]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915/bdw: Clean up execlist queue items in retire_work
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define GEN8_LR_CONTEXT_ALIGN 4096
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 enum {
194         ADVANCED_CONTEXT = 0,
195         LEGACY_CONTEXT,
196         ADVANCED_AD_CONTEXT,
197         LEGACY_64B_CONTEXT
198 };
199 #define GEN8_CTX_MODE_SHIFT 3
200 enum {
201         FAULT_AND_HANG = 0,
202         FAULT_AND_HALT, /* Debug only */
203         FAULT_AND_STREAM,
204         FAULT_AND_CONTINUE /* Unsupported */
205 };
206 #define GEN8_CTX_ID_SHIFT 32
207
208 /**
209  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
210  * @dev: DRM device.
211  * @enable_execlists: value of i915.enable_execlists module parameter.
212  *
213  * Only certain platforms support Execlists (the prerequisites being
214  * support for Logical Ring Contexts and Aliasing PPGTT or better),
215  * and only when enabled via module parameter.
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221         WARN_ON(i915.enable_ppgtt == -1);
222
223         if (INTEL_INFO(dev)->gen >= 9)
224                 return 1;
225
226         if (enable_execlists == 0)
227                 return 0;
228
229         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230             i915.use_mmio_flip >= 0)
231                 return 1;
232
233         return 0;
234 }
235
236 /**
237  * intel_execlists_ctx_id() - get the Execlists Context ID
238  * @ctx_obj: Logical Ring Context backing object.
239  *
240  * Do not confuse with ctx->id! Unfortunately we have a name overload
241  * here: the old context ID we pass to userspace as a handler so that
242  * they can refer to a context, and the new context ID we pass to the
243  * ELSP so that the GPU can inform us of the context status via
244  * interrupts.
245  *
246  * Return: 20-bits globally unique context ID.
247  */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252         /* LRCA is required to be 4K aligned so the more significant 20 bits
253          * are globally unique */
254         return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
258 {
259         uint64_t desc;
260         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
263
264         desc = GEN8_CTX_VALID;
265         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
266         desc |= GEN8_CTX_L3LLC_COHERENT;
267         desc |= GEN8_CTX_PRIVILEGE;
268         desc |= lrca;
269         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
270
271         /* TODO: WaDisableLiteRestore when we start using semaphore
272          * signalling between Command Streamers */
273         /* desc |= GEN8_CTX_FORCE_RESTORE; */
274
275         return desc;
276 }
277
278 static void execlists_elsp_write(struct intel_engine_cs *ring,
279                                  struct drm_i915_gem_object *ctx_obj0,
280                                  struct drm_i915_gem_object *ctx_obj1)
281 {
282         struct drm_device *dev = ring->dev;
283         struct drm_i915_private *dev_priv = dev->dev_private;
284         uint64_t temp = 0;
285         uint32_t desc[4];
286         unsigned long flags;
287
288         /* XXX: You must always write both descriptors in the order below. */
289         if (ctx_obj1)
290                 temp = execlists_ctx_descriptor(ctx_obj1);
291         else
292                 temp = 0;
293         desc[1] = (u32)(temp >> 32);
294         desc[0] = (u32)temp;
295
296         temp = execlists_ctx_descriptor(ctx_obj0);
297         desc[3] = (u32)(temp >> 32);
298         desc[2] = (u32)temp;
299
300         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
301          * are in progress.
302          *
303          * The other problem is that we can't just call gen6_gt_force_wake_get()
304          * because that function calls intel_runtime_pm_get(), which might sleep.
305          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
306          */
307         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
308         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
309                 if (dev_priv->uncore.fw_rendercount++ == 0)
310                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
311                                                               FORCEWAKE_RENDER);
312                 if (dev_priv->uncore.fw_mediacount++ == 0)
313                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
314                                                               FORCEWAKE_MEDIA);
315                 if (INTEL_INFO(dev)->gen >= 9) {
316                         if (dev_priv->uncore.fw_blittercount++ == 0)
317                                 dev_priv->uncore.funcs.force_wake_get(dev_priv,
318                                                         FORCEWAKE_BLITTER);
319                 }
320         } else {
321                 if (dev_priv->uncore.forcewake_count++ == 0)
322                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
323                                                               FORCEWAKE_ALL);
324         }
325         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
326
327         I915_WRITE(RING_ELSP(ring), desc[1]);
328         I915_WRITE(RING_ELSP(ring), desc[0]);
329         I915_WRITE(RING_ELSP(ring), desc[3]);
330         /* The context is automatically loaded after the following */
331         I915_WRITE(RING_ELSP(ring), desc[2]);
332
333         /* ELSP is a wo register, so use another nearby reg for posting instead */
334         POSTING_READ(RING_EXECLIST_STATUS(ring));
335
336         /* Release Force Wakeup (see the big comment above). */
337         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
338         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
339                 if (--dev_priv->uncore.fw_rendercount == 0)
340                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
341                                                               FORCEWAKE_RENDER);
342                 if (--dev_priv->uncore.fw_mediacount == 0)
343                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
344                                                               FORCEWAKE_MEDIA);
345                 if (INTEL_INFO(dev)->gen >= 9) {
346                         if (--dev_priv->uncore.fw_blittercount == 0)
347                                 dev_priv->uncore.funcs.force_wake_put(dev_priv,
348                                                         FORCEWAKE_BLITTER);
349                 }
350         } else {
351                 if (--dev_priv->uncore.forcewake_count == 0)
352                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
353                                                               FORCEWAKE_ALL);
354         }
355
356         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
357 }
358
359 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
360 {
361         struct page *page;
362         uint32_t *reg_state;
363
364         page = i915_gem_object_get_page(ctx_obj, 1);
365         reg_state = kmap_atomic(page);
366
367         reg_state[CTX_RING_TAIL+1] = tail;
368
369         kunmap_atomic(reg_state);
370
371         return 0;
372 }
373
374 static void execlists_submit_contexts(struct intel_engine_cs *ring,
375                                       struct intel_context *to0, u32 tail0,
376                                       struct intel_context *to1, u32 tail1)
377 {
378         struct drm_i915_gem_object *ctx_obj0;
379         struct drm_i915_gem_object *ctx_obj1 = NULL;
380
381         ctx_obj0 = to0->engine[ring->id].state;
382         BUG_ON(!ctx_obj0);
383         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
384
385         execlists_ctx_write_tail(ctx_obj0, tail0);
386
387         if (to1) {
388                 ctx_obj1 = to1->engine[ring->id].state;
389                 BUG_ON(!ctx_obj1);
390                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
391
392                 execlists_ctx_write_tail(ctx_obj1, tail1);
393         }
394
395         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
396 }
397
398 static void execlists_context_unqueue(struct intel_engine_cs *ring)
399 {
400         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
401         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
402
403         assert_spin_locked(&ring->execlist_lock);
404
405         if (list_empty(&ring->execlist_queue))
406                 return;
407
408         /* Try to read in pairs */
409         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
410                                  execlist_link) {
411                 if (!req0) {
412                         req0 = cursor;
413                 } else if (req0->ctx == cursor->ctx) {
414                         /* Same ctx: ignore first request, as second request
415                          * will update tail past first request's workload */
416                         cursor->elsp_submitted = req0->elsp_submitted;
417                         list_del(&req0->execlist_link);
418                         list_add_tail(&req0->execlist_link,
419                                 &ring->execlist_retired_req_list);
420                         req0 = cursor;
421                 } else {
422                         req1 = cursor;
423                         break;
424                 }
425         }
426
427         WARN_ON(req1 && req1->elsp_submitted);
428
429         execlists_submit_contexts(ring, req0->ctx, req0->tail,
430                                   req1 ? req1->ctx : NULL,
431                                   req1 ? req1->tail : 0);
432
433         req0->elsp_submitted++;
434         if (req1)
435                 req1->elsp_submitted++;
436 }
437
438 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
439                                            u32 request_id)
440 {
441         struct intel_ctx_submit_request *head_req;
442
443         assert_spin_locked(&ring->execlist_lock);
444
445         head_req = list_first_entry_or_null(&ring->execlist_queue,
446                                             struct intel_ctx_submit_request,
447                                             execlist_link);
448
449         if (head_req != NULL) {
450                 struct drm_i915_gem_object *ctx_obj =
451                                 head_req->ctx->engine[ring->id].state;
452                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
453                         WARN(head_req->elsp_submitted == 0,
454                              "Never submitted head request\n");
455
456                         if (--head_req->elsp_submitted <= 0) {
457                                 list_del(&head_req->execlist_link);
458                                 list_add_tail(&head_req->execlist_link,
459                                         &ring->execlist_retired_req_list);
460                                 return true;
461                         }
462                 }
463         }
464
465         return false;
466 }
467
468 /**
469  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
470  * @ring: Engine Command Streamer to handle.
471  *
472  * Check the unread Context Status Buffers and manage the submission of new
473  * contexts to the ELSP accordingly.
474  */
475 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
476 {
477         struct drm_i915_private *dev_priv = ring->dev->dev_private;
478         u32 status_pointer;
479         u8 read_pointer;
480         u8 write_pointer;
481         u32 status;
482         u32 status_id;
483         u32 submit_contexts = 0;
484
485         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
486
487         read_pointer = ring->next_context_status_buffer;
488         write_pointer = status_pointer & 0x07;
489         if (read_pointer > write_pointer)
490                 write_pointer += 6;
491
492         spin_lock(&ring->execlist_lock);
493
494         while (read_pointer < write_pointer) {
495                 read_pointer++;
496                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
497                                 (read_pointer % 6) * 8);
498                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
499                                 (read_pointer % 6) * 8 + 4);
500
501                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
502                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
503                                 if (execlists_check_remove_request(ring, status_id))
504                                         WARN(1, "Lite Restored request removed from queue\n");
505                         } else
506                                 WARN(1, "Preemption without Lite Restore\n");
507                 }
508
509                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
510                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
511                         if (execlists_check_remove_request(ring, status_id))
512                                 submit_contexts++;
513                 }
514         }
515
516         if (submit_contexts != 0)
517                 execlists_context_unqueue(ring);
518
519         spin_unlock(&ring->execlist_lock);
520
521         WARN(submit_contexts > 2, "More than two context complete events?\n");
522         ring->next_context_status_buffer = write_pointer % 6;
523
524         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
525                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
526 }
527
528 static int execlists_context_queue(struct intel_engine_cs *ring,
529                                    struct intel_context *to,
530                                    u32 tail)
531 {
532         struct intel_ctx_submit_request *req = NULL, *cursor;
533         struct drm_i915_private *dev_priv = ring->dev->dev_private;
534         unsigned long flags;
535         int num_elements = 0;
536
537         req = kzalloc(sizeof(*req), GFP_KERNEL);
538         if (req == NULL)
539                 return -ENOMEM;
540         req->ctx = to;
541         i915_gem_context_reference(req->ctx);
542         req->ring = ring;
543         req->tail = tail;
544
545         intel_runtime_pm_get(dev_priv);
546
547         spin_lock_irqsave(&ring->execlist_lock, flags);
548
549         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
550                 if (++num_elements > 2)
551                         break;
552
553         if (num_elements > 2) {
554                 struct intel_ctx_submit_request *tail_req;
555
556                 tail_req = list_last_entry(&ring->execlist_queue,
557                                            struct intel_ctx_submit_request,
558                                            execlist_link);
559
560                 if (to == tail_req->ctx) {
561                         WARN(tail_req->elsp_submitted != 0,
562                              "More than 2 already-submitted reqs queued\n");
563                         list_del(&tail_req->execlist_link);
564                         list_add_tail(&tail_req->execlist_link,
565                                 &ring->execlist_retired_req_list);
566                 }
567         }
568
569         list_add_tail(&req->execlist_link, &ring->execlist_queue);
570         if (num_elements == 0)
571                 execlists_context_unqueue(ring);
572
573         spin_unlock_irqrestore(&ring->execlist_lock, flags);
574
575         return 0;
576 }
577
578 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
579 {
580         struct intel_engine_cs *ring = ringbuf->ring;
581         uint32_t flush_domains;
582         int ret;
583
584         flush_domains = 0;
585         if (ring->gpu_caches_dirty)
586                 flush_domains = I915_GEM_GPU_DOMAINS;
587
588         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
589         if (ret)
590                 return ret;
591
592         ring->gpu_caches_dirty = false;
593         return 0;
594 }
595
596 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
597                                  struct list_head *vmas)
598 {
599         struct intel_engine_cs *ring = ringbuf->ring;
600         struct i915_vma *vma;
601         uint32_t flush_domains = 0;
602         bool flush_chipset = false;
603         int ret;
604
605         list_for_each_entry(vma, vmas, exec_list) {
606                 struct drm_i915_gem_object *obj = vma->obj;
607
608                 ret = i915_gem_object_sync(obj, ring);
609                 if (ret)
610                         return ret;
611
612                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
613                         flush_chipset |= i915_gem_clflush_object(obj, false);
614
615                 flush_domains |= obj->base.write_domain;
616         }
617
618         if (flush_domains & I915_GEM_DOMAIN_GTT)
619                 wmb();
620
621         /* Unconditionally invalidate gpu caches and ensure that we do flush
622          * any residual writes from the previous batch.
623          */
624         return logical_ring_invalidate_all_caches(ringbuf);
625 }
626
627 /**
628  * execlists_submission() - submit a batchbuffer for execution, Execlists style
629  * @dev: DRM device.
630  * @file: DRM file.
631  * @ring: Engine Command Streamer to submit to.
632  * @ctx: Context to employ for this submission.
633  * @args: execbuffer call arguments.
634  * @vmas: list of vmas.
635  * @batch_obj: the batchbuffer to submit.
636  * @exec_start: batchbuffer start virtual address pointer.
637  * @flags: translated execbuffer call flags.
638  *
639  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
640  * away the submission details of the execbuffer ioctl call.
641  *
642  * Return: non-zero if the submission fails.
643  */
644 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
645                                struct intel_engine_cs *ring,
646                                struct intel_context *ctx,
647                                struct drm_i915_gem_execbuffer2 *args,
648                                struct list_head *vmas,
649                                struct drm_i915_gem_object *batch_obj,
650                                u64 exec_start, u32 flags)
651 {
652         struct drm_i915_private *dev_priv = dev->dev_private;
653         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
654         int instp_mode;
655         u32 instp_mask;
656         int ret;
657
658         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
659         instp_mask = I915_EXEC_CONSTANTS_MASK;
660         switch (instp_mode) {
661         case I915_EXEC_CONSTANTS_REL_GENERAL:
662         case I915_EXEC_CONSTANTS_ABSOLUTE:
663         case I915_EXEC_CONSTANTS_REL_SURFACE:
664                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
665                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
666                         return -EINVAL;
667                 }
668
669                 if (instp_mode != dev_priv->relative_constants_mode) {
670                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
671                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
672                                 return -EINVAL;
673                         }
674
675                         /* The HW changed the meaning on this bit on gen6 */
676                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
677                 }
678                 break;
679         default:
680                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
681                 return -EINVAL;
682         }
683
684         if (args->num_cliprects != 0) {
685                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
686                 return -EINVAL;
687         } else {
688                 if (args->DR4 == 0xffffffff) {
689                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
690                         args->DR4 = 0;
691                 }
692
693                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
694                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
695                         return -EINVAL;
696                 }
697         }
698
699         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
700                 DRM_DEBUG("sol reset is gen7 only\n");
701                 return -EINVAL;
702         }
703
704         ret = execlists_move_to_gpu(ringbuf, vmas);
705         if (ret)
706                 return ret;
707
708         if (ring == &dev_priv->ring[RCS] &&
709             instp_mode != dev_priv->relative_constants_mode) {
710                 ret = intel_logical_ring_begin(ringbuf, 4);
711                 if (ret)
712                         return ret;
713
714                 intel_logical_ring_emit(ringbuf, MI_NOOP);
715                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
716                 intel_logical_ring_emit(ringbuf, INSTPM);
717                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
718                 intel_logical_ring_advance(ringbuf);
719
720                 dev_priv->relative_constants_mode = instp_mode;
721         }
722
723         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
724         if (ret)
725                 return ret;
726
727         i915_gem_execbuffer_move_to_active(vmas, ring);
728         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
729
730         return 0;
731 }
732
733 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
734 {
735         struct intel_ctx_submit_request *req, *tmp;
736         struct drm_i915_private *dev_priv = ring->dev->dev_private;
737         unsigned long flags;
738         struct list_head retired_list;
739
740         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
741         if (list_empty(&ring->execlist_retired_req_list))
742                 return;
743
744         INIT_LIST_HEAD(&retired_list);
745         spin_lock_irqsave(&ring->execlist_lock, flags);
746         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
747         spin_unlock_irqrestore(&ring->execlist_lock, flags);
748
749         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
750                 intel_runtime_pm_put(dev_priv);
751                 i915_gem_context_unreference(req->ctx);
752                 list_del(&req->execlist_link);
753                 kfree(req);
754         }
755 }
756
757 void intel_logical_ring_stop(struct intel_engine_cs *ring)
758 {
759         struct drm_i915_private *dev_priv = ring->dev->dev_private;
760         int ret;
761
762         if (!intel_ring_initialized(ring))
763                 return;
764
765         ret = intel_ring_idle(ring);
766         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
767                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
768                           ring->name, ret);
769
770         /* TODO: Is this correct with Execlists enabled? */
771         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
772         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
773                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
774                 return;
775         }
776         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
777 }
778
779 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
780 {
781         struct intel_engine_cs *ring = ringbuf->ring;
782         int ret;
783
784         if (!ring->gpu_caches_dirty)
785                 return 0;
786
787         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
788         if (ret)
789                 return ret;
790
791         ring->gpu_caches_dirty = false;
792         return 0;
793 }
794
795 /**
796  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
797  * @ringbuf: Logical Ringbuffer to advance.
798  *
799  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
800  * really happens during submission is that the context and current tail will be placed
801  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
802  * point, the tail *inside* the context is updated and the ELSP written to.
803  */
804 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
805 {
806         struct intel_engine_cs *ring = ringbuf->ring;
807         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
808
809         intel_logical_ring_advance(ringbuf);
810
811         if (intel_ring_stopped(ring))
812                 return;
813
814         execlists_context_queue(ring, ctx, ringbuf->tail);
815 }
816
817 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
818                                     struct intel_context *ctx)
819 {
820         if (ring->outstanding_lazy_seqno)
821                 return 0;
822
823         if (ring->preallocated_lazy_request == NULL) {
824                 struct drm_i915_gem_request *request;
825
826                 request = kmalloc(sizeof(*request), GFP_KERNEL);
827                 if (request == NULL)
828                         return -ENOMEM;
829
830                 /* Hold a reference to the context this request belongs to
831                  * (we will need it when the time comes to emit/retire the
832                  * request).
833                  */
834                 request->ctx = ctx;
835                 i915_gem_context_reference(request->ctx);
836
837                 ring->preallocated_lazy_request = request;
838         }
839
840         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
841 }
842
843 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
844                                      int bytes)
845 {
846         struct intel_engine_cs *ring = ringbuf->ring;
847         struct drm_i915_gem_request *request;
848         u32 seqno = 0;
849         int ret;
850
851         if (ringbuf->last_retired_head != -1) {
852                 ringbuf->head = ringbuf->last_retired_head;
853                 ringbuf->last_retired_head = -1;
854
855                 ringbuf->space = intel_ring_space(ringbuf);
856                 if (ringbuf->space >= bytes)
857                         return 0;
858         }
859
860         list_for_each_entry(request, &ring->request_list, list) {
861                 if (__intel_ring_space(request->tail, ringbuf->tail,
862                                        ringbuf->size) >= bytes) {
863                         seqno = request->seqno;
864                         break;
865                 }
866         }
867
868         if (seqno == 0)
869                 return -ENOSPC;
870
871         ret = i915_wait_seqno(ring, seqno);
872         if (ret)
873                 return ret;
874
875         i915_gem_retire_requests_ring(ring);
876         ringbuf->head = ringbuf->last_retired_head;
877         ringbuf->last_retired_head = -1;
878
879         ringbuf->space = intel_ring_space(ringbuf);
880         return 0;
881 }
882
883 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
884                                        int bytes)
885 {
886         struct intel_engine_cs *ring = ringbuf->ring;
887         struct drm_device *dev = ring->dev;
888         struct drm_i915_private *dev_priv = dev->dev_private;
889         unsigned long end;
890         int ret;
891
892         ret = logical_ring_wait_request(ringbuf, bytes);
893         if (ret != -ENOSPC)
894                 return ret;
895
896         /* Force the context submission in case we have been skipping it */
897         intel_logical_ring_advance_and_submit(ringbuf);
898
899         /* With GEM the hangcheck timer should kick us out of the loop,
900          * leaving it early runs the risk of corrupting GEM state (due
901          * to running on almost untested codepaths). But on resume
902          * timers don't work yet, so prevent a complete hang in that
903          * case by choosing an insanely large timeout. */
904         end = jiffies + 60 * HZ;
905
906         do {
907                 ringbuf->head = I915_READ_HEAD(ring);
908                 ringbuf->space = intel_ring_space(ringbuf);
909                 if (ringbuf->space >= bytes) {
910                         ret = 0;
911                         break;
912                 }
913
914                 msleep(1);
915
916                 if (dev_priv->mm.interruptible && signal_pending(current)) {
917                         ret = -ERESTARTSYS;
918                         break;
919                 }
920
921                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
922                                            dev_priv->mm.interruptible);
923                 if (ret)
924                         break;
925
926                 if (time_after(jiffies, end)) {
927                         ret = -EBUSY;
928                         break;
929                 }
930         } while (1);
931
932         return ret;
933 }
934
935 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
936 {
937         uint32_t __iomem *virt;
938         int rem = ringbuf->size - ringbuf->tail;
939
940         if (ringbuf->space < rem) {
941                 int ret = logical_ring_wait_for_space(ringbuf, rem);
942
943                 if (ret)
944                         return ret;
945         }
946
947         virt = ringbuf->virtual_start + ringbuf->tail;
948         rem /= 4;
949         while (rem--)
950                 iowrite32(MI_NOOP, virt++);
951
952         ringbuf->tail = 0;
953         ringbuf->space = intel_ring_space(ringbuf);
954
955         return 0;
956 }
957
958 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
959 {
960         int ret;
961
962         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
963                 ret = logical_ring_wrap_buffer(ringbuf);
964                 if (unlikely(ret))
965                         return ret;
966         }
967
968         if (unlikely(ringbuf->space < bytes)) {
969                 ret = logical_ring_wait_for_space(ringbuf, bytes);
970                 if (unlikely(ret))
971                         return ret;
972         }
973
974         return 0;
975 }
976
977 /**
978  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
979  *
980  * @ringbuf: Logical ringbuffer.
981  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
982  *
983  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
984  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
985  * and also preallocates a request (every workload submission is still mediated through
986  * requests, same as it did with legacy ringbuffer submission).
987  *
988  * Return: non-zero if the ringbuffer is not ready to be written to.
989  */
990 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
991 {
992         struct intel_engine_cs *ring = ringbuf->ring;
993         struct drm_device *dev = ring->dev;
994         struct drm_i915_private *dev_priv = dev->dev_private;
995         int ret;
996
997         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
998                                    dev_priv->mm.interruptible);
999         if (ret)
1000                 return ret;
1001
1002         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1003         if (ret)
1004                 return ret;
1005
1006         /* Preallocate the olr before touching the ring */
1007         ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
1008         if (ret)
1009                 return ret;
1010
1011         ringbuf->space -= num_dwords * sizeof(uint32_t);
1012         return 0;
1013 }
1014
1015 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1016                                                struct intel_context *ctx)
1017 {
1018         int ret, i;
1019         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1020         struct drm_device *dev = ring->dev;
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         struct i915_workarounds *w = &dev_priv->workarounds;
1023
1024         if (WARN_ON(w->count == 0))
1025                 return 0;
1026
1027         ring->gpu_caches_dirty = true;
1028         ret = logical_ring_flush_all_caches(ringbuf);
1029         if (ret)
1030                 return ret;
1031
1032         ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1033         if (ret)
1034                 return ret;
1035
1036         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1037         for (i = 0; i < w->count; i++) {
1038                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1039                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1040         }
1041         intel_logical_ring_emit(ringbuf, MI_NOOP);
1042
1043         intel_logical_ring_advance(ringbuf);
1044
1045         ring->gpu_caches_dirty = true;
1046         ret = logical_ring_flush_all_caches(ringbuf);
1047         if (ret)
1048                 return ret;
1049
1050         return 0;
1051 }
1052
1053 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1054 {
1055         struct drm_device *dev = ring->dev;
1056         struct drm_i915_private *dev_priv = dev->dev_private;
1057
1058         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1059         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1060
1061         I915_WRITE(RING_MODE_GEN7(ring),
1062                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1063                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1064         POSTING_READ(RING_MODE_GEN7(ring));
1065         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1066
1067         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1068
1069         return 0;
1070 }
1071
1072 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1073 {
1074         struct drm_device *dev = ring->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         int ret;
1077
1078         ret = gen8_init_common_ring(ring);
1079         if (ret)
1080                 return ret;
1081
1082         /* We need to disable the AsyncFlip performance optimisations in order
1083          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1084          * programmed to '1' on all products.
1085          *
1086          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1087          */
1088         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1089
1090         ret = intel_init_pipe_control(ring);
1091         if (ret)
1092                 return ret;
1093
1094         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1095
1096         return init_workarounds_ring(ring);
1097 }
1098
1099 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1100                               u64 offset, unsigned flags)
1101 {
1102         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1103         int ret;
1104
1105         ret = intel_logical_ring_begin(ringbuf, 4);
1106         if (ret)
1107                 return ret;
1108
1109         /* FIXME(BDW): Address space and security selectors. */
1110         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1111         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1112         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1113         intel_logical_ring_emit(ringbuf, MI_NOOP);
1114         intel_logical_ring_advance(ringbuf);
1115
1116         return 0;
1117 }
1118
1119 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1120 {
1121         struct drm_device *dev = ring->dev;
1122         struct drm_i915_private *dev_priv = dev->dev_private;
1123         unsigned long flags;
1124
1125         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1126                 return false;
1127
1128         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1129         if (ring->irq_refcount++ == 0) {
1130                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1131                 POSTING_READ(RING_IMR(ring->mmio_base));
1132         }
1133         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1134
1135         return true;
1136 }
1137
1138 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1139 {
1140         struct drm_device *dev = ring->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         unsigned long flags;
1143
1144         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1145         if (--ring->irq_refcount == 0) {
1146                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1147                 POSTING_READ(RING_IMR(ring->mmio_base));
1148         }
1149         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1150 }
1151
1152 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1153                            u32 invalidate_domains,
1154                            u32 unused)
1155 {
1156         struct intel_engine_cs *ring = ringbuf->ring;
1157         struct drm_device *dev = ring->dev;
1158         struct drm_i915_private *dev_priv = dev->dev_private;
1159         uint32_t cmd;
1160         int ret;
1161
1162         ret = intel_logical_ring_begin(ringbuf, 4);
1163         if (ret)
1164                 return ret;
1165
1166         cmd = MI_FLUSH_DW + 1;
1167
1168         if (ring == &dev_priv->ring[VCS]) {
1169                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1170                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1171                                 MI_FLUSH_DW_STORE_INDEX |
1172                                 MI_FLUSH_DW_OP_STOREDW;
1173         } else {
1174                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1175                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1176                                 MI_FLUSH_DW_OP_STOREDW;
1177         }
1178
1179         intel_logical_ring_emit(ringbuf, cmd);
1180         intel_logical_ring_emit(ringbuf,
1181                                 I915_GEM_HWS_SCRATCH_ADDR |
1182                                 MI_FLUSH_DW_USE_GTT);
1183         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1184         intel_logical_ring_emit(ringbuf, 0); /* value */
1185         intel_logical_ring_advance(ringbuf);
1186
1187         return 0;
1188 }
1189
1190 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1191                                   u32 invalidate_domains,
1192                                   u32 flush_domains)
1193 {
1194         struct intel_engine_cs *ring = ringbuf->ring;
1195         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1196         u32 flags = 0;
1197         int ret;
1198
1199         flags |= PIPE_CONTROL_CS_STALL;
1200
1201         if (flush_domains) {
1202                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1203                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1204         }
1205
1206         if (invalidate_domains) {
1207                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1208                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1209                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1210                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1211                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1212                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1213                 flags |= PIPE_CONTROL_QW_WRITE;
1214                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1215         }
1216
1217         ret = intel_logical_ring_begin(ringbuf, 6);
1218         if (ret)
1219                 return ret;
1220
1221         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1222         intel_logical_ring_emit(ringbuf, flags);
1223         intel_logical_ring_emit(ringbuf, scratch_addr);
1224         intel_logical_ring_emit(ringbuf, 0);
1225         intel_logical_ring_emit(ringbuf, 0);
1226         intel_logical_ring_emit(ringbuf, 0);
1227         intel_logical_ring_advance(ringbuf);
1228
1229         return 0;
1230 }
1231
1232 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1233 {
1234         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1235 }
1236
1237 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1238 {
1239         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1240 }
1241
1242 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1243 {
1244         struct intel_engine_cs *ring = ringbuf->ring;
1245         u32 cmd;
1246         int ret;
1247
1248         ret = intel_logical_ring_begin(ringbuf, 6);
1249         if (ret)
1250                 return ret;
1251
1252         cmd = MI_STORE_DWORD_IMM_GEN8;
1253         cmd |= MI_GLOBAL_GTT;
1254
1255         intel_logical_ring_emit(ringbuf, cmd);
1256         intel_logical_ring_emit(ringbuf,
1257                                 (ring->status_page.gfx_addr +
1258                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1259         intel_logical_ring_emit(ringbuf, 0);
1260         intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1261         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1262         intel_logical_ring_emit(ringbuf, MI_NOOP);
1263         intel_logical_ring_advance_and_submit(ringbuf);
1264
1265         return 0;
1266 }
1267
1268 /**
1269  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1270  *
1271  * @ring: Engine Command Streamer.
1272  *
1273  */
1274 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1275 {
1276         struct drm_i915_private *dev_priv;
1277
1278         if (!intel_ring_initialized(ring))
1279                 return;
1280
1281         dev_priv = ring->dev->dev_private;
1282
1283         intel_logical_ring_stop(ring);
1284         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1285         ring->preallocated_lazy_request = NULL;
1286         ring->outstanding_lazy_seqno = 0;
1287
1288         if (ring->cleanup)
1289                 ring->cleanup(ring);
1290
1291         i915_cmd_parser_fini_ring(ring);
1292
1293         if (ring->status_page.obj) {
1294                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1295                 ring->status_page.obj = NULL;
1296         }
1297 }
1298
1299 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1300 {
1301         int ret;
1302
1303         /* Intentionally left blank. */
1304         ring->buffer = NULL;
1305
1306         ring->dev = dev;
1307         INIT_LIST_HEAD(&ring->active_list);
1308         INIT_LIST_HEAD(&ring->request_list);
1309         init_waitqueue_head(&ring->irq_queue);
1310
1311         INIT_LIST_HEAD(&ring->execlist_queue);
1312         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1313         spin_lock_init(&ring->execlist_lock);
1314         ring->next_context_status_buffer = 0;
1315
1316         ret = i915_cmd_parser_init_ring(ring);
1317         if (ret)
1318                 return ret;
1319
1320         if (ring->init) {
1321                 ret = ring->init(ring);
1322                 if (ret)
1323                         return ret;
1324         }
1325
1326         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1327
1328         return ret;
1329 }
1330
1331 static int logical_render_ring_init(struct drm_device *dev)
1332 {
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1335
1336         ring->name = "render ring";
1337         ring->id = RCS;
1338         ring->mmio_base = RENDER_RING_BASE;
1339         ring->irq_enable_mask =
1340                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1341         ring->irq_keep_mask =
1342                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1343         if (HAS_L3_DPF(dev))
1344                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1345
1346         ring->init = gen8_init_render_ring;
1347         ring->init_context = intel_logical_ring_workarounds_emit;
1348         ring->cleanup = intel_fini_pipe_control;
1349         ring->get_seqno = gen8_get_seqno;
1350         ring->set_seqno = gen8_set_seqno;
1351         ring->emit_request = gen8_emit_request;
1352         ring->emit_flush = gen8_emit_flush_render;
1353         ring->irq_get = gen8_logical_ring_get_irq;
1354         ring->irq_put = gen8_logical_ring_put_irq;
1355         ring->emit_bb_start = gen8_emit_bb_start;
1356
1357         return logical_ring_init(dev, ring);
1358 }
1359
1360 static int logical_bsd_ring_init(struct drm_device *dev)
1361 {
1362         struct drm_i915_private *dev_priv = dev->dev_private;
1363         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1364
1365         ring->name = "bsd ring";
1366         ring->id = VCS;
1367         ring->mmio_base = GEN6_BSD_RING_BASE;
1368         ring->irq_enable_mask =
1369                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1370         ring->irq_keep_mask =
1371                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1372
1373         ring->init = gen8_init_common_ring;
1374         ring->get_seqno = gen8_get_seqno;
1375         ring->set_seqno = gen8_set_seqno;
1376         ring->emit_request = gen8_emit_request;
1377         ring->emit_flush = gen8_emit_flush;
1378         ring->irq_get = gen8_logical_ring_get_irq;
1379         ring->irq_put = gen8_logical_ring_put_irq;
1380         ring->emit_bb_start = gen8_emit_bb_start;
1381
1382         return logical_ring_init(dev, ring);
1383 }
1384
1385 static int logical_bsd2_ring_init(struct drm_device *dev)
1386 {
1387         struct drm_i915_private *dev_priv = dev->dev_private;
1388         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1389
1390         ring->name = "bds2 ring";
1391         ring->id = VCS2;
1392         ring->mmio_base = GEN8_BSD2_RING_BASE;
1393         ring->irq_enable_mask =
1394                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1395         ring->irq_keep_mask =
1396                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1397
1398         ring->init = gen8_init_common_ring;
1399         ring->get_seqno = gen8_get_seqno;
1400         ring->set_seqno = gen8_set_seqno;
1401         ring->emit_request = gen8_emit_request;
1402         ring->emit_flush = gen8_emit_flush;
1403         ring->irq_get = gen8_logical_ring_get_irq;
1404         ring->irq_put = gen8_logical_ring_put_irq;
1405         ring->emit_bb_start = gen8_emit_bb_start;
1406
1407         return logical_ring_init(dev, ring);
1408 }
1409
1410 static int logical_blt_ring_init(struct drm_device *dev)
1411 {
1412         struct drm_i915_private *dev_priv = dev->dev_private;
1413         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1414
1415         ring->name = "blitter ring";
1416         ring->id = BCS;
1417         ring->mmio_base = BLT_RING_BASE;
1418         ring->irq_enable_mask =
1419                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1420         ring->irq_keep_mask =
1421                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1422
1423         ring->init = gen8_init_common_ring;
1424         ring->get_seqno = gen8_get_seqno;
1425         ring->set_seqno = gen8_set_seqno;
1426         ring->emit_request = gen8_emit_request;
1427         ring->emit_flush = gen8_emit_flush;
1428         ring->irq_get = gen8_logical_ring_get_irq;
1429         ring->irq_put = gen8_logical_ring_put_irq;
1430         ring->emit_bb_start = gen8_emit_bb_start;
1431
1432         return logical_ring_init(dev, ring);
1433 }
1434
1435 static int logical_vebox_ring_init(struct drm_device *dev)
1436 {
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1439
1440         ring->name = "video enhancement ring";
1441         ring->id = VECS;
1442         ring->mmio_base = VEBOX_RING_BASE;
1443         ring->irq_enable_mask =
1444                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1445         ring->irq_keep_mask =
1446                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1447
1448         ring->init = gen8_init_common_ring;
1449         ring->get_seqno = gen8_get_seqno;
1450         ring->set_seqno = gen8_set_seqno;
1451         ring->emit_request = gen8_emit_request;
1452         ring->emit_flush = gen8_emit_flush;
1453         ring->irq_get = gen8_logical_ring_get_irq;
1454         ring->irq_put = gen8_logical_ring_put_irq;
1455         ring->emit_bb_start = gen8_emit_bb_start;
1456
1457         return logical_ring_init(dev, ring);
1458 }
1459
1460 /**
1461  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1462  * @dev: DRM device.
1463  *
1464  * This function inits the engines for an Execlists submission style (the equivalent in the
1465  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1466  * those engines that are present in the hardware.
1467  *
1468  * Return: non-zero if the initialization failed.
1469  */
1470 int intel_logical_rings_init(struct drm_device *dev)
1471 {
1472         struct drm_i915_private *dev_priv = dev->dev_private;
1473         int ret;
1474
1475         ret = logical_render_ring_init(dev);
1476         if (ret)
1477                 return ret;
1478
1479         if (HAS_BSD(dev)) {
1480                 ret = logical_bsd_ring_init(dev);
1481                 if (ret)
1482                         goto cleanup_render_ring;
1483         }
1484
1485         if (HAS_BLT(dev)) {
1486                 ret = logical_blt_ring_init(dev);
1487                 if (ret)
1488                         goto cleanup_bsd_ring;
1489         }
1490
1491         if (HAS_VEBOX(dev)) {
1492                 ret = logical_vebox_ring_init(dev);
1493                 if (ret)
1494                         goto cleanup_blt_ring;
1495         }
1496
1497         if (HAS_BSD2(dev)) {
1498                 ret = logical_bsd2_ring_init(dev);
1499                 if (ret)
1500                         goto cleanup_vebox_ring;
1501         }
1502
1503         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1504         if (ret)
1505                 goto cleanup_bsd2_ring;
1506
1507         return 0;
1508
1509 cleanup_bsd2_ring:
1510         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1511 cleanup_vebox_ring:
1512         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1513 cleanup_blt_ring:
1514         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1515 cleanup_bsd_ring:
1516         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1517 cleanup_render_ring:
1518         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1519
1520         return ret;
1521 }
1522
1523 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1524                                        struct intel_context *ctx)
1525 {
1526         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1527         struct render_state so;
1528         struct drm_i915_file_private *file_priv = ctx->file_priv;
1529         struct drm_file *file = file_priv ? file_priv->file : NULL;
1530         int ret;
1531
1532         ret = i915_gem_render_state_prepare(ring, &so);
1533         if (ret)
1534                 return ret;
1535
1536         if (so.rodata == NULL)
1537                 return 0;
1538
1539         ret = ring->emit_bb_start(ringbuf,
1540                         so.ggtt_offset,
1541                         I915_DISPATCH_SECURE);
1542         if (ret)
1543                 goto out;
1544
1545         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1546
1547         ret = __i915_add_request(ring, file, so.obj, NULL);
1548         /* intel_logical_ring_add_request moves object to inactive if it
1549          * fails */
1550 out:
1551         i915_gem_render_state_fini(&so);
1552         return ret;
1553 }
1554
1555 static int
1556 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1557                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1558 {
1559         struct drm_device *dev = ring->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1562         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1563         struct page *page;
1564         uint32_t *reg_state;
1565         int ret;
1566
1567         if (!ppgtt)
1568                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1569
1570         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1571         if (ret) {
1572                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1573                 return ret;
1574         }
1575
1576         ret = i915_gem_object_get_pages(ctx_obj);
1577         if (ret) {
1578                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1579                 return ret;
1580         }
1581
1582         i915_gem_object_pin_pages(ctx_obj);
1583
1584         /* The second page of the context object contains some fields which must
1585          * be set up prior to the first execution. */
1586         page = i915_gem_object_get_page(ctx_obj, 1);
1587         reg_state = kmap_atomic(page);
1588
1589         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1590          * commands followed by (reg, value) pairs. The values we are setting here are
1591          * only for the first context restore: on a subsequent save, the GPU will
1592          * recreate this batchbuffer with new values (including all the missing
1593          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1594         if (ring->id == RCS)
1595                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1596         else
1597                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1598         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1599         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1600         reg_state[CTX_CONTEXT_CONTROL+1] =
1601                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1602         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1603         reg_state[CTX_RING_HEAD+1] = 0;
1604         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1605         reg_state[CTX_RING_TAIL+1] = 0;
1606         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1607         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1608         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1609         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1610                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1611         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1612         reg_state[CTX_BB_HEAD_U+1] = 0;
1613         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1614         reg_state[CTX_BB_HEAD_L+1] = 0;
1615         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1616         reg_state[CTX_BB_STATE+1] = (1<<5);
1617         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1618         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1619         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1620         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1621         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1622         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1623         if (ring->id == RCS) {
1624                 /* TODO: according to BSpec, the register state context
1625                  * for CHV does not have these. OTOH, these registers do
1626                  * exist in CHV. I'm waiting for a clarification */
1627                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1628                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1629                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1630                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1631                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1632                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1633         }
1634         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1635         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1636         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1637         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1638         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1639         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1640         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1641         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1642         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1643         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1644         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1645         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1646         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1647         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1648         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1649         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1650         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1651         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1652         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1653         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1654         if (ring->id == RCS) {
1655                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1656                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1657                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1658         }
1659
1660         kunmap_atomic(reg_state);
1661
1662         ctx_obj->dirty = 1;
1663         set_page_dirty(page);
1664         i915_gem_object_unpin_pages(ctx_obj);
1665
1666         return 0;
1667 }
1668
1669 /**
1670  * intel_lr_context_free() - free the LRC specific bits of a context
1671  * @ctx: the LR context to free.
1672  *
1673  * The real context freeing is done in i915_gem_context_free: this only
1674  * takes care of the bits that are LRC related: the per-engine backing
1675  * objects and the logical ringbuffer.
1676  */
1677 void intel_lr_context_free(struct intel_context *ctx)
1678 {
1679         int i;
1680
1681         for (i = 0; i < I915_NUM_RINGS; i++) {
1682                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1683                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1684
1685                 if (ctx_obj) {
1686                         intel_destroy_ringbuffer_obj(ringbuf);
1687                         kfree(ringbuf);
1688                         i915_gem_object_ggtt_unpin(ctx_obj);
1689                         drm_gem_object_unreference(&ctx_obj->base);
1690                 }
1691         }
1692 }
1693
1694 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1695 {
1696         int ret = 0;
1697
1698         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1699
1700         switch (ring->id) {
1701         case RCS:
1702                 if (INTEL_INFO(ring->dev)->gen >= 9)
1703                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1704                 else
1705                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1706                 break;
1707         case VCS:
1708         case BCS:
1709         case VECS:
1710         case VCS2:
1711                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1712                 break;
1713         }
1714
1715         return ret;
1716 }
1717
1718 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1719                 struct drm_i915_gem_object *default_ctx_obj)
1720 {
1721         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1722
1723         /* The status page is offset 0 from the default context object
1724          * in LRC mode. */
1725         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1726         ring->status_page.page_addr =
1727                         kmap(sg_page(default_ctx_obj->pages->sgl));
1728         ring->status_page.obj = default_ctx_obj;
1729
1730         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1731                         (u32)ring->status_page.gfx_addr);
1732         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1733 }
1734
1735 /**
1736  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1737  * @ctx: LR context to create.
1738  * @ring: engine to be used with the context.
1739  *
1740  * This function can be called more than once, with different engines, if we plan
1741  * to use the context with them. The context backing objects and the ringbuffers
1742  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1743  * the creation is a deferred call: it's better to make sure first that we need to use
1744  * a given ring with the context.
1745  *
1746  * Return: non-zero on error.
1747  */
1748 int intel_lr_context_deferred_create(struct intel_context *ctx,
1749                                      struct intel_engine_cs *ring)
1750 {
1751         struct drm_device *dev = ring->dev;
1752         struct drm_i915_gem_object *ctx_obj;
1753         uint32_t context_size;
1754         struct intel_ringbuffer *ringbuf;
1755         int ret;
1756
1757         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1758         if (ctx->engine[ring->id].state)
1759                 return 0;
1760
1761         context_size = round_up(get_lr_context_size(ring), 4096);
1762
1763         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1764         if (IS_ERR(ctx_obj)) {
1765                 ret = PTR_ERR(ctx_obj);
1766                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1767                 return ret;
1768         }
1769
1770         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1771         if (ret) {
1772                 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1773                 drm_gem_object_unreference(&ctx_obj->base);
1774                 return ret;
1775         }
1776
1777         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1778         if (!ringbuf) {
1779                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1780                                 ring->name);
1781                 i915_gem_object_ggtt_unpin(ctx_obj);
1782                 drm_gem_object_unreference(&ctx_obj->base);
1783                 ret = -ENOMEM;
1784                 return ret;
1785         }
1786
1787         ringbuf->ring = ring;
1788         ringbuf->FIXME_lrc_ctx = ctx;
1789
1790         ringbuf->size = 32 * PAGE_SIZE;
1791         ringbuf->effective_size = ringbuf->size;
1792         ringbuf->head = 0;
1793         ringbuf->tail = 0;
1794         ringbuf->space = ringbuf->size;
1795         ringbuf->last_retired_head = -1;
1796
1797         /* TODO: For now we put this in the mappable region so that we can reuse
1798          * the existing ringbuffer code which ioremaps it. When we start
1799          * creating many contexts, this will no longer work and we must switch
1800          * to a kmapish interface.
1801          */
1802         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1803         if (ret) {
1804                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1805                                 ring->name, ret);
1806                 goto error;
1807         }
1808
1809         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1810         if (ret) {
1811                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1812                 intel_destroy_ringbuffer_obj(ringbuf);
1813                 goto error;
1814         }
1815
1816         ctx->engine[ring->id].ringbuf = ringbuf;
1817         ctx->engine[ring->id].state = ctx_obj;
1818
1819         if (ctx == ring->default_context)
1820                 lrc_setup_hardware_status_page(ring, ctx_obj);
1821
1822         if (ring->id == RCS && !ctx->rcs_initialized) {
1823                 if (ring->init_context) {
1824                         ret = ring->init_context(ring, ctx);
1825                         if (ret)
1826                                 DRM_ERROR("ring init context: %d\n", ret);
1827                 }
1828
1829                 ret = intel_lr_context_render_state_init(ring, ctx);
1830                 if (ret) {
1831                         DRM_ERROR("Init render state failed: %d\n", ret);
1832                         ctx->engine[ring->id].ringbuf = NULL;
1833                         ctx->engine[ring->id].state = NULL;
1834                         intel_destroy_ringbuffer_obj(ringbuf);
1835                         goto error;
1836                 }
1837                 ctx->rcs_initialized = true;
1838         }
1839
1840         return 0;
1841
1842 error:
1843         kfree(ringbuf);
1844         i915_gem_object_ggtt_unpin(ctx_obj);
1845         drm_gem_object_unreference(&ctx_obj->base);
1846         return ret;
1847 }