]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
01b399fafe7408942738443c7733a7d9a49cfa52
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
298         } else {
299                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
300                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
301                            HSW_BYPASS_FBC_QUEUE);
302         }
303
304         I915_WRITE(SNB_DPFC_CTL_SA,
305                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
306         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
307
308         sandybridge_blit_fbc_update(dev);
309
310         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
311 }
312
313 bool intel_fbc_enabled(struct drm_device *dev)
314 {
315         struct drm_i915_private *dev_priv = dev->dev_private;
316
317         if (!dev_priv->display.fbc_enabled)
318                 return false;
319
320         return dev_priv->display.fbc_enabled(dev);
321 }
322
323 static void intel_fbc_work_fn(struct work_struct *__work)
324 {
325         struct intel_fbc_work *work =
326                 container_of(to_delayed_work(__work),
327                              struct intel_fbc_work, work);
328         struct drm_device *dev = work->crtc->dev;
329         struct drm_i915_private *dev_priv = dev->dev_private;
330
331         mutex_lock(&dev->struct_mutex);
332         if (work == dev_priv->fbc.fbc_work) {
333                 /* Double check that we haven't switched fb without cancelling
334                  * the prior work.
335                  */
336                 if (work->crtc->fb == work->fb) {
337                         dev_priv->display.enable_fbc(work->crtc);
338
339                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
340                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
341                         dev_priv->fbc.y = work->crtc->y;
342                 }
343
344                 dev_priv->fbc.fbc_work = NULL;
345         }
346         mutex_unlock(&dev->struct_mutex);
347
348         kfree(work);
349 }
350
351 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
352 {
353         if (dev_priv->fbc.fbc_work == NULL)
354                 return;
355
356         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
357
358         /* Synchronisation is provided by struct_mutex and checking of
359          * dev_priv->fbc.fbc_work, so we can perform the cancellation
360          * entirely asynchronously.
361          */
362         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
363                 /* tasklet was killed before being run, clean up */
364                 kfree(dev_priv->fbc.fbc_work);
365
366         /* Mark the work as no longer wanted so that if it does
367          * wake-up (because the work was already running and waiting
368          * for our mutex), it will discover that is no longer
369          * necessary to run.
370          */
371         dev_priv->fbc.fbc_work = NULL;
372 }
373
374 static void intel_enable_fbc(struct drm_crtc *crtc)
375 {
376         struct intel_fbc_work *work;
377         struct drm_device *dev = crtc->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379
380         if (!dev_priv->display.enable_fbc)
381                 return;
382
383         intel_cancel_fbc_work(dev_priv);
384
385         work = kzalloc(sizeof(*work), GFP_KERNEL);
386         if (work == NULL) {
387                 DRM_ERROR("Failed to allocate FBC work structure\n");
388                 dev_priv->display.enable_fbc(crtc);
389                 return;
390         }
391
392         work->crtc = crtc;
393         work->fb = crtc->fb;
394         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
395
396         dev_priv->fbc.fbc_work = work;
397
398         /* Delay the actual enabling to let pageflipping cease and the
399          * display to settle before starting the compression. Note that
400          * this delay also serves a second purpose: it allows for a
401          * vblank to pass after disabling the FBC before we attempt
402          * to modify the control registers.
403          *
404          * A more complicated solution would involve tracking vblanks
405          * following the termination of the page-flipping sequence
406          * and indeed performing the enable as a co-routine and not
407          * waiting synchronously upon the vblank.
408          *
409          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
410          */
411         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
412 }
413
414 void intel_disable_fbc(struct drm_device *dev)
415 {
416         struct drm_i915_private *dev_priv = dev->dev_private;
417
418         intel_cancel_fbc_work(dev_priv);
419
420         if (!dev_priv->display.disable_fbc)
421                 return;
422
423         dev_priv->display.disable_fbc(dev);
424         dev_priv->fbc.plane = -1;
425 }
426
427 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
428                               enum no_fbc_reason reason)
429 {
430         if (dev_priv->fbc.no_fbc_reason == reason)
431                 return false;
432
433         dev_priv->fbc.no_fbc_reason = reason;
434         return true;
435 }
436
437 /**
438  * intel_update_fbc - enable/disable FBC as needed
439  * @dev: the drm_device
440  *
441  * Set up the framebuffer compression hardware at mode set time.  We
442  * enable it if possible:
443  *   - plane A only (on pre-965)
444  *   - no pixel mulitply/line duplication
445  *   - no alpha buffer discard
446  *   - no dual wide
447  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
448  *
449  * We can't assume that any compression will take place (worst case),
450  * so the compressed buffer has to be the same size as the uncompressed
451  * one.  It also must reside (along with the line length buffer) in
452  * stolen memory.
453  *
454  * We need to enable/disable FBC on a global basis.
455  */
456 void intel_update_fbc(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459         struct drm_crtc *crtc = NULL, *tmp_crtc;
460         struct intel_crtc *intel_crtc;
461         struct drm_framebuffer *fb;
462         struct intel_framebuffer *intel_fb;
463         struct drm_i915_gem_object *obj;
464         const struct drm_display_mode *adjusted_mode;
465         unsigned int max_width, max_height;
466
467         if (!HAS_FBC(dev)) {
468                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
469                 return;
470         }
471
472         if (!i915.powersave) {
473                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
474                         DRM_DEBUG_KMS("fbc disabled per module param\n");
475                 return;
476         }
477
478         /*
479          * If FBC is already on, we just have to verify that we can
480          * keep it that way...
481          * Need to disable if:
482          *   - more than one pipe is active
483          *   - changing FBC params (stride, fence, mode)
484          *   - new fb is too large to fit in compressed buffer
485          *   - going to an unsupported config (interlace, pixel multiply, etc.)
486          */
487         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
488                 if (intel_crtc_active(tmp_crtc) &&
489                     to_intel_crtc(tmp_crtc)->primary_enabled) {
490                         if (crtc) {
491                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
492                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
493                                 goto out_disable;
494                         }
495                         crtc = tmp_crtc;
496                 }
497         }
498
499         if (!crtc || crtc->fb == NULL) {
500                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
501                         DRM_DEBUG_KMS("no output, disabling\n");
502                 goto out_disable;
503         }
504
505         intel_crtc = to_intel_crtc(crtc);
506         fb = crtc->fb;
507         intel_fb = to_intel_framebuffer(fb);
508         obj = intel_fb->obj;
509         adjusted_mode = &intel_crtc->config.adjusted_mode;
510
511         if (i915.enable_fbc < 0 &&
512             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
513                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
514                         DRM_DEBUG_KMS("disabled per chip default\n");
515                 goto out_disable;
516         }
517         if (!i915.enable_fbc) {
518                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
519                         DRM_DEBUG_KMS("fbc disabled per module param\n");
520                 goto out_disable;
521         }
522         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
523             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
524                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
525                         DRM_DEBUG_KMS("mode incompatible with compression, "
526                                       "disabling\n");
527                 goto out_disable;
528         }
529
530         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
531                 max_width = 4096;
532                 max_height = 2048;
533         } else {
534                 max_width = 2048;
535                 max_height = 1536;
536         }
537         if (intel_crtc->config.pipe_src_w > max_width ||
538             intel_crtc->config.pipe_src_h > max_height) {
539                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
540                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
541                 goto out_disable;
542         }
543         if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
544             intel_crtc->plane != PLANE_A) {
545                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
546                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
547                 goto out_disable;
548         }
549
550         /* The use of a CPU fence is mandatory in order to detect writes
551          * by the CPU to the scanout and trigger updates to the FBC.
552          */
553         if (obj->tiling_mode != I915_TILING_X ||
554             obj->fence_reg == I915_FENCE_REG_NONE) {
555                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
556                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
557                 goto out_disable;
558         }
559
560         /* If the kernel debugger is active, always disable compression */
561         if (in_dbg_master())
562                 goto out_disable;
563
564         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
565                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
566                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
567                 goto out_disable;
568         }
569
570         /* If the scanout has not changed, don't modify the FBC settings.
571          * Note that we make the fundamental assumption that the fb->obj
572          * cannot be unpinned (and have its GTT offset and fence revoked)
573          * without first being decoupled from the scanout and FBC disabled.
574          */
575         if (dev_priv->fbc.plane == intel_crtc->plane &&
576             dev_priv->fbc.fb_id == fb->base.id &&
577             dev_priv->fbc.y == crtc->y)
578                 return;
579
580         if (intel_fbc_enabled(dev)) {
581                 /* We update FBC along two paths, after changing fb/crtc
582                  * configuration (modeswitching) and after page-flipping
583                  * finishes. For the latter, we know that not only did
584                  * we disable the FBC at the start of the page-flip
585                  * sequence, but also more than one vblank has passed.
586                  *
587                  * For the former case of modeswitching, it is possible
588                  * to switch between two FBC valid configurations
589                  * instantaneously so we do need to disable the FBC
590                  * before we can modify its control registers. We also
591                  * have to wait for the next vblank for that to take
592                  * effect. However, since we delay enabling FBC we can
593                  * assume that a vblank has passed since disabling and
594                  * that we can safely alter the registers in the deferred
595                  * callback.
596                  *
597                  * In the scenario that we go from a valid to invalid
598                  * and then back to valid FBC configuration we have
599                  * no strict enforcement that a vblank occurred since
600                  * disabling the FBC. However, along all current pipe
601                  * disabling paths we do need to wait for a vblank at
602                  * some point. And we wait before enabling FBC anyway.
603                  */
604                 DRM_DEBUG_KMS("disabling active FBC for update\n");
605                 intel_disable_fbc(dev);
606         }
607
608         intel_enable_fbc(crtc);
609         dev_priv->fbc.no_fbc_reason = FBC_OK;
610         return;
611
612 out_disable:
613         /* Multiple disables should be harmless */
614         if (intel_fbc_enabled(dev)) {
615                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
616                 intel_disable_fbc(dev);
617         }
618         i915_gem_stolen_cleanup_compression(dev);
619 }
620
621 static void i915_pineview_get_mem_freq(struct drm_device *dev)
622 {
623         drm_i915_private_t *dev_priv = dev->dev_private;
624         u32 tmp;
625
626         tmp = I915_READ(CLKCFG);
627
628         switch (tmp & CLKCFG_FSB_MASK) {
629         case CLKCFG_FSB_533:
630                 dev_priv->fsb_freq = 533; /* 133*4 */
631                 break;
632         case CLKCFG_FSB_800:
633                 dev_priv->fsb_freq = 800; /* 200*4 */
634                 break;
635         case CLKCFG_FSB_667:
636                 dev_priv->fsb_freq =  667; /* 167*4 */
637                 break;
638         case CLKCFG_FSB_400:
639                 dev_priv->fsb_freq = 400; /* 100*4 */
640                 break;
641         }
642
643         switch (tmp & CLKCFG_MEM_MASK) {
644         case CLKCFG_MEM_533:
645                 dev_priv->mem_freq = 533;
646                 break;
647         case CLKCFG_MEM_667:
648                 dev_priv->mem_freq = 667;
649                 break;
650         case CLKCFG_MEM_800:
651                 dev_priv->mem_freq = 800;
652                 break;
653         }
654
655         /* detect pineview DDR3 setting */
656         tmp = I915_READ(CSHRDDR3CTL);
657         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
658 }
659
660 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
661 {
662         drm_i915_private_t *dev_priv = dev->dev_private;
663         u16 ddrpll, csipll;
664
665         ddrpll = I915_READ16(DDRMPLL1);
666         csipll = I915_READ16(CSIPLL0);
667
668         switch (ddrpll & 0xff) {
669         case 0xc:
670                 dev_priv->mem_freq = 800;
671                 break;
672         case 0x10:
673                 dev_priv->mem_freq = 1066;
674                 break;
675         case 0x14:
676                 dev_priv->mem_freq = 1333;
677                 break;
678         case 0x18:
679                 dev_priv->mem_freq = 1600;
680                 break;
681         default:
682                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
683                                  ddrpll & 0xff);
684                 dev_priv->mem_freq = 0;
685                 break;
686         }
687
688         dev_priv->ips.r_t = dev_priv->mem_freq;
689
690         switch (csipll & 0x3ff) {
691         case 0x00c:
692                 dev_priv->fsb_freq = 3200;
693                 break;
694         case 0x00e:
695                 dev_priv->fsb_freq = 3733;
696                 break;
697         case 0x010:
698                 dev_priv->fsb_freq = 4266;
699                 break;
700         case 0x012:
701                 dev_priv->fsb_freq = 4800;
702                 break;
703         case 0x014:
704                 dev_priv->fsb_freq = 5333;
705                 break;
706         case 0x016:
707                 dev_priv->fsb_freq = 5866;
708                 break;
709         case 0x018:
710                 dev_priv->fsb_freq = 6400;
711                 break;
712         default:
713                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
714                                  csipll & 0x3ff);
715                 dev_priv->fsb_freq = 0;
716                 break;
717         }
718
719         if (dev_priv->fsb_freq == 3200) {
720                 dev_priv->ips.c_m = 0;
721         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
722                 dev_priv->ips.c_m = 1;
723         } else {
724                 dev_priv->ips.c_m = 2;
725         }
726 }
727
728 static const struct cxsr_latency cxsr_latency_table[] = {
729         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
730         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
731         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
732         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
733         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
734
735         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
736         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
737         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
738         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
739         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
740
741         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
742         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
743         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
744         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
745         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
746
747         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
748         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
749         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
750         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
751         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
752
753         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
754         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
755         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
756         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
757         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
758
759         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
760         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
761         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
762         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
763         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
764 };
765
766 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
767                                                          int is_ddr3,
768                                                          int fsb,
769                                                          int mem)
770 {
771         const struct cxsr_latency *latency;
772         int i;
773
774         if (fsb == 0 || mem == 0)
775                 return NULL;
776
777         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
778                 latency = &cxsr_latency_table[i];
779                 if (is_desktop == latency->is_desktop &&
780                     is_ddr3 == latency->is_ddr3 &&
781                     fsb == latency->fsb_freq && mem == latency->mem_freq)
782                         return latency;
783         }
784
785         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
786
787         return NULL;
788 }
789
790 static void pineview_disable_cxsr(struct drm_device *dev)
791 {
792         struct drm_i915_private *dev_priv = dev->dev_private;
793
794         /* deactivate cxsr */
795         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
796 }
797
798 /*
799  * Latency for FIFO fetches is dependent on several factors:
800  *   - memory configuration (speed, channels)
801  *   - chipset
802  *   - current MCH state
803  * It can be fairly high in some situations, so here we assume a fairly
804  * pessimal value.  It's a tradeoff between extra memory fetches (if we
805  * set this value too high, the FIFO will fetch frequently to stay full)
806  * and power consumption (set it too low to save power and we might see
807  * FIFO underruns and display "flicker").
808  *
809  * A value of 5us seems to be a good balance; safe for very low end
810  * platforms but not overly aggressive on lower latency configs.
811  */
812 static const int latency_ns = 5000;
813
814 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
815 {
816         struct drm_i915_private *dev_priv = dev->dev_private;
817         uint32_t dsparb = I915_READ(DSPARB);
818         int size;
819
820         size = dsparb & 0x7f;
821         if (plane)
822                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
823
824         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
825                       plane ? "B" : "A", size);
826
827         return size;
828 }
829
830 static int i830_get_fifo_size(struct drm_device *dev, int plane)
831 {
832         struct drm_i915_private *dev_priv = dev->dev_private;
833         uint32_t dsparb = I915_READ(DSPARB);
834         int size;
835
836         size = dsparb & 0x1ff;
837         if (plane)
838                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
839         size >>= 1; /* Convert to cachelines */
840
841         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
842                       plane ? "B" : "A", size);
843
844         return size;
845 }
846
847 static int i845_get_fifo_size(struct drm_device *dev, int plane)
848 {
849         struct drm_i915_private *dev_priv = dev->dev_private;
850         uint32_t dsparb = I915_READ(DSPARB);
851         int size;
852
853         size = dsparb & 0x7f;
854         size >>= 2; /* Convert to cachelines */
855
856         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
857                       plane ? "B" : "A",
858                       size);
859
860         return size;
861 }
862
863 /* Pineview has different values for various configs */
864 static const struct intel_watermark_params pineview_display_wm = {
865         PINEVIEW_DISPLAY_FIFO,
866         PINEVIEW_MAX_WM,
867         PINEVIEW_DFT_WM,
868         PINEVIEW_GUARD_WM,
869         PINEVIEW_FIFO_LINE_SIZE
870 };
871 static const struct intel_watermark_params pineview_display_hplloff_wm = {
872         PINEVIEW_DISPLAY_FIFO,
873         PINEVIEW_MAX_WM,
874         PINEVIEW_DFT_HPLLOFF_WM,
875         PINEVIEW_GUARD_WM,
876         PINEVIEW_FIFO_LINE_SIZE
877 };
878 static const struct intel_watermark_params pineview_cursor_wm = {
879         PINEVIEW_CURSOR_FIFO,
880         PINEVIEW_CURSOR_MAX_WM,
881         PINEVIEW_CURSOR_DFT_WM,
882         PINEVIEW_CURSOR_GUARD_WM,
883         PINEVIEW_FIFO_LINE_SIZE,
884 };
885 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
886         PINEVIEW_CURSOR_FIFO,
887         PINEVIEW_CURSOR_MAX_WM,
888         PINEVIEW_CURSOR_DFT_WM,
889         PINEVIEW_CURSOR_GUARD_WM,
890         PINEVIEW_FIFO_LINE_SIZE
891 };
892 static const struct intel_watermark_params g4x_wm_info = {
893         G4X_FIFO_SIZE,
894         G4X_MAX_WM,
895         G4X_MAX_WM,
896         2,
897         G4X_FIFO_LINE_SIZE,
898 };
899 static const struct intel_watermark_params g4x_cursor_wm_info = {
900         I965_CURSOR_FIFO,
901         I965_CURSOR_MAX_WM,
902         I965_CURSOR_DFT_WM,
903         2,
904         G4X_FIFO_LINE_SIZE,
905 };
906 static const struct intel_watermark_params valleyview_wm_info = {
907         VALLEYVIEW_FIFO_SIZE,
908         VALLEYVIEW_MAX_WM,
909         VALLEYVIEW_MAX_WM,
910         2,
911         G4X_FIFO_LINE_SIZE,
912 };
913 static const struct intel_watermark_params valleyview_cursor_wm_info = {
914         I965_CURSOR_FIFO,
915         VALLEYVIEW_CURSOR_MAX_WM,
916         I965_CURSOR_DFT_WM,
917         2,
918         G4X_FIFO_LINE_SIZE,
919 };
920 static const struct intel_watermark_params i965_cursor_wm_info = {
921         I965_CURSOR_FIFO,
922         I965_CURSOR_MAX_WM,
923         I965_CURSOR_DFT_WM,
924         2,
925         I915_FIFO_LINE_SIZE,
926 };
927 static const struct intel_watermark_params i945_wm_info = {
928         I945_FIFO_SIZE,
929         I915_MAX_WM,
930         1,
931         2,
932         I915_FIFO_LINE_SIZE
933 };
934 static const struct intel_watermark_params i915_wm_info = {
935         I915_FIFO_SIZE,
936         I915_MAX_WM,
937         1,
938         2,
939         I915_FIFO_LINE_SIZE
940 };
941 static const struct intel_watermark_params i830_wm_info = {
942         I855GM_FIFO_SIZE,
943         I915_MAX_WM,
944         1,
945         2,
946         I830_FIFO_LINE_SIZE
947 };
948 static const struct intel_watermark_params i845_wm_info = {
949         I830_FIFO_SIZE,
950         I915_MAX_WM,
951         1,
952         2,
953         I830_FIFO_LINE_SIZE
954 };
955
956 /**
957  * intel_calculate_wm - calculate watermark level
958  * @clock_in_khz: pixel clock
959  * @wm: chip FIFO params
960  * @pixel_size: display pixel size
961  * @latency_ns: memory latency for the platform
962  *
963  * Calculate the watermark level (the level at which the display plane will
964  * start fetching from memory again).  Each chip has a different display
965  * FIFO size and allocation, so the caller needs to figure that out and pass
966  * in the correct intel_watermark_params structure.
967  *
968  * As the pixel clock runs, the FIFO will be drained at a rate that depends
969  * on the pixel size.  When it reaches the watermark level, it'll start
970  * fetching FIFO line sized based chunks from memory until the FIFO fills
971  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
972  * will occur, and a display engine hang could result.
973  */
974 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
975                                         const struct intel_watermark_params *wm,
976                                         int fifo_size,
977                                         int pixel_size,
978                                         unsigned long latency_ns)
979 {
980         long entries_required, wm_size;
981
982         /*
983          * Note: we need to make sure we don't overflow for various clock &
984          * latency values.
985          * clocks go from a few thousand to several hundred thousand.
986          * latency is usually a few thousand
987          */
988         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
989                 1000;
990         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
991
992         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
993
994         wm_size = fifo_size - (entries_required + wm->guard_size);
995
996         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
997
998         /* Don't promote wm_size to unsigned... */
999         if (wm_size > (long)wm->max_wm)
1000                 wm_size = wm->max_wm;
1001         if (wm_size <= 0)
1002                 wm_size = wm->default_wm;
1003         return wm_size;
1004 }
1005
1006 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1007 {
1008         struct drm_crtc *crtc, *enabled = NULL;
1009
1010         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1011                 if (intel_crtc_active(crtc)) {
1012                         if (enabled)
1013                                 return NULL;
1014                         enabled = crtc;
1015                 }
1016         }
1017
1018         return enabled;
1019 }
1020
1021 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1022 {
1023         struct drm_device *dev = unused_crtc->dev;
1024         struct drm_i915_private *dev_priv = dev->dev_private;
1025         struct drm_crtc *crtc;
1026         const struct cxsr_latency *latency;
1027         u32 reg;
1028         unsigned long wm;
1029
1030         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1031                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1032         if (!latency) {
1033                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1034                 pineview_disable_cxsr(dev);
1035                 return;
1036         }
1037
1038         crtc = single_enabled_crtc(dev);
1039         if (crtc) {
1040                 const struct drm_display_mode *adjusted_mode;
1041                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1042                 int clock;
1043
1044                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1045                 clock = adjusted_mode->crtc_clock;
1046
1047                 /* Display SR */
1048                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1049                                         pineview_display_wm.fifo_size,
1050                                         pixel_size, latency->display_sr);
1051                 reg = I915_READ(DSPFW1);
1052                 reg &= ~DSPFW_SR_MASK;
1053                 reg |= wm << DSPFW_SR_SHIFT;
1054                 I915_WRITE(DSPFW1, reg);
1055                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1056
1057                 /* cursor SR */
1058                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1059                                         pineview_display_wm.fifo_size,
1060                                         pixel_size, latency->cursor_sr);
1061                 reg = I915_READ(DSPFW3);
1062                 reg &= ~DSPFW_CURSOR_SR_MASK;
1063                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1064                 I915_WRITE(DSPFW3, reg);
1065
1066                 /* Display HPLL off SR */
1067                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1068                                         pineview_display_hplloff_wm.fifo_size,
1069                                         pixel_size, latency->display_hpll_disable);
1070                 reg = I915_READ(DSPFW3);
1071                 reg &= ~DSPFW_HPLL_SR_MASK;
1072                 reg |= wm & DSPFW_HPLL_SR_MASK;
1073                 I915_WRITE(DSPFW3, reg);
1074
1075                 /* cursor HPLL off SR */
1076                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1077                                         pineview_display_hplloff_wm.fifo_size,
1078                                         pixel_size, latency->cursor_hpll_disable);
1079                 reg = I915_READ(DSPFW3);
1080                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1081                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1082                 I915_WRITE(DSPFW3, reg);
1083                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1084
1085                 /* activate cxsr */
1086                 I915_WRITE(DSPFW3,
1087                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1088                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1089         } else {
1090                 pineview_disable_cxsr(dev);
1091                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1092         }
1093 }
1094
1095 static bool g4x_compute_wm0(struct drm_device *dev,
1096                             int plane,
1097                             const struct intel_watermark_params *display,
1098                             int display_latency_ns,
1099                             const struct intel_watermark_params *cursor,
1100                             int cursor_latency_ns,
1101                             int *plane_wm,
1102                             int *cursor_wm)
1103 {
1104         struct drm_crtc *crtc;
1105         const struct drm_display_mode *adjusted_mode;
1106         int htotal, hdisplay, clock, pixel_size;
1107         int line_time_us, line_count;
1108         int entries, tlb_miss;
1109
1110         crtc = intel_get_crtc_for_plane(dev, plane);
1111         if (!intel_crtc_active(crtc)) {
1112                 *cursor_wm = cursor->guard_size;
1113                 *plane_wm = display->guard_size;
1114                 return false;
1115         }
1116
1117         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1118         clock = adjusted_mode->crtc_clock;
1119         htotal = adjusted_mode->crtc_htotal;
1120         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1121         pixel_size = crtc->fb->bits_per_pixel / 8;
1122
1123         /* Use the small buffer method to calculate plane watermark */
1124         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1125         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1126         if (tlb_miss > 0)
1127                 entries += tlb_miss;
1128         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1129         *plane_wm = entries + display->guard_size;
1130         if (*plane_wm > (int)display->max_wm)
1131                 *plane_wm = display->max_wm;
1132
1133         /* Use the large buffer method to calculate cursor watermark */
1134         line_time_us = ((htotal * 1000) / clock);
1135         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1136         entries = line_count * 64 * pixel_size;
1137         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1138         if (tlb_miss > 0)
1139                 entries += tlb_miss;
1140         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1141         *cursor_wm = entries + cursor->guard_size;
1142         if (*cursor_wm > (int)cursor->max_wm)
1143                 *cursor_wm = (int)cursor->max_wm;
1144
1145         return true;
1146 }
1147
1148 /*
1149  * Check the wm result.
1150  *
1151  * If any calculated watermark values is larger than the maximum value that
1152  * can be programmed into the associated watermark register, that watermark
1153  * must be disabled.
1154  */
1155 static bool g4x_check_srwm(struct drm_device *dev,
1156                            int display_wm, int cursor_wm,
1157                            const struct intel_watermark_params *display,
1158                            const struct intel_watermark_params *cursor)
1159 {
1160         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1161                       display_wm, cursor_wm);
1162
1163         if (display_wm > display->max_wm) {
1164                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1165                               display_wm, display->max_wm);
1166                 return false;
1167         }
1168
1169         if (cursor_wm > cursor->max_wm) {
1170                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1171                               cursor_wm, cursor->max_wm);
1172                 return false;
1173         }
1174
1175         if (!(display_wm || cursor_wm)) {
1176                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1177                 return false;
1178         }
1179
1180         return true;
1181 }
1182
1183 static bool g4x_compute_srwm(struct drm_device *dev,
1184                              int plane,
1185                              int latency_ns,
1186                              const struct intel_watermark_params *display,
1187                              const struct intel_watermark_params *cursor,
1188                              int *display_wm, int *cursor_wm)
1189 {
1190         struct drm_crtc *crtc;
1191         const struct drm_display_mode *adjusted_mode;
1192         int hdisplay, htotal, pixel_size, clock;
1193         unsigned long line_time_us;
1194         int line_count, line_size;
1195         int small, large;
1196         int entries;
1197
1198         if (!latency_ns) {
1199                 *display_wm = *cursor_wm = 0;
1200                 return false;
1201         }
1202
1203         crtc = intel_get_crtc_for_plane(dev, plane);
1204         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1205         clock = adjusted_mode->crtc_clock;
1206         htotal = adjusted_mode->crtc_htotal;
1207         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1208         pixel_size = crtc->fb->bits_per_pixel / 8;
1209
1210         line_time_us = (htotal * 1000) / clock;
1211         line_count = (latency_ns / line_time_us + 1000) / 1000;
1212         line_size = hdisplay * pixel_size;
1213
1214         /* Use the minimum of the small and large buffer method for primary */
1215         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1216         large = line_count * line_size;
1217
1218         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1219         *display_wm = entries + display->guard_size;
1220
1221         /* calculate the self-refresh watermark for display cursor */
1222         entries = line_count * pixel_size * 64;
1223         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1224         *cursor_wm = entries + cursor->guard_size;
1225
1226         return g4x_check_srwm(dev,
1227                               *display_wm, *cursor_wm,
1228                               display, cursor);
1229 }
1230
1231 static bool vlv_compute_drain_latency(struct drm_device *dev,
1232                                      int plane,
1233                                      int *plane_prec_mult,
1234                                      int *plane_dl,
1235                                      int *cursor_prec_mult,
1236                                      int *cursor_dl)
1237 {
1238         struct drm_crtc *crtc;
1239         int clock, pixel_size;
1240         int entries;
1241
1242         crtc = intel_get_crtc_for_plane(dev, plane);
1243         if (!intel_crtc_active(crtc))
1244                 return false;
1245
1246         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1247         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1248
1249         entries = (clock / 1000) * pixel_size;
1250         *plane_prec_mult = (entries > 256) ?
1251                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1252         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1253                                                      pixel_size);
1254
1255         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1256         *cursor_prec_mult = (entries > 256) ?
1257                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1258         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1259
1260         return true;
1261 }
1262
1263 /*
1264  * Update drain latency registers of memory arbiter
1265  *
1266  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1267  * to be programmed. Each plane has a drain latency multiplier and a drain
1268  * latency value.
1269  */
1270
1271 static void vlv_update_drain_latency(struct drm_device *dev)
1272 {
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1275         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1276         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1277                                                         either 16 or 32 */
1278
1279         /* For plane A, Cursor A */
1280         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1281                                       &cursor_prec_mult, &cursora_dl)) {
1282                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1283                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1284                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1285                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1286
1287                 I915_WRITE(VLV_DDL1, cursora_prec |
1288                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1289                                 planea_prec | planea_dl);
1290         }
1291
1292         /* For plane B, Cursor B */
1293         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1294                                       &cursor_prec_mult, &cursorb_dl)) {
1295                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1296                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1297                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1298                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1299
1300                 I915_WRITE(VLV_DDL2, cursorb_prec |
1301                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1302                                 planeb_prec | planeb_dl);
1303         }
1304 }
1305
1306 #define single_plane_enabled(mask) is_power_of_2(mask)
1307
1308 static void valleyview_update_wm(struct drm_crtc *crtc)
1309 {
1310         struct drm_device *dev = crtc->dev;
1311         static const int sr_latency_ns = 12000;
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1314         int plane_sr, cursor_sr;
1315         int ignore_plane_sr, ignore_cursor_sr;
1316         unsigned int enabled = 0;
1317
1318         vlv_update_drain_latency(dev);
1319
1320         if (g4x_compute_wm0(dev, PIPE_A,
1321                             &valleyview_wm_info, latency_ns,
1322                             &valleyview_cursor_wm_info, latency_ns,
1323                             &planea_wm, &cursora_wm))
1324                 enabled |= 1 << PIPE_A;
1325
1326         if (g4x_compute_wm0(dev, PIPE_B,
1327                             &valleyview_wm_info, latency_ns,
1328                             &valleyview_cursor_wm_info, latency_ns,
1329                             &planeb_wm, &cursorb_wm))
1330                 enabled |= 1 << PIPE_B;
1331
1332         if (single_plane_enabled(enabled) &&
1333             g4x_compute_srwm(dev, ffs(enabled) - 1,
1334                              sr_latency_ns,
1335                              &valleyview_wm_info,
1336                              &valleyview_cursor_wm_info,
1337                              &plane_sr, &ignore_cursor_sr) &&
1338             g4x_compute_srwm(dev, ffs(enabled) - 1,
1339                              2*sr_latency_ns,
1340                              &valleyview_wm_info,
1341                              &valleyview_cursor_wm_info,
1342                              &ignore_plane_sr, &cursor_sr)) {
1343                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1344         } else {
1345                 I915_WRITE(FW_BLC_SELF_VLV,
1346                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1347                 plane_sr = cursor_sr = 0;
1348         }
1349
1350         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1351                       planea_wm, cursora_wm,
1352                       planeb_wm, cursorb_wm,
1353                       plane_sr, cursor_sr);
1354
1355         I915_WRITE(DSPFW1,
1356                    (plane_sr << DSPFW_SR_SHIFT) |
1357                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1358                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1359                    planea_wm);
1360         I915_WRITE(DSPFW2,
1361                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1362                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1363         I915_WRITE(DSPFW3,
1364                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1365                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1366 }
1367
1368 static void g4x_update_wm(struct drm_crtc *crtc)
1369 {
1370         struct drm_device *dev = crtc->dev;
1371         static const int sr_latency_ns = 12000;
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1374         int plane_sr, cursor_sr;
1375         unsigned int enabled = 0;
1376
1377         if (g4x_compute_wm0(dev, PIPE_A,
1378                             &g4x_wm_info, latency_ns,
1379                             &g4x_cursor_wm_info, latency_ns,
1380                             &planea_wm, &cursora_wm))
1381                 enabled |= 1 << PIPE_A;
1382
1383         if (g4x_compute_wm0(dev, PIPE_B,
1384                             &g4x_wm_info, latency_ns,
1385                             &g4x_cursor_wm_info, latency_ns,
1386                             &planeb_wm, &cursorb_wm))
1387                 enabled |= 1 << PIPE_B;
1388
1389         if (single_plane_enabled(enabled) &&
1390             g4x_compute_srwm(dev, ffs(enabled) - 1,
1391                              sr_latency_ns,
1392                              &g4x_wm_info,
1393                              &g4x_cursor_wm_info,
1394                              &plane_sr, &cursor_sr)) {
1395                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1396         } else {
1397                 I915_WRITE(FW_BLC_SELF,
1398                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1399                 plane_sr = cursor_sr = 0;
1400         }
1401
1402         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1403                       planea_wm, cursora_wm,
1404                       planeb_wm, cursorb_wm,
1405                       plane_sr, cursor_sr);
1406
1407         I915_WRITE(DSPFW1,
1408                    (plane_sr << DSPFW_SR_SHIFT) |
1409                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1410                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1411                    planea_wm);
1412         I915_WRITE(DSPFW2,
1413                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1414                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1415         /* HPLL off in SR has some issues on G4x... disable it */
1416         I915_WRITE(DSPFW3,
1417                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1418                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1419 }
1420
1421 static void i965_update_wm(struct drm_crtc *unused_crtc)
1422 {
1423         struct drm_device *dev = unused_crtc->dev;
1424         struct drm_i915_private *dev_priv = dev->dev_private;
1425         struct drm_crtc *crtc;
1426         int srwm = 1;
1427         int cursor_sr = 16;
1428
1429         /* Calc sr entries for one plane configs */
1430         crtc = single_enabled_crtc(dev);
1431         if (crtc) {
1432                 /* self-refresh has much higher latency */
1433                 static const int sr_latency_ns = 12000;
1434                 const struct drm_display_mode *adjusted_mode =
1435                         &to_intel_crtc(crtc)->config.adjusted_mode;
1436                 int clock = adjusted_mode->crtc_clock;
1437                 int htotal = adjusted_mode->crtc_htotal;
1438                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1439                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1440                 unsigned long line_time_us;
1441                 int entries;
1442
1443                 line_time_us = ((htotal * 1000) / clock);
1444
1445                 /* Use ns/us then divide to preserve precision */
1446                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1447                         pixel_size * hdisplay;
1448                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1449                 srwm = I965_FIFO_SIZE - entries;
1450                 if (srwm < 0)
1451                         srwm = 1;
1452                 srwm &= 0x1ff;
1453                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1454                               entries, srwm);
1455
1456                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1457                         pixel_size * 64;
1458                 entries = DIV_ROUND_UP(entries,
1459                                           i965_cursor_wm_info.cacheline_size);
1460                 cursor_sr = i965_cursor_wm_info.fifo_size -
1461                         (entries + i965_cursor_wm_info.guard_size);
1462
1463                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1464                         cursor_sr = i965_cursor_wm_info.max_wm;
1465
1466                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1467                               "cursor %d\n", srwm, cursor_sr);
1468
1469                 if (IS_CRESTLINE(dev))
1470                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1471         } else {
1472                 /* Turn off self refresh if both pipes are enabled */
1473                 if (IS_CRESTLINE(dev))
1474                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1475                                    & ~FW_BLC_SELF_EN);
1476         }
1477
1478         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479                       srwm);
1480
1481         /* 965 has limitations... */
1482         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1483                    (8 << 16) | (8 << 8) | (8 << 0));
1484         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1485         /* update cursor SR watermark */
1486         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1487 }
1488
1489 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1490 {
1491         struct drm_device *dev = unused_crtc->dev;
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493         const struct intel_watermark_params *wm_info;
1494         uint32_t fwater_lo;
1495         uint32_t fwater_hi;
1496         int cwm, srwm = 1;
1497         int fifo_size;
1498         int planea_wm, planeb_wm;
1499         struct drm_crtc *crtc, *enabled = NULL;
1500
1501         if (IS_I945GM(dev))
1502                 wm_info = &i945_wm_info;
1503         else if (!IS_GEN2(dev))
1504                 wm_info = &i915_wm_info;
1505         else
1506                 wm_info = &i830_wm_info;
1507
1508         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1509         crtc = intel_get_crtc_for_plane(dev, 0);
1510         if (intel_crtc_active(crtc)) {
1511                 const struct drm_display_mode *adjusted_mode;
1512                 int cpp = crtc->fb->bits_per_pixel / 8;
1513                 if (IS_GEN2(dev))
1514                         cpp = 4;
1515
1516                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1517                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1518                                                wm_info, fifo_size, cpp,
1519                                                latency_ns);
1520                 enabled = crtc;
1521         } else
1522                 planea_wm = fifo_size - wm_info->guard_size;
1523
1524         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1525         crtc = intel_get_crtc_for_plane(dev, 1);
1526         if (intel_crtc_active(crtc)) {
1527                 const struct drm_display_mode *adjusted_mode;
1528                 int cpp = crtc->fb->bits_per_pixel / 8;
1529                 if (IS_GEN2(dev))
1530                         cpp = 4;
1531
1532                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1533                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1534                                                wm_info, fifo_size, cpp,
1535                                                latency_ns);
1536                 if (enabled == NULL)
1537                         enabled = crtc;
1538                 else
1539                         enabled = NULL;
1540         } else
1541                 planeb_wm = fifo_size - wm_info->guard_size;
1542
1543         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1544
1545         /*
1546          * Overlay gets an aggressive default since video jitter is bad.
1547          */
1548         cwm = 2;
1549
1550         /* Play safe and disable self-refresh before adjusting watermarks. */
1551         if (IS_I945G(dev) || IS_I945GM(dev))
1552                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1553         else if (IS_I915GM(dev))
1554                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1555
1556         /* Calc sr entries for one plane configs */
1557         if (HAS_FW_BLC(dev) && enabled) {
1558                 /* self-refresh has much higher latency */
1559                 static const int sr_latency_ns = 6000;
1560                 const struct drm_display_mode *adjusted_mode =
1561                         &to_intel_crtc(enabled)->config.adjusted_mode;
1562                 int clock = adjusted_mode->crtc_clock;
1563                 int htotal = adjusted_mode->crtc_htotal;
1564                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1565                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1566                 unsigned long line_time_us;
1567                 int entries;
1568
1569                 line_time_us = (htotal * 1000) / clock;
1570
1571                 /* Use ns/us then divide to preserve precision */
1572                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1573                         pixel_size * hdisplay;
1574                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1575                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1576                 srwm = wm_info->fifo_size - entries;
1577                 if (srwm < 0)
1578                         srwm = 1;
1579
1580                 if (IS_I945G(dev) || IS_I945GM(dev))
1581                         I915_WRITE(FW_BLC_SELF,
1582                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1583                 else if (IS_I915GM(dev))
1584                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1585         }
1586
1587         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1588                       planea_wm, planeb_wm, cwm, srwm);
1589
1590         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1591         fwater_hi = (cwm & 0x1f);
1592
1593         /* Set request length to 8 cachelines per fetch */
1594         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1595         fwater_hi = fwater_hi | (1 << 8);
1596
1597         I915_WRITE(FW_BLC, fwater_lo);
1598         I915_WRITE(FW_BLC2, fwater_hi);
1599
1600         if (HAS_FW_BLC(dev)) {
1601                 if (enabled) {
1602                         if (IS_I945G(dev) || IS_I945GM(dev))
1603                                 I915_WRITE(FW_BLC_SELF,
1604                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1605                         else if (IS_I915GM(dev))
1606                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1607                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1608                 } else
1609                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1610         }
1611 }
1612
1613 static void i845_update_wm(struct drm_crtc *unused_crtc)
1614 {
1615         struct drm_device *dev = unused_crtc->dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617         struct drm_crtc *crtc;
1618         const struct drm_display_mode *adjusted_mode;
1619         uint32_t fwater_lo;
1620         int planea_wm;
1621
1622         crtc = single_enabled_crtc(dev);
1623         if (crtc == NULL)
1624                 return;
1625
1626         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1627         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1628                                        &i845_wm_info,
1629                                        dev_priv->display.get_fifo_size(dev, 0),
1630                                        4, latency_ns);
1631         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1632         fwater_lo |= (3<<8) | planea_wm;
1633
1634         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1635
1636         I915_WRITE(FW_BLC, fwater_lo);
1637 }
1638
1639 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1640                                     struct drm_crtc *crtc)
1641 {
1642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1643         uint32_t pixel_rate;
1644
1645         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1646
1647         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1648          * adjust the pixel_rate here. */
1649
1650         if (intel_crtc->config.pch_pfit.enabled) {
1651                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1652                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1653
1654                 pipe_w = intel_crtc->config.pipe_src_w;
1655                 pipe_h = intel_crtc->config.pipe_src_h;
1656                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1657                 pfit_h = pfit_size & 0xFFFF;
1658                 if (pipe_w < pfit_w)
1659                         pipe_w = pfit_w;
1660                 if (pipe_h < pfit_h)
1661                         pipe_h = pfit_h;
1662
1663                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1664                                      pfit_w * pfit_h);
1665         }
1666
1667         return pixel_rate;
1668 }
1669
1670 /* latency must be in 0.1us units. */
1671 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1672                                uint32_t latency)
1673 {
1674         uint64_t ret;
1675
1676         if (WARN(latency == 0, "Latency value missing\n"))
1677                 return UINT_MAX;
1678
1679         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1680         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1681
1682         return ret;
1683 }
1684
1685 /* latency must be in 0.1us units. */
1686 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1687                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1688                                uint32_t latency)
1689 {
1690         uint32_t ret;
1691
1692         if (WARN(latency == 0, "Latency value missing\n"))
1693                 return UINT_MAX;
1694
1695         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1696         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1697         ret = DIV_ROUND_UP(ret, 64) + 2;
1698         return ret;
1699 }
1700
1701 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1702                            uint8_t bytes_per_pixel)
1703 {
1704         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1705 }
1706
1707 struct ilk_pipe_wm_parameters {
1708         bool active;
1709         uint32_t pipe_htotal;
1710         uint32_t pixel_rate;
1711         struct intel_plane_wm_parameters pri;
1712         struct intel_plane_wm_parameters spr;
1713         struct intel_plane_wm_parameters cur;
1714 };
1715
1716 struct ilk_wm_maximums {
1717         uint16_t pri;
1718         uint16_t spr;
1719         uint16_t cur;
1720         uint16_t fbc;
1721 };
1722
1723 /* used in computing the new watermarks state */
1724 struct intel_wm_config {
1725         unsigned int num_pipes_active;
1726         bool sprites_enabled;
1727         bool sprites_scaled;
1728 };
1729
1730 /*
1731  * For both WM_PIPE and WM_LP.
1732  * mem_value must be in 0.1us units.
1733  */
1734 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1735                                    uint32_t mem_value,
1736                                    bool is_lp)
1737 {
1738         uint32_t method1, method2;
1739
1740         if (!params->active || !params->pri.enabled)
1741                 return 0;
1742
1743         method1 = ilk_wm_method1(params->pixel_rate,
1744                                  params->pri.bytes_per_pixel,
1745                                  mem_value);
1746
1747         if (!is_lp)
1748                 return method1;
1749
1750         method2 = ilk_wm_method2(params->pixel_rate,
1751                                  params->pipe_htotal,
1752                                  params->pri.horiz_pixels,
1753                                  params->pri.bytes_per_pixel,
1754                                  mem_value);
1755
1756         return min(method1, method2);
1757 }
1758
1759 /*
1760  * For both WM_PIPE and WM_LP.
1761  * mem_value must be in 0.1us units.
1762  */
1763 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1764                                    uint32_t mem_value)
1765 {
1766         uint32_t method1, method2;
1767
1768         if (!params->active || !params->spr.enabled)
1769                 return 0;
1770
1771         method1 = ilk_wm_method1(params->pixel_rate,
1772                                  params->spr.bytes_per_pixel,
1773                                  mem_value);
1774         method2 = ilk_wm_method2(params->pixel_rate,
1775                                  params->pipe_htotal,
1776                                  params->spr.horiz_pixels,
1777                                  params->spr.bytes_per_pixel,
1778                                  mem_value);
1779         return min(method1, method2);
1780 }
1781
1782 /*
1783  * For both WM_PIPE and WM_LP.
1784  * mem_value must be in 0.1us units.
1785  */
1786 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1787                                    uint32_t mem_value)
1788 {
1789         if (!params->active || !params->cur.enabled)
1790                 return 0;
1791
1792         return ilk_wm_method2(params->pixel_rate,
1793                               params->pipe_htotal,
1794                               params->cur.horiz_pixels,
1795                               params->cur.bytes_per_pixel,
1796                               mem_value);
1797 }
1798
1799 /* Only for WM_LP. */
1800 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1801                                    uint32_t pri_val)
1802 {
1803         if (!params->active || !params->pri.enabled)
1804                 return 0;
1805
1806         return ilk_wm_fbc(pri_val,
1807                           params->pri.horiz_pixels,
1808                           params->pri.bytes_per_pixel);
1809 }
1810
1811 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1812 {
1813         if (INTEL_INFO(dev)->gen >= 8)
1814                 return 3072;
1815         else if (INTEL_INFO(dev)->gen >= 7)
1816                 return 768;
1817         else
1818                 return 512;
1819 }
1820
1821 /* Calculate the maximum primary/sprite plane watermark */
1822 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1823                                      int level,
1824                                      const struct intel_wm_config *config,
1825                                      enum intel_ddb_partitioning ddb_partitioning,
1826                                      bool is_sprite)
1827 {
1828         unsigned int fifo_size = ilk_display_fifo_size(dev);
1829         unsigned int max;
1830
1831         /* if sprites aren't enabled, sprites get nothing */
1832         if (is_sprite && !config->sprites_enabled)
1833                 return 0;
1834
1835         /* HSW allows LP1+ watermarks even with multiple pipes */
1836         if (level == 0 || config->num_pipes_active > 1) {
1837                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1838
1839                 /*
1840                  * For some reason the non self refresh
1841                  * FIFO size is only half of the self
1842                  * refresh FIFO size on ILK/SNB.
1843                  */
1844                 if (INTEL_INFO(dev)->gen <= 6)
1845                         fifo_size /= 2;
1846         }
1847
1848         if (config->sprites_enabled) {
1849                 /* level 0 is always calculated with 1:1 split */
1850                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1851                         if (is_sprite)
1852                                 fifo_size *= 5;
1853                         fifo_size /= 6;
1854                 } else {
1855                         fifo_size /= 2;
1856                 }
1857         }
1858
1859         /* clamp to max that the registers can hold */
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 max = level == 0 ? 255 : 2047;
1862         else if (INTEL_INFO(dev)->gen >= 7)
1863                 /* IVB/HSW primary/sprite plane watermarks */
1864                 max = level == 0 ? 127 : 1023;
1865         else if (!is_sprite)
1866                 /* ILK/SNB primary plane watermarks */
1867                 max = level == 0 ? 127 : 511;
1868         else
1869                 /* ILK/SNB sprite plane watermarks */
1870                 max = level == 0 ? 63 : 255;
1871
1872         return min(fifo_size, max);
1873 }
1874
1875 /* Calculate the maximum cursor plane watermark */
1876 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1877                                       int level,
1878                                       const struct intel_wm_config *config)
1879 {
1880         /* HSW LP1+ watermarks w/ multiple pipes */
1881         if (level > 0 && config->num_pipes_active > 1)
1882                 return 64;
1883
1884         /* otherwise just report max that registers can hold */
1885         if (INTEL_INFO(dev)->gen >= 7)
1886                 return level == 0 ? 63 : 255;
1887         else
1888                 return level == 0 ? 31 : 63;
1889 }
1890
1891 /* Calculate the maximum FBC watermark */
1892 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1893 {
1894         /* max that registers can hold */
1895         if (INTEL_INFO(dev)->gen >= 8)
1896                 return 31;
1897         else
1898                 return 15;
1899 }
1900
1901 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1902                                     int level,
1903                                     const struct intel_wm_config *config,
1904                                     enum intel_ddb_partitioning ddb_partitioning,
1905                                     struct ilk_wm_maximums *max)
1906 {
1907         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1908         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1909         max->cur = ilk_cursor_wm_max(dev, level, config);
1910         max->fbc = ilk_fbc_wm_max(dev);
1911 }
1912
1913 static bool ilk_validate_wm_level(int level,
1914                                   const struct ilk_wm_maximums *max,
1915                                   struct intel_wm_level *result)
1916 {
1917         bool ret;
1918
1919         /* already determined to be invalid? */
1920         if (!result->enable)
1921                 return false;
1922
1923         result->enable = result->pri_val <= max->pri &&
1924                          result->spr_val <= max->spr &&
1925                          result->cur_val <= max->cur;
1926
1927         ret = result->enable;
1928
1929         /*
1930          * HACK until we can pre-compute everything,
1931          * and thus fail gracefully if LP0 watermarks
1932          * are exceeded...
1933          */
1934         if (level == 0 && !result->enable) {
1935                 if (result->pri_val > max->pri)
1936                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1937                                       level, result->pri_val, max->pri);
1938                 if (result->spr_val > max->spr)
1939                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1940                                       level, result->spr_val, max->spr);
1941                 if (result->cur_val > max->cur)
1942                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1943                                       level, result->cur_val, max->cur);
1944
1945                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1946                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1947                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1948                 result->enable = true;
1949         }
1950
1951         return ret;
1952 }
1953
1954 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1955                                  int level,
1956                                  const struct ilk_pipe_wm_parameters *p,
1957                                  struct intel_wm_level *result)
1958 {
1959         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1960         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1961         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1962
1963         /* WM1+ latency values stored in 0.5us units */
1964         if (level > 0) {
1965                 pri_latency *= 5;
1966                 spr_latency *= 5;
1967                 cur_latency *= 5;
1968         }
1969
1970         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1971         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1972         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1973         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1974         result->enable = true;
1975 }
1976
1977 static uint32_t
1978 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1979 {
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1982         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1983         u32 linetime, ips_linetime;
1984
1985         if (!intel_crtc_active(crtc))
1986                 return 0;
1987
1988         /* The WM are computed with base on how long it takes to fill a single
1989          * row at the given clock rate, multiplied by 8.
1990          * */
1991         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1992                                      mode->crtc_clock);
1993         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1994                                          intel_ddi_get_cdclk_freq(dev_priv));
1995
1996         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1997                PIPE_WM_LINETIME_TIME(linetime);
1998 }
1999
2000 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2001 {
2002         struct drm_i915_private *dev_priv = dev->dev_private;
2003
2004         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2005                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2006
2007                 wm[0] = (sskpd >> 56) & 0xFF;
2008                 if (wm[0] == 0)
2009                         wm[0] = sskpd & 0xF;
2010                 wm[1] = (sskpd >> 4) & 0xFF;
2011                 wm[2] = (sskpd >> 12) & 0xFF;
2012                 wm[3] = (sskpd >> 20) & 0x1FF;
2013                 wm[4] = (sskpd >> 32) & 0x1FF;
2014         } else if (INTEL_INFO(dev)->gen >= 6) {
2015                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2016
2017                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2018                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2019                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2020                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2021         } else if (INTEL_INFO(dev)->gen >= 5) {
2022                 uint32_t mltr = I915_READ(MLTR_ILK);
2023
2024                 /* ILK primary LP0 latency is 700 ns */
2025                 wm[0] = 7;
2026                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2027                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2028         }
2029 }
2030
2031 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2032 {
2033         /* ILK sprite LP0 latency is 1300 ns */
2034         if (INTEL_INFO(dev)->gen == 5)
2035                 wm[0] = 13;
2036 }
2037
2038 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2039 {
2040         /* ILK cursor LP0 latency is 1300 ns */
2041         if (INTEL_INFO(dev)->gen == 5)
2042                 wm[0] = 13;
2043
2044         /* WaDoubleCursorLP3Latency:ivb */
2045         if (IS_IVYBRIDGE(dev))
2046                 wm[3] *= 2;
2047 }
2048
2049 static int ilk_wm_max_level(const struct drm_device *dev)
2050 {
2051         /* how many WM levels are we expecting */
2052         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2053                 return 4;
2054         else if (INTEL_INFO(dev)->gen >= 6)
2055                 return 3;
2056         else
2057                 return 2;
2058 }
2059
2060 static void intel_print_wm_latency(struct drm_device *dev,
2061                                    const char *name,
2062                                    const uint16_t wm[5])
2063 {
2064         int level, max_level = ilk_wm_max_level(dev);
2065
2066         for (level = 0; level <= max_level; level++) {
2067                 unsigned int latency = wm[level];
2068
2069                 if (latency == 0) {
2070                         DRM_ERROR("%s WM%d latency not provided\n",
2071                                   name, level);
2072                         continue;
2073                 }
2074
2075                 /* WM1+ latency values in 0.5us units */
2076                 if (level > 0)
2077                         latency *= 5;
2078
2079                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2080                               name, level, wm[level],
2081                               latency / 10, latency % 10);
2082         }
2083 }
2084
2085 static void intel_setup_wm_latency(struct drm_device *dev)
2086 {
2087         struct drm_i915_private *dev_priv = dev->dev_private;
2088
2089         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2090
2091         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2092                sizeof(dev_priv->wm.pri_latency));
2093         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2094                sizeof(dev_priv->wm.pri_latency));
2095
2096         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2097         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2098
2099         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2100         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2101         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2102 }
2103
2104 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2105                                       struct ilk_pipe_wm_parameters *p,
2106                                       struct intel_wm_config *config)
2107 {
2108         struct drm_device *dev = crtc->dev;
2109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2110         enum pipe pipe = intel_crtc->pipe;
2111         struct drm_plane *plane;
2112
2113         p->active = intel_crtc_active(crtc);
2114         if (p->active) {
2115                 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2116                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2117                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2118                 p->cur.bytes_per_pixel = 4;
2119                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2120                 p->cur.horiz_pixels = 64;
2121                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2122                 p->pri.enabled = true;
2123                 p->cur.enabled = true;
2124         }
2125
2126         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2127                 config->num_pipes_active += intel_crtc_active(crtc);
2128
2129         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2130                 struct intel_plane *intel_plane = to_intel_plane(plane);
2131
2132                 if (intel_plane->pipe == pipe)
2133                         p->spr = intel_plane->wm;
2134
2135                 config->sprites_enabled |= intel_plane->wm.enabled;
2136                 config->sprites_scaled |= intel_plane->wm.scaled;
2137         }
2138 }
2139
2140 /* Compute new watermarks for the pipe */
2141 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2142                                   const struct ilk_pipe_wm_parameters *params,
2143                                   struct intel_pipe_wm *pipe_wm)
2144 {
2145         struct drm_device *dev = crtc->dev;
2146         const struct drm_i915_private *dev_priv = dev->dev_private;
2147         int level, max_level = ilk_wm_max_level(dev);
2148         /* LP0 watermark maximums depend on this pipe alone */
2149         struct intel_wm_config config = {
2150                 .num_pipes_active = 1,
2151                 .sprites_enabled = params->spr.enabled,
2152                 .sprites_scaled = params->spr.scaled,
2153         };
2154         struct ilk_wm_maximums max;
2155
2156         /* LP0 watermarks always use 1/2 DDB partitioning */
2157         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2158
2159         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2160         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2161                 max_level = 1;
2162
2163         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2164         if (params->spr.scaled)
2165                 max_level = 0;
2166
2167         for (level = 0; level <= max_level; level++)
2168                 ilk_compute_wm_level(dev_priv, level, params,
2169                                      &pipe_wm->wm[level]);
2170
2171         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2172                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2173
2174         /* At least LP0 must be valid */
2175         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2176 }
2177
2178 /*
2179  * Merge the watermarks from all active pipes for a specific level.
2180  */
2181 static void ilk_merge_wm_level(struct drm_device *dev,
2182                                int level,
2183                                struct intel_wm_level *ret_wm)
2184 {
2185         const struct intel_crtc *intel_crtc;
2186
2187         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2188                 const struct intel_wm_level *wm =
2189                         &intel_crtc->wm.active.wm[level];
2190
2191                 if (!wm->enable)
2192                         return;
2193
2194                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2195                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2196                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2197                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2198         }
2199
2200         ret_wm->enable = true;
2201 }
2202
2203 /*
2204  * Merge all low power watermarks for all active pipes.
2205  */
2206 static void ilk_wm_merge(struct drm_device *dev,
2207                          const struct intel_wm_config *config,
2208                          const struct ilk_wm_maximums *max,
2209                          struct intel_pipe_wm *merged)
2210 {
2211         int level, max_level = ilk_wm_max_level(dev);
2212
2213         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2214         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2215             config->num_pipes_active > 1)
2216                 return;
2217
2218         /* ILK: FBC WM must be disabled always */
2219         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2220
2221         /* merge each WM1+ level */
2222         for (level = 1; level <= max_level; level++) {
2223                 struct intel_wm_level *wm = &merged->wm[level];
2224
2225                 ilk_merge_wm_level(dev, level, wm);
2226
2227                 if (!ilk_validate_wm_level(level, max, wm))
2228                         break;
2229
2230                 /*
2231                  * The spec says it is preferred to disable
2232                  * FBC WMs instead of disabling a WM level.
2233                  */
2234                 if (wm->fbc_val > max->fbc) {
2235                         merged->fbc_wm_enabled = false;
2236                         wm->fbc_val = 0;
2237                 }
2238         }
2239
2240         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2241         /*
2242          * FIXME this is racy. FBC might get enabled later.
2243          * What we should check here is whether FBC can be
2244          * enabled sometime later.
2245          */
2246         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2247                 for (level = 2; level <= max_level; level++) {
2248                         struct intel_wm_level *wm = &merged->wm[level];
2249
2250                         wm->enable = false;
2251                 }
2252         }
2253 }
2254
2255 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2256 {
2257         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2258         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2259 }
2260
2261 /* The value we need to program into the WM_LPx latency field */
2262 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2263 {
2264         struct drm_i915_private *dev_priv = dev->dev_private;
2265
2266         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2267                 return 2 * level;
2268         else
2269                 return dev_priv->wm.pri_latency[level];
2270 }
2271
2272 static void ilk_compute_wm_results(struct drm_device *dev,
2273                                    const struct intel_pipe_wm *merged,
2274                                    enum intel_ddb_partitioning partitioning,
2275                                    struct ilk_wm_values *results)
2276 {
2277         struct intel_crtc *intel_crtc;
2278         int level, wm_lp;
2279
2280         results->enable_fbc_wm = merged->fbc_wm_enabled;
2281         results->partitioning = partitioning;
2282
2283         /* LP1+ register values */
2284         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2285                 const struct intel_wm_level *r;
2286
2287                 level = ilk_wm_lp_to_level(wm_lp, merged);
2288
2289                 r = &merged->wm[level];
2290                 if (!r->enable)
2291                         break;
2292
2293                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2294                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2295                         (r->pri_val << WM1_LP_SR_SHIFT) |
2296                         r->cur_val;
2297
2298                 if (INTEL_INFO(dev)->gen >= 8)
2299                         results->wm_lp[wm_lp - 1] |=
2300                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2301                 else
2302                         results->wm_lp[wm_lp - 1] |=
2303                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2304
2305                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2306                         WARN_ON(wm_lp != 1);
2307                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2308                 } else
2309                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2310         }
2311
2312         /* LP0 register values */
2313         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2314                 enum pipe pipe = intel_crtc->pipe;
2315                 const struct intel_wm_level *r =
2316                         &intel_crtc->wm.active.wm[0];
2317
2318                 if (WARN_ON(!r->enable))
2319                         continue;
2320
2321                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2322
2323                 results->wm_pipe[pipe] =
2324                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2325                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2326                         r->cur_val;
2327         }
2328 }
2329
2330 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2331  * case both are at the same level. Prefer r1 in case they're the same. */
2332 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2333                                                   struct intel_pipe_wm *r1,
2334                                                   struct intel_pipe_wm *r2)
2335 {
2336         int level, max_level = ilk_wm_max_level(dev);
2337         int level1 = 0, level2 = 0;
2338
2339         for (level = 1; level <= max_level; level++) {
2340                 if (r1->wm[level].enable)
2341                         level1 = level;
2342                 if (r2->wm[level].enable)
2343                         level2 = level;
2344         }
2345
2346         if (level1 == level2) {
2347                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2348                         return r2;
2349                 else
2350                         return r1;
2351         } else if (level1 > level2) {
2352                 return r1;
2353         } else {
2354                 return r2;
2355         }
2356 }
2357
2358 /* dirty bits used to track which watermarks need changes */
2359 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2360 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2361 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2362 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2363 #define WM_DIRTY_FBC (1 << 24)
2364 #define WM_DIRTY_DDB (1 << 25)
2365
2366 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2367                                          const struct ilk_wm_values *old,
2368                                          const struct ilk_wm_values *new)
2369 {
2370         unsigned int dirty = 0;
2371         enum pipe pipe;
2372         int wm_lp;
2373
2374         for_each_pipe(pipe) {
2375                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2376                         dirty |= WM_DIRTY_LINETIME(pipe);
2377                         /* Must disable LP1+ watermarks too */
2378                         dirty |= WM_DIRTY_LP_ALL;
2379                 }
2380
2381                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2382                         dirty |= WM_DIRTY_PIPE(pipe);
2383                         /* Must disable LP1+ watermarks too */
2384                         dirty |= WM_DIRTY_LP_ALL;
2385                 }
2386         }
2387
2388         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2389                 dirty |= WM_DIRTY_FBC;
2390                 /* Must disable LP1+ watermarks too */
2391                 dirty |= WM_DIRTY_LP_ALL;
2392         }
2393
2394         if (old->partitioning != new->partitioning) {
2395                 dirty |= WM_DIRTY_DDB;
2396                 /* Must disable LP1+ watermarks too */
2397                 dirty |= WM_DIRTY_LP_ALL;
2398         }
2399
2400         /* LP1+ watermarks already deemed dirty, no need to continue */
2401         if (dirty & WM_DIRTY_LP_ALL)
2402                 return dirty;
2403
2404         /* Find the lowest numbered LP1+ watermark in need of an update... */
2405         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2406                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2407                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2408                         break;
2409         }
2410
2411         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2412         for (; wm_lp <= 3; wm_lp++)
2413                 dirty |= WM_DIRTY_LP(wm_lp);
2414
2415         return dirty;
2416 }
2417
2418 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2419                                unsigned int dirty)
2420 {
2421         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2422         bool changed = false;
2423
2424         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2425                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2426                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2427                 changed = true;
2428         }
2429         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2430                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2431                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2432                 changed = true;
2433         }
2434         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2435                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2436                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2437                 changed = true;
2438         }
2439
2440         /*
2441          * Don't touch WM1S_LP_EN here.
2442          * Doing so could cause underruns.
2443          */
2444
2445         return changed;
2446 }
2447
2448 /*
2449  * The spec says we shouldn't write when we don't need, because every write
2450  * causes WMs to be re-evaluated, expending some power.
2451  */
2452 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2453                                 struct ilk_wm_values *results)
2454 {
2455         struct drm_device *dev = dev_priv->dev;
2456         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2457         unsigned int dirty;
2458         uint32_t val;
2459
2460         dirty = ilk_compute_wm_dirty(dev, previous, results);
2461         if (!dirty)
2462                 return;
2463
2464         _ilk_disable_lp_wm(dev_priv, dirty);
2465
2466         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2467                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2468         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2469                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2470         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2471                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2472
2473         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2474                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2475         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2476                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2477         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2478                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2479
2480         if (dirty & WM_DIRTY_DDB) {
2481                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2482                         val = I915_READ(WM_MISC);
2483                         if (results->partitioning == INTEL_DDB_PART_1_2)
2484                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2485                         else
2486                                 val |= WM_MISC_DATA_PARTITION_5_6;
2487                         I915_WRITE(WM_MISC, val);
2488                 } else {
2489                         val = I915_READ(DISP_ARB_CTL2);
2490                         if (results->partitioning == INTEL_DDB_PART_1_2)
2491                                 val &= ~DISP_DATA_PARTITION_5_6;
2492                         else
2493                                 val |= DISP_DATA_PARTITION_5_6;
2494                         I915_WRITE(DISP_ARB_CTL2, val);
2495                 }
2496         }
2497
2498         if (dirty & WM_DIRTY_FBC) {
2499                 val = I915_READ(DISP_ARB_CTL);
2500                 if (results->enable_fbc_wm)
2501                         val &= ~DISP_FBC_WM_DIS;
2502                 else
2503                         val |= DISP_FBC_WM_DIS;
2504                 I915_WRITE(DISP_ARB_CTL, val);
2505         }
2506
2507         if (dirty & WM_DIRTY_LP(1) &&
2508             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2509                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2510
2511         if (INTEL_INFO(dev)->gen >= 7) {
2512                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2513                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2514                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2515                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2516         }
2517
2518         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2519                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2520         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2521                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2522         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2523                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2524
2525         dev_priv->wm.hw = *results;
2526 }
2527
2528 static bool ilk_disable_lp_wm(struct drm_device *dev)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531
2532         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2533 }
2534
2535 static void ilk_update_wm(struct drm_crtc *crtc)
2536 {
2537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2538         struct drm_device *dev = crtc->dev;
2539         struct drm_i915_private *dev_priv = dev->dev_private;
2540         struct ilk_wm_maximums max;
2541         struct ilk_pipe_wm_parameters params = {};
2542         struct ilk_wm_values results = {};
2543         enum intel_ddb_partitioning partitioning;
2544         struct intel_pipe_wm pipe_wm = {};
2545         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2546         struct intel_wm_config config = {};
2547
2548         ilk_compute_wm_parameters(crtc, &params, &config);
2549
2550         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2551
2552         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2553                 return;
2554
2555         intel_crtc->wm.active = pipe_wm;
2556
2557         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2558         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2559
2560         /* 5/6 split only in single pipe config on IVB+ */
2561         if (INTEL_INFO(dev)->gen >= 7 &&
2562             config.num_pipes_active == 1 && config.sprites_enabled) {
2563                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2564                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2565
2566                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2567         } else {
2568                 best_lp_wm = &lp_wm_1_2;
2569         }
2570
2571         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2572                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2573
2574         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2575
2576         ilk_write_wm_values(dev_priv, &results);
2577 }
2578
2579 static void ilk_update_sprite_wm(struct drm_plane *plane,
2580                                      struct drm_crtc *crtc,
2581                                      uint32_t sprite_width, int pixel_size,
2582                                      bool enabled, bool scaled)
2583 {
2584         struct drm_device *dev = plane->dev;
2585         struct intel_plane *intel_plane = to_intel_plane(plane);
2586
2587         intel_plane->wm.enabled = enabled;
2588         intel_plane->wm.scaled = scaled;
2589         intel_plane->wm.horiz_pixels = sprite_width;
2590         intel_plane->wm.bytes_per_pixel = pixel_size;
2591
2592         /*
2593          * IVB workaround: must disable low power watermarks for at least
2594          * one frame before enabling scaling.  LP watermarks can be re-enabled
2595          * when scaling is disabled.
2596          *
2597          * WaCxSRDisabledForSpriteScaling:ivb
2598          */
2599         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2600                 intel_wait_for_vblank(dev, intel_plane->pipe);
2601
2602         ilk_update_wm(crtc);
2603 }
2604
2605 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2606 {
2607         struct drm_device *dev = crtc->dev;
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2611         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2612         enum pipe pipe = intel_crtc->pipe;
2613         static const unsigned int wm0_pipe_reg[] = {
2614                 [PIPE_A] = WM0_PIPEA_ILK,
2615                 [PIPE_B] = WM0_PIPEB_ILK,
2616                 [PIPE_C] = WM0_PIPEC_IVB,
2617         };
2618
2619         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2620         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2621                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2622
2623         if (intel_crtc_active(crtc)) {
2624                 u32 tmp = hw->wm_pipe[pipe];
2625
2626                 /*
2627                  * For active pipes LP0 watermark is marked as
2628                  * enabled, and LP1+ watermaks as disabled since
2629                  * we can't really reverse compute them in case
2630                  * multiple pipes are active.
2631                  */
2632                 active->wm[0].enable = true;
2633                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2634                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2635                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2636                 active->linetime = hw->wm_linetime[pipe];
2637         } else {
2638                 int level, max_level = ilk_wm_max_level(dev);
2639
2640                 /*
2641                  * For inactive pipes, all watermark levels
2642                  * should be marked as enabled but zeroed,
2643                  * which is what we'd compute them to.
2644                  */
2645                 for (level = 0; level <= max_level; level++)
2646                         active->wm[level].enable = true;
2647         }
2648 }
2649
2650 void ilk_wm_get_hw_state(struct drm_device *dev)
2651 {
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2654         struct drm_crtc *crtc;
2655
2656         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2657                 ilk_pipe_wm_get_hw_state(crtc);
2658
2659         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2660         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2661         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2662
2663         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2664         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2665         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2666
2667         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2668                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2669                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2670         else if (IS_IVYBRIDGE(dev))
2671                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2672                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2673
2674         hw->enable_fbc_wm =
2675                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2676 }
2677
2678 /**
2679  * intel_update_watermarks - update FIFO watermark values based on current modes
2680  *
2681  * Calculate watermark values for the various WM regs based on current mode
2682  * and plane configuration.
2683  *
2684  * There are several cases to deal with here:
2685  *   - normal (i.e. non-self-refresh)
2686  *   - self-refresh (SR) mode
2687  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2688  *   - lines are small relative to FIFO size (buffer can hold more than 2
2689  *     lines), so need to account for TLB latency
2690  *
2691  *   The normal calculation is:
2692  *     watermark = dotclock * bytes per pixel * latency
2693  *   where latency is platform & configuration dependent (we assume pessimal
2694  *   values here).
2695  *
2696  *   The SR calculation is:
2697  *     watermark = (trunc(latency/line time)+1) * surface width *
2698  *       bytes per pixel
2699  *   where
2700  *     line time = htotal / dotclock
2701  *     surface width = hdisplay for normal plane and 64 for cursor
2702  *   and latency is assumed to be high, as above.
2703  *
2704  * The final value programmed to the register should always be rounded up,
2705  * and include an extra 2 entries to account for clock crossings.
2706  *
2707  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2708  * to set the non-SR watermarks to 8.
2709  */
2710 void intel_update_watermarks(struct drm_crtc *crtc)
2711 {
2712         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2713
2714         if (dev_priv->display.update_wm)
2715                 dev_priv->display.update_wm(crtc);
2716 }
2717
2718 void intel_update_sprite_watermarks(struct drm_plane *plane,
2719                                     struct drm_crtc *crtc,
2720                                     uint32_t sprite_width, int pixel_size,
2721                                     bool enabled, bool scaled)
2722 {
2723         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2724
2725         if (dev_priv->display.update_sprite_wm)
2726                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2727                                                    pixel_size, enabled, scaled);
2728 }
2729
2730 static struct drm_i915_gem_object *
2731 intel_alloc_context_page(struct drm_device *dev)
2732 {
2733         struct drm_i915_gem_object *ctx;
2734         int ret;
2735
2736         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2737
2738         ctx = i915_gem_alloc_object(dev, 4096);
2739         if (!ctx) {
2740                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2741                 return NULL;
2742         }
2743
2744         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2745         if (ret) {
2746                 DRM_ERROR("failed to pin power context: %d\n", ret);
2747                 goto err_unref;
2748         }
2749
2750         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2751         if (ret) {
2752                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2753                 goto err_unpin;
2754         }
2755
2756         return ctx;
2757
2758 err_unpin:
2759         i915_gem_object_ggtt_unpin(ctx);
2760 err_unref:
2761         drm_gem_object_unreference(&ctx->base);
2762         return NULL;
2763 }
2764
2765 /**
2766  * Lock protecting IPS related data structures
2767  */
2768 DEFINE_SPINLOCK(mchdev_lock);
2769
2770 /* Global for IPS driver to get at the current i915 device. Protected by
2771  * mchdev_lock. */
2772 static struct drm_i915_private *i915_mch_dev;
2773
2774 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2775 {
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         u16 rgvswctl;
2778
2779         assert_spin_locked(&mchdev_lock);
2780
2781         rgvswctl = I915_READ16(MEMSWCTL);
2782         if (rgvswctl & MEMCTL_CMD_STS) {
2783                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2784                 return false; /* still busy with another command */
2785         }
2786
2787         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2788                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2789         I915_WRITE16(MEMSWCTL, rgvswctl);
2790         POSTING_READ16(MEMSWCTL);
2791
2792         rgvswctl |= MEMCTL_CMD_STS;
2793         I915_WRITE16(MEMSWCTL, rgvswctl);
2794
2795         return true;
2796 }
2797
2798 static void ironlake_enable_drps(struct drm_device *dev)
2799 {
2800         struct drm_i915_private *dev_priv = dev->dev_private;
2801         u32 rgvmodectl = I915_READ(MEMMODECTL);
2802         u8 fmax, fmin, fstart, vstart;
2803
2804         spin_lock_irq(&mchdev_lock);
2805
2806         /* Enable temp reporting */
2807         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2808         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2809
2810         /* 100ms RC evaluation intervals */
2811         I915_WRITE(RCUPEI, 100000);
2812         I915_WRITE(RCDNEI, 100000);
2813
2814         /* Set max/min thresholds to 90ms and 80ms respectively */
2815         I915_WRITE(RCBMAXAVG, 90000);
2816         I915_WRITE(RCBMINAVG, 80000);
2817
2818         I915_WRITE(MEMIHYST, 1);
2819
2820         /* Set up min, max, and cur for interrupt handling */
2821         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2822         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2823         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2824                 MEMMODE_FSTART_SHIFT;
2825
2826         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2827                 PXVFREQ_PX_SHIFT;
2828
2829         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2830         dev_priv->ips.fstart = fstart;
2831
2832         dev_priv->ips.max_delay = fstart;
2833         dev_priv->ips.min_delay = fmin;
2834         dev_priv->ips.cur_delay = fstart;
2835
2836         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2837                          fmax, fmin, fstart);
2838
2839         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2840
2841         /*
2842          * Interrupts will be enabled in ironlake_irq_postinstall
2843          */
2844
2845         I915_WRITE(VIDSTART, vstart);
2846         POSTING_READ(VIDSTART);
2847
2848         rgvmodectl |= MEMMODE_SWMODE_EN;
2849         I915_WRITE(MEMMODECTL, rgvmodectl);
2850
2851         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2852                 DRM_ERROR("stuck trying to change perf mode\n");
2853         mdelay(1);
2854
2855         ironlake_set_drps(dev, fstart);
2856
2857         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2858                 I915_READ(0x112e0);
2859         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2860         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2861         getrawmonotonic(&dev_priv->ips.last_time2);
2862
2863         spin_unlock_irq(&mchdev_lock);
2864 }
2865
2866 static void ironlake_disable_drps(struct drm_device *dev)
2867 {
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         u16 rgvswctl;
2870
2871         spin_lock_irq(&mchdev_lock);
2872
2873         rgvswctl = I915_READ16(MEMSWCTL);
2874
2875         /* Ack interrupts, disable EFC interrupt */
2876         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2877         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2878         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2879         I915_WRITE(DEIIR, DE_PCU_EVENT);
2880         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2881
2882         /* Go back to the starting frequency */
2883         ironlake_set_drps(dev, dev_priv->ips.fstart);
2884         mdelay(1);
2885         rgvswctl |= MEMCTL_CMD_STS;
2886         I915_WRITE(MEMSWCTL, rgvswctl);
2887         mdelay(1);
2888
2889         spin_unlock_irq(&mchdev_lock);
2890 }
2891
2892 /* There's a funny hw issue where the hw returns all 0 when reading from
2893  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2894  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2895  * all limits and the gpu stuck at whatever frequency it is at atm).
2896  */
2897 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2898 {
2899         u32 limits;
2900
2901         /* Only set the down limit when we've reached the lowest level to avoid
2902          * getting more interrupts, otherwise leave this clear. This prevents a
2903          * race in the hw when coming out of rc6: There's a tiny window where
2904          * the hw runs at the minimal clock before selecting the desired
2905          * frequency, if the down threshold expires in that window we will not
2906          * receive a down interrupt. */
2907         limits = dev_priv->rps.max_delay << 24;
2908         if (val <= dev_priv->rps.min_delay)
2909                 limits |= dev_priv->rps.min_delay << 16;
2910
2911         return limits;
2912 }
2913
2914 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2915 {
2916         int new_power;
2917
2918         new_power = dev_priv->rps.power;
2919         switch (dev_priv->rps.power) {
2920         case LOW_POWER:
2921                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2922                         new_power = BETWEEN;
2923                 break;
2924
2925         case BETWEEN:
2926                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2927                         new_power = LOW_POWER;
2928                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2929                         new_power = HIGH_POWER;
2930                 break;
2931
2932         case HIGH_POWER:
2933                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2934                         new_power = BETWEEN;
2935                 break;
2936         }
2937         /* Max/min bins are special */
2938         if (val == dev_priv->rps.min_delay)
2939                 new_power = LOW_POWER;
2940         if (val == dev_priv->rps.max_delay)
2941                 new_power = HIGH_POWER;
2942         if (new_power == dev_priv->rps.power)
2943                 return;
2944
2945         /* Note the units here are not exactly 1us, but 1280ns. */
2946         switch (new_power) {
2947         case LOW_POWER:
2948                 /* Upclock if more than 95% busy over 16ms */
2949                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2950                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2951
2952                 /* Downclock if less than 85% busy over 32ms */
2953                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2954                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2955
2956                 I915_WRITE(GEN6_RP_CONTROL,
2957                            GEN6_RP_MEDIA_TURBO |
2958                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2959                            GEN6_RP_MEDIA_IS_GFX |
2960                            GEN6_RP_ENABLE |
2961                            GEN6_RP_UP_BUSY_AVG |
2962                            GEN6_RP_DOWN_IDLE_AVG);
2963                 break;
2964
2965         case BETWEEN:
2966                 /* Upclock if more than 90% busy over 13ms */
2967                 I915_WRITE(GEN6_RP_UP_EI, 10250);
2968                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2969
2970                 /* Downclock if less than 75% busy over 32ms */
2971                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2972                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2973
2974                 I915_WRITE(GEN6_RP_CONTROL,
2975                            GEN6_RP_MEDIA_TURBO |
2976                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2977                            GEN6_RP_MEDIA_IS_GFX |
2978                            GEN6_RP_ENABLE |
2979                            GEN6_RP_UP_BUSY_AVG |
2980                            GEN6_RP_DOWN_IDLE_AVG);
2981                 break;
2982
2983         case HIGH_POWER:
2984                 /* Upclock if more than 85% busy over 10ms */
2985                 I915_WRITE(GEN6_RP_UP_EI, 8000);
2986                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2987
2988                 /* Downclock if less than 60% busy over 32ms */
2989                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2990                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2991
2992                 I915_WRITE(GEN6_RP_CONTROL,
2993                            GEN6_RP_MEDIA_TURBO |
2994                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2995                            GEN6_RP_MEDIA_IS_GFX |
2996                            GEN6_RP_ENABLE |
2997                            GEN6_RP_UP_BUSY_AVG |
2998                            GEN6_RP_DOWN_IDLE_AVG);
2999                 break;
3000         }
3001
3002         dev_priv->rps.power = new_power;
3003         dev_priv->rps.last_adj = 0;
3004 }
3005
3006 /* gen6_set_rps is called to update the frequency request, but should also be
3007  * called when the range (min_delay and max_delay) is modified so that we can
3008  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3009 void gen6_set_rps(struct drm_device *dev, u8 val)
3010 {
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012
3013         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3014         WARN_ON(val > dev_priv->rps.max_delay);
3015         WARN_ON(val < dev_priv->rps.min_delay);
3016
3017         if (val == dev_priv->rps.cur_delay) {
3018                 /* min/max delay may still have been modified so be sure to
3019                  * write the limits value */
3020                 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3021                            gen6_rps_limits(dev_priv, val));
3022
3023                 return;
3024         }
3025
3026         gen6_set_rps_thresholds(dev_priv, val);
3027
3028         if (IS_HASWELL(dev))
3029                 I915_WRITE(GEN6_RPNSWREQ,
3030                            HSW_FREQUENCY(val));
3031         else
3032                 I915_WRITE(GEN6_RPNSWREQ,
3033                            GEN6_FREQUENCY(val) |
3034                            GEN6_OFFSET(0) |
3035                            GEN6_AGGRESSIVE_TURBO);
3036
3037         /* Make sure we continue to get interrupts
3038          * until we hit the minimum or maximum frequencies.
3039          */
3040         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3041                    gen6_rps_limits(dev_priv, val));
3042
3043         POSTING_READ(GEN6_RPNSWREQ);
3044
3045         dev_priv->rps.cur_delay = val;
3046
3047         trace_intel_gpu_freq_change(val * 50);
3048 }
3049
3050 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3051  *
3052  * * If Gfx is Idle, then
3053  * 1. Mask Turbo interrupts
3054  * 2. Bring up Gfx clock
3055  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3056  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3057  * 5. Unmask Turbo interrupts
3058 */
3059 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3060 {
3061         /*
3062          * When we are idle.  Drop to min voltage state.
3063          */
3064
3065         if (dev_priv->rps.cur_delay <= dev_priv->rps.min_delay)
3066                 return;
3067
3068         /* Mask turbo interrupt so that they will not come in between */
3069         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3070
3071         /* Bring up the Gfx clock */
3072         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3073                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3074                                 VLV_GFX_CLK_FORCE_ON_BIT);
3075
3076         if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3077                 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3078                         DRM_ERROR("GFX_CLK_ON request timed out\n");
3079                 return;
3080         }
3081
3082         dev_priv->rps.cur_delay = dev_priv->rps.min_delay;
3083
3084         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3085                                         dev_priv->rps.min_delay);
3086
3087         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3088                                 & GENFREQSTATUS) == 0, 5))
3089                 DRM_ERROR("timed out waiting for Punit\n");
3090
3091         /* Release the Gfx clock */
3092         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3093                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3094                                 ~VLV_GFX_CLK_FORCE_ON_BIT);
3095
3096         /* Unmask Up interrupts */
3097         dev_priv->rps.rp_up_masked = true;
3098         gen6_set_pm_mask(dev_priv, GEN6_PM_RP_DOWN_THRESHOLD,
3099                                                 dev_priv->rps.min_delay);
3100 }
3101
3102 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3103 {
3104         struct drm_device *dev = dev_priv->dev;
3105
3106         mutex_lock(&dev_priv->rps.hw_lock);
3107         if (dev_priv->rps.enabled) {
3108                 if (IS_VALLEYVIEW(dev))
3109                         vlv_set_rps_idle(dev_priv);
3110                 else
3111                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3112                 dev_priv->rps.last_adj = 0;
3113         }
3114         mutex_unlock(&dev_priv->rps.hw_lock);
3115 }
3116
3117 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3118 {
3119         struct drm_device *dev = dev_priv->dev;
3120
3121         mutex_lock(&dev_priv->rps.hw_lock);
3122         if (dev_priv->rps.enabled) {
3123                 if (IS_VALLEYVIEW(dev))
3124                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3125                 else
3126                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3127                 dev_priv->rps.last_adj = 0;
3128         }
3129         mutex_unlock(&dev_priv->rps.hw_lock);
3130 }
3131
3132 void valleyview_set_rps(struct drm_device *dev, u8 val)
3133 {
3134         struct drm_i915_private *dev_priv = dev->dev_private;
3135
3136         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3137         WARN_ON(val > dev_priv->rps.max_delay);
3138         WARN_ON(val < dev_priv->rps.min_delay);
3139
3140         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3141                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3142                          dev_priv->rps.cur_delay,
3143                          vlv_gpu_freq(dev_priv, val), val);
3144
3145         if (val == dev_priv->rps.cur_delay)
3146                 return;
3147
3148         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3149
3150         dev_priv->rps.cur_delay = val;
3151
3152         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3153 }
3154
3155 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3156 {
3157         struct drm_i915_private *dev_priv = dev->dev_private;
3158
3159         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3160         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3161         /* Complete PM interrupt masking here doesn't race with the rps work
3162          * item again unmasking PM interrupts because that is using a different
3163          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3164          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3165
3166         spin_lock_irq(&dev_priv->irq_lock);
3167         dev_priv->rps.pm_iir = 0;
3168         spin_unlock_irq(&dev_priv->irq_lock);
3169
3170         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3171 }
3172
3173 static void gen6_disable_rps(struct drm_device *dev)
3174 {
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176
3177         I915_WRITE(GEN6_RC_CONTROL, 0);
3178         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3179
3180         gen6_disable_rps_interrupts(dev);
3181 }
3182
3183 static void valleyview_disable_rps(struct drm_device *dev)
3184 {
3185         struct drm_i915_private *dev_priv = dev->dev_private;
3186
3187         I915_WRITE(GEN6_RC_CONTROL, 0);
3188
3189         gen6_disable_rps_interrupts(dev);
3190
3191         if (dev_priv->vlv_pctx) {
3192                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3193                 dev_priv->vlv_pctx = NULL;
3194         }
3195 }
3196
3197 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3198 {
3199         if (IS_GEN6(dev))
3200                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3201
3202         if (IS_HASWELL(dev))
3203                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3204
3205         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3206                         (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3207                         (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3208                         (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3209 }
3210
3211 int intel_enable_rc6(const struct drm_device *dev)
3212 {
3213         /* No RC6 before Ironlake */
3214         if (INTEL_INFO(dev)->gen < 5)
3215                 return 0;
3216
3217         /* Respect the kernel parameter if it is set */
3218         if (i915.enable_rc6 >= 0)
3219                 return i915.enable_rc6;
3220
3221         /* Disable RC6 on Ironlake */
3222         if (INTEL_INFO(dev)->gen == 5)
3223                 return 0;
3224
3225         if (IS_IVYBRIDGE(dev) || IS_VALLEYVIEW(dev))
3226                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3227         else
3228                 return INTEL_RC6_ENABLE;
3229 }
3230
3231 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3232 {
3233         struct drm_i915_private *dev_priv = dev->dev_private;
3234         u32 enabled_intrs;
3235
3236         spin_lock_irq(&dev_priv->irq_lock);
3237         WARN_ON(dev_priv->rps.pm_iir);
3238         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3239         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3240         spin_unlock_irq(&dev_priv->irq_lock);
3241
3242         /* only unmask PM interrupts we need. Mask all others. */
3243         enabled_intrs = GEN6_PM_RPS_EVENTS;
3244
3245         /* IVB and SNB hard hangs on looping batchbuffer
3246          * if GEN6_PM_UP_EI_EXPIRED is masked.
3247          */
3248         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3249                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3250
3251         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3252 }
3253
3254 static void gen8_enable_rps(struct drm_device *dev)
3255 {
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         struct intel_ring_buffer *ring;
3258         uint32_t rc6_mask = 0, rp_state_cap;
3259         int unused;
3260
3261         /* 1a: Software RC state - RC0 */
3262         I915_WRITE(GEN6_RC_STATE, 0);
3263
3264         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3265          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3266         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3267
3268         /* 2a: Disable RC states. */
3269         I915_WRITE(GEN6_RC_CONTROL, 0);
3270
3271         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3272
3273         /* 2b: Program RC6 thresholds.*/
3274         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3275         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3276         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3277         for_each_ring(ring, dev_priv, unused)
3278                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3279         I915_WRITE(GEN6_RC_SLEEP, 0);
3280         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3281
3282         /* 3: Enable RC6 */
3283         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3284                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3285         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3286         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3287                         GEN6_RC_CTL_EI_MODE(1) |
3288                         rc6_mask);
3289
3290         /* 4 Program defaults and thresholds for RPS*/
3291         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3292         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3293         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3294         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3295
3296         /* Docs recommend 900MHz, and 300 MHz respectively */
3297         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3298                    dev_priv->rps.max_delay << 24 |
3299                    dev_priv->rps.min_delay << 16);
3300
3301         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3302         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3303         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3304         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3305
3306         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3307
3308         /* 5: Enable RPS */
3309         I915_WRITE(GEN6_RP_CONTROL,
3310                    GEN6_RP_MEDIA_TURBO |
3311                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3312                    GEN6_RP_MEDIA_IS_GFX |
3313                    GEN6_RP_ENABLE |
3314                    GEN6_RP_UP_BUSY_AVG |
3315                    GEN6_RP_DOWN_IDLE_AVG);
3316
3317         /* 6: Ring frequency + overclocking (our driver does this later */
3318
3319         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3320
3321         gen6_enable_rps_interrupts(dev);
3322
3323         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3324 }
3325
3326 static void gen6_enable_rps(struct drm_device *dev)
3327 {
3328         struct drm_i915_private *dev_priv = dev->dev_private;
3329         struct intel_ring_buffer *ring;
3330         u32 rp_state_cap, hw_max, hw_min;
3331         u32 gt_perf_status;
3332         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3333         u32 gtfifodbg;
3334         int rc6_mode;
3335         int i, ret;
3336
3337         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3338
3339         /* Here begins a magic sequence of register writes to enable
3340          * auto-downclocking.
3341          *
3342          * Perhaps there might be some value in exposing these to
3343          * userspace...
3344          */
3345         I915_WRITE(GEN6_RC_STATE, 0);
3346
3347         /* Clear the DBG now so we don't confuse earlier errors */
3348         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3349                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3350                 I915_WRITE(GTFIFODBG, gtfifodbg);
3351         }
3352
3353         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3354
3355         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3356         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3357
3358         /* In units of 50MHz */
3359         dev_priv->rps.hw_max = hw_max = rp_state_cap & 0xff;
3360         hw_min = (rp_state_cap >> 16) & 0xff;
3361         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3362         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3363         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3364         dev_priv->rps.cur_delay = 0;
3365
3366         /* Preserve min/max settings in case of re-init */
3367         if (dev_priv->rps.max_delay == 0)
3368                 dev_priv->rps.max_delay = hw_max;
3369
3370         if (dev_priv->rps.min_delay == 0)
3371                 dev_priv->rps.min_delay = hw_min;
3372
3373         /* disable the counters and set deterministic thresholds */
3374         I915_WRITE(GEN6_RC_CONTROL, 0);
3375
3376         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3377         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3378         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3379         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3380         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3381
3382         for_each_ring(ring, dev_priv, i)
3383                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3384
3385         I915_WRITE(GEN6_RC_SLEEP, 0);
3386         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3387         if (IS_IVYBRIDGE(dev))
3388                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3389         else
3390                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3391         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3392         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3393
3394         /* Check if we are enabling RC6 */
3395         rc6_mode = intel_enable_rc6(dev_priv->dev);
3396         if (rc6_mode & INTEL_RC6_ENABLE)
3397                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3398
3399         /* We don't use those on Haswell */
3400         if (!IS_HASWELL(dev)) {
3401                 if (rc6_mode & INTEL_RC6p_ENABLE)
3402                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3403
3404                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3405                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3406         }
3407
3408         intel_print_rc6_info(dev, rc6_mask);
3409
3410         I915_WRITE(GEN6_RC_CONTROL,
3411                    rc6_mask |
3412                    GEN6_RC_CTL_EI_MODE(1) |
3413                    GEN6_RC_CTL_HW_ENABLE);
3414
3415         /* Power down if completely idle for over 50ms */
3416         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3417         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3418
3419         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3420         if (!ret) {
3421                 pcu_mbox = 0;
3422                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3423                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3424                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3425                                          (dev_priv->rps.max_delay & 0xff) * 50,
3426                                          (pcu_mbox & 0xff) * 50);
3427                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3428                 }
3429         } else {
3430                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3431         }
3432
3433         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3434         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3435
3436         gen6_enable_rps_interrupts(dev);
3437
3438         rc6vids = 0;
3439         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3440         if (IS_GEN6(dev) && ret) {
3441                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3442         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3443                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3444                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3445                 rc6vids &= 0xffff00;
3446                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3447                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3448                 if (ret)
3449                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3450         }
3451
3452         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3453 }
3454
3455 void gen6_update_ring_freq(struct drm_device *dev)
3456 {
3457         struct drm_i915_private *dev_priv = dev->dev_private;
3458         int min_freq = 15;
3459         unsigned int gpu_freq;
3460         unsigned int max_ia_freq, min_ring_freq;
3461         int scaling_factor = 180;
3462         struct cpufreq_policy *policy;
3463
3464         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3465
3466         policy = cpufreq_cpu_get(0);
3467         if (policy) {
3468                 max_ia_freq = policy->cpuinfo.max_freq;
3469                 cpufreq_cpu_put(policy);
3470         } else {
3471                 /*
3472                  * Default to measured freq if none found, PCU will ensure we
3473                  * don't go over
3474                  */
3475                 max_ia_freq = tsc_khz;
3476         }
3477
3478         /* Convert from kHz to MHz */
3479         max_ia_freq /= 1000;
3480
3481         min_ring_freq = I915_READ(DCLK) & 0xf;
3482         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3483         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3484
3485         /*
3486          * For each potential GPU frequency, load a ring frequency we'd like
3487          * to use for memory access.  We do this by specifying the IA frequency
3488          * the PCU should use as a reference to determine the ring frequency.
3489          */
3490         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3491              gpu_freq--) {
3492                 int diff = dev_priv->rps.max_delay - gpu_freq;
3493                 unsigned int ia_freq = 0, ring_freq = 0;
3494
3495                 if (INTEL_INFO(dev)->gen >= 8) {
3496                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3497                         ring_freq = max(min_ring_freq, gpu_freq);
3498                 } else if (IS_HASWELL(dev)) {
3499                         ring_freq = mult_frac(gpu_freq, 5, 4);
3500                         ring_freq = max(min_ring_freq, ring_freq);
3501                         /* leave ia_freq as the default, chosen by cpufreq */
3502                 } else {
3503                         /* On older processors, there is no separate ring
3504                          * clock domain, so in order to boost the bandwidth
3505                          * of the ring, we need to upclock the CPU (ia_freq).
3506                          *
3507                          * For GPU frequencies less than 750MHz,
3508                          * just use the lowest ring freq.
3509                          */
3510                         if (gpu_freq < min_freq)
3511                                 ia_freq = 800;
3512                         else
3513                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3514                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3515                 }
3516
3517                 sandybridge_pcode_write(dev_priv,
3518                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3519                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3520                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3521                                         gpu_freq);
3522         }
3523 }
3524
3525 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3526 {
3527         u32 val, rp0;
3528
3529         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3530
3531         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3532         /* Clamp to max */
3533         rp0 = min_t(u32, rp0, 0xea);
3534
3535         return rp0;
3536 }
3537
3538 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3539 {
3540         u32 val, rpe;
3541
3542         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3543         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3544         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3545         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3546
3547         return rpe;
3548 }
3549
3550 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3551 {
3552         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3553 }
3554
3555 static void valleyview_setup_pctx(struct drm_device *dev)
3556 {
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         struct drm_i915_gem_object *pctx;
3559         unsigned long pctx_paddr;
3560         u32 pcbr;
3561         int pctx_size = 24*1024;
3562
3563         pcbr = I915_READ(VLV_PCBR);
3564         if (pcbr) {
3565                 /* BIOS set it up already, grab the pre-alloc'd space */
3566                 int pcbr_offset;
3567
3568                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3569                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3570                                                                       pcbr_offset,
3571                                                                       I915_GTT_OFFSET_NONE,
3572                                                                       pctx_size);
3573                 goto out;
3574         }
3575
3576         /*
3577          * From the Gunit register HAS:
3578          * The Gfx driver is expected to program this register and ensure
3579          * proper allocation within Gfx stolen memory.  For example, this
3580          * register should be programmed such than the PCBR range does not
3581          * overlap with other ranges, such as the frame buffer, protected
3582          * memory, or any other relevant ranges.
3583          */
3584         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3585         if (!pctx) {
3586                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3587                 return;
3588         }
3589
3590         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3591         I915_WRITE(VLV_PCBR, pctx_paddr);
3592
3593 out:
3594         dev_priv->vlv_pctx = pctx;
3595 }
3596
3597 static void valleyview_enable_rps(struct drm_device *dev)
3598 {
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600         struct intel_ring_buffer *ring;
3601         u32 gtfifodbg, val, hw_max, hw_min, rc6_mode = 0;
3602         int i;
3603
3604         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3605
3606         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3607                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3608                                  gtfifodbg);
3609                 I915_WRITE(GTFIFODBG, gtfifodbg);
3610         }
3611
3612         valleyview_setup_pctx(dev);
3613
3614         /* If VLV, Forcewake all wells, else re-direct to regular path */
3615         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3616
3617         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3618         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3619         I915_WRITE(GEN6_RP_UP_EI, 66000);
3620         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3621
3622         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3623
3624         I915_WRITE(GEN6_RP_CONTROL,
3625                    GEN6_RP_MEDIA_TURBO |
3626                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3627                    GEN6_RP_MEDIA_IS_GFX |
3628                    GEN6_RP_ENABLE |
3629                    GEN6_RP_UP_BUSY_AVG |
3630                    GEN6_RP_DOWN_IDLE_CONT);
3631
3632         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3633         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3634         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3635
3636         for_each_ring(ring, dev_priv, i)
3637                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3638
3639         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3640
3641         /* allows RC6 residency counter to work */
3642         I915_WRITE(VLV_COUNTER_CONTROL,
3643                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3644                                       VLV_MEDIA_RC6_COUNT_EN |
3645                                       VLV_RENDER_RC6_COUNT_EN));
3646         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3647                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3648
3649         intel_print_rc6_info(dev, rc6_mode);
3650
3651         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3652
3653         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3654
3655         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3656         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3657
3658         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3659         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3660                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3661                          dev_priv->rps.cur_delay);
3662
3663         dev_priv->rps.hw_max = hw_max = valleyview_rps_max_freq(dev_priv);
3664         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3665                          vlv_gpu_freq(dev_priv, hw_max),
3666                          hw_max);
3667
3668         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3669         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3670                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3671                          dev_priv->rps.rpe_delay);
3672
3673         hw_min = valleyview_rps_min_freq(dev_priv);
3674         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3675                          vlv_gpu_freq(dev_priv, hw_min),
3676                          hw_min);
3677
3678         /* Preserve min/max settings in case of re-init */
3679         if (dev_priv->rps.max_delay == 0)
3680                 dev_priv->rps.max_delay = hw_max;
3681
3682         if (dev_priv->rps.min_delay == 0)
3683                 dev_priv->rps.min_delay = hw_min;
3684
3685         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3686                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3687                          dev_priv->rps.rpe_delay);
3688
3689         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3690
3691         dev_priv->rps.rp_up_masked = false;
3692         dev_priv->rps.rp_down_masked = false;
3693
3694         gen6_enable_rps_interrupts(dev);
3695
3696         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3697 }
3698
3699 void ironlake_teardown_rc6(struct drm_device *dev)
3700 {
3701         struct drm_i915_private *dev_priv = dev->dev_private;
3702
3703         if (dev_priv->ips.renderctx) {
3704                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3705                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3706                 dev_priv->ips.renderctx = NULL;
3707         }
3708
3709         if (dev_priv->ips.pwrctx) {
3710                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3711                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3712                 dev_priv->ips.pwrctx = NULL;
3713         }
3714 }
3715
3716 static void ironlake_disable_rc6(struct drm_device *dev)
3717 {
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719
3720         if (I915_READ(PWRCTXA)) {
3721                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3722                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3723                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3724                          50);
3725
3726                 I915_WRITE(PWRCTXA, 0);
3727                 POSTING_READ(PWRCTXA);
3728
3729                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3730                 POSTING_READ(RSTDBYCTL);
3731         }
3732 }
3733
3734 static int ironlake_setup_rc6(struct drm_device *dev)
3735 {
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737
3738         if (dev_priv->ips.renderctx == NULL)
3739                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3740         if (!dev_priv->ips.renderctx)
3741                 return -ENOMEM;
3742
3743         if (dev_priv->ips.pwrctx == NULL)
3744                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3745         if (!dev_priv->ips.pwrctx) {
3746                 ironlake_teardown_rc6(dev);
3747                 return -ENOMEM;
3748         }
3749
3750         return 0;
3751 }
3752
3753 static void ironlake_enable_rc6(struct drm_device *dev)
3754 {
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3757         bool was_interruptible;
3758         int ret;
3759
3760         /* rc6 disabled by default due to repeated reports of hanging during
3761          * boot and resume.
3762          */
3763         if (!intel_enable_rc6(dev))
3764                 return;
3765
3766         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3767
3768         ret = ironlake_setup_rc6(dev);
3769         if (ret)
3770                 return;
3771
3772         was_interruptible = dev_priv->mm.interruptible;
3773         dev_priv->mm.interruptible = false;
3774
3775         /*
3776          * GPU can automatically power down the render unit if given a page
3777          * to save state.
3778          */
3779         ret = intel_ring_begin(ring, 6);
3780         if (ret) {
3781                 ironlake_teardown_rc6(dev);
3782                 dev_priv->mm.interruptible = was_interruptible;
3783                 return;
3784         }
3785
3786         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3787         intel_ring_emit(ring, MI_SET_CONTEXT);
3788         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3789                         MI_MM_SPACE_GTT |
3790                         MI_SAVE_EXT_STATE_EN |
3791                         MI_RESTORE_EXT_STATE_EN |
3792                         MI_RESTORE_INHIBIT);
3793         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3794         intel_ring_emit(ring, MI_NOOP);
3795         intel_ring_emit(ring, MI_FLUSH);
3796         intel_ring_advance(ring);
3797
3798         /*
3799          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3800          * does an implicit flush, combined with MI_FLUSH above, it should be
3801          * safe to assume that renderctx is valid
3802          */
3803         ret = intel_ring_idle(ring);
3804         dev_priv->mm.interruptible = was_interruptible;
3805         if (ret) {
3806                 DRM_ERROR("failed to enable ironlake power savings\n");
3807                 ironlake_teardown_rc6(dev);
3808                 return;
3809         }
3810
3811         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3812         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3813
3814         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3815 }
3816
3817 static unsigned long intel_pxfreq(u32 vidfreq)
3818 {
3819         unsigned long freq;
3820         int div = (vidfreq & 0x3f0000) >> 16;
3821         int post = (vidfreq & 0x3000) >> 12;
3822         int pre = (vidfreq & 0x7);
3823
3824         if (!pre)
3825                 return 0;
3826
3827         freq = ((div * 133333) / ((1<<post) * pre));
3828
3829         return freq;
3830 }
3831
3832 static const struct cparams {
3833         u16 i;
3834         u16 t;
3835         u16 m;
3836         u16 c;
3837 } cparams[] = {
3838         { 1, 1333, 301, 28664 },
3839         { 1, 1066, 294, 24460 },
3840         { 1, 800, 294, 25192 },
3841         { 0, 1333, 276, 27605 },
3842         { 0, 1066, 276, 27605 },
3843         { 0, 800, 231, 23784 },
3844 };
3845
3846 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3847 {
3848         u64 total_count, diff, ret;
3849         u32 count1, count2, count3, m = 0, c = 0;
3850         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3851         int i;
3852
3853         assert_spin_locked(&mchdev_lock);
3854
3855         diff1 = now - dev_priv->ips.last_time1;
3856
3857         /* Prevent division-by-zero if we are asking too fast.
3858          * Also, we don't get interesting results if we are polling
3859          * faster than once in 10ms, so just return the saved value
3860          * in such cases.
3861          */
3862         if (diff1 <= 10)
3863                 return dev_priv->ips.chipset_power;
3864
3865         count1 = I915_READ(DMIEC);
3866         count2 = I915_READ(DDREC);
3867         count3 = I915_READ(CSIEC);
3868
3869         total_count = count1 + count2 + count3;
3870
3871         /* FIXME: handle per-counter overflow */
3872         if (total_count < dev_priv->ips.last_count1) {
3873                 diff = ~0UL - dev_priv->ips.last_count1;
3874                 diff += total_count;
3875         } else {
3876                 diff = total_count - dev_priv->ips.last_count1;
3877         }
3878
3879         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3880                 if (cparams[i].i == dev_priv->ips.c_m &&
3881                     cparams[i].t == dev_priv->ips.r_t) {
3882                         m = cparams[i].m;
3883                         c = cparams[i].c;
3884                         break;
3885                 }
3886         }
3887
3888         diff = div_u64(diff, diff1);
3889         ret = ((m * diff) + c);
3890         ret = div_u64(ret, 10);
3891
3892         dev_priv->ips.last_count1 = total_count;
3893         dev_priv->ips.last_time1 = now;
3894
3895         dev_priv->ips.chipset_power = ret;
3896
3897         return ret;
3898 }
3899
3900 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3901 {
3902         struct drm_device *dev = dev_priv->dev;
3903         unsigned long val;
3904
3905         if (INTEL_INFO(dev)->gen != 5)
3906                 return 0;
3907
3908         spin_lock_irq(&mchdev_lock);
3909
3910         val = __i915_chipset_val(dev_priv);
3911
3912         spin_unlock_irq(&mchdev_lock);
3913
3914         return val;
3915 }
3916
3917 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3918 {
3919         unsigned long m, x, b;
3920         u32 tsfs;
3921
3922         tsfs = I915_READ(TSFS);
3923
3924         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3925         x = I915_READ8(TR1);
3926
3927         b = tsfs & TSFS_INTR_MASK;
3928
3929         return ((m * x) / 127) - b;
3930 }
3931
3932 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3933 {
3934         struct drm_device *dev = dev_priv->dev;
3935         static const struct v_table {
3936                 u16 vd; /* in .1 mil */
3937                 u16 vm; /* in .1 mil */
3938         } v_table[] = {
3939                 { 0, 0, },
3940                 { 375, 0, },
3941                 { 500, 0, },
3942                 { 625, 0, },
3943                 { 750, 0, },
3944                 { 875, 0, },
3945                 { 1000, 0, },
3946                 { 1125, 0, },
3947                 { 4125, 3000, },
3948                 { 4125, 3000, },
3949                 { 4125, 3000, },
3950                 { 4125, 3000, },
3951                 { 4125, 3000, },
3952                 { 4125, 3000, },
3953                 { 4125, 3000, },
3954                 { 4125, 3000, },
3955                 { 4125, 3000, },
3956                 { 4125, 3000, },
3957                 { 4125, 3000, },
3958                 { 4125, 3000, },
3959                 { 4125, 3000, },
3960                 { 4125, 3000, },
3961                 { 4125, 3000, },
3962                 { 4125, 3000, },
3963                 { 4125, 3000, },
3964                 { 4125, 3000, },
3965                 { 4125, 3000, },
3966                 { 4125, 3000, },
3967                 { 4125, 3000, },
3968                 { 4125, 3000, },
3969                 { 4125, 3000, },
3970                 { 4125, 3000, },
3971                 { 4250, 3125, },
3972                 { 4375, 3250, },
3973                 { 4500, 3375, },
3974                 { 4625, 3500, },
3975                 { 4750, 3625, },
3976                 { 4875, 3750, },
3977                 { 5000, 3875, },
3978                 { 5125, 4000, },
3979                 { 5250, 4125, },
3980                 { 5375, 4250, },
3981                 { 5500, 4375, },
3982                 { 5625, 4500, },
3983                 { 5750, 4625, },
3984                 { 5875, 4750, },
3985                 { 6000, 4875, },
3986                 { 6125, 5000, },
3987                 { 6250, 5125, },
3988                 { 6375, 5250, },
3989                 { 6500, 5375, },
3990                 { 6625, 5500, },
3991                 { 6750, 5625, },
3992                 { 6875, 5750, },
3993                 { 7000, 5875, },
3994                 { 7125, 6000, },
3995                 { 7250, 6125, },
3996                 { 7375, 6250, },
3997                 { 7500, 6375, },
3998                 { 7625, 6500, },
3999                 { 7750, 6625, },
4000                 { 7875, 6750, },
4001                 { 8000, 6875, },
4002                 { 8125, 7000, },
4003                 { 8250, 7125, },
4004                 { 8375, 7250, },
4005                 { 8500, 7375, },
4006                 { 8625, 7500, },
4007                 { 8750, 7625, },
4008                 { 8875, 7750, },
4009                 { 9000, 7875, },
4010                 { 9125, 8000, },
4011                 { 9250, 8125, },
4012                 { 9375, 8250, },
4013                 { 9500, 8375, },
4014                 { 9625, 8500, },
4015                 { 9750, 8625, },
4016                 { 9875, 8750, },
4017                 { 10000, 8875, },
4018                 { 10125, 9000, },
4019                 { 10250, 9125, },
4020                 { 10375, 9250, },
4021                 { 10500, 9375, },
4022                 { 10625, 9500, },
4023                 { 10750, 9625, },
4024                 { 10875, 9750, },
4025                 { 11000, 9875, },
4026                 { 11125, 10000, },
4027                 { 11250, 10125, },
4028                 { 11375, 10250, },
4029                 { 11500, 10375, },
4030                 { 11625, 10500, },
4031                 { 11750, 10625, },
4032                 { 11875, 10750, },
4033                 { 12000, 10875, },
4034                 { 12125, 11000, },
4035                 { 12250, 11125, },
4036                 { 12375, 11250, },
4037                 { 12500, 11375, },
4038                 { 12625, 11500, },
4039                 { 12750, 11625, },
4040                 { 12875, 11750, },
4041                 { 13000, 11875, },
4042                 { 13125, 12000, },
4043                 { 13250, 12125, },
4044                 { 13375, 12250, },
4045                 { 13500, 12375, },
4046                 { 13625, 12500, },
4047                 { 13750, 12625, },
4048                 { 13875, 12750, },
4049                 { 14000, 12875, },
4050                 { 14125, 13000, },
4051                 { 14250, 13125, },
4052                 { 14375, 13250, },
4053                 { 14500, 13375, },
4054                 { 14625, 13500, },
4055                 { 14750, 13625, },
4056                 { 14875, 13750, },
4057                 { 15000, 13875, },
4058                 { 15125, 14000, },
4059                 { 15250, 14125, },
4060                 { 15375, 14250, },
4061                 { 15500, 14375, },
4062                 { 15625, 14500, },
4063                 { 15750, 14625, },
4064                 { 15875, 14750, },
4065                 { 16000, 14875, },
4066                 { 16125, 15000, },
4067         };
4068         if (INTEL_INFO(dev)->is_mobile)
4069                 return v_table[pxvid].vm;
4070         else
4071                 return v_table[pxvid].vd;
4072 }
4073
4074 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4075 {
4076         struct timespec now, diff1;
4077         u64 diff;
4078         unsigned long diffms;
4079         u32 count;
4080
4081         assert_spin_locked(&mchdev_lock);
4082
4083         getrawmonotonic(&now);
4084         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4085
4086         /* Don't divide by 0 */
4087         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4088         if (!diffms)
4089                 return;
4090
4091         count = I915_READ(GFXEC);
4092
4093         if (count < dev_priv->ips.last_count2) {
4094                 diff = ~0UL - dev_priv->ips.last_count2;
4095                 diff += count;
4096         } else {
4097                 diff = count - dev_priv->ips.last_count2;
4098         }
4099
4100         dev_priv->ips.last_count2 = count;
4101         dev_priv->ips.last_time2 = now;
4102
4103         /* More magic constants... */
4104         diff = diff * 1181;
4105         diff = div_u64(diff, diffms * 10);
4106         dev_priv->ips.gfx_power = diff;
4107 }
4108
4109 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4110 {
4111         struct drm_device *dev = dev_priv->dev;
4112
4113         if (INTEL_INFO(dev)->gen != 5)
4114                 return;
4115
4116         spin_lock_irq(&mchdev_lock);
4117
4118         __i915_update_gfx_val(dev_priv);
4119
4120         spin_unlock_irq(&mchdev_lock);
4121 }
4122
4123 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4124 {
4125         unsigned long t, corr, state1, corr2, state2;
4126         u32 pxvid, ext_v;
4127
4128         assert_spin_locked(&mchdev_lock);
4129
4130         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4131         pxvid = (pxvid >> 24) & 0x7f;
4132         ext_v = pvid_to_extvid(dev_priv, pxvid);
4133
4134         state1 = ext_v;
4135
4136         t = i915_mch_val(dev_priv);
4137
4138         /* Revel in the empirically derived constants */
4139
4140         /* Correction factor in 1/100000 units */
4141         if (t > 80)
4142                 corr = ((t * 2349) + 135940);
4143         else if (t >= 50)
4144                 corr = ((t * 964) + 29317);
4145         else /* < 50 */
4146                 corr = ((t * 301) + 1004);
4147
4148         corr = corr * ((150142 * state1) / 10000 - 78642);
4149         corr /= 100000;
4150         corr2 = (corr * dev_priv->ips.corr);
4151
4152         state2 = (corr2 * state1) / 10000;
4153         state2 /= 100; /* convert to mW */
4154
4155         __i915_update_gfx_val(dev_priv);
4156
4157         return dev_priv->ips.gfx_power + state2;
4158 }
4159
4160 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4161 {
4162         struct drm_device *dev = dev_priv->dev;
4163         unsigned long val;
4164
4165         if (INTEL_INFO(dev)->gen != 5)
4166                 return 0;
4167
4168         spin_lock_irq(&mchdev_lock);
4169
4170         val = __i915_gfx_val(dev_priv);
4171
4172         spin_unlock_irq(&mchdev_lock);
4173
4174         return val;
4175 }
4176
4177 /**
4178  * i915_read_mch_val - return value for IPS use
4179  *
4180  * Calculate and return a value for the IPS driver to use when deciding whether
4181  * we have thermal and power headroom to increase CPU or GPU power budget.
4182  */
4183 unsigned long i915_read_mch_val(void)
4184 {
4185         struct drm_i915_private *dev_priv;
4186         unsigned long chipset_val, graphics_val, ret = 0;
4187
4188         spin_lock_irq(&mchdev_lock);
4189         if (!i915_mch_dev)
4190                 goto out_unlock;
4191         dev_priv = i915_mch_dev;
4192
4193         chipset_val = __i915_chipset_val(dev_priv);
4194         graphics_val = __i915_gfx_val(dev_priv);
4195
4196         ret = chipset_val + graphics_val;
4197
4198 out_unlock:
4199         spin_unlock_irq(&mchdev_lock);
4200
4201         return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4204
4205 /**
4206  * i915_gpu_raise - raise GPU frequency limit
4207  *
4208  * Raise the limit; IPS indicates we have thermal headroom.
4209  */
4210 bool i915_gpu_raise(void)
4211 {
4212         struct drm_i915_private *dev_priv;
4213         bool ret = true;
4214
4215         spin_lock_irq(&mchdev_lock);
4216         if (!i915_mch_dev) {
4217                 ret = false;
4218                 goto out_unlock;
4219         }
4220         dev_priv = i915_mch_dev;
4221
4222         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4223                 dev_priv->ips.max_delay--;
4224
4225 out_unlock:
4226         spin_unlock_irq(&mchdev_lock);
4227
4228         return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4231
4232 /**
4233  * i915_gpu_lower - lower GPU frequency limit
4234  *
4235  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4236  * frequency maximum.
4237  */
4238 bool i915_gpu_lower(void)
4239 {
4240         struct drm_i915_private *dev_priv;
4241         bool ret = true;
4242
4243         spin_lock_irq(&mchdev_lock);
4244         if (!i915_mch_dev) {
4245                 ret = false;
4246                 goto out_unlock;
4247         }
4248         dev_priv = i915_mch_dev;
4249
4250         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4251                 dev_priv->ips.max_delay++;
4252
4253 out_unlock:
4254         spin_unlock_irq(&mchdev_lock);
4255
4256         return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4259
4260 /**
4261  * i915_gpu_busy - indicate GPU business to IPS
4262  *
4263  * Tell the IPS driver whether or not the GPU is busy.
4264  */
4265 bool i915_gpu_busy(void)
4266 {
4267         struct drm_i915_private *dev_priv;
4268         struct intel_ring_buffer *ring;
4269         bool ret = false;
4270         int i;
4271
4272         spin_lock_irq(&mchdev_lock);
4273         if (!i915_mch_dev)
4274                 goto out_unlock;
4275         dev_priv = i915_mch_dev;
4276
4277         for_each_ring(ring, dev_priv, i)
4278                 ret |= !list_empty(&ring->request_list);
4279
4280 out_unlock:
4281         spin_unlock_irq(&mchdev_lock);
4282
4283         return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4286
4287 /**
4288  * i915_gpu_turbo_disable - disable graphics turbo
4289  *
4290  * Disable graphics turbo by resetting the max frequency and setting the
4291  * current frequency to the default.
4292  */
4293 bool i915_gpu_turbo_disable(void)
4294 {
4295         struct drm_i915_private *dev_priv;
4296         bool ret = true;
4297
4298         spin_lock_irq(&mchdev_lock);
4299         if (!i915_mch_dev) {
4300                 ret = false;
4301                 goto out_unlock;
4302         }
4303         dev_priv = i915_mch_dev;
4304
4305         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4306
4307         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4308                 ret = false;
4309
4310 out_unlock:
4311         spin_unlock_irq(&mchdev_lock);
4312
4313         return ret;
4314 }
4315 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4316
4317 /**
4318  * Tells the intel_ips driver that the i915 driver is now loaded, if
4319  * IPS got loaded first.
4320  *
4321  * This awkward dance is so that neither module has to depend on the
4322  * other in order for IPS to do the appropriate communication of
4323  * GPU turbo limits to i915.
4324  */
4325 static void
4326 ips_ping_for_i915_load(void)
4327 {
4328         void (*link)(void);
4329
4330         link = symbol_get(ips_link_to_i915_driver);
4331         if (link) {
4332                 link();
4333                 symbol_put(ips_link_to_i915_driver);
4334         }
4335 }
4336
4337 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4338 {
4339         /* We only register the i915 ips part with intel-ips once everything is
4340          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4341         spin_lock_irq(&mchdev_lock);
4342         i915_mch_dev = dev_priv;
4343         spin_unlock_irq(&mchdev_lock);
4344
4345         ips_ping_for_i915_load();
4346 }
4347
4348 void intel_gpu_ips_teardown(void)
4349 {
4350         spin_lock_irq(&mchdev_lock);
4351         i915_mch_dev = NULL;
4352         spin_unlock_irq(&mchdev_lock);
4353 }
4354
4355 static void intel_init_emon(struct drm_device *dev)
4356 {
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         u32 lcfuse;
4359         u8 pxw[16];
4360         int i;
4361
4362         /* Disable to program */
4363         I915_WRITE(ECR, 0);
4364         POSTING_READ(ECR);
4365
4366         /* Program energy weights for various events */
4367         I915_WRITE(SDEW, 0x15040d00);
4368         I915_WRITE(CSIEW0, 0x007f0000);
4369         I915_WRITE(CSIEW1, 0x1e220004);
4370         I915_WRITE(CSIEW2, 0x04000004);
4371
4372         for (i = 0; i < 5; i++)
4373                 I915_WRITE(PEW + (i * 4), 0);
4374         for (i = 0; i < 3; i++)
4375                 I915_WRITE(DEW + (i * 4), 0);
4376
4377         /* Program P-state weights to account for frequency power adjustment */
4378         for (i = 0; i < 16; i++) {
4379                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4380                 unsigned long freq = intel_pxfreq(pxvidfreq);
4381                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4382                         PXVFREQ_PX_SHIFT;
4383                 unsigned long val;
4384
4385                 val = vid * vid;
4386                 val *= (freq / 1000);
4387                 val *= 255;
4388                 val /= (127*127*900);
4389                 if (val > 0xff)
4390                         DRM_ERROR("bad pxval: %ld\n", val);
4391                 pxw[i] = val;
4392         }
4393         /* Render standby states get 0 weight */
4394         pxw[14] = 0;
4395         pxw[15] = 0;
4396
4397         for (i = 0; i < 4; i++) {
4398                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4399                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4400                 I915_WRITE(PXW + (i * 4), val);
4401         }
4402
4403         /* Adjust magic regs to magic values (more experimental results) */
4404         I915_WRITE(OGW0, 0);
4405         I915_WRITE(OGW1, 0);
4406         I915_WRITE(EG0, 0x00007f00);
4407         I915_WRITE(EG1, 0x0000000e);
4408         I915_WRITE(EG2, 0x000e0000);
4409         I915_WRITE(EG3, 0x68000300);
4410         I915_WRITE(EG4, 0x42000000);
4411         I915_WRITE(EG5, 0x00140031);
4412         I915_WRITE(EG6, 0);
4413         I915_WRITE(EG7, 0);
4414
4415         for (i = 0; i < 8; i++)
4416                 I915_WRITE(PXWL + (i * 4), 0);
4417
4418         /* Enable PMON + select events */
4419         I915_WRITE(ECR, 0x80000019);
4420
4421         lcfuse = I915_READ(LCFUSE02);
4422
4423         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4424 }
4425
4426 void intel_disable_gt_powersave(struct drm_device *dev)
4427 {
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429
4430         /* Interrupts should be disabled already to avoid re-arming. */
4431         WARN_ON(dev->irq_enabled);
4432
4433         if (IS_IRONLAKE_M(dev)) {
4434                 ironlake_disable_drps(dev);
4435                 ironlake_disable_rc6(dev);
4436         } else if (INTEL_INFO(dev)->gen >= 6) {
4437                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4438                 cancel_work_sync(&dev_priv->rps.work);
4439                 mutex_lock(&dev_priv->rps.hw_lock);
4440                 if (IS_VALLEYVIEW(dev))
4441                         valleyview_disable_rps(dev);
4442                 else
4443                         gen6_disable_rps(dev);
4444                 dev_priv->rps.enabled = false;
4445                 mutex_unlock(&dev_priv->rps.hw_lock);
4446         }
4447 }
4448
4449 static void intel_gen6_powersave_work(struct work_struct *work)
4450 {
4451         struct drm_i915_private *dev_priv =
4452                 container_of(work, struct drm_i915_private,
4453                              rps.delayed_resume_work.work);
4454         struct drm_device *dev = dev_priv->dev;
4455
4456         mutex_lock(&dev_priv->rps.hw_lock);
4457
4458         if (IS_VALLEYVIEW(dev)) {
4459                 valleyview_enable_rps(dev);
4460         } else if (IS_BROADWELL(dev)) {
4461                 gen8_enable_rps(dev);
4462                 gen6_update_ring_freq(dev);
4463         } else {
4464                 gen6_enable_rps(dev);
4465                 gen6_update_ring_freq(dev);
4466         }
4467         dev_priv->rps.enabled = true;
4468         mutex_unlock(&dev_priv->rps.hw_lock);
4469 }
4470
4471 void intel_enable_gt_powersave(struct drm_device *dev)
4472 {
4473         struct drm_i915_private *dev_priv = dev->dev_private;
4474
4475         if (IS_IRONLAKE_M(dev)) {
4476                 ironlake_enable_drps(dev);
4477                 ironlake_enable_rc6(dev);
4478                 intel_init_emon(dev);
4479         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4480                 /*
4481                  * PCU communication is slow and this doesn't need to be
4482                  * done at any specific time, so do this out of our fast path
4483                  * to make resume and init faster.
4484                  */
4485                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4486                                       round_jiffies_up_relative(HZ));
4487         }
4488 }
4489
4490 static void ibx_init_clock_gating(struct drm_device *dev)
4491 {
4492         struct drm_i915_private *dev_priv = dev->dev_private;
4493
4494         /*
4495          * On Ibex Peak and Cougar Point, we need to disable clock
4496          * gating for the panel power sequencer or it will fail to
4497          * start up when no ports are active.
4498          */
4499         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4500 }
4501
4502 static void g4x_disable_trickle_feed(struct drm_device *dev)
4503 {
4504         struct drm_i915_private *dev_priv = dev->dev_private;
4505         int pipe;
4506
4507         for_each_pipe(pipe) {
4508                 I915_WRITE(DSPCNTR(pipe),
4509                            I915_READ(DSPCNTR(pipe)) |
4510                            DISPPLANE_TRICKLE_FEED_DISABLE);
4511                 intel_flush_primary_plane(dev_priv, pipe);
4512         }
4513 }
4514
4515 static void ilk_init_lp_watermarks(struct drm_device *dev)
4516 {
4517         struct drm_i915_private *dev_priv = dev->dev_private;
4518
4519         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4520         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4521         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4522
4523         /*
4524          * Don't touch WM1S_LP_EN here.
4525          * Doing so could cause underruns.
4526          */
4527 }
4528
4529 static void ironlake_init_clock_gating(struct drm_device *dev)
4530 {
4531         struct drm_i915_private *dev_priv = dev->dev_private;
4532         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4533
4534         /*
4535          * Required for FBC
4536          * WaFbcDisableDpfcClockGating:ilk
4537          */
4538         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4539                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4540                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4541
4542         I915_WRITE(PCH_3DCGDIS0,
4543                    MARIUNIT_CLOCK_GATE_DISABLE |
4544                    SVSMUNIT_CLOCK_GATE_DISABLE);
4545         I915_WRITE(PCH_3DCGDIS1,
4546                    VFMUNIT_CLOCK_GATE_DISABLE);
4547
4548         /*
4549          * According to the spec the following bits should be set in
4550          * order to enable memory self-refresh
4551          * The bit 22/21 of 0x42004
4552          * The bit 5 of 0x42020
4553          * The bit 15 of 0x45000
4554          */
4555         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4556                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4557                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4558         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4559         I915_WRITE(DISP_ARB_CTL,
4560                    (I915_READ(DISP_ARB_CTL) |
4561                     DISP_FBC_WM_DIS));
4562
4563         ilk_init_lp_watermarks(dev);
4564
4565         /*
4566          * Based on the document from hardware guys the following bits
4567          * should be set unconditionally in order to enable FBC.
4568          * The bit 22 of 0x42000
4569          * The bit 22 of 0x42004
4570          * The bit 7,8,9 of 0x42020.
4571          */
4572         if (IS_IRONLAKE_M(dev)) {
4573                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4574                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4575                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4576                            ILK_FBCQ_DIS);
4577                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4578                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4579                            ILK_DPARB_GATE);
4580         }
4581
4582         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4583
4584         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4585                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4586                    ILK_ELPIN_409_SELECT);
4587         I915_WRITE(_3D_CHICKEN2,
4588                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4589                    _3D_CHICKEN2_WM_READ_PIPELINED);
4590
4591         /* WaDisableRenderCachePipelinedFlush:ilk */
4592         I915_WRITE(CACHE_MODE_0,
4593                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4594
4595         g4x_disable_trickle_feed(dev);
4596
4597         ibx_init_clock_gating(dev);
4598 }
4599
4600 static void cpt_init_clock_gating(struct drm_device *dev)
4601 {
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         int pipe;
4604         uint32_t val;
4605
4606         /*
4607          * On Ibex Peak and Cougar Point, we need to disable clock
4608          * gating for the panel power sequencer or it will fail to
4609          * start up when no ports are active.
4610          */
4611         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4612                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4613                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4614         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4615                    DPLS_EDP_PPS_FIX_DIS);
4616         /* The below fixes the weird display corruption, a few pixels shifted
4617          * downward, on (only) LVDS of some HP laptops with IVY.
4618          */
4619         for_each_pipe(pipe) {
4620                 val = I915_READ(TRANS_CHICKEN2(pipe));
4621                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4622                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4623                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4624                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4625                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4626                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4627                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4628                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4629         }
4630         /* WADP0ClockGatingDisable */
4631         for_each_pipe(pipe) {
4632                 I915_WRITE(TRANS_CHICKEN1(pipe),
4633                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4634         }
4635 }
4636
4637 static void gen6_check_mch_setup(struct drm_device *dev)
4638 {
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640         uint32_t tmp;
4641
4642         tmp = I915_READ(MCH_SSKPD);
4643         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4644                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4645                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4646                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4647         }
4648 }
4649
4650 static void gen6_init_clock_gating(struct drm_device *dev)
4651 {
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4654
4655         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4656
4657         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4658                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4659                    ILK_ELPIN_409_SELECT);
4660
4661         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4662         I915_WRITE(_3D_CHICKEN,
4663                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4664
4665         /* WaSetupGtModeTdRowDispatch:snb */
4666         if (IS_SNB_GT1(dev))
4667                 I915_WRITE(GEN6_GT_MODE,
4668                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4669
4670         ilk_init_lp_watermarks(dev);
4671
4672         I915_WRITE(CACHE_MODE_0,
4673                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4674
4675         I915_WRITE(GEN6_UCGCTL1,
4676                    I915_READ(GEN6_UCGCTL1) |
4677                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4678                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4679
4680         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4681          * gating disable must be set.  Failure to set it results in
4682          * flickering pixels due to Z write ordering failures after
4683          * some amount of runtime in the Mesa "fire" demo, and Unigine
4684          * Sanctuary and Tropics, and apparently anything else with
4685          * alpha test or pixel discard.
4686          *
4687          * According to the spec, bit 11 (RCCUNIT) must also be set,
4688          * but we didn't debug actual testcases to find it out.
4689          *
4690          * WaDisableRCCUnitClockGating:snb
4691          * WaDisableRCPBUnitClockGating:snb
4692          */
4693         I915_WRITE(GEN6_UCGCTL2,
4694                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4695                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4696
4697         /* Bspec says we need to always set all mask bits. */
4698         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4699                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4700
4701         /*
4702          * Bspec says:
4703          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4704          * 3DSTATE_SF number of SF output attributes is more than 16."
4705          */
4706         I915_WRITE(_3D_CHICKEN3,
4707                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4708
4709         /*
4710          * According to the spec the following bits should be
4711          * set in order to enable memory self-refresh and fbc:
4712          * The bit21 and bit22 of 0x42000
4713          * The bit21 and bit22 of 0x42004
4714          * The bit5 and bit7 of 0x42020
4715          * The bit14 of 0x70180
4716          * The bit14 of 0x71180
4717          *
4718          * WaFbcAsynchFlipDisableFbcQueue:snb
4719          */
4720         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4721                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4722                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4723         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4724                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4725                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4726         I915_WRITE(ILK_DSPCLK_GATE_D,
4727                    I915_READ(ILK_DSPCLK_GATE_D) |
4728                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4729                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4730
4731         g4x_disable_trickle_feed(dev);
4732
4733         /* The default value should be 0x200 according to docs, but the two
4734          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4735         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4736         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4737
4738         cpt_init_clock_gating(dev);
4739
4740         gen6_check_mch_setup(dev);
4741 }
4742
4743 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4744 {
4745         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4746
4747         /*
4748          * WaVSThreadDispatchOverride:ivb,vlv
4749          *
4750          * This actually overrides the dispatch
4751          * mode for all thread types.
4752          */
4753         reg &= ~GEN7_FF_SCHED_MASK;
4754         reg |= GEN7_FF_TS_SCHED_HW;
4755         reg |= GEN7_FF_VS_SCHED_HW;
4756         reg |= GEN7_FF_DS_SCHED_HW;
4757
4758         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4759 }
4760
4761 static void lpt_init_clock_gating(struct drm_device *dev)
4762 {
4763         struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765         /*
4766          * TODO: this bit should only be enabled when really needed, then
4767          * disabled when not needed anymore in order to save power.
4768          */
4769         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4770                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4771                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4772                            PCH_LP_PARTITION_LEVEL_DISABLE);
4773
4774         /* WADPOClockGatingDisable:hsw */
4775         I915_WRITE(_TRANSA_CHICKEN1,
4776                    I915_READ(_TRANSA_CHICKEN1) |
4777                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4778 }
4779
4780 static void lpt_suspend_hw(struct drm_device *dev)
4781 {
4782         struct drm_i915_private *dev_priv = dev->dev_private;
4783
4784         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4785                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4786
4787                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4788                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4789         }
4790 }
4791
4792 static void gen8_init_clock_gating(struct drm_device *dev)
4793 {
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795         enum pipe i;
4796
4797         I915_WRITE(WM3_LP_ILK, 0);
4798         I915_WRITE(WM2_LP_ILK, 0);
4799         I915_WRITE(WM1_LP_ILK, 0);
4800
4801         /* FIXME(BDW): Check all the w/a, some might only apply to
4802          * pre-production hw. */
4803
4804         /*
4805          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4806          * pre-production hardware
4807          */
4808         I915_WRITE(HALF_SLICE_CHICKEN3,
4809                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4810         I915_WRITE(HALF_SLICE_CHICKEN3,
4811                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4812         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4813
4814         I915_WRITE(_3D_CHICKEN3,
4815                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4816
4817         I915_WRITE(COMMON_SLICE_CHICKEN2,
4818                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4819
4820         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4821                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4822
4823         /* WaSwitchSolVfFArbitrationPriority:bdw */
4824         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4825
4826         /* WaPsrDPAMaskVBlankInSRD:bdw */
4827         I915_WRITE(CHICKEN_PAR1_1,
4828                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4829
4830         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4831         for_each_pipe(i) {
4832                 I915_WRITE(CHICKEN_PIPESL_1(i),
4833                            I915_READ(CHICKEN_PIPESL_1(i) |
4834                                      DPRS_MASK_VBLANK_SRD));
4835         }
4836
4837         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4838          * workaround for for a possible hang in the unlikely event a TLB
4839          * invalidation occurs during a PSD flush.
4840          */
4841         I915_WRITE(HDC_CHICKEN0,
4842                    I915_READ(HDC_CHICKEN0) |
4843                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4844
4845         /* WaVSRefCountFullforceMissDisable:bdw */
4846         /* WaDSRefCountFullforceMissDisable:bdw */
4847         I915_WRITE(GEN7_FF_THREAD_MODE,
4848                    I915_READ(GEN7_FF_THREAD_MODE) &
4849                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4850 }
4851
4852 static void haswell_init_clock_gating(struct drm_device *dev)
4853 {
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855
4856         ilk_init_lp_watermarks(dev);
4857
4858         /* L3 caching of data atomics doesn't work -- disable it. */
4859         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4860         I915_WRITE(HSW_ROW_CHICKEN3,
4861                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4862
4863         /* This is required by WaCatErrorRejectionIssue:hsw */
4864         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4865                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4866                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4867
4868         /* WaVSRefCountFullforceMissDisable:hsw */
4869         I915_WRITE(GEN7_FF_THREAD_MODE,
4870                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4871
4872         /* enable HiZ Raw Stall Optimization */
4873         I915_WRITE(CACHE_MODE_0_GEN7,
4874                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4875
4876         /* WaDisable4x2SubspanOptimization:hsw */
4877         I915_WRITE(CACHE_MODE_1,
4878                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4879
4880         /* WaSwitchSolVfFArbitrationPriority:hsw */
4881         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4882
4883         /* WaRsPkgCStateDisplayPMReq:hsw */
4884         I915_WRITE(CHICKEN_PAR1_1,
4885                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4886
4887         lpt_init_clock_gating(dev);
4888 }
4889
4890 static void ivybridge_init_clock_gating(struct drm_device *dev)
4891 {
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         uint32_t snpcr;
4894
4895         ilk_init_lp_watermarks(dev);
4896
4897         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4898
4899         /* WaDisableEarlyCull:ivb */
4900         I915_WRITE(_3D_CHICKEN3,
4901                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4902
4903         /* WaDisableBackToBackFlipFix:ivb */
4904         I915_WRITE(IVB_CHICKEN3,
4905                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4906                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4907
4908         /* WaDisablePSDDualDispatchEnable:ivb */
4909         if (IS_IVB_GT1(dev))
4910                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4911                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4912
4913         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4914         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4915                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4916
4917         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4918         I915_WRITE(GEN7_L3CNTLREG1,
4919                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4920         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4921                    GEN7_WA_L3_CHICKEN_MODE);
4922         if (IS_IVB_GT1(dev))
4923                 I915_WRITE(GEN7_ROW_CHICKEN2,
4924                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4925         else {
4926                 /* must write both registers */
4927                 I915_WRITE(GEN7_ROW_CHICKEN2,
4928                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4929                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4930                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4931         }
4932
4933         /* WaForceL3Serialization:ivb */
4934         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4935                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4936
4937         /*
4938          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4939          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4940          */
4941         I915_WRITE(GEN6_UCGCTL2,
4942                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4943
4944         /* This is required by WaCatErrorRejectionIssue:ivb */
4945         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4946                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4947                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4948
4949         g4x_disable_trickle_feed(dev);
4950
4951         gen7_setup_fixed_func_scheduler(dev_priv);
4952
4953         /* enable HiZ Raw Stall Optimization */
4954         I915_WRITE(CACHE_MODE_0_GEN7,
4955                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4956
4957         /* WaDisable4x2SubspanOptimization:ivb */
4958         I915_WRITE(CACHE_MODE_1,
4959                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4960
4961         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4962         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4963         snpcr |= GEN6_MBC_SNPCR_MED;
4964         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4965
4966         if (!HAS_PCH_NOP(dev))
4967                 cpt_init_clock_gating(dev);
4968
4969         gen6_check_mch_setup(dev);
4970 }
4971
4972 static void valleyview_init_clock_gating(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975         u32 val;
4976
4977         mutex_lock(&dev_priv->rps.hw_lock);
4978         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4979         mutex_unlock(&dev_priv->rps.hw_lock);
4980         switch ((val >> 6) & 3) {
4981         case 0:
4982                 dev_priv->mem_freq = 800;
4983                 break;
4984         case 1:
4985                 dev_priv->mem_freq = 1066;
4986                 break;
4987         case 2:
4988                 dev_priv->mem_freq = 1333;
4989                 break;
4990         case 3:
4991                 dev_priv->mem_freq = 1333;
4992                 break;
4993         }
4994         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4995
4996         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4997
4998         /* WaDisableEarlyCull:vlv */
4999         I915_WRITE(_3D_CHICKEN3,
5000                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5001
5002         /* WaDisableBackToBackFlipFix:vlv */
5003         I915_WRITE(IVB_CHICKEN3,
5004                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5005                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5006
5007         /* WaPsdDispatchEnable:vlv */
5008         /* WaDisablePSDDualDispatchEnable:vlv */
5009         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5010                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5011                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5012
5013         /* WaDisableL3CacheAging:vlv */
5014         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5015
5016         /* WaForceL3Serialization:vlv */
5017         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5018                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5019
5020         /* WaDisableDopClockGating:vlv */
5021         I915_WRITE(GEN7_ROW_CHICKEN2,
5022                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5023
5024         /* This is required by WaCatErrorRejectionIssue:vlv */
5025         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5026                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5027                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5028
5029         gen7_setup_fixed_func_scheduler(dev_priv);
5030
5031         /*
5032          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5033          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5034          */
5035         I915_WRITE(GEN6_UCGCTL2,
5036                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5037
5038         /* WaDisableL3Bank2xClockGate:vlv */
5039         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5040
5041         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5042
5043         /*
5044          * BSpec says this must be set, even though
5045          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5046          */
5047         I915_WRITE(CACHE_MODE_1,
5048                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5049
5050         /*
5051          * WaIncreaseL3CreditsForVLVB0:vlv
5052          * This is the hardware default actually.
5053          */
5054         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5055
5056         /*
5057          * WaDisableVLVClockGating_VBIIssue:vlv
5058          * Disable clock gating on th GCFG unit to prevent a delay
5059          * in the reporting of vblank events.
5060          */
5061         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5062 }
5063
5064 static void g4x_init_clock_gating(struct drm_device *dev)
5065 {
5066         struct drm_i915_private *dev_priv = dev->dev_private;
5067         uint32_t dspclk_gate;
5068
5069         I915_WRITE(RENCLK_GATE_D1, 0);
5070         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5071                    GS_UNIT_CLOCK_GATE_DISABLE |
5072                    CL_UNIT_CLOCK_GATE_DISABLE);
5073         I915_WRITE(RAMCLK_GATE_D, 0);
5074         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5075                 OVRUNIT_CLOCK_GATE_DISABLE |
5076                 OVCUNIT_CLOCK_GATE_DISABLE;
5077         if (IS_GM45(dev))
5078                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5079         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5080
5081         /* WaDisableRenderCachePipelinedFlush */
5082         I915_WRITE(CACHE_MODE_0,
5083                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5084
5085         g4x_disable_trickle_feed(dev);
5086 }
5087
5088 static void crestline_init_clock_gating(struct drm_device *dev)
5089 {
5090         struct drm_i915_private *dev_priv = dev->dev_private;
5091
5092         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5093         I915_WRITE(RENCLK_GATE_D2, 0);
5094         I915_WRITE(DSPCLK_GATE_D, 0);
5095         I915_WRITE(RAMCLK_GATE_D, 0);
5096         I915_WRITE16(DEUC, 0);
5097         I915_WRITE(MI_ARB_STATE,
5098                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5099 }
5100
5101 static void broadwater_init_clock_gating(struct drm_device *dev)
5102 {
5103         struct drm_i915_private *dev_priv = dev->dev_private;
5104
5105         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5106                    I965_RCC_CLOCK_GATE_DISABLE |
5107                    I965_RCPB_CLOCK_GATE_DISABLE |
5108                    I965_ISC_CLOCK_GATE_DISABLE |
5109                    I965_FBC_CLOCK_GATE_DISABLE);
5110         I915_WRITE(RENCLK_GATE_D2, 0);
5111         I915_WRITE(MI_ARB_STATE,
5112                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5113 }
5114
5115 static void gen3_init_clock_gating(struct drm_device *dev)
5116 {
5117         struct drm_i915_private *dev_priv = dev->dev_private;
5118         u32 dstate = I915_READ(D_STATE);
5119
5120         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5121                 DSTATE_DOT_CLOCK_GATING;
5122         I915_WRITE(D_STATE, dstate);
5123
5124         if (IS_PINEVIEW(dev))
5125                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5126
5127         /* IIR "flip pending" means done if this bit is set */
5128         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5129 }
5130
5131 static void i85x_init_clock_gating(struct drm_device *dev)
5132 {
5133         struct drm_i915_private *dev_priv = dev->dev_private;
5134
5135         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5136 }
5137
5138 static void i830_init_clock_gating(struct drm_device *dev)
5139 {
5140         struct drm_i915_private *dev_priv = dev->dev_private;
5141
5142         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5143 }
5144
5145 void intel_init_clock_gating(struct drm_device *dev)
5146 {
5147         struct drm_i915_private *dev_priv = dev->dev_private;
5148
5149         dev_priv->display.init_clock_gating(dev);
5150 }
5151
5152 void intel_suspend_hw(struct drm_device *dev)
5153 {
5154         if (HAS_PCH_LPT(dev))
5155                 lpt_suspend_hw(dev);
5156 }
5157
5158 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5159         for (i = 0;                                                     \
5160              i < (power_domains)->power_well_count &&                   \
5161                  ((power_well) = &(power_domains)->power_wells[i]);     \
5162              i++)                                                       \
5163                 if ((power_well)->domains & (domain_mask))
5164
5165 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5166         for (i = (power_domains)->power_well_count - 1;                  \
5167              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5168              i--)                                                        \
5169                 if ((power_well)->domains & (domain_mask))
5170
5171 /**
5172  * We should only use the power well if we explicitly asked the hardware to
5173  * enable it, so check if it's enabled and also check if we've requested it to
5174  * be enabled.
5175  */
5176 static bool hsw_power_well_enabled(struct drm_device *dev,
5177                                    struct i915_power_well *power_well)
5178 {
5179         struct drm_i915_private *dev_priv = dev->dev_private;
5180
5181         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5182                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5183 }
5184
5185 bool intel_display_power_enabled_sw(struct drm_device *dev,
5186                                     enum intel_display_power_domain domain)
5187 {
5188         struct drm_i915_private *dev_priv = dev->dev_private;
5189         struct i915_power_domains *power_domains;
5190
5191         power_domains = &dev_priv->power_domains;
5192
5193         return power_domains->domain_use_count[domain];
5194 }
5195
5196 bool intel_display_power_enabled(struct drm_device *dev,
5197                                  enum intel_display_power_domain domain)
5198 {
5199         struct drm_i915_private *dev_priv = dev->dev_private;
5200         struct i915_power_domains *power_domains;
5201         struct i915_power_well *power_well;
5202         bool is_enabled;
5203         int i;
5204
5205         power_domains = &dev_priv->power_domains;
5206
5207         is_enabled = true;
5208
5209         mutex_lock(&power_domains->lock);
5210         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5211                 if (power_well->always_on)
5212                         continue;
5213
5214                 if (!power_well->is_enabled(dev, power_well)) {
5215                         is_enabled = false;
5216                         break;
5217                 }
5218         }
5219         mutex_unlock(&power_domains->lock);
5220
5221         return is_enabled;
5222 }
5223
5224 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5225 {
5226         struct drm_device *dev = dev_priv->dev;
5227         unsigned long irqflags;
5228
5229         /*
5230          * After we re-enable the power well, if we touch VGA register 0x3d5
5231          * we'll get unclaimed register interrupts. This stops after we write
5232          * anything to the VGA MSR register. The vgacon module uses this
5233          * register all the time, so if we unbind our driver and, as a
5234          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5235          * console_unlock(). So make here we touch the VGA MSR register, making
5236          * sure vgacon can keep working normally without triggering interrupts
5237          * and error messages.
5238          */
5239         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5240         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5241         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5242
5243         if (IS_BROADWELL(dev)) {
5244                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5245                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5246                            dev_priv->de_irq_mask[PIPE_B]);
5247                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5248                            ~dev_priv->de_irq_mask[PIPE_B] |
5249                            GEN8_PIPE_VBLANK);
5250                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5251                            dev_priv->de_irq_mask[PIPE_C]);
5252                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5253                            ~dev_priv->de_irq_mask[PIPE_C] |
5254                            GEN8_PIPE_VBLANK);
5255                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5256                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5257         }
5258 }
5259
5260 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5261 {
5262         struct drm_device *dev = dev_priv->dev;
5263         enum pipe p;
5264         unsigned long irqflags;
5265
5266         /*
5267          * After this, the registers on the pipes that are part of the power
5268          * well will become zero, so we have to adjust our counters according to
5269          * that.
5270          *
5271          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5272          */
5273         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5274         for_each_pipe(p)
5275                 if (p != PIPE_A)
5276                         dev->vblank[p].last = 0;
5277         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5278 }
5279
5280 static void hsw_set_power_well(struct drm_device *dev,
5281                                struct i915_power_well *power_well, bool enable)
5282 {
5283         struct drm_i915_private *dev_priv = dev->dev_private;
5284         bool is_enabled, enable_requested;
5285         uint32_t tmp;
5286
5287         WARN_ON(dev_priv->pc8.enabled);
5288
5289         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5290         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5291         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5292
5293         if (enable) {
5294                 if (!enable_requested)
5295                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5296                                    HSW_PWR_WELL_ENABLE_REQUEST);
5297
5298                 if (!is_enabled) {
5299                         DRM_DEBUG_KMS("Enabling power well\n");
5300                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5301                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5302                                 DRM_ERROR("Timeout enabling power well\n");
5303                 }
5304
5305                 hsw_power_well_post_enable(dev_priv);
5306         } else {
5307                 if (enable_requested) {
5308                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5309                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5310                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5311
5312                         hsw_power_well_post_disable(dev_priv);
5313                 }
5314         }
5315 }
5316
5317 static void __intel_power_well_get(struct drm_device *dev,
5318                                    struct i915_power_well *power_well)
5319 {
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321
5322         if (!power_well->count++ && power_well->set) {
5323                 hsw_disable_package_c8(dev_priv);
5324                 power_well->set(dev, power_well, true);
5325         }
5326 }
5327
5328 static void __intel_power_well_put(struct drm_device *dev,
5329                                    struct i915_power_well *power_well)
5330 {
5331         struct drm_i915_private *dev_priv = dev->dev_private;
5332
5333         WARN_ON(!power_well->count);
5334
5335         if (!--power_well->count && power_well->set &&
5336             i915.disable_power_well) {
5337                 power_well->set(dev, power_well, false);
5338                 hsw_enable_package_c8(dev_priv);
5339         }
5340 }
5341
5342 void intel_display_power_get(struct drm_device *dev,
5343                              enum intel_display_power_domain domain)
5344 {
5345         struct drm_i915_private *dev_priv = dev->dev_private;
5346         struct i915_power_domains *power_domains;
5347         struct i915_power_well *power_well;
5348         int i;
5349
5350         power_domains = &dev_priv->power_domains;
5351
5352         mutex_lock(&power_domains->lock);
5353
5354         for_each_power_well(i, power_well, BIT(domain), power_domains)
5355                 __intel_power_well_get(dev, power_well);
5356
5357         power_domains->domain_use_count[domain]++;
5358
5359         mutex_unlock(&power_domains->lock);
5360 }
5361
5362 void intel_display_power_put(struct drm_device *dev,
5363                              enum intel_display_power_domain domain)
5364 {
5365         struct drm_i915_private *dev_priv = dev->dev_private;
5366         struct i915_power_domains *power_domains;
5367         struct i915_power_well *power_well;
5368         int i;
5369
5370         power_domains = &dev_priv->power_domains;
5371
5372         mutex_lock(&power_domains->lock);
5373
5374         WARN_ON(!power_domains->domain_use_count[domain]);
5375         power_domains->domain_use_count[domain]--;
5376
5377         for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5378                 __intel_power_well_put(dev, power_well);
5379
5380         mutex_unlock(&power_domains->lock);
5381 }
5382
5383 static struct i915_power_domains *hsw_pwr;
5384
5385 /* Display audio driver power well request */
5386 void i915_request_power_well(void)
5387 {
5388         struct drm_i915_private *dev_priv;
5389
5390         if (WARN_ON(!hsw_pwr))
5391                 return;
5392
5393         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5394                                 power_domains);
5395         intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5396 }
5397 EXPORT_SYMBOL_GPL(i915_request_power_well);
5398
5399 /* Display audio driver power well release */
5400 void i915_release_power_well(void)
5401 {
5402         struct drm_i915_private *dev_priv;
5403
5404         if (WARN_ON(!hsw_pwr))
5405                 return;
5406
5407         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5408                                 power_domains);
5409         intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5410 }
5411 EXPORT_SYMBOL_GPL(i915_release_power_well);
5412
5413 static struct i915_power_well i9xx_always_on_power_well[] = {
5414         {
5415                 .name = "always-on",
5416                 .always_on = 1,
5417                 .domains = POWER_DOMAIN_MASK,
5418         },
5419 };
5420
5421 static struct i915_power_well hsw_power_wells[] = {
5422         {
5423                 .name = "always-on",
5424                 .always_on = 1,
5425                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5426         },
5427         {
5428                 .name = "display",
5429                 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5430                 .is_enabled = hsw_power_well_enabled,
5431                 .set = hsw_set_power_well,
5432         },
5433 };
5434
5435 static struct i915_power_well bdw_power_wells[] = {
5436         {
5437                 .name = "always-on",
5438                 .always_on = 1,
5439                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5440         },
5441         {
5442                 .name = "display",
5443                 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5444                 .is_enabled = hsw_power_well_enabled,
5445                 .set = hsw_set_power_well,
5446         },
5447 };
5448
5449 #define set_power_wells(power_domains, __power_wells) ({                \
5450         (power_domains)->power_wells = (__power_wells);                 \
5451         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5452 })
5453
5454 int intel_power_domains_init(struct drm_device *dev)
5455 {
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5458
5459         mutex_init(&power_domains->lock);
5460
5461         /*
5462          * The enabling order will be from lower to higher indexed wells,
5463          * the disabling order is reversed.
5464          */
5465         if (IS_HASWELL(dev)) {
5466                 set_power_wells(power_domains, hsw_power_wells);
5467                 hsw_pwr = power_domains;
5468         } else if (IS_BROADWELL(dev)) {
5469                 set_power_wells(power_domains, bdw_power_wells);
5470                 hsw_pwr = power_domains;
5471         } else {
5472                 set_power_wells(power_domains, i9xx_always_on_power_well);
5473         }
5474
5475         return 0;
5476 }
5477
5478 void intel_power_domains_remove(struct drm_device *dev)
5479 {
5480         hsw_pwr = NULL;
5481 }
5482
5483 static void intel_power_domains_resume(struct drm_device *dev)
5484 {
5485         struct drm_i915_private *dev_priv = dev->dev_private;
5486         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5487         struct i915_power_well *power_well;
5488         int i;
5489
5490         mutex_lock(&power_domains->lock);
5491         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5492                 if (power_well->set)
5493                         power_well->set(dev, power_well, power_well->count > 0);
5494         }
5495         mutex_unlock(&power_domains->lock);
5496 }
5497
5498 /*
5499  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5500  * when not needed anymore. We have 4 registers that can request the power well
5501  * to be enabled, and it will only be disabled if none of the registers is
5502  * requesting it to be enabled.
5503  */
5504 void intel_power_domains_init_hw(struct drm_device *dev)
5505 {
5506         struct drm_i915_private *dev_priv = dev->dev_private;
5507
5508         /* For now, we need the power well to be always enabled. */
5509         intel_display_set_init_power(dev, true);
5510         intel_power_domains_resume(dev);
5511
5512         if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5513                 return;
5514
5515         /* We're taking over the BIOS, so clear any requests made by it since
5516          * the driver is in charge now. */
5517         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5518                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5519 }
5520
5521 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5522 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5523 {
5524         hsw_disable_package_c8(dev_priv);
5525 }
5526
5527 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5528 {
5529         hsw_enable_package_c8(dev_priv);
5530 }
5531
5532 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5533 {
5534         struct drm_device *dev = dev_priv->dev;
5535         struct device *device = &dev->pdev->dev;
5536
5537         if (!HAS_RUNTIME_PM(dev))
5538                 return;
5539
5540         pm_runtime_get_sync(device);
5541         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5542 }
5543
5544 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5545 {
5546         struct drm_device *dev = dev_priv->dev;
5547         struct device *device = &dev->pdev->dev;
5548
5549         if (!HAS_RUNTIME_PM(dev))
5550                 return;
5551
5552         pm_runtime_mark_last_busy(device);
5553         pm_runtime_put_autosuspend(device);
5554 }
5555
5556 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5557 {
5558         struct drm_device *dev = dev_priv->dev;
5559         struct device *device = &dev->pdev->dev;
5560
5561         dev_priv->pm.suspended = false;
5562
5563         if (!HAS_RUNTIME_PM(dev))
5564                 return;
5565
5566         pm_runtime_set_active(device);
5567
5568         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5569         pm_runtime_mark_last_busy(device);
5570         pm_runtime_use_autosuspend(device);
5571 }
5572
5573 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5574 {
5575         struct drm_device *dev = dev_priv->dev;
5576         struct device *device = &dev->pdev->dev;
5577
5578         if (!HAS_RUNTIME_PM(dev))
5579                 return;
5580
5581         /* Make sure we're not suspended first. */
5582         pm_runtime_get_sync(device);
5583         pm_runtime_disable(device);
5584 }
5585
5586 /* Set up chip specific power management-related functions */
5587 void intel_init_pm(struct drm_device *dev)
5588 {
5589         struct drm_i915_private *dev_priv = dev->dev_private;
5590
5591         if (HAS_FBC(dev)) {
5592                 if (INTEL_INFO(dev)->gen >= 7) {
5593                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5594                         dev_priv->display.enable_fbc = gen7_enable_fbc;
5595                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5596                 } else if (INTEL_INFO(dev)->gen >= 5) {
5597                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5598                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5599                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5600                 } else if (IS_GM45(dev)) {
5601                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5602                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5603                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5604                 } else {
5605                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5606                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5607                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5608
5609                         /* This value was pulled out of someone's hat */
5610                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
5611                 }
5612         }
5613
5614         /* For cxsr */
5615         if (IS_PINEVIEW(dev))
5616                 i915_pineview_get_mem_freq(dev);
5617         else if (IS_GEN5(dev))
5618                 i915_ironlake_get_mem_freq(dev);
5619
5620         /* For FIFO watermark updates */
5621         if (HAS_PCH_SPLIT(dev)) {
5622                 intel_setup_wm_latency(dev);
5623
5624                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5625                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5626                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5627                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5628                         dev_priv->display.update_wm = ilk_update_wm;
5629                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
5630                 } else {
5631                         DRM_DEBUG_KMS("Failed to read display plane latency. "
5632                                       "Disable CxSR\n");
5633                 }
5634
5635                 if (IS_GEN5(dev))
5636                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5637                 else if (IS_GEN6(dev))
5638                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5639                 else if (IS_IVYBRIDGE(dev))
5640                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5641                 else if (IS_HASWELL(dev))
5642                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5643                 else if (INTEL_INFO(dev)->gen == 8)
5644                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
5645         } else if (IS_VALLEYVIEW(dev)) {
5646                 dev_priv->display.update_wm = valleyview_update_wm;
5647                 dev_priv->display.init_clock_gating =
5648                         valleyview_init_clock_gating;
5649         } else if (IS_PINEVIEW(dev)) {
5650                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5651                                             dev_priv->is_ddr3,
5652                                             dev_priv->fsb_freq,
5653                                             dev_priv->mem_freq)) {
5654                         DRM_INFO("failed to find known CxSR latency "
5655                                  "(found ddr%s fsb freq %d, mem freq %d), "
5656                                  "disabling CxSR\n",
5657                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5658                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5659                         /* Disable CxSR and never update its watermark again */
5660                         pineview_disable_cxsr(dev);
5661                         dev_priv->display.update_wm = NULL;
5662                 } else
5663                         dev_priv->display.update_wm = pineview_update_wm;
5664                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5665         } else if (IS_G4X(dev)) {
5666                 dev_priv->display.update_wm = g4x_update_wm;
5667                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5668         } else if (IS_GEN4(dev)) {
5669                 dev_priv->display.update_wm = i965_update_wm;
5670                 if (IS_CRESTLINE(dev))
5671                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5672                 else if (IS_BROADWATER(dev))
5673                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5674         } else if (IS_GEN3(dev)) {
5675                 dev_priv->display.update_wm = i9xx_update_wm;
5676                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5677                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5678         } else if (IS_GEN2(dev)) {
5679                 if (INTEL_INFO(dev)->num_pipes == 1) {
5680                         dev_priv->display.update_wm = i845_update_wm;
5681                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5682                 } else {
5683                         dev_priv->display.update_wm = i9xx_update_wm;
5684                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5685                 }
5686
5687                 if (IS_I85X(dev) || IS_I865G(dev))
5688                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5689                 else
5690                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
5691         } else {
5692                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
5693         }
5694 }
5695
5696 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5697 {
5698         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5699
5700         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5701                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5702                 return -EAGAIN;
5703         }
5704
5705         I915_WRITE(GEN6_PCODE_DATA, *val);
5706         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5707
5708         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5709                      500)) {
5710                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5711                 return -ETIMEDOUT;
5712         }
5713
5714         *val = I915_READ(GEN6_PCODE_DATA);
5715         I915_WRITE(GEN6_PCODE_DATA, 0);
5716
5717         return 0;
5718 }
5719
5720 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5721 {
5722         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5723
5724         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5725                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5726                 return -EAGAIN;
5727         }
5728
5729         I915_WRITE(GEN6_PCODE_DATA, val);
5730         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5731
5732         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5733                      500)) {
5734                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5735                 return -ETIMEDOUT;
5736         }
5737
5738         I915_WRITE(GEN6_PCODE_DATA, 0);
5739
5740         return 0;
5741 }
5742
5743 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
5744 {
5745         int div;
5746
5747         /* 4 x czclk */
5748         switch (dev_priv->mem_freq) {
5749         case 800:
5750                 div = 10;
5751                 break;
5752         case 1066:
5753                 div = 12;
5754                 break;
5755         case 1333:
5756                 div = 16;
5757                 break;
5758         default:
5759                 return -1;
5760         }
5761
5762         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
5763 }
5764
5765 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
5766 {
5767         int mul;
5768
5769         /* 4 x czclk */
5770         switch (dev_priv->mem_freq) {
5771         case 800:
5772                 mul = 10;
5773                 break;
5774         case 1066:
5775                 mul = 12;
5776                 break;
5777         case 1333:
5778                 mul = 16;
5779                 break;
5780         default:
5781                 return -1;
5782         }
5783
5784         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
5785 }
5786
5787 void intel_pm_setup(struct drm_device *dev)
5788 {
5789         struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791         mutex_init(&dev_priv->rps.hw_lock);
5792
5793         mutex_init(&dev_priv->pc8.lock);
5794         dev_priv->pc8.requirements_met = false;
5795         dev_priv->pc8.gpu_idle = false;
5796         dev_priv->pc8.irqs_disabled = false;
5797         dev_priv->pc8.enabled = false;
5798         dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
5799         INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
5800         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5801                           intel_gen6_powersave_work);
5802 }