTROL(engine),
2036                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2037                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2038                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2039                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
2040         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2041                        0);
2042         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2043                        0);
2044         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2045                        RING_START(engine->mmio_base), 0);
2046         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2047                        RING_CTL(engine->mmio_base),
2048                        RING_CTL_SIZE(ring->size) | RING_VALID);
2049         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2050                        RING_BBADDR_UDW(engine->mmio_base), 0);
2051         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2052                        RING_BBADDR(engine->mmio_base), 0);
2053         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2054                        RING_BBSTATE(engine->mmio_base),
2055                        RING_BB_PPGTT);
2056         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2057                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2058         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2059                        RING_SBBADDR(engine->mmio_base), 0);
2060         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2061                        RING_SBBSTATE(engine->mmio_base), 0);
2062         if (engine->id == RCS) {
2063                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2064                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2065                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2066                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2067                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2068                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2069                 if (engine->wa_ctx.vma) {
2070                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2071                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2072
2073                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2074                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2075                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2076
2077                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2078                                 intel_lr_indirect_ctx_offset(engine) << 6;
2079
2080                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2081                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2082                                 0x01;
2083                 }
2084         }
2085         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2086         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2087                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2088         /* PDP values well be assigned later if needed */
2089         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2090                        0);
2091         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2092                        0);
2093         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2094                        0);
2095         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2096                        0);
2097         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2098                        0);
2099         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2100                        0);
2101         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2102                        0);
2103         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2104                        0);
2105
2106         if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2107                 /* 64b PPGTT (48bit canonical)
2108                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2109                  * other PDP Descriptors are ignored.
2110                  */
2111                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2112         }
2113
2114         if (engine->id == RCS) {
2115                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2116                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2117                                make_rpcs(dev_priv));
2118         }
2119 }
2120
2121 static int
2122 populate_lr_context(struct i915_gem_context *ctx,
2123                     struct drm_i915_gem_object *ctx_obj,
2124                     struct intel_engine_cs *engine,
2125                     struct intel_ring *ring)
2126 {
2127         void *vaddr;
2128         int ret;
2129
2130         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2131         if (ret) {
2132                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2133                 return ret;
2134         }
2135
2136         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2137         if (IS_ERR(vaddr)) {
2138                 ret = PTR_ERR(vaddr);
2139                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2140                 return ret;
2141         }
2142         ctx_obj->mm.dirty = true;
2143
2144         /* The second page of the context object contains some fields which must
2145          * be set up prior to the first execution. */
2146
2147         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2148                                  ctx, engine, ring);
2149
2150         i915_gem_object_unpin_map(ctx_obj);
2151
2152         return 0;
2153 }
2154
2155 /**
2156  * intel_lr_context_size() - return the size of the context for an engine
2157  * @engine: which engine to find the context size for
2158  *
2159  * Each engine may require a different amount of space for a context image,
2160  * so when allocating (or copying) an image, this function can be used to
2161  * find the right size for the specific engine.
2162  *
2163  * Return: size (in bytes) of an engine-specific context image
2164  *
2165  * Note: this size includes the HWSP, which is part of the context image
2166  * in LRC mode, but does not include the "shared data page" used with
2167  * GuC submission. The caller should account for this if using the GuC.
2168  */
2169 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2170 {
2171         int ret = 0;
2172
2173         WARN_ON(INTEL_GEN(engine->i915) < 8);
2174
2175         switch (engine->id) {
2176         case RCS:
2177                 if (INTEL_GEN(engine->i915) >= 9)
2178                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2179                 else
2180                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2181                 break;
2182         case VCS:
2183         case BCS:
2184         case VECS:
2185         case VCS2:
2186                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2187                 break;
2188         }
2189
2190         return ret;
2191 }
2192
2193 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2194                                             struct intel_engine_cs *engine)
2195 {
2196         struct drm_i915_gem_object *ctx_obj;
2197         struct intel_context *ce = &ctx->engine[engine->id];
2198         struct i915_vma *vma;
2199         uint32_t context_size;
2200         struct intel_ring *ring;
2201         int ret;
2202
2203         WARN_ON(ce->state);
2204
2205         context_size = round_up(intel_lr_context_size(engine),
2206                                 I915_GTT_PAGE_SIZE);
2207
2208         /* One extra page as the sharing data between driver and GuC */
2209         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2210
2211         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2212         if (IS_ERR(ctx_obj)) {
2213                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2214                 return PTR_ERR(ctx_obj);
2215         }
2216
2217         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2218         if (IS_ERR(vma)) {
2219                 ret = PTR_ERR(vma);
2220                 goto error_deref_obj;
2221         }
2222
2223         ring = intel_engine_create_ring(engine, ctx->ring_size);
2224         if (IS_ERR(ring)) {
2225                 ret = PTR_ERR(ring);
2226                 goto error_deref_obj;
2227         }
2228
2229         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2230         if (ret) {
2231                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2232                 goto error_ring_free;
2233         }
2234
2235         ce->ring = ring;
2236         ce->state = vma;
2237         ce->initialised = engine->init_context == NULL;
2238
2239         return 0;
2240
2241 error_ring_free:
2242         intel_ring_free(ring);
2243 error_deref_obj:
2244         i915_gem_object_put(ctx_obj);
2245         return ret;
2246 }
2247
2248 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2249 {
2250         struct intel_engine_cs *engine;
2251         struct i915_gem_context *ctx;
2252         enum intel_engine_id id;
2253
2254         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2255          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2256          * that stored in context. As we only write new commands from
2257          * ce->ring->tail onwards, everything before that is junk. If the GPU
2258          * starts reading from its RING_HEAD from the context, it may try to
2259          * execute that junk and die.
2260          *
2261          * So to avoid that we reset the context images upon resume. For
2262          * simplicity, we just zero everything out.
2263          */
2264         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2265                 for_each_engine(engine, dev_priv, id) {
2266                         struct intel_context *ce = &ctx->engine[engine->id];
2267                         u32 *reg;
2268
2269                         if (!ce->state)
2270                                 continue;
2271
2272                         reg = i915_gem_object_pin_map(ce->state->obj,
2273                                                       I915_MAP_WB);
2274                         if (WARN_ON(IS_ERR(reg)))
2275                                 continue;
2276
2277                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2278                         reg[CTX_RING_HEAD+1] = 0;
2279                         reg[CTX_RING_TAIL+1] = 0;
2280
2281                         ce->state->obj->mm.dirty = true;
2282                         i915_gem_object_unpin_map(ce->state->obj);
2283
2284                         ce->ring->head = ce->ring->tail = 0;
2285                         ce->ring->last_retired_head = -1;
2286                         intel_ring_update_space(ce->ring);
2287                 }
2288         }
2289 }