]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'samsung-defconfig-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68         /* WaEnableChickenDCPR:skl,bxt,kbl */
69         I915_WRITE(GEN8_CHICKEN_DCPR_1,
70                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73         /* WaFbcWakeMemOn:skl,bxt,kbl */
74         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75                    DISP_FBC_WM_DIS |
76                    DISP_FBC_MEMORY_WAKE);
77
78         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80                    ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85         gen9_init_clock_gating(dev_priv);
86
87         /* WaDisableSDEUnitClockGating:bxt */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91         /*
92          * FIXME:
93          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94          */
95         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98         /*
99          * Wa: Backlight PWM may stop in the asserted state, causing backlight
100          * to stay fully on.
101          */
102         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
103                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
104                            PWM1_GATING_DIS | PWM2_GATING_DIS);
105 }
106
107 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 {
109         u32 tmp;
110
111         tmp = I915_READ(CLKCFG);
112
113         switch (tmp & CLKCFG_FSB_MASK) {
114         case CLKCFG_FSB_533:
115                 dev_priv->fsb_freq = 533; /* 133*4 */
116                 break;
117         case CLKCFG_FSB_800:
118                 dev_priv->fsb_freq = 800; /* 200*4 */
119                 break;
120         case CLKCFG_FSB_667:
121                 dev_priv->fsb_freq =  667; /* 167*4 */
122                 break;
123         case CLKCFG_FSB_400:
124                 dev_priv->fsb_freq = 400; /* 100*4 */
125                 break;
126         }
127
128         switch (tmp & CLKCFG_MEM_MASK) {
129         case CLKCFG_MEM_533:
130                 dev_priv->mem_freq = 533;
131                 break;
132         case CLKCFG_MEM_667:
133                 dev_priv->mem_freq = 667;
134                 break;
135         case CLKCFG_MEM_800:
136                 dev_priv->mem_freq = 800;
137                 break;
138         }
139
140         /* detect pineview DDR3 setting */
141         tmp = I915_READ(CSHRDDR3CTL);
142         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 {
147         u16 ddrpll, csipll;
148
149         ddrpll = I915_READ16(DDRMPLL1);
150         csipll = I915_READ16(CSIPLL0);
151
152         switch (ddrpll & 0xff) {
153         case 0xc:
154                 dev_priv->mem_freq = 800;
155                 break;
156         case 0x10:
157                 dev_priv->mem_freq = 1066;
158                 break;
159         case 0x14:
160                 dev_priv->mem_freq = 1333;
161                 break;
162         case 0x18:
163                 dev_priv->mem_freq = 1600;
164                 break;
165         default:
166                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
167                                  ddrpll & 0xff);
168                 dev_priv->mem_freq = 0;
169                 break;
170         }
171
172         dev_priv->ips.r_t = dev_priv->mem_freq;
173
174         switch (csipll & 0x3ff) {
175         case 0x00c:
176                 dev_priv->fsb_freq = 3200;
177                 break;
178         case 0x00e:
179                 dev_priv->fsb_freq = 3733;
180                 break;
181         case 0x010:
182                 dev_priv->fsb_freq = 4266;
183                 break;
184         case 0x012:
185                 dev_priv->fsb_freq = 4800;
186                 break;
187         case 0x014:
188                 dev_priv->fsb_freq = 5333;
189                 break;
190         case 0x016:
191                 dev_priv->fsb_freq = 5866;
192                 break;
193         case 0x018:
194                 dev_priv->fsb_freq = 6400;
195                 break;
196         default:
197                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
198                                  csipll & 0x3ff);
199                 dev_priv->fsb_freq = 0;
200                 break;
201         }
202
203         if (dev_priv->fsb_freq == 3200) {
204                 dev_priv->ips.c_m = 0;
205         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206                 dev_priv->ips.c_m = 1;
207         } else {
208                 dev_priv->ips.c_m = 2;
209         }
210 }
211
212 static const struct cxsr_latency cxsr_latency_table[] = {
213         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
214         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
215         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
216         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
217         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
218
219         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
220         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
221         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
222         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
223         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
224
225         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
226         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
227         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
228         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
229         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
230
231         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
232         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
233         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
234         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
235         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
236
237         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
238         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
239         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
240         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
241         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
242
243         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
244         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
245         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
246         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
247         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
248 };
249
250 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
251                                                          bool is_ddr3,
252                                                          int fsb,
253                                                          int mem)
254 {
255         const struct cxsr_latency *latency;
256         int i;
257
258         if (fsb == 0 || mem == 0)
259                 return NULL;
260
261         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
262                 latency = &cxsr_latency_table[i];
263                 if (is_desktop == latency->is_desktop &&
264                     is_ddr3 == latency->is_ddr3 &&
265                     fsb == latency->fsb_freq && mem == latency->mem_freq)
266                         return latency;
267         }
268
269         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
270
271         return NULL;
272 }
273
274 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
275 {
276         u32 val;
277
278         mutex_lock(&dev_priv->rps.hw_lock);
279
280         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
281         if (enable)
282                 val &= ~FORCE_DDR_HIGH_FREQ;
283         else
284                 val |= FORCE_DDR_HIGH_FREQ;
285         val &= ~FORCE_DDR_LOW_FREQ;
286         val |= FORCE_DDR_FREQ_REQ_ACK;
287         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
288
289         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
290                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
291                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
292
293         mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
297 {
298         u32 val;
299
300         mutex_lock(&dev_priv->rps.hw_lock);
301
302         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
303         if (enable)
304                 val |= DSP_MAXFIFO_PM5_ENABLE;
305         else
306                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
307         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
308
309         mutex_unlock(&dev_priv->rps.hw_lock);
310 }
311
312 #define FW_WM(value, plane) \
313         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
314
315 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316 {
317         bool was_enabled;
318         u32 val;
319
320         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323                 POSTING_READ(FW_BLC_SELF_VLV);
324         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
325                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327                 POSTING_READ(FW_BLC_SELF);
328         } else if (IS_PINEVIEW(dev_priv)) {
329                 val = I915_READ(DSPFW3);
330                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
331                 if (enable)
332                         val |= PINEVIEW_SELF_REFRESH_EN;
333                 else
334                         val &= ~PINEVIEW_SELF_REFRESH_EN;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
340                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
341                 I915_WRITE(FW_BLC_SELF, val);
342                 POSTING_READ(FW_BLC_SELF);
343         } else if (IS_I915GM(dev_priv)) {
344                 /*
345                  * FIXME can't find a bit like this for 915G, and
346                  * and yet it does have the related watermark in
347                  * FW_BLC_SELF. What's going on?
348                  */
349                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
351                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
352                 I915_WRITE(INSTPM, val);
353                 POSTING_READ(INSTPM);
354         } else {
355                 return false;
356         }
357
358         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
359                       enableddisabled(enable),
360                       enableddisabled(was_enabled));
361
362         return was_enabled;
363 }
364
365 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366 {
367         bool ret;
368
369         mutex_lock(&dev_priv->wm.wm_mutex);
370         ret = _intel_set_memory_cxsr(dev_priv, enable);
371         dev_priv->wm.vlv.cxsr = enable;
372         mutex_unlock(&dev_priv->wm.wm_mutex);
373
374         return ret;
375 }
376
377 /*
378  * Latency for FIFO fetches is dependent on several factors:
379  *   - memory configuration (speed, channels)
380  *   - chipset
381  *   - current MCH state
382  * It can be fairly high in some situations, so here we assume a fairly
383  * pessimal value.  It's a tradeoff between extra memory fetches (if we
384  * set this value too high, the FIFO will fetch frequently to stay full)
385  * and power consumption (set it too low to save power and we might see
386  * FIFO underruns and display "flicker").
387  *
388  * A value of 5us seems to be a good balance; safe for very low end
389  * platforms but not overly aggressive on lower latency configs.
390  */
391 static const int pessimal_latency_ns = 5000;
392
393 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
394         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
395
396 static int vlv_get_fifo_size(struct intel_plane *plane)
397 {
398         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399         int sprite0_start, sprite1_start, size;
400
401         if (plane->id == PLANE_CURSOR)
402                 return 63;
403
404         switch (plane->pipe) {
405                 uint32_t dsparb, dsparb2, dsparb3;
406         case PIPE_A:
407                 dsparb = I915_READ(DSPARB);
408                 dsparb2 = I915_READ(DSPARB2);
409                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
410                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
411                 break;
412         case PIPE_B:
413                 dsparb = I915_READ(DSPARB);
414                 dsparb2 = I915_READ(DSPARB2);
415                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
416                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
417                 break;
418         case PIPE_C:
419                 dsparb2 = I915_READ(DSPARB2);
420                 dsparb3 = I915_READ(DSPARB3);
421                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
422                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
423                 break;
424         default:
425                 return 0;
426         }
427
428         switch (plane->id) {
429         case PLANE_PRIMARY:
430                 size = sprite0_start;
431                 break;
432         case PLANE_SPRITE0:
433                 size = sprite1_start - sprite0_start;
434                 break;
435         case PLANE_SPRITE1:
436                 size = 512 - 1 - sprite1_start;
437                 break;
438         default:
439                 return 0;
440         }
441
442         DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443
444         return size;
445 }
446
447 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 {
449         uint32_t dsparb = I915_READ(DSPARB);
450         int size;
451
452         size = dsparb & 0x7f;
453         if (plane)
454                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
455
456         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
457                       plane ? "B" : "A", size);
458
459         return size;
460 }
461
462 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 {
464         uint32_t dsparb = I915_READ(DSPARB);
465         int size;
466
467         size = dsparb & 0x1ff;
468         if (plane)
469                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
470         size >>= 1; /* Convert to cachelines */
471
472         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473                       plane ? "B" : "A", size);
474
475         return size;
476 }
477
478 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 {
480         uint32_t dsparb = I915_READ(DSPARB);
481         int size;
482
483         size = dsparb & 0x7f;
484         size >>= 2; /* Convert to cachelines */
485
486         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
487                       plane ? "B" : "A",
488                       size);
489
490         return size;
491 }
492
493 /* Pineview has different values for various configs */
494 static const struct intel_watermark_params pineview_display_wm = {
495         .fifo_size = PINEVIEW_DISPLAY_FIFO,
496         .max_wm = PINEVIEW_MAX_WM,
497         .default_wm = PINEVIEW_DFT_WM,
498         .guard_size = PINEVIEW_GUARD_WM,
499         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params pineview_display_hplloff_wm = {
502         .fifo_size = PINEVIEW_DISPLAY_FIFO,
503         .max_wm = PINEVIEW_MAX_WM,
504         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
505         .guard_size = PINEVIEW_GUARD_WM,
506         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params pineview_cursor_wm = {
509         .fifo_size = PINEVIEW_CURSOR_FIFO,
510         .max_wm = PINEVIEW_CURSOR_MAX_WM,
511         .default_wm = PINEVIEW_CURSOR_DFT_WM,
512         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
513         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516         .fifo_size = PINEVIEW_CURSOR_FIFO,
517         .max_wm = PINEVIEW_CURSOR_MAX_WM,
518         .default_wm = PINEVIEW_CURSOR_DFT_WM,
519         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
520         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params g4x_wm_info = {
523         .fifo_size = G4X_FIFO_SIZE,
524         .max_wm = G4X_MAX_WM,
525         .default_wm = G4X_MAX_WM,
526         .guard_size = 2,
527         .cacheline_size = G4X_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params g4x_cursor_wm_info = {
530         .fifo_size = I965_CURSOR_FIFO,
531         .max_wm = I965_CURSOR_MAX_WM,
532         .default_wm = I965_CURSOR_DFT_WM,
533         .guard_size = 2,
534         .cacheline_size = G4X_FIFO_LINE_SIZE,
535 };
536 static const struct intel_watermark_params i965_cursor_wm_info = {
537         .fifo_size = I965_CURSOR_FIFO,
538         .max_wm = I965_CURSOR_MAX_WM,
539         .default_wm = I965_CURSOR_DFT_WM,
540         .guard_size = 2,
541         .cacheline_size = I915_FIFO_LINE_SIZE,
542 };
543 static const struct intel_watermark_params i945_wm_info = {
544         .fifo_size = I945_FIFO_SIZE,
545         .max_wm = I915_MAX_WM,
546         .default_wm = 1,
547         .guard_size = 2,
548         .cacheline_size = I915_FIFO_LINE_SIZE,
549 };
550 static const struct intel_watermark_params i915_wm_info = {
551         .fifo_size = I915_FIFO_SIZE,
552         .max_wm = I915_MAX_WM,
553         .default_wm = 1,
554         .guard_size = 2,
555         .cacheline_size = I915_FIFO_LINE_SIZE,
556 };
557 static const struct intel_watermark_params i830_a_wm_info = {
558         .fifo_size = I855GM_FIFO_SIZE,
559         .max_wm = I915_MAX_WM,
560         .default_wm = 1,
561         .guard_size = 2,
562         .cacheline_size = I830_FIFO_LINE_SIZE,
563 };
564 static const struct intel_watermark_params i830_bc_wm_info = {
565         .fifo_size = I855GM_FIFO_SIZE,
566         .max_wm = I915_MAX_WM/2,
567         .default_wm = 1,
568         .guard_size = 2,
569         .cacheline_size = I830_FIFO_LINE_SIZE,
570 };
571 static const struct intel_watermark_params i845_wm_info = {
572         .fifo_size = I830_FIFO_SIZE,
573         .max_wm = I915_MAX_WM,
574         .default_wm = 1,
575         .guard_size = 2,
576         .cacheline_size = I830_FIFO_LINE_SIZE,
577 };
578
579 /**
580  * intel_calculate_wm - calculate watermark level
581  * @clock_in_khz: pixel clock
582  * @wm: chip FIFO params
583  * @cpp: bytes per pixel
584  * @latency_ns: memory latency for the platform
585  *
586  * Calculate the watermark level (the level at which the display plane will
587  * start fetching from memory again).  Each chip has a different display
588  * FIFO size and allocation, so the caller needs to figure that out and pass
589  * in the correct intel_watermark_params structure.
590  *
591  * As the pixel clock runs, the FIFO will be drained at a rate that depends
592  * on the pixel size.  When it reaches the watermark level, it'll start
593  * fetching FIFO line sized based chunks from memory until the FIFO fills
594  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
595  * will occur, and a display engine hang could result.
596  */
597 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
598                                         const struct intel_watermark_params *wm,
599                                         int fifo_size, int cpp,
600                                         unsigned long latency_ns)
601 {
602         long entries_required, wm_size;
603
604         /*
605          * Note: we need to make sure we don't overflow for various clock &
606          * latency values.
607          * clocks go from a few thousand to several hundred thousand.
608          * latency is usually a few thousand
609          */
610         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611                 1000;
612         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
613
614         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
615
616         wm_size = fifo_size - (entries_required + wm->guard_size);
617
618         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
619
620         /* Don't promote wm_size to unsigned... */
621         if (wm_size > (long)wm->max_wm)
622                 wm_size = wm->max_wm;
623         if (wm_size <= 0)
624                 wm_size = wm->default_wm;
625
626         /*
627          * Bspec seems to indicate that the value shouldn't be lower than
628          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
629          * Lets go for 8 which is the burst size since certain platforms
630          * already use a hardcoded 8 (which is what the spec says should be
631          * done).
632          */
633         if (wm_size <= 8)
634                 wm_size = 8;
635
636         return wm_size;
637 }
638
639 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640 {
641         struct intel_crtc *crtc, *enabled = NULL;
642
643         for_each_intel_crtc(&dev_priv->drm, crtc) {
644                 if (intel_crtc_active(crtc)) {
645                         if (enabled)
646                                 return NULL;
647                         enabled = crtc;
648                 }
649         }
650
651         return enabled;
652 }
653
654 static void pineview_update_wm(struct intel_crtc *unused_crtc)
655 {
656         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657         struct intel_crtc *crtc;
658         const struct cxsr_latency *latency;
659         u32 reg;
660         unsigned long wm;
661
662         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
663                                          dev_priv->is_ddr3,
664                                          dev_priv->fsb_freq,
665                                          dev_priv->mem_freq);
666         if (!latency) {
667                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668                 intel_set_memory_cxsr(dev_priv, false);
669                 return;
670         }
671
672         crtc = single_enabled_crtc(dev_priv);
673         if (crtc) {
674                 const struct drm_display_mode *adjusted_mode =
675                         &crtc->config->base.adjusted_mode;
676                 const struct drm_framebuffer *fb =
677                         crtc->base.primary->state->fb;
678                 int cpp = fb->format->cpp[0];
679                 int clock = adjusted_mode->crtc_clock;
680
681                 /* Display SR */
682                 wm = intel_calculate_wm(clock, &pineview_display_wm,
683                                         pineview_display_wm.fifo_size,
684                                         cpp, latency->display_sr);
685                 reg = I915_READ(DSPFW1);
686                 reg &= ~DSPFW_SR_MASK;
687                 reg |= FW_WM(wm, SR);
688                 I915_WRITE(DSPFW1, reg);
689                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
690
691                 /* cursor SR */
692                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
693                                         pineview_display_wm.fifo_size,
694                                         cpp, latency->cursor_sr);
695                 reg = I915_READ(DSPFW3);
696                 reg &= ~DSPFW_CURSOR_SR_MASK;
697                 reg |= FW_WM(wm, CURSOR_SR);
698                 I915_WRITE(DSPFW3, reg);
699
700                 /* Display HPLL off SR */
701                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
702                                         pineview_display_hplloff_wm.fifo_size,
703                                         cpp, latency->display_hpll_disable);
704                 reg = I915_READ(DSPFW3);
705                 reg &= ~DSPFW_HPLL_SR_MASK;
706                 reg |= FW_WM(wm, HPLL_SR);
707                 I915_WRITE(DSPFW3, reg);
708
709                 /* cursor HPLL off SR */
710                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
711                                         pineview_display_hplloff_wm.fifo_size,
712                                         cpp, latency->cursor_hpll_disable);
713                 reg = I915_READ(DSPFW3);
714                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
715                 reg |= FW_WM(wm, HPLL_CURSOR);
716                 I915_WRITE(DSPFW3, reg);
717                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
718
719                 intel_set_memory_cxsr(dev_priv, true);
720         } else {
721                 intel_set_memory_cxsr(dev_priv, false);
722         }
723 }
724
725 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726                             int plane,
727                             const struct intel_watermark_params *display,
728                             int display_latency_ns,
729                             const struct intel_watermark_params *cursor,
730                             int cursor_latency_ns,
731                             int *plane_wm,
732                             int *cursor_wm)
733 {
734         struct intel_crtc *crtc;
735         const struct drm_display_mode *adjusted_mode;
736         const struct drm_framebuffer *fb;
737         int htotal, hdisplay, clock, cpp;
738         int line_time_us, line_count;
739         int entries, tlb_miss;
740
741         crtc = intel_get_crtc_for_plane(dev_priv, plane);
742         if (!intel_crtc_active(crtc)) {
743                 *cursor_wm = cursor->guard_size;
744                 *plane_wm = display->guard_size;
745                 return false;
746         }
747
748         adjusted_mode = &crtc->config->base.adjusted_mode;
749         fb = crtc->base.primary->state->fb;
750         clock = adjusted_mode->crtc_clock;
751         htotal = adjusted_mode->crtc_htotal;
752         hdisplay = crtc->config->pipe_src_w;
753         cpp = fb->format->cpp[0];
754
755         /* Use the small buffer method to calculate plane watermark */
756         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
758         if (tlb_miss > 0)
759                 entries += tlb_miss;
760         entries = DIV_ROUND_UP(entries, display->cacheline_size);
761         *plane_wm = entries + display->guard_size;
762         if (*plane_wm > (int)display->max_wm)
763                 *plane_wm = display->max_wm;
764
765         /* Use the large buffer method to calculate cursor watermark */
766         line_time_us = max(htotal * 1000 / clock, 1);
767         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768         entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
770         if (tlb_miss > 0)
771                 entries += tlb_miss;
772         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
773         *cursor_wm = entries + cursor->guard_size;
774         if (*cursor_wm > (int)cursor->max_wm)
775                 *cursor_wm = (int)cursor->max_wm;
776
777         return true;
778 }
779
780 /*
781  * Check the wm result.
782  *
783  * If any calculated watermark values is larger than the maximum value that
784  * can be programmed into the associated watermark register, that watermark
785  * must be disabled.
786  */
787 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788                            int display_wm, int cursor_wm,
789                            const struct intel_watermark_params *display,
790                            const struct intel_watermark_params *cursor)
791 {
792         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
793                       display_wm, cursor_wm);
794
795         if (display_wm > display->max_wm) {
796                 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797                               display_wm, display->max_wm);
798                 return false;
799         }
800
801         if (cursor_wm > cursor->max_wm) {
802                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803                               cursor_wm, cursor->max_wm);
804                 return false;
805         }
806
807         if (!(display_wm || cursor_wm)) {
808                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
809                 return false;
810         }
811
812         return true;
813 }
814
815 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816                              int plane,
817                              int latency_ns,
818                              const struct intel_watermark_params *display,
819                              const struct intel_watermark_params *cursor,
820                              int *display_wm, int *cursor_wm)
821 {
822         struct intel_crtc *crtc;
823         const struct drm_display_mode *adjusted_mode;
824         const struct drm_framebuffer *fb;
825         int hdisplay, htotal, cpp, clock;
826         unsigned long line_time_us;
827         int line_count, line_size;
828         int small, large;
829         int entries;
830
831         if (!latency_ns) {
832                 *display_wm = *cursor_wm = 0;
833                 return false;
834         }
835
836         crtc = intel_get_crtc_for_plane(dev_priv, plane);
837         adjusted_mode = &crtc->config->base.adjusted_mode;
838         fb = crtc->base.primary->state->fb;
839         clock = adjusted_mode->crtc_clock;
840         htotal = adjusted_mode->crtc_htotal;
841         hdisplay = crtc->config->pipe_src_w;
842         cpp = fb->format->cpp[0];
843
844         line_time_us = max(htotal * 1000 / clock, 1);
845         line_count = (latency_ns / line_time_us + 1000) / 1000;
846         line_size = hdisplay * cpp;
847
848         /* Use the minimum of the small and large buffer method for primary */
849         small = ((clock * cpp / 1000) * latency_ns) / 1000;
850         large = line_count * line_size;
851
852         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
853         *display_wm = entries + display->guard_size;
854
855         /* calculate the self-refresh watermark for display cursor */
856         entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
858         *cursor_wm = entries + cursor->guard_size;
859
860         return g4x_check_srwm(dev_priv,
861                               *display_wm, *cursor_wm,
862                               display, cursor);
863 }
864
865 #define FW_WM_VLV(value, plane) \
866         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
867
868 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869                                 const struct vlv_wm_values *wm)
870 {
871         enum pipe pipe;
872
873         for_each_pipe(dev_priv, pipe) {
874                 I915_WRITE(VLV_DDL(pipe),
875                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
876                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
877                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
878                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
879         }
880
881         /*
882          * Zero the (unused) WM1 watermarks, and also clear all the
883          * high order bits so that there are no out of bounds values
884          * present in the registers during the reprogramming.
885          */
886         I915_WRITE(DSPHOWM, 0);
887         I915_WRITE(DSPHOWM1, 0);
888         I915_WRITE(DSPFW4, 0);
889         I915_WRITE(DSPFW5, 0);
890         I915_WRITE(DSPFW6, 0);
891
892         I915_WRITE(DSPFW1,
893                    FW_WM(wm->sr.plane, SR) |
894                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
895                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
896                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897         I915_WRITE(DSPFW2,
898                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
899                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
900                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901         I915_WRITE(DSPFW3,
902                    FW_WM(wm->sr.cursor, CURSOR_SR));
903
904         if (IS_CHERRYVIEW(dev_priv)) {
905                 I915_WRITE(DSPFW7_CHV,
906                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
907                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908                 I915_WRITE(DSPFW8_CHV,
909                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
910                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911                 I915_WRITE(DSPFW9_CHV,
912                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
913                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914                 I915_WRITE(DSPHOWM,
915                            FW_WM(wm->sr.plane >> 9, SR_HI) |
916                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
917                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
918                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
919                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
920                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
921                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
922                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
923                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
924                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925         } else {
926                 I915_WRITE(DSPFW7,
927                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
928                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929                 I915_WRITE(DSPHOWM,
930                            FW_WM(wm->sr.plane >> 9, SR_HI) |
931                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
932                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
933                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
934                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
935                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
936                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937         }
938
939         POSTING_READ(DSPFW1);
940 }
941
942 #undef FW_WM_VLV
943
944 enum vlv_wm_level {
945         VLV_WM_LEVEL_PM2,
946         VLV_WM_LEVEL_PM5,
947         VLV_WM_LEVEL_DDR_DVFS,
948 };
949
950 /* latency must be in 0.1us units. */
951 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
952                                    unsigned int pipe_htotal,
953                                    unsigned int horiz_pixels,
954                                    unsigned int cpp,
955                                    unsigned int latency)
956 {
957         unsigned int ret;
958
959         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960         ret = (ret + 1) * horiz_pixels * cpp;
961         ret = DIV_ROUND_UP(ret, 64);
962
963         return ret;
964 }
965
966 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 {
968         /* all latencies in usec */
969         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
970
971         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
972
973         if (IS_CHERRYVIEW(dev_priv)) {
974                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
975                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976
977                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978         }
979 }
980
981 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
982                                      const struct intel_plane_state *plane_state,
983                                      int level)
984 {
985         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
986         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987         const struct drm_display_mode *adjusted_mode =
988                 &crtc_state->base.adjusted_mode;
989         int clock, htotal, cpp, width, wm;
990
991         if (dev_priv->wm.pri_latency[level] == 0)
992                 return USHRT_MAX;
993
994         if (!plane_state->base.visible)
995                 return 0;
996
997         cpp = plane_state->base.fb->format->cpp[0];
998         clock = adjusted_mode->crtc_clock;
999         htotal = adjusted_mode->crtc_htotal;
1000         width = crtc_state->pipe_src_w;
1001         if (WARN_ON(htotal == 0))
1002                 htotal = 1;
1003
1004         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1005                 /*
1006                  * FIXME the formula gives values that are
1007                  * too big for the cursor FIFO, and hence we
1008                  * would never be able to use cursors. For
1009                  * now just hardcode the watermark.
1010                  */
1011                 wm = 63;
1012         } else {
1013                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1014                                     dev_priv->wm.pri_latency[level] * 10);
1015         }
1016
1017         return min_t(int, wm, USHRT_MAX);
1018 }
1019
1020 static void vlv_compute_fifo(struct intel_crtc *crtc)
1021 {
1022         struct drm_device *dev = crtc->base.dev;
1023         struct vlv_wm_state *wm_state = &crtc->wm_state;
1024         struct intel_plane *plane;
1025         unsigned int total_rate = 0;
1026         const int fifo_size = 512 - 1;
1027         int fifo_extra, fifo_left = fifo_size;
1028
1029         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1030                 struct intel_plane_state *state =
1031                         to_intel_plane_state(plane->base.state);
1032
1033                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1034                         continue;
1035
1036                 if (state->base.visible) {
1037                         wm_state->num_active_planes++;
1038                         total_rate += state->base.fb->format->cpp[0];
1039                 }
1040         }
1041
1042         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1043                 struct intel_plane_state *state =
1044                         to_intel_plane_state(plane->base.state);
1045                 unsigned int rate;
1046
1047                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1048                         plane->wm.fifo_size = 63;
1049                         continue;
1050                 }
1051
1052                 if (!state->base.visible) {
1053                         plane->wm.fifo_size = 0;
1054                         continue;
1055                 }
1056
1057                 rate = state->base.fb->format->cpp[0];
1058                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1059                 fifo_left -= plane->wm.fifo_size;
1060         }
1061
1062         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1063
1064         /* spread the remainder evenly */
1065         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1066                 int plane_extra;
1067
1068                 if (fifo_left == 0)
1069                         break;
1070
1071                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1072                         continue;
1073
1074                 /* give it all to the first plane if none are active */
1075                 if (plane->wm.fifo_size == 0 &&
1076                     wm_state->num_active_planes)
1077                         continue;
1078
1079                 plane_extra = min(fifo_extra, fifo_left);
1080                 plane->wm.fifo_size += plane_extra;
1081                 fifo_left -= plane_extra;
1082         }
1083
1084         WARN_ON(fifo_left != 0);
1085 }
1086
1087 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1088 {
1089         if (wm > fifo_size)
1090                 return USHRT_MAX;
1091         else
1092                 return fifo_size - wm;
1093 }
1094
1095 static void vlv_invert_wms(struct intel_crtc *crtc)
1096 {
1097         struct vlv_wm_state *wm_state = &crtc->wm_state;
1098         int level;
1099
1100         for (level = 0; level < wm_state->num_levels; level++) {
1101                 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102                 const int sr_fifo_size =
1103                         INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1104                 struct intel_plane *plane;
1105
1106                 wm_state->sr[level].plane =
1107                         vlv_invert_wm_value(wm_state->sr[level].plane,
1108                                             sr_fifo_size);
1109                 wm_state->sr[level].cursor =
1110                         vlv_invert_wm_value(wm_state->sr[level].cursor,
1111                                             63);
1112
1113                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1114                         wm_state->wm[level].plane[plane->id] =
1115                                 vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
1116                                                     plane->wm.fifo_size);
1117                 }
1118         }
1119 }
1120
1121 static void vlv_compute_wm(struct intel_crtc *crtc)
1122 {
1123         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124         struct vlv_wm_state *wm_state = &crtc->wm_state;
1125         struct intel_plane *plane;
1126         int level;
1127
1128         memset(wm_state, 0, sizeof(*wm_state));
1129
1130         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131         wm_state->num_levels = dev_priv->wm.max_level + 1;
1132
1133         wm_state->num_active_planes = 0;
1134
1135         vlv_compute_fifo(crtc);
1136
1137         if (wm_state->num_active_planes != 1)
1138                 wm_state->cxsr = false;
1139
1140         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1141                 struct intel_plane_state *state =
1142                         to_intel_plane_state(plane->base.state);
1143                 int level;
1144
1145                 if (!state->base.visible)
1146                         continue;
1147
1148                 /* normal watermarks */
1149                 for (level = 0; level < wm_state->num_levels; level++) {
1150                         int wm = vlv_compute_wm_level(crtc->config, state, level);
1151                         int max_wm = plane->wm.fifo_size;
1152
1153                         /* hack */
1154                         if (WARN_ON(level == 0 && wm > max_wm))
1155                                 wm = max_wm;
1156
1157                         if (wm > max_wm)
1158                                 break;
1159
1160                         wm_state->wm[level].plane[plane->id] = wm;
1161                 }
1162
1163                 wm_state->num_levels = level;
1164
1165                 if (!wm_state->cxsr)
1166                         continue;
1167
1168                 /* maxfifo watermarks */
1169                 if (plane->id == PLANE_CURSOR) {
1170                         for (level = 0; level < wm_state->num_levels; level++)
1171                                 wm_state->sr[level].cursor =
1172                                         wm_state->wm[level].plane[PLANE_CURSOR];
1173                 } else {
1174                         for (level = 0; level < wm_state->num_levels; level++)
1175                                 wm_state->sr[level].plane =
1176                                         max(wm_state->sr[level].plane,
1177                                             wm_state->wm[level].plane[plane->id]);
1178                 }
1179         }
1180
1181         /* clear any (partially) filled invalid levels */
1182         for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1183                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1184                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1185         }
1186
1187         vlv_invert_wms(crtc);
1188 }
1189
1190 #define VLV_FIFO(plane, value) \
1191         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1192
1193 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1194 {
1195         struct drm_device *dev = crtc->base.dev;
1196         struct drm_i915_private *dev_priv = to_i915(dev);
1197         struct intel_plane *plane;
1198         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1199
1200         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1201                 switch (plane->id) {
1202                 case PLANE_PRIMARY:
1203                         sprite0_start = plane->wm.fifo_size;
1204                         break;
1205                 case PLANE_SPRITE0:
1206                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1207                         break;
1208                 case PLANE_SPRITE1:
1209                         fifo_size = sprite1_start + plane->wm.fifo_size;
1210                         break;
1211                 case PLANE_CURSOR:
1212                         WARN_ON(plane->wm.fifo_size != 63);
1213                         break;
1214                 default:
1215                         MISSING_CASE(plane->id);
1216                         break;
1217                 }
1218         }
1219
1220         WARN_ON(fifo_size != 512 - 1);
1221
1222         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1223                       pipe_name(crtc->pipe), sprite0_start,
1224                       sprite1_start, fifo_size);
1225
1226         spin_lock(&dev_priv->wm.dsparb_lock);
1227
1228         switch (crtc->pipe) {
1229                 uint32_t dsparb, dsparb2, dsparb3;
1230         case PIPE_A:
1231                 dsparb = I915_READ(DSPARB);
1232                 dsparb2 = I915_READ(DSPARB2);
1233
1234                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1235                             VLV_FIFO(SPRITEB, 0xff));
1236                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1237                            VLV_FIFO(SPRITEB, sprite1_start));
1238
1239                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1240                              VLV_FIFO(SPRITEB_HI, 0x1));
1241                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1242                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1243
1244                 I915_WRITE(DSPARB, dsparb);
1245                 I915_WRITE(DSPARB2, dsparb2);
1246                 break;
1247         case PIPE_B:
1248                 dsparb = I915_READ(DSPARB);
1249                 dsparb2 = I915_READ(DSPARB2);
1250
1251                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1252                             VLV_FIFO(SPRITED, 0xff));
1253                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1254                            VLV_FIFO(SPRITED, sprite1_start));
1255
1256                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1257                              VLV_FIFO(SPRITED_HI, 0xff));
1258                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1259                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1260
1261                 I915_WRITE(DSPARB, dsparb);
1262                 I915_WRITE(DSPARB2, dsparb2);
1263                 break;
1264         case PIPE_C:
1265                 dsparb3 = I915_READ(DSPARB3);
1266                 dsparb2 = I915_READ(DSPARB2);
1267
1268                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1269                              VLV_FIFO(SPRITEF, 0xff));
1270                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1271                             VLV_FIFO(SPRITEF, sprite1_start));
1272
1273                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1274                              VLV_FIFO(SPRITEF_HI, 0xff));
1275                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1276                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1277
1278                 I915_WRITE(DSPARB3, dsparb3);
1279                 I915_WRITE(DSPARB2, dsparb2);
1280                 break;
1281         default:
1282                 break;
1283         }
1284
1285         POSTING_READ(DSPARB);
1286
1287         spin_unlock(&dev_priv->wm.dsparb_lock);
1288 }
1289
1290 #undef VLV_FIFO
1291
1292 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1293                          struct vlv_wm_values *wm)
1294 {
1295         struct intel_crtc *crtc;
1296         int num_active_crtcs = 0;
1297
1298         wm->level = dev_priv->wm.max_level;
1299         wm->cxsr = true;
1300
1301         for_each_intel_crtc(&dev_priv->drm, crtc) {
1302                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1303
1304                 if (!crtc->active)
1305                         continue;
1306
1307                 if (!wm_state->cxsr)
1308                         wm->cxsr = false;
1309
1310                 num_active_crtcs++;
1311                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1312         }
1313
1314         if (num_active_crtcs != 1)
1315                 wm->cxsr = false;
1316
1317         if (num_active_crtcs > 1)
1318                 wm->level = VLV_WM_LEVEL_PM2;
1319
1320         for_each_intel_crtc(&dev_priv->drm, crtc) {
1321                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1322                 enum pipe pipe = crtc->pipe;
1323
1324                 if (!crtc->active)
1325                         continue;
1326
1327                 wm->pipe[pipe] = wm_state->wm[wm->level];
1328                 if (wm->cxsr)
1329                         wm->sr = wm_state->sr[wm->level];
1330
1331                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1332                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1333                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1334                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1335         }
1336 }
1337
1338 static bool is_disabling(int old, int new, int threshold)
1339 {
1340         return old >= threshold && new < threshold;
1341 }
1342
1343 static bool is_enabling(int old, int new, int threshold)
1344 {
1345         return old < threshold && new >= threshold;
1346 }
1347
1348 static void vlv_update_wm(struct intel_crtc *crtc)
1349 {
1350         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1351         enum pipe pipe = crtc->pipe;
1352         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
1353         struct vlv_wm_values new_wm = {};
1354
1355         vlv_compute_wm(crtc);
1356         vlv_merge_wm(dev_priv, &new_wm);
1357
1358         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1359                 /* FIXME should be part of crtc atomic commit */
1360                 vlv_pipe_set_fifo_size(crtc);
1361
1362                 return;
1363         }
1364
1365         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1366                 chv_set_memory_dvfs(dev_priv, false);
1367
1368         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1369                 chv_set_memory_pm5(dev_priv, false);
1370
1371         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1372                 _intel_set_memory_cxsr(dev_priv, false);
1373
1374         /* FIXME should be part of crtc atomic commit */
1375         vlv_pipe_set_fifo_size(crtc);
1376
1377         vlv_write_wm_values(dev_priv, &new_wm);
1378
1379         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1380                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1381                       pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
1382                       new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
1383                       new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1384
1385         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1386                 _intel_set_memory_cxsr(dev_priv, true);
1387
1388         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1389                 chv_set_memory_pm5(dev_priv, true);
1390
1391         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1392                 chv_set_memory_dvfs(dev_priv, true);
1393
1394         *old_wm = new_wm;
1395 }
1396
1397 #define single_plane_enabled(mask) is_power_of_2(mask)
1398
1399 static void g4x_update_wm(struct intel_crtc *crtc)
1400 {
1401         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402         static const int sr_latency_ns = 12000;
1403         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1404         int plane_sr, cursor_sr;
1405         unsigned int enabled = 0;
1406         bool cxsr_enabled;
1407
1408         if (g4x_compute_wm0(dev_priv, PIPE_A,
1409                             &g4x_wm_info, pessimal_latency_ns,
1410                             &g4x_cursor_wm_info, pessimal_latency_ns,
1411                             &planea_wm, &cursora_wm))
1412                 enabled |= 1 << PIPE_A;
1413
1414         if (g4x_compute_wm0(dev_priv, PIPE_B,
1415                             &g4x_wm_info, pessimal_latency_ns,
1416                             &g4x_cursor_wm_info, pessimal_latency_ns,
1417                             &planeb_wm, &cursorb_wm))
1418                 enabled |= 1 << PIPE_B;
1419
1420         if (single_plane_enabled(enabled) &&
1421             g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1422                              sr_latency_ns,
1423                              &g4x_wm_info,
1424                              &g4x_cursor_wm_info,
1425                              &plane_sr, &cursor_sr)) {
1426                 cxsr_enabled = true;
1427         } else {
1428                 cxsr_enabled = false;
1429                 intel_set_memory_cxsr(dev_priv, false);
1430                 plane_sr = cursor_sr = 0;
1431         }
1432
1433         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1434                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435                       planea_wm, cursora_wm,
1436                       planeb_wm, cursorb_wm,
1437                       plane_sr, cursor_sr);
1438
1439         I915_WRITE(DSPFW1,
1440                    FW_WM(plane_sr, SR) |
1441                    FW_WM(cursorb_wm, CURSORB) |
1442                    FW_WM(planeb_wm, PLANEB) |
1443                    FW_WM(planea_wm, PLANEA));
1444         I915_WRITE(DSPFW2,
1445                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1446                    FW_WM(cursora_wm, CURSORA));
1447         /* HPLL off in SR has some issues on G4x... disable it */
1448         I915_WRITE(DSPFW3,
1449                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1450                    FW_WM(cursor_sr, CURSOR_SR));
1451
1452         if (cxsr_enabled)
1453                 intel_set_memory_cxsr(dev_priv, true);
1454 }
1455
1456 static void i965_update_wm(struct intel_crtc *unused_crtc)
1457 {
1458         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1459         struct intel_crtc *crtc;
1460         int srwm = 1;
1461         int cursor_sr = 16;
1462         bool cxsr_enabled;
1463
1464         /* Calc sr entries for one plane configs */
1465         crtc = single_enabled_crtc(dev_priv);
1466         if (crtc) {
1467                 /* self-refresh has much higher latency */
1468                 static const int sr_latency_ns = 12000;
1469                 const struct drm_display_mode *adjusted_mode =
1470                         &crtc->config->base.adjusted_mode;
1471                 const struct drm_framebuffer *fb =
1472                         crtc->base.primary->state->fb;
1473                 int clock = adjusted_mode->crtc_clock;
1474                 int htotal = adjusted_mode->crtc_htotal;
1475                 int hdisplay = crtc->config->pipe_src_w;
1476                 int cpp = fb->format->cpp[0];
1477                 unsigned long line_time_us;
1478                 int entries;
1479
1480                 line_time_us = max(htotal * 1000 / clock, 1);
1481
1482                 /* Use ns/us then divide to preserve precision */
1483                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1484                         cpp * hdisplay;
1485                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1486                 srwm = I965_FIFO_SIZE - entries;
1487                 if (srwm < 0)
1488                         srwm = 1;
1489                 srwm &= 0x1ff;
1490                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1491                               entries, srwm);
1492
1493                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494                         cpp * crtc->base.cursor->state->crtc_w;
1495                 entries = DIV_ROUND_UP(entries,
1496                                           i965_cursor_wm_info.cacheline_size);
1497                 cursor_sr = i965_cursor_wm_info.fifo_size -
1498                         (entries + i965_cursor_wm_info.guard_size);
1499
1500                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1501                         cursor_sr = i965_cursor_wm_info.max_wm;
1502
1503                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1504                               "cursor %d\n", srwm, cursor_sr);
1505
1506                 cxsr_enabled = true;
1507         } else {
1508                 cxsr_enabled = false;
1509                 /* Turn off self refresh if both pipes are enabled */
1510                 intel_set_memory_cxsr(dev_priv, false);
1511         }
1512
1513         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1514                       srwm);
1515
1516         /* 965 has limitations... */
1517         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1518                    FW_WM(8, CURSORB) |
1519                    FW_WM(8, PLANEB) |
1520                    FW_WM(8, PLANEA));
1521         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1522                    FW_WM(8, PLANEC_OLD));
1523         /* update cursor SR watermark */
1524         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1525
1526         if (cxsr_enabled)
1527                 intel_set_memory_cxsr(dev_priv, true);
1528 }
1529
1530 #undef FW_WM
1531
1532 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1533 {
1534         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1535         const struct intel_watermark_params *wm_info;
1536         uint32_t fwater_lo;
1537         uint32_t fwater_hi;
1538         int cwm, srwm = 1;
1539         int fifo_size;
1540         int planea_wm, planeb_wm;
1541         struct intel_crtc *crtc, *enabled = NULL;
1542
1543         if (IS_I945GM(dev_priv))
1544                 wm_info = &i945_wm_info;
1545         else if (!IS_GEN2(dev_priv))
1546                 wm_info = &i915_wm_info;
1547         else
1548                 wm_info = &i830_a_wm_info;
1549
1550         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1551         crtc = intel_get_crtc_for_plane(dev_priv, 0);
1552         if (intel_crtc_active(crtc)) {
1553                 const struct drm_display_mode *adjusted_mode =
1554                         &crtc->config->base.adjusted_mode;
1555                 const struct drm_framebuffer *fb =
1556                         crtc->base.primary->state->fb;
1557                 int cpp;
1558
1559                 if (IS_GEN2(dev_priv))
1560                         cpp = 4;
1561                 else
1562                         cpp = fb->format->cpp[0];
1563
1564                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1565                                                wm_info, fifo_size, cpp,
1566                                                pessimal_latency_ns);
1567                 enabled = crtc;
1568         } else {
1569                 planea_wm = fifo_size - wm_info->guard_size;
1570                 if (planea_wm > (long)wm_info->max_wm)
1571                         planea_wm = wm_info->max_wm;
1572         }
1573
1574         if (IS_GEN2(dev_priv))
1575                 wm_info = &i830_bc_wm_info;
1576
1577         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1578         crtc = intel_get_crtc_for_plane(dev_priv, 1);
1579         if (intel_crtc_active(crtc)) {
1580                 const struct drm_display_mode *adjusted_mode =
1581                         &crtc->config->base.adjusted_mode;
1582                 const struct drm_framebuffer *fb =
1583                         crtc->base.primary->state->fb;
1584                 int cpp;
1585
1586                 if (IS_GEN2(dev_priv))
1587                         cpp = 4;
1588                 else
1589                         cpp = fb->format->cpp[0];
1590
1591                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1592                                                wm_info, fifo_size, cpp,
1593                                                pessimal_latency_ns);
1594                 if (enabled == NULL)
1595                         enabled = crtc;
1596                 else
1597                         enabled = NULL;
1598         } else {
1599                 planeb_wm = fifo_size - wm_info->guard_size;
1600                 if (planeb_wm > (long)wm_info->max_wm)
1601                         planeb_wm = wm_info->max_wm;
1602         }
1603
1604         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1605
1606         if (IS_I915GM(dev_priv) && enabled) {
1607                 struct drm_i915_gem_object *obj;
1608
1609                 obj = intel_fb_obj(enabled->base.primary->state->fb);
1610
1611                 /* self-refresh seems busted with untiled */
1612                 if (!i915_gem_object_is_tiled(obj))
1613                         enabled = NULL;
1614         }
1615
1616         /*
1617          * Overlay gets an aggressive default since video jitter is bad.
1618          */
1619         cwm = 2;
1620
1621         /* Play safe and disable self-refresh before adjusting watermarks. */
1622         intel_set_memory_cxsr(dev_priv, false);
1623
1624         /* Calc sr entries for one plane configs */
1625         if (HAS_FW_BLC(dev_priv) && enabled) {
1626                 /* self-refresh has much higher latency */
1627                 static const int sr_latency_ns = 6000;
1628                 const struct drm_display_mode *adjusted_mode =
1629                         &enabled->config->base.adjusted_mode;
1630                 const struct drm_framebuffer *fb =
1631                         enabled->base.primary->state->fb;
1632                 int clock = adjusted_mode->crtc_clock;
1633                 int htotal = adjusted_mode->crtc_htotal;
1634                 int hdisplay = enabled->config->pipe_src_w;
1635                 int cpp;
1636                 unsigned long line_time_us;
1637                 int entries;
1638
1639                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1640                         cpp = 4;
1641                 else
1642                         cpp = fb->format->cpp[0];
1643
1644                 line_time_us = max(htotal * 1000 / clock, 1);
1645
1646                 /* Use ns/us then divide to preserve precision */
1647                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1648                         cpp * hdisplay;
1649                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1650                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1651                 srwm = wm_info->fifo_size - entries;
1652                 if (srwm < 0)
1653                         srwm = 1;
1654
1655                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1656                         I915_WRITE(FW_BLC_SELF,
1657                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1658                 else
1659                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1660         }
1661
1662         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1663                       planea_wm, planeb_wm, cwm, srwm);
1664
1665         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1666         fwater_hi = (cwm & 0x1f);
1667
1668         /* Set request length to 8 cachelines per fetch */
1669         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1670         fwater_hi = fwater_hi | (1 << 8);
1671
1672         I915_WRITE(FW_BLC, fwater_lo);
1673         I915_WRITE(FW_BLC2, fwater_hi);
1674
1675         if (enabled)
1676                 intel_set_memory_cxsr(dev_priv, true);
1677 }
1678
1679 static void i845_update_wm(struct intel_crtc *unused_crtc)
1680 {
1681         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1682         struct intel_crtc *crtc;
1683         const struct drm_display_mode *adjusted_mode;
1684         uint32_t fwater_lo;
1685         int planea_wm;
1686
1687         crtc = single_enabled_crtc(dev_priv);
1688         if (crtc == NULL)
1689                 return;
1690
1691         adjusted_mode = &crtc->config->base.adjusted_mode;
1692         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1693                                        &i845_wm_info,
1694                                        dev_priv->display.get_fifo_size(dev_priv, 0),
1695                                        4, pessimal_latency_ns);
1696         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1697         fwater_lo |= (3<<8) | planea_wm;
1698
1699         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1700
1701         I915_WRITE(FW_BLC, fwater_lo);
1702 }
1703
1704 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1705 {
1706         uint32_t pixel_rate;
1707
1708         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1709
1710         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1711          * adjust the pixel_rate here. */
1712
1713         if (pipe_config->pch_pfit.enabled) {
1714                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1715                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1716
1717                 pipe_w = pipe_config->pipe_src_w;
1718                 pipe_h = pipe_config->pipe_src_h;
1719
1720                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1721                 pfit_h = pfit_size & 0xFFFF;
1722                 if (pipe_w < pfit_w)
1723                         pipe_w = pfit_w;
1724                 if (pipe_h < pfit_h)
1725                         pipe_h = pfit_h;
1726
1727                 if (WARN_ON(!pfit_w || !pfit_h))
1728                         return pixel_rate;
1729
1730                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1731                                      pfit_w * pfit_h);
1732         }
1733
1734         return pixel_rate;
1735 }
1736
1737 /* latency must be in 0.1us units. */
1738 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1739 {
1740         uint64_t ret;
1741
1742         if (WARN(latency == 0, "Latency value missing\n"))
1743                 return UINT_MAX;
1744
1745         ret = (uint64_t) pixel_rate * cpp * latency;
1746         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1747
1748         return ret;
1749 }
1750
1751 /* latency must be in 0.1us units. */
1752 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1753                                uint32_t horiz_pixels, uint8_t cpp,
1754                                uint32_t latency)
1755 {
1756         uint32_t ret;
1757
1758         if (WARN(latency == 0, "Latency value missing\n"))
1759                 return UINT_MAX;
1760         if (WARN_ON(!pipe_htotal))
1761                 return UINT_MAX;
1762
1763         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1764         ret = (ret + 1) * horiz_pixels * cpp;
1765         ret = DIV_ROUND_UP(ret, 64) + 2;
1766         return ret;
1767 }
1768
1769 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1770                            uint8_t cpp)
1771 {
1772         /*
1773          * Neither of these should be possible since this function shouldn't be
1774          * called if the CRTC is off or the plane is invisible.  But let's be
1775          * extra paranoid to avoid a potential divide-by-zero if we screw up
1776          * elsewhere in the driver.
1777          */
1778         if (WARN_ON(!cpp))
1779                 return 0;
1780         if (WARN_ON(!horiz_pixels))
1781                 return 0;
1782
1783         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1784 }
1785
1786 struct ilk_wm_maximums {
1787         uint16_t pri;
1788         uint16_t spr;
1789         uint16_t cur;
1790         uint16_t fbc;
1791 };
1792
1793 /*
1794  * For both WM_PIPE and WM_LP.
1795  * mem_value must be in 0.1us units.
1796  */
1797 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1798                                    const struct intel_plane_state *pstate,
1799                                    uint32_t mem_value,
1800                                    bool is_lp)
1801 {
1802         uint32_t method1, method2;
1803         int cpp;
1804
1805         if (!cstate->base.active || !pstate->base.visible)
1806                 return 0;
1807
1808         cpp = pstate->base.fb->format->cpp[0];
1809
1810         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1811
1812         if (!is_lp)
1813                 return method1;
1814
1815         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1816                                  cstate->base.adjusted_mode.crtc_htotal,
1817                                  drm_rect_width(&pstate->base.dst),
1818                                  cpp, mem_value);
1819
1820         return min(method1, method2);
1821 }
1822
1823 /*
1824  * For both WM_PIPE and WM_LP.
1825  * mem_value must be in 0.1us units.
1826  */
1827 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1828                                    const struct intel_plane_state *pstate,
1829                                    uint32_t mem_value)
1830 {
1831         uint32_t method1, method2;
1832         int cpp;
1833
1834         if (!cstate->base.active || !pstate->base.visible)
1835                 return 0;
1836
1837         cpp = pstate->base.fb->format->cpp[0];
1838
1839         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1840         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1841                                  cstate->base.adjusted_mode.crtc_htotal,
1842                                  drm_rect_width(&pstate->base.dst),
1843                                  cpp, mem_value);
1844         return min(method1, method2);
1845 }
1846
1847 /*
1848  * For both WM_PIPE and WM_LP.
1849  * mem_value must be in 0.1us units.
1850  */
1851 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1852                                    const struct intel_plane_state *pstate,
1853                                    uint32_t mem_value)
1854 {
1855         /*
1856          * We treat the cursor plane as always-on for the purposes of watermark
1857          * calculation.  Until we have two-stage watermark programming merged,
1858          * this is necessary to avoid flickering.
1859          */
1860         int cpp = 4;
1861         int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1862
1863         if (!cstate->base.active)
1864                 return 0;
1865
1866         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1867                               cstate->base.adjusted_mode.crtc_htotal,
1868                               width, cpp, mem_value);
1869 }
1870
1871 /* Only for WM_LP. */
1872 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1873                                    const struct intel_plane_state *pstate,
1874                                    uint32_t pri_val)
1875 {
1876         int cpp;
1877
1878         if (!cstate->base.active || !pstate->base.visible)
1879                 return 0;
1880
1881         cpp = pstate->base.fb->format->cpp[0];
1882
1883         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1884 }
1885
1886 static unsigned int
1887 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1888 {
1889         if (INTEL_GEN(dev_priv) >= 8)
1890                 return 3072;
1891         else if (INTEL_GEN(dev_priv) >= 7)
1892                 return 768;
1893         else
1894                 return 512;
1895 }
1896
1897 static unsigned int
1898 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1899                      int level, bool is_sprite)
1900 {
1901         if (INTEL_GEN(dev_priv) >= 8)
1902                 /* BDW primary/sprite plane watermarks */
1903                 return level == 0 ? 255 : 2047;
1904         else if (INTEL_GEN(dev_priv) >= 7)
1905                 /* IVB/HSW primary/sprite plane watermarks */
1906                 return level == 0 ? 127 : 1023;
1907         else if (!is_sprite)
1908                 /* ILK/SNB primary plane watermarks */
1909                 return level == 0 ? 127 : 511;
1910         else
1911                 /* ILK/SNB sprite plane watermarks */
1912                 return level == 0 ? 63 : 255;
1913 }
1914
1915 static unsigned int
1916 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1917 {
1918         if (INTEL_GEN(dev_priv) >= 7)
1919                 return level == 0 ? 63 : 255;
1920         else
1921                 return level == 0 ? 31 : 63;
1922 }
1923
1924 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1925 {
1926         if (INTEL_GEN(dev_priv) >= 8)
1927                 return 31;
1928         else
1929                 return 15;
1930 }
1931
1932 /* Calculate the maximum primary/sprite plane watermark */
1933 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1934                                      int level,
1935                                      const struct intel_wm_config *config,
1936                                      enum intel_ddb_partitioning ddb_partitioning,
1937                                      bool is_sprite)
1938 {
1939         struct drm_i915_private *dev_priv = to_i915(dev);
1940         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1941
1942         /* if sprites aren't enabled, sprites get nothing */
1943         if (is_sprite && !config->sprites_enabled)
1944                 return 0;
1945
1946         /* HSW allows LP1+ watermarks even with multiple pipes */
1947         if (level == 0 || config->num_pipes_active > 1) {
1948                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1949
1950                 /*
1951                  * For some reason the non self refresh
1952                  * FIFO size is only half of the self
1953                  * refresh FIFO size on ILK/SNB.
1954                  */
1955                 if (INTEL_GEN(dev_priv) <= 6)
1956                         fifo_size /= 2;
1957         }
1958
1959         if (config->sprites_enabled) {
1960                 /* level 0 is always calculated with 1:1 split */
1961                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1962                         if (is_sprite)
1963                                 fifo_size *= 5;
1964                         fifo_size /= 6;
1965                 } else {
1966                         fifo_size /= 2;
1967                 }
1968         }
1969
1970         /* clamp to max that the registers can hold */
1971         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1972 }
1973
1974 /* Calculate the maximum cursor plane watermark */
1975 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1976                                       int level,
1977                                       const struct intel_wm_config *config)
1978 {
1979         /* HSW LP1+ watermarks w/ multiple pipes */
1980         if (level > 0 && config->num_pipes_active > 1)
1981                 return 64;
1982
1983         /* otherwise just report max that registers can hold */
1984         return ilk_cursor_wm_reg_max(to_i915(dev), level);
1985 }
1986
1987 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1988                                     int level,
1989                                     const struct intel_wm_config *config,
1990                                     enum intel_ddb_partitioning ddb_partitioning,
1991                                     struct ilk_wm_maximums *max)
1992 {
1993         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1994         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1995         max->cur = ilk_cursor_wm_max(dev, level, config);
1996         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1997 }
1998
1999 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2000                                         int level,
2001                                         struct ilk_wm_maximums *max)
2002 {
2003         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2004         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2005         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2006         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2007 }
2008
2009 static bool ilk_validate_wm_level(int level,
2010                                   const struct ilk_wm_maximums *max,
2011                                   struct intel_wm_level *result)
2012 {
2013         bool ret;
2014
2015         /* already determined to be invalid? */
2016         if (!result->enable)
2017                 return false;
2018
2019         result->enable = result->pri_val <= max->pri &&
2020                          result->spr_val <= max->spr &&
2021                          result->cur_val <= max->cur;
2022
2023         ret = result->enable;
2024
2025         /*
2026          * HACK until we can pre-compute everything,
2027          * and thus fail gracefully if LP0 watermarks
2028          * are exceeded...
2029          */
2030         if (level == 0 && !result->enable) {
2031                 if (result->pri_val > max->pri)
2032                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2033                                       level, result->pri_val, max->pri);
2034                 if (result->spr_val > max->spr)
2035                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2036                                       level, result->spr_val, max->spr);
2037                 if (result->cur_val > max->cur)
2038                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2039                                       level, result->cur_val, max->cur);
2040
2041                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2042                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2043                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2044                 result->enable = true;
2045         }
2046
2047         return ret;
2048 }
2049
2050 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2051                                  const struct intel_crtc *intel_crtc,
2052                                  int level,
2053                                  struct intel_crtc_state *cstate,
2054                                  struct intel_plane_state *pristate,
2055                                  struct intel_plane_state *sprstate,
2056                                  struct intel_plane_state *curstate,
2057                                  struct intel_wm_level *result)
2058 {
2059         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2060         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2061         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2062
2063         /* WM1+ latency values stored in 0.5us units */
2064         if (level > 0) {
2065                 pri_latency *= 5;
2066                 spr_latency *= 5;
2067                 cur_latency *= 5;
2068         }
2069
2070         if (pristate) {
2071                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2072                                                      pri_latency, level);
2073                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2074         }
2075
2076         if (sprstate)
2077                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2078
2079         if (curstate)
2080                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2081
2082         result->enable = true;
2083 }
2084
2085 static uint32_t
2086 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2087 {
2088         const struct intel_atomic_state *intel_state =
2089                 to_intel_atomic_state(cstate->base.state);
2090         const struct drm_display_mode *adjusted_mode =
2091                 &cstate->base.adjusted_mode;
2092         u32 linetime, ips_linetime;
2093
2094         if (!cstate->base.active)
2095                 return 0;
2096         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2097                 return 0;
2098         if (WARN_ON(intel_state->cdclk == 0))
2099                 return 0;
2100
2101         /* The WM are computed with base on how long it takes to fill a single
2102          * row at the given clock rate, multiplied by 8.
2103          * */
2104         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2105                                      adjusted_mode->crtc_clock);
2106         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2107                                          intel_state->cdclk);
2108
2109         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2110                PIPE_WM_LINETIME_TIME(linetime);
2111 }
2112
2113 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2114                                   uint16_t wm[8])
2115 {
2116         if (IS_GEN9(dev_priv)) {
2117                 uint32_t val;
2118                 int ret, i;
2119                 int level, max_level = ilk_wm_max_level(dev_priv);
2120
2121                 /* read the first set of memory latencies[0:3] */
2122                 val = 0; /* data0 to be programmed to 0 for first set */
2123                 mutex_lock(&dev_priv->rps.hw_lock);
2124                 ret = sandybridge_pcode_read(dev_priv,
2125                                              GEN9_PCODE_READ_MEM_LATENCY,
2126                                              &val);
2127                 mutex_unlock(&dev_priv->rps.hw_lock);
2128
2129                 if (ret) {
2130                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2131                         return;
2132                 }
2133
2134                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2135                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2136                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2137                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2138                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2139                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2140                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2141
2142                 /* read the second set of memory latencies[4:7] */
2143                 val = 1; /* data0 to be programmed to 1 for second set */
2144                 mutex_lock(&dev_priv->rps.hw_lock);
2145                 ret = sandybridge_pcode_read(dev_priv,
2146                                              GEN9_PCODE_READ_MEM_LATENCY,
2147                                              &val);
2148                 mutex_unlock(&dev_priv->rps.hw_lock);
2149                 if (ret) {
2150                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2151                         return;
2152                 }
2153
2154                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2155                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2156                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2157                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2158                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2159                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2160                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2161
2162                 /*
2163                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2164                  * need to be disabled. We make sure to sanitize the values out
2165                  * of the punit to satisfy this requirement.
2166                  */
2167                 for (level = 1; level <= max_level; level++) {
2168                         if (wm[level] == 0) {
2169                                 for (i = level + 1; i <= max_level; i++)
2170                                         wm[i] = 0;
2171                                 break;
2172                         }
2173                 }
2174
2175                 /*
2176                  * WaWmMemoryReadLatency:skl
2177                  *
2178                  * punit doesn't take into account the read latency so we need
2179                  * to add 2us to the various latency levels we retrieve from the
2180                  * punit when level 0 response data us 0us.
2181                  */
2182                 if (wm[0] == 0) {
2183                         wm[0] += 2;
2184                         for (level = 1; level <= max_level; level++) {
2185                                 if (wm[level] == 0)
2186                                         break;
2187                                 wm[level] += 2;
2188                         }
2189                 }
2190
2191         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2192                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2193
2194                 wm[0] = (sskpd >> 56) & 0xFF;
2195                 if (wm[0] == 0)
2196                         wm[0] = sskpd & 0xF;
2197                 wm[1] = (sskpd >> 4) & 0xFF;
2198                 wm[2] = (sskpd >> 12) & 0xFF;
2199                 wm[3] = (sskpd >> 20) & 0x1FF;
2200                 wm[4] = (sskpd >> 32) & 0x1FF;
2201         } else if (INTEL_GEN(dev_priv) >= 6) {
2202                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2203
2204                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2205                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2206                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2207                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2208         } else if (INTEL_GEN(dev_priv) >= 5) {
2209                 uint32_t mltr = I915_READ(MLTR_ILK);
2210
2211                 /* ILK primary LP0 latency is 700 ns */
2212                 wm[0] = 7;
2213                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2214                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2215         }
2216 }
2217
2218 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2219                                        uint16_t wm[5])
2220 {
2221         /* ILK sprite LP0 latency is 1300 ns */
2222         if (IS_GEN5(dev_priv))
2223                 wm[0] = 13;
2224 }
2225
2226 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2227                                        uint16_t wm[5])
2228 {
2229         /* ILK cursor LP0 latency is 1300 ns */
2230         if (IS_GEN5(dev_priv))
2231                 wm[0] = 13;
2232
2233         /* WaDoubleCursorLP3Latency:ivb */
2234         if (IS_IVYBRIDGE(dev_priv))
2235                 wm[3] *= 2;
2236 }
2237
2238 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2239 {
2240         /* how many WM levels are we expecting */
2241         if (INTEL_GEN(dev_priv) >= 9)
2242                 return 7;
2243         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2244                 return 4;
2245         else if (INTEL_GEN(dev_priv) >= 6)
2246                 return 3;
2247         else
2248                 return 2;
2249 }
2250
2251 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2252                                    const char *name,
2253                                    const uint16_t wm[8])
2254 {
2255         int level, max_level = ilk_wm_max_level(dev_priv);
2256
2257         for (level = 0; level <= max_level; level++) {
2258                 unsigned int latency = wm[level];
2259
2260                 if (latency == 0) {
2261                         DRM_ERROR("%s WM%d latency not provided\n",
2262                                   name, level);
2263                         continue;
2264                 }
2265
2266                 /*
2267                  * - latencies are in us on gen9.
2268                  * - before then, WM1+ latency values are in 0.5us units
2269                  */
2270                 if (IS_GEN9(dev_priv))
2271                         latency *= 10;
2272                 else if (level > 0)
2273                         latency *= 5;
2274
2275                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2276                               name, level, wm[level],
2277                               latency / 10, latency % 10);
2278         }
2279 }
2280
2281 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2282                                     uint16_t wm[5], uint16_t min)
2283 {
2284         int level, max_level = ilk_wm_max_level(dev_priv);
2285
2286         if (wm[0] >= min)
2287                 return false;
2288
2289         wm[0] = max(wm[0], min);
2290         for (level = 1; level <= max_level; level++)
2291                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2292
2293         return true;
2294 }
2295
2296 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2297 {
2298         bool changed;
2299
2300         /*
2301          * The BIOS provided WM memory latency values are often
2302          * inadequate for high resolution displays. Adjust them.
2303          */
2304         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2305                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2306                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2307
2308         if (!changed)
2309                 return;
2310
2311         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2312         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2313         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2314         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2315 }
2316
2317 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2318 {
2319         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2320
2321         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2322                sizeof(dev_priv->wm.pri_latency));
2323         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2324                sizeof(dev_priv->wm.pri_latency));
2325
2326         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2327         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2328
2329         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2330         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2331         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2332
2333         if (IS_GEN6(dev_priv))
2334                 snb_wm_latency_quirk(dev_priv);
2335 }
2336
2337 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2338 {
2339         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2340         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2341 }
2342
2343 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2344                                  struct intel_pipe_wm *pipe_wm)
2345 {
2346         /* LP0 watermark maximums depend on this pipe alone */
2347         const struct intel_wm_config config = {
2348                 .num_pipes_active = 1,
2349                 .sprites_enabled = pipe_wm->sprites_enabled,
2350                 .sprites_scaled = pipe_wm->sprites_scaled,
2351         };
2352         struct ilk_wm_maximums max;
2353
2354         /* LP0 watermarks always use 1/2 DDB partitioning */
2355         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2356
2357         /* At least LP0 must be valid */
2358         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2359                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2360                 return false;
2361         }
2362
2363         return true;
2364 }
2365
2366 /* Compute new watermarks for the pipe */
2367 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2368 {
2369         struct drm_atomic_state *state = cstate->base.state;
2370         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2371         struct intel_pipe_wm *pipe_wm;
2372         struct drm_device *dev = state->dev;
2373         const struct drm_i915_private *dev_priv = to_i915(dev);
2374         struct intel_plane *intel_plane;
2375         struct intel_plane_state *pristate = NULL;
2376         struct intel_plane_state *sprstate = NULL;
2377         struct intel_plane_state *curstate = NULL;
2378         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2379         struct ilk_wm_maximums max;
2380
2381         pipe_wm = &cstate->wm.ilk.optimal;
2382
2383         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2384                 struct intel_plane_state *ps;
2385
2386                 ps = intel_atomic_get_existing_plane_state(state,
2387                                                            intel_plane);
2388                 if (!ps)
2389                         continue;
2390
2391                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2392                         pristate = ps;
2393                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2394                         sprstate = ps;
2395                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2396                         curstate = ps;
2397         }
2398
2399         pipe_wm->pipe_enabled = cstate->base.active;
2400         if (sprstate) {
2401                 pipe_wm->sprites_enabled = sprstate->base.visible;
2402                 pipe_wm->sprites_scaled = sprstate->base.visible &&
2403                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2404                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2405         }
2406
2407         usable_level = max_level;
2408
2409         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2410         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2411                 usable_level = 1;
2412
2413         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2414         if (pipe_wm->sprites_scaled)
2415                 usable_level = 0;
2416
2417         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2418                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2419
2420         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2421         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2422
2423         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2424                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2425
2426         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2427                 return -EINVAL;
2428
2429         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2430
2431         for (level = 1; level <= max_level; level++) {
2432                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2433
2434                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2435                                      pristate, sprstate, curstate, wm);
2436
2437                 /*
2438                  * Disable any watermark level that exceeds the
2439                  * register maximums since such watermarks are
2440                  * always invalid.
2441                  */
2442                 if (level > usable_level)
2443                         continue;
2444
2445                 if (ilk_validate_wm_level(level, &max, wm))
2446                         pipe_wm->wm[level] = *wm;
2447                 else
2448                         usable_level = level;
2449         }
2450
2451         return 0;
2452 }
2453
2454 /*
2455  * Build a set of 'intermediate' watermark values that satisfy both the old
2456  * state and the new state.  These can be programmed to the hardware
2457  * immediately.
2458  */
2459 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2460                                        struct intel_crtc *intel_crtc,
2461                                        struct intel_crtc_state *newstate)
2462 {
2463         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2464         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2465         int level, max_level = ilk_wm_max_level(to_i915(dev));
2466
2467         /*
2468          * Start with the final, target watermarks, then combine with the
2469          * currently active watermarks to get values that are safe both before
2470          * and after the vblank.
2471          */
2472         *a = newstate->wm.ilk.optimal;
2473         a->pipe_enabled |= b->pipe_enabled;
2474         a->sprites_enabled |= b->sprites_enabled;
2475         a->sprites_scaled |= b->sprites_scaled;
2476
2477         for (level = 0; level <= max_level; level++) {
2478                 struct intel_wm_level *a_wm = &a->wm[level];
2479                 const struct intel_wm_level *b_wm = &b->wm[level];
2480
2481                 a_wm->enable &= b_wm->enable;
2482                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2483                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2484                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2485                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2486         }
2487
2488         /*
2489          * We need to make sure that these merged watermark values are
2490          * actually a valid configuration themselves.  If they're not,
2491          * there's no safe way to transition from the old state to
2492          * the new state, so we need to fail the atomic transaction.
2493          */
2494         if (!ilk_validate_pipe_wm(dev, a))
2495                 return -EINVAL;
2496
2497         /*
2498          * If our intermediate WM are identical to the final WM, then we can
2499          * omit the post-vblank programming; only update if it's different.
2500          */
2501         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2502                 newstate->wm.need_postvbl_update = false;
2503
2504         return 0;
2505 }
2506
2507 /*
2508  * Merge the watermarks from all active pipes for a specific level.
2509  */
2510 static void ilk_merge_wm_level(struct drm_device *dev,
2511                                int level,
2512                                struct intel_wm_level *ret_wm)
2513 {
2514         const struct intel_crtc *intel_crtc;
2515
2516         ret_wm->enable = true;
2517
2518         for_each_intel_crtc(dev, intel_crtc) {
2519                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2520                 const struct intel_wm_level *wm = &active->wm[level];
2521
2522                 if (!active->pipe_enabled)
2523                         continue;
2524
2525                 /*
2526                  * The watermark values may have been used in the past,
2527                  * so we must maintain them in the registers for some
2528                  * time even if the level is now disabled.
2529                  */
2530                 if (!wm->enable)
2531                         ret_wm->enable = false;
2532
2533                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2534                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2535                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2536                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2537         }
2538 }
2539
2540 /*
2541  * Merge all low power watermarks for all active pipes.
2542  */
2543 static void ilk_wm_merge(struct drm_device *dev,
2544                          const struct intel_wm_config *config,
2545                          const struct ilk_wm_maximums *max,
2546                          struct intel_pipe_wm *merged)
2547 {
2548         struct drm_i915_private *dev_priv = to_i915(dev);
2549         int level, max_level = ilk_wm_max_level(dev_priv);
2550         int last_enabled_level = max_level;
2551
2552         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2553         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2554             config->num_pipes_active > 1)
2555                 last_enabled_level = 0;
2556
2557         /* ILK: FBC WM must be disabled always */
2558         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2559
2560         /* merge each WM1+ level */
2561         for (level = 1; level <= max_level; level++) {
2562                 struct intel_wm_level *wm = &merged->wm[level];
2563
2564                 ilk_merge_wm_level(dev, level, wm);
2565
2566                 if (level > last_enabled_level)
2567                         wm->enable = false;
2568                 else if (!ilk_validate_wm_level(level, max, wm))
2569                         /* make sure all following levels get disabled */
2570                         last_enabled_level = level - 1;
2571
2572                 /*
2573                  * The spec says it is preferred to disable
2574                  * FBC WMs instead of disabling a WM level.
2575                  */
2576                 if (wm->fbc_val > max->fbc) {
2577                         if (wm->enable)
2578                                 merged->fbc_wm_enabled = false;
2579                         wm->fbc_val = 0;
2580                 }
2581         }
2582
2583         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2584         /*
2585          * FIXME this is racy. FBC might get enabled later.
2586          * What we should check here is whether FBC can be
2587          * enabled sometime later.
2588          */
2589         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2590             intel_fbc_is_active(dev_priv)) {
2591                 for (level = 2; level <= max_level; level++) {
2592                         struct intel_wm_level *wm = &merged->wm[level];
2593
2594                         wm->enable = false;
2595                 }
2596         }
2597 }
2598
2599 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2600 {
2601         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2602         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2603 }
2604
2605 /* The value we need to program into the WM_LPx latency field */
2606 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2607 {
2608         struct drm_i915_private *dev_priv = to_i915(dev);
2609
2610         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2611                 return 2 * level;
2612         else
2613                 return dev_priv->wm.pri_latency[level];
2614 }
2615
2616 static void ilk_compute_wm_results(struct drm_device *dev,
2617                                    const struct intel_pipe_wm *merged,
2618                                    enum intel_ddb_partitioning partitioning,
2619                                    struct ilk_wm_values *results)
2620 {
2621         struct drm_i915_private *dev_priv = to_i915(dev);
2622         struct intel_crtc *intel_crtc;
2623         int level, wm_lp;
2624
2625         results->enable_fbc_wm = merged->fbc_wm_enabled;
2626         results->partitioning = partitioning;
2627
2628         /* LP1+ register values */
2629         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2630                 const struct intel_wm_level *r;
2631
2632                 level = ilk_wm_lp_to_level(wm_lp, merged);
2633
2634                 r = &merged->wm[level];
2635
2636                 /*
2637                  * Maintain the watermark values even if the level is
2638                  * disabled. Doing otherwise could cause underruns.
2639                  */
2640                 results->wm_lp[wm_lp - 1] =
2641                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2642                         (r->pri_val << WM1_LP_SR_SHIFT) |
2643                         r->cur_val;
2644
2645                 if (r->enable)
2646                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2647
2648                 if (INTEL_GEN(dev_priv) >= 8)
2649                         results->wm_lp[wm_lp - 1] |=
2650                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2651                 else
2652                         results->wm_lp[wm_lp - 1] |=
2653                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2654
2655                 /*
2656                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2657                  * level is disabled. Doing otherwise could cause underruns.
2658                  */
2659                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2660                         WARN_ON(wm_lp != 1);
2661                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2662                 } else
2663                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2664         }
2665
2666         /* LP0 register values */
2667         for_each_intel_crtc(dev, intel_crtc) {
2668                 enum pipe pipe = intel_crtc->pipe;
2669                 const struct intel_wm_level *r =
2670                         &intel_crtc->wm.active.ilk.wm[0];
2671
2672                 if (WARN_ON(!r->enable))
2673                         continue;
2674
2675                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2676
2677                 results->wm_pipe[pipe] =
2678                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2679                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2680                         r->cur_val;
2681         }
2682 }
2683
2684 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2685  * case both are at the same level. Prefer r1 in case they're the same. */
2686 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2687                                                   struct intel_pipe_wm *r1,
2688                                                   struct intel_pipe_wm *r2)
2689 {
2690         int level, max_level = ilk_wm_max_level(to_i915(dev));
2691         int level1 = 0, level2 = 0;
2692
2693         for (level = 1; level <= max_level; level++) {
2694                 if (r1->wm[level].enable)
2695                         level1 = level;
2696                 if (r2->wm[level].enable)
2697                         level2 = level;
2698         }
2699
2700         if (level1 == level2) {
2701                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2702                         return r2;
2703                 else
2704                         return r1;
2705         } else if (level1 > level2) {
2706                 return r1;
2707         } else {
2708                 return r2;
2709         }
2710 }
2711
2712 /* dirty bits used to track which watermarks need changes */
2713 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2714 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2715 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2716 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2717 #define WM_DIRTY_FBC (1 << 24)
2718 #define WM_DIRTY_DDB (1 << 25)
2719
2720 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2721                                          const struct ilk_wm_values *old,
2722                                          const struct ilk_wm_values *new)
2723 {
2724         unsigned int dirty = 0;
2725         enum pipe pipe;
2726         int wm_lp;
2727
2728         for_each_pipe(dev_priv, pipe) {
2729                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2730                         dirty |= WM_DIRTY_LINETIME(pipe);
2731                         /* Must disable LP1+ watermarks too */
2732                         dirty |= WM_DIRTY_LP_ALL;
2733                 }
2734
2735                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2736                         dirty |= WM_DIRTY_PIPE(pipe);
2737                         /* Must disable LP1+ watermarks too */
2738                         dirty |= WM_DIRTY_LP_ALL;
2739                 }
2740         }
2741
2742         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2743                 dirty |= WM_DIRTY_FBC;
2744                 /* Must disable LP1+ watermarks too */
2745                 dirty |= WM_DIRTY_LP_ALL;
2746         }
2747
2748         if (old->partitioning != new->partitioning) {
2749                 dirty |= WM_DIRTY_DDB;
2750                 /* Must disable LP1+ watermarks too */
2751                 dirty |= WM_DIRTY_LP_ALL;
2752         }
2753
2754         /* LP1+ watermarks already deemed dirty, no need to continue */
2755         if (dirty & WM_DIRTY_LP_ALL)
2756                 return dirty;
2757
2758         /* Find the lowest numbered LP1+ watermark in need of an update... */
2759         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2760                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2761                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2762                         break;
2763         }
2764
2765         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2766         for (; wm_lp <= 3; wm_lp++)
2767                 dirty |= WM_DIRTY_LP(wm_lp);
2768
2769         return dirty;
2770 }
2771
2772 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2773                                unsigned int dirty)
2774 {
2775         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2776         bool changed = false;
2777
2778         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2779                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2780                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2781                 changed = true;
2782         }
2783         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2784                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2785                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2786                 changed = true;
2787         }
2788         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2789                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2790                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2791                 changed = true;
2792         }
2793
2794         /*
2795          * Don't touch WM1S_LP_EN here.
2796          * Doing so could cause underruns.
2797          */
2798
2799         return changed;
2800 }
2801
2802 /*
2803  * The spec says we shouldn't write when we don't need, because every write
2804  * causes WMs to be re-evaluated, expending some power.
2805  */
2806 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2807                                 struct ilk_wm_values *results)
2808 {
2809         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2810         unsigned int dirty;
2811         uint32_t val;
2812
2813         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2814         if (!dirty)
2815                 return;
2816
2817         _ilk_disable_lp_wm(dev_priv, dirty);
2818
2819         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2820                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2821         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2822                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2823         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2824                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2825
2826         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2827                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2828         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2829                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2830         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2831                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2832
2833         if (dirty & WM_DIRTY_DDB) {
2834                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2835                         val = I915_READ(WM_MISC);
2836                         if (results->partitioning == INTEL_DDB_PART_1_2)
2837                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2838                         else
2839                                 val |= WM_MISC_DATA_PARTITION_5_6;
2840                         I915_WRITE(WM_MISC, val);
2841                 } else {
2842                         val = I915_READ(DISP_ARB_CTL2);
2843                         if (results->partitioning == INTEL_DDB_PART_1_2)
2844                                 val &= ~DISP_DATA_PARTITION_5_6;
2845                         else
2846                                 val |= DISP_DATA_PARTITION_5_6;
2847                         I915_WRITE(DISP_ARB_CTL2, val);
2848                 }
2849         }
2850
2851         if (dirty & WM_DIRTY_FBC) {
2852                 val = I915_READ(DISP_ARB_CTL);
2853                 if (results->enable_fbc_wm)
2854                         val &= ~DISP_FBC_WM_DIS;
2855                 else
2856                         val |= DISP_FBC_WM_DIS;
2857                 I915_WRITE(DISP_ARB_CTL, val);
2858         }
2859
2860         if (dirty & WM_DIRTY_LP(1) &&
2861             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2862                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2863
2864         if (INTEL_GEN(dev_priv) >= 7) {
2865                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2866                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2867                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2868                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2869         }
2870
2871         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2872                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2873         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2874                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2875         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2876                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2877
2878         dev_priv->wm.hw = *results;
2879 }
2880
2881 bool ilk_disable_lp_wm(struct drm_device *dev)
2882 {
2883         struct drm_i915_private *dev_priv = to_i915(dev);
2884
2885         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2886 }
2887
2888 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
2889
2890 /*
2891  * FIXME: We still don't have the proper code detect if we need to apply the WA,
2892  * so assume we'll always need it in order to avoid underruns.
2893  */
2894 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2895 {
2896         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2897
2898         if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2899             IS_KABYLAKE(dev_priv))
2900                 return true;
2901
2902         return false;
2903 }
2904
2905 static bool
2906 intel_has_sagv(struct drm_i915_private *dev_priv)
2907 {
2908         if (IS_KABYLAKE(dev_priv))
2909                 return true;
2910
2911         if (IS_SKYLAKE(dev_priv) &&
2912             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2913                 return true;
2914
2915         return false;
2916 }
2917
2918 /*
2919  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2920  * depending on power and performance requirements. The display engine access
2921  * to system memory is blocked during the adjustment time. Because of the
2922  * blocking time, having this enabled can cause full system hangs and/or pipe
2923  * underruns if we don't meet all of the following requirements:
2924  *
2925  *  - <= 1 pipe enabled
2926  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2927  *  - We're not using an interlaced display configuration
2928  */
2929 int
2930 intel_enable_sagv(struct drm_i915_private *dev_priv)
2931 {
2932         int ret;
2933
2934         if (!intel_has_sagv(dev_priv))
2935                 return 0;
2936
2937         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2938                 return 0;
2939
2940         DRM_DEBUG_KMS("Enabling the SAGV\n");
2941         mutex_lock(&dev_priv->rps.hw_lock);
2942
2943         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2944                                       GEN9_SAGV_ENABLE);
2945
2946         /* We don't need to wait for the SAGV when enabling */
2947         mutex_unlock(&dev_priv->rps.hw_lock);
2948
2949         /*
2950          * Some skl systems, pre-release machines in particular,
2951          * don't actually have an SAGV.
2952          */
2953         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2954                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2955                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2956                 return 0;
2957         } else if (ret < 0) {
2958                 DRM_ERROR("Failed to enable the SAGV\n");
2959                 return ret;
2960         }
2961
2962         dev_priv->sagv_status = I915_SAGV_ENABLED;
2963         return 0;
2964 }
2965
2966 int
2967 intel_disable_sagv(struct drm_i915_private *dev_priv)
2968 {
2969         int ret;
2970
2971         if (!intel_has_sagv(dev_priv))
2972                 return 0;
2973
2974         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2975                 return 0;
2976
2977         DRM_DEBUG_KMS("Disabling the SAGV\n");
2978         mutex_lock(&dev_priv->rps.hw_lock);
2979
2980         /* bspec says to keep retrying for at least 1 ms */
2981         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2982                                 GEN9_SAGV_DISABLE,
2983                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2984                                 1);
2985         mutex_unlock(&dev_priv->rps.hw_lock);
2986
2987         /*
2988          * Some skl systems, pre-release machines in particular,
2989          * don't actually have an SAGV.
2990          */
2991         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2992                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2993                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2994                 return 0;
2995         } else if (ret < 0) {
2996                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
2997                 return ret;
2998         }
2999
3000         dev_priv->sagv_status = I915_SAGV_DISABLED;
3001         return 0;
3002 }
3003
3004 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3005 {
3006         struct drm_device *dev = state->dev;
3007         struct drm_i915_private *dev_priv = to_i915(dev);
3008         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3009         struct intel_crtc *crtc;
3010         struct intel_plane *plane;
3011         struct intel_crtc_state *cstate;
3012         enum pipe pipe;
3013         int level, latency;
3014
3015         if (!intel_has_sagv(dev_priv))
3016                 return false;
3017
3018         /*
3019          * SKL workaround: bspec recommends we disable the SAGV when we have
3020          * more then one pipe enabled
3021          *
3022          * If there are no active CRTCs, no additional checks need be performed
3023          */
3024         if (hweight32(intel_state->active_crtcs) == 0)
3025                 return true;
3026         else if (hweight32(intel_state->active_crtcs) > 1)
3027                 return false;
3028
3029         /* Since we're now guaranteed to only have one active CRTC... */
3030         pipe = ffs(intel_state->active_crtcs) - 1;
3031         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3032         cstate = to_intel_crtc_state(crtc->base.state);
3033
3034         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3035                 return false;
3036
3037         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3038                 struct skl_plane_wm *wm =
3039                         &cstate->wm.skl.optimal.planes[plane->id];
3040
3041                 /* Skip this plane if it's not enabled */
3042                 if (!wm->wm[0].plane_en)
3043                         continue;
3044
3045                 /* Find the highest enabled wm level for this plane */
3046                 for (level = ilk_wm_max_level(dev_priv);
3047                      !wm->wm[level].plane_en; --level)
3048                      { }
3049
3050                 latency = dev_priv->wm.skl_latency[level];
3051
3052                 if (skl_needs_memory_bw_wa(intel_state) &&
3053                     plane->base.state->fb->modifier ==
3054                     I915_FORMAT_MOD_X_TILED)
3055                         latency += 15;
3056
3057                 /*
3058                  * If any of the planes on this pipe don't enable wm levels
3059                  * that incur memory latencies higher then 30µs we can't enable
3060                  * the SAGV
3061                  */
3062                 if (latency < SKL_SAGV_BLOCK_TIME)
3063                         return false;
3064         }
3065
3066         return true;
3067 }
3068
3069 static void
3070 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3071                                    const struct intel_crtc_state *cstate,
3072                                    struct skl_ddb_entry *alloc, /* out */
3073                                    int *num_active /* out */)
3074 {
3075         struct drm_atomic_state *state = cstate->base.state;
3076         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3077         struct drm_i915_private *dev_priv = to_i915(dev);
3078         struct drm_crtc *for_crtc = cstate->base.crtc;
3079         unsigned int pipe_size, ddb_size;
3080         int nth_active_pipe;
3081
3082         if (WARN_ON(!state) || !cstate->base.active) {
3083                 alloc->start = 0;
3084                 alloc->end = 0;
3085                 *num_active = hweight32(dev_priv->active_crtcs);
3086                 return;
3087         }
3088
3089         if (intel_state->active_pipe_changes)
3090                 *num_active = hweight32(intel_state->active_crtcs);
3091         else
3092                 *num_active = hweight32(dev_priv->active_crtcs);
3093
3094         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3095         WARN_ON(ddb_size == 0);
3096
3097         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3098
3099         /*
3100          * If the state doesn't change the active CRTC's, then there's
3101          * no need to recalculate; the existing pipe allocation limits
3102          * should remain unchanged.  Note that we're safe from racing
3103          * commits since any racing commit that changes the active CRTC
3104          * list would need to grab _all_ crtc locks, including the one
3105          * we currently hold.
3106          */
3107         if (!intel_state->active_pipe_changes) {
3108                 /*
3109                  * alloc may be cleared by clear_intel_crtc_state,
3110                  * copy from old state to be sure
3111                  */
3112                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3113                 return;
3114         }
3115
3116         nth_active_pipe = hweight32(intel_state->active_crtcs &
3117                                     (drm_crtc_mask(for_crtc) - 1));
3118         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3119         alloc->start = nth_active_pipe * ddb_size / *num_active;
3120         alloc->end = alloc->start + pipe_size;
3121 }
3122
3123 static unsigned int skl_cursor_allocation(int num_active)
3124 {
3125         if (num_active == 1)
3126                 return 32;
3127
3128         return 8;
3129 }
3130
3131 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3132 {
3133         entry->start = reg & 0x3ff;
3134         entry->end = (reg >> 16) & 0x3ff;
3135         if (entry->end)
3136                 entry->end += 1;
3137 }
3138
3139 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3140                           struct skl_ddb_allocation *ddb /* out */)
3141 {
3142         struct intel_crtc *crtc;
3143
3144         memset(ddb, 0, sizeof(*ddb));
3145
3146         for_each_intel_crtc(&dev_priv->drm, crtc) {
3147                 enum intel_display_power_domain power_domain;
3148                 enum plane_id plane_id;
3149                 enum pipe pipe = crtc->pipe;
3150
3151                 power_domain = POWER_DOMAIN_PIPE(pipe);
3152                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3153                         continue;
3154
3155                 for_each_plane_id_on_crtc(crtc, plane_id) {
3156                         u32 val;
3157
3158                         if (plane_id != PLANE_CURSOR)
3159                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3160                         else
3161                                 val = I915_READ(CUR_BUF_CFG(pipe));
3162
3163                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3164                 }
3165
3166                 intel_display_power_put(dev_priv, power_domain);
3167         }
3168 }
3169
3170 /*
3171  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3172  * The bspec defines downscale amount as:
3173  *
3174  * """
3175  * Horizontal down scale amount = maximum[1, Horizontal source size /
3176  *                                           Horizontal destination size]
3177  * Vertical down scale amount = maximum[1, Vertical source size /
3178  *                                         Vertical destination size]
3179  * Total down scale amount = Horizontal down scale amount *
3180  *                           Vertical down scale amount
3181  * """
3182  *
3183  * Return value is provided in 16.16 fixed point form to retain fractional part.
3184  * Caller should take care of dividing & rounding off the value.
3185  */
3186 static uint32_t
3187 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3188 {
3189         uint32_t downscale_h, downscale_w;
3190         uint32_t src_w, src_h, dst_w, dst_h;
3191
3192         if (WARN_ON(!pstate->base.visible))
3193                 return DRM_PLANE_HELPER_NO_SCALING;
3194
3195         /* n.b., src is 16.16 fixed point, dst is whole integer */
3196         src_w = drm_rect_width(&pstate->base.src);
3197         src_h = drm_rect_height(&pstate->base.src);
3198         dst_w = drm_rect_width(&pstate->base.dst);
3199         dst_h = drm_rect_height(&pstate->base.dst);
3200         if (drm_rotation_90_or_270(pstate->base.rotation))
3201                 swap(dst_w, dst_h);
3202
3203         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3204         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3205
3206         /* Provide result in 16.16 fixed point */
3207         return (uint64_t)downscale_w * downscale_h >> 16;
3208 }
3209
3210 static unsigned int
3211 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3212                              const struct drm_plane_state *pstate,
3213                              int y)
3214 {
3215         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3216         uint32_t down_scale_amount, data_rate;
3217         uint32_t width = 0, height = 0;
3218         struct drm_framebuffer *fb;
3219         u32 format;
3220
3221         if (!intel_pstate->base.visible)
3222                 return 0;
3223
3224         fb = pstate->fb;
3225         format = fb->format->format;
3226
3227         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3228                 return 0;
3229         if (y && format != DRM_FORMAT_NV12)
3230                 return 0;
3231
3232         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3233         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3234
3235         if (drm_rotation_90_or_270(pstate->rotation))
3236                 swap(width, height);
3237
3238         /* for planar format */
3239         if (format == DRM_FORMAT_NV12) {
3240                 if (y)  /* y-plane data rate */
3241                         data_rate = width * height *
3242                                 fb->format->cpp[0];
3243                 else    /* uv-plane data rate */
3244                         data_rate = (width / 2) * (height / 2) *
3245                                 fb->format->cpp[1];
3246         } else {
3247                 /* for packed formats */
3248                 data_rate = width * height * fb->format->cpp[0];
3249         }
3250
3251         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3252
3253         return (uint64_t)data_rate * down_scale_amount >> 16;
3254 }
3255
3256 /*
3257  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3258  * a 8192x4096@32bpp framebuffer:
3259  *   3 * 4096 * 8192  * 4 < 2^32
3260  */
3261 static unsigned int
3262 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3263                                  unsigned *plane_data_rate,
3264                                  unsigned *plane_y_data_rate)
3265 {
3266         struct drm_crtc_state *cstate = &intel_cstate->base;
3267         struct drm_atomic_state *state = cstate->state;
3268         struct drm_plane *plane;
3269         const struct drm_plane_state *pstate;
3270         unsigned int total_data_rate = 0;
3271
3272         if (WARN_ON(!state))
3273                 return 0;
3274
3275         /* Calculate and cache data rate for each plane */
3276         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3277                 enum plane_id plane_id = to_intel_plane(plane)->id;
3278                 unsigned int rate;
3279
3280                 /* packed/uv */
3281                 rate = skl_plane_relative_data_rate(intel_cstate,
3282                                                     pstate, 0);
3283                 plane_data_rate[plane_id] = rate;
3284
3285                 total_data_rate += rate;
3286
3287                 /* y-plane */
3288                 rate = skl_plane_relative_data_rate(intel_cstate,
3289                                                     pstate, 1);
3290                 plane_y_data_rate[plane_id] = rate;
3291
3292                 total_data_rate += rate;
3293         }
3294
3295         return total_data_rate;
3296 }
3297
3298 static uint16_t
3299 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3300                   const int y)
3301 {
3302         struct drm_framebuffer *fb = pstate->fb;
3303         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3304         uint32_t src_w, src_h;
3305         uint32_t min_scanlines = 8;
3306         uint8_t plane_bpp;
3307
3308         if (WARN_ON(!fb))
3309                 return 0;
3310
3311         /* For packed formats, no y-plane, return 0 */
3312         if (y && fb->format->format != DRM_FORMAT_NV12)
3313                 return 0;
3314
3315         /* For Non Y-tile return 8-blocks */
3316         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3317             fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3318                 return 8;
3319
3320         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3321         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3322
3323         if (drm_rotation_90_or_270(pstate->rotation))
3324                 swap(src_w, src_h);
3325
3326         /* Halve UV plane width and height for NV12 */
3327         if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3328                 src_w /= 2;
3329                 src_h /= 2;
3330         }
3331
3332         if (fb->format->format == DRM_FORMAT_NV12 && !y)
3333                 plane_bpp = fb->format->cpp[1];
3334         else
3335                 plane_bpp = fb->format->cpp[0];
3336
3337         if (drm_rotation_90_or_270(pstate->rotation)) {
3338                 switch (plane_bpp) {
3339                 case 1:
3340                         min_scanlines = 32;
3341                         break;
3342                 case 2:
3343                         min_scanlines = 16;
3344                         break;
3345                 case 4:
3346                         min_scanlines = 8;
3347                         break;
3348                 case 8:
3349                         min_scanlines = 4;
3350                         break;
3351                 default:
3352                         WARN(1, "Unsupported pixel depth %u for rotation",
3353                              plane_bpp);
3354                         min_scanlines = 32;
3355                 }
3356         }
3357
3358         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3359 }
3360
3361 static void
3362 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3363                  uint16_t *minimum, uint16_t *y_minimum)
3364 {
3365         const struct drm_plane_state *pstate;
3366         struct drm_plane *plane;
3367
3368         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3369                 enum plane_id plane_id = to_intel_plane(plane)->id;
3370
3371                 if (plane_id == PLANE_CURSOR)
3372                         continue;
3373
3374                 if (!pstate->visible)
3375                         continue;
3376
3377                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
3378                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3379         }
3380
3381         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3382 }
3383
3384 static int
3385 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3386                       struct skl_ddb_allocation *ddb /* out */)
3387 {
3388         struct drm_atomic_state *state = cstate->base.state;
3389         struct drm_crtc *crtc = cstate->base.crtc;
3390         struct drm_device *dev = crtc->dev;
3391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392         enum pipe pipe = intel_crtc->pipe;
3393         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3394         uint16_t alloc_size, start;
3395         uint16_t minimum[I915_MAX_PLANES] = {};
3396         uint16_t y_minimum[I915_MAX_PLANES] = {};
3397         unsigned int total_data_rate;
3398         enum plane_id plane_id;
3399         int num_active;
3400         unsigned plane_data_rate[I915_MAX_PLANES] = {};
3401         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3402
3403         /* Clear the partitioning for disabled planes. */
3404         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3405         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3406
3407         if (WARN_ON(!state))
3408                 return 0;
3409
3410         if (!cstate->base.active) {
3411                 alloc->start = alloc->end = 0;
3412                 return 0;
3413         }
3414
3415         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3416         alloc_size = skl_ddb_entry_size(alloc);
3417         if (alloc_size == 0) {
3418                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3419                 return 0;
3420         }
3421
3422         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3423
3424         /*
3425          * 1. Allocate the mininum required blocks for each active plane
3426          * and allocate the cursor, it doesn't require extra allocation
3427          * proportional to the data rate.
3428          */
3429
3430         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3431                 alloc_size -= minimum[plane_id];
3432                 alloc_size -= y_minimum[plane_id];
3433         }
3434
3435         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3436         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3437
3438         /*
3439          * 2. Distribute the remaining space in proportion to the amount of
3440          * data each plane needs to fetch from memory.
3441          *
3442          * FIXME: we may not allocate every single block here.
3443          */
3444         total_data_rate = skl_get_total_relative_data_rate(cstate,
3445                                                            plane_data_rate,
3446                                                            plane_y_data_rate);
3447         if (total_data_rate == 0)
3448                 return 0;
3449
3450         start = alloc->start;
3451         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3452                 unsigned int data_rate, y_data_rate;
3453                 uint16_t plane_blocks, y_plane_blocks = 0;
3454
3455                 if (plane_id == PLANE_CURSOR)
3456                         continue;
3457
3458                 data_rate = plane_data_rate[plane_id];
3459
3460                 /*
3461                  * allocation for (packed formats) or (uv-plane part of planar format):
3462                  * promote the expression to 64 bits to avoid overflowing, the
3463                  * result is < available as data_rate / total_data_rate < 1
3464                  */
3465                 plane_blocks = minimum[plane_id];
3466                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3467                                         total_data_rate);
3468
3469                 /* Leave disabled planes at (0,0) */
3470                 if (data_rate) {
3471                         ddb->plane[pipe][plane_id].start = start;
3472                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
3473                 }
3474
3475                 start += plane_blocks;
3476
3477                 /*
3478                  * allocation for y_plane part of planar format:
3479                  */
3480                 y_data_rate = plane_y_data_rate[plane_id];
3481
3482                 y_plane_blocks = y_minimum[plane_id];
3483                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3484                                         total_data_rate);
3485
3486                 if (y_data_rate) {
3487                         ddb->y_plane[pipe][plane_id].start = start;
3488                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3489                 }
3490
3491                 start += y_plane_blocks;
3492         }
3493
3494         return 0;
3495 }
3496
3497 /*
3498  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3499  * for the read latency) and cpp should always be <= 8, so that
3500  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3501  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3502 */
3503 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
3504                                          uint32_t latency)
3505 {
3506         uint32_t wm_intermediate_val;
3507         uint_fixed_16_16_t ret;
3508
3509         if (latency == 0)
3510                 return FP_16_16_MAX;
3511
3512         wm_intermediate_val = latency * pixel_rate * cpp;
3513         ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3514         return ret;
3515 }
3516
3517 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
3518                         uint32_t pipe_htotal,
3519                         uint32_t latency,
3520                         uint_fixed_16_16_t plane_blocks_per_line)
3521 {
3522         uint32_t wm_intermediate_val;
3523         uint_fixed_16_16_t ret;
3524
3525         if (latency == 0)
3526                 return FP_16_16_MAX;
3527
3528         wm_intermediate_val = latency * pixel_rate;
3529         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
3530                                            pipe_htotal * 1000);
3531         ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3532         return ret;
3533 }
3534
3535 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3536                                               struct intel_plane_state *pstate)
3537 {
3538         uint64_t adjusted_pixel_rate;
3539         uint64_t downscale_amount;
3540         uint64_t pixel_rate;
3541
3542         /* Shouldn't reach here on disabled planes... */
3543         if (WARN_ON(!pstate->base.visible))
3544                 return 0;
3545
3546         /*
3547          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3548          * with additional adjustments for plane-specific scaling.
3549          */
3550         adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3551         downscale_amount = skl_plane_downscale_amount(pstate);
3552
3553         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3554         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3555
3556         return pixel_rate;
3557 }
3558
3559 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3560                                 struct intel_crtc_state *cstate,
3561                                 struct intel_plane_state *intel_pstate,
3562                                 uint16_t ddb_allocation,
3563                                 int level,
3564                                 uint16_t *out_blocks, /* out */
3565                                 uint8_t *out_lines, /* out */
3566                                 bool *enabled /* out */)
3567 {
3568         struct drm_plane_state *pstate = &intel_pstate->base;
3569         struct drm_framebuffer *fb = pstate->fb;
3570         uint32_t latency = dev_priv->wm.skl_latency[level];
3571         uint_fixed_16_16_t method1, method2;
3572         uint_fixed_16_16_t plane_blocks_per_line;
3573         uint_fixed_16_16_t selected_result;
3574         uint32_t interm_pbpl;
3575         uint32_t plane_bytes_per_line;
3576         uint32_t res_blocks, res_lines;
3577         uint8_t cpp;
3578         uint32_t width = 0, height = 0;
3579         uint32_t plane_pixel_rate;
3580         uint_fixed_16_16_t y_tile_minimum;
3581         uint32_t y_min_scanlines;
3582         struct intel_atomic_state *state =
3583                 to_intel_atomic_state(cstate->base.state);
3584         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3585         bool y_tiled, x_tiled;
3586
3587         if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3588                 *enabled = false;
3589                 return 0;
3590         }
3591
3592         y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3593                   fb->modifier == I915_FORMAT_MOD_Yf_TILED;
3594         x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
3595
3596         /* Display WA #1141: kbl. */
3597         if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
3598                 latency += 4;
3599
3600         if (apply_memory_bw_wa && x_tiled)
3601                 latency += 15;
3602
3603         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3604         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3605
3606         if (drm_rotation_90_or_270(pstate->rotation))
3607                 swap(width, height);
3608
3609         cpp = fb->format->cpp[0];
3610         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3611
3612         if (drm_rotation_90_or_270(pstate->rotation)) {
3613                 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3614                         fb->format->cpp[1] :
3615                         fb->format->cpp[0];
3616
3617                 switch (cpp) {
3618                 case 1:
3619                         y_min_scanlines = 16;
3620                         break;
3621                 case 2:
3622                         y_min_scanlines = 8;
3623                         break;
3624                 case 4:
3625                         y_min_scanlines = 4;
3626                         break;
3627                 default:
3628                         MISSING_CASE(cpp);
3629                         return -EINVAL;
3630                 }
3631         } else {
3632                 y_min_scanlines = 4;
3633         }
3634
3635         if (apply_memory_bw_wa)
3636                 y_min_scanlines *= 2;
3637
3638         plane_bytes_per_line = width * cpp;
3639         if (y_tiled) {
3640                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
3641                                            y_min_scanlines, 512);
3642                 plane_blocks_per_line =
3643                       fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3644         } else if (x_tiled) {
3645                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
3646                 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3647         } else {
3648                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3649                 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3650         }
3651
3652         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3653         method2 = skl_wm_method2(plane_pixel_rate,
3654                                  cstate->base.adjusted_mode.crtc_htotal,
3655                                  latency,
3656                                  plane_blocks_per_line);
3657
3658         y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
3659                                              plane_blocks_per_line);
3660
3661         if (y_tiled) {
3662                 selected_result = max_fixed_16_16(method2, y_tile_minimum);
3663         } else {
3664                 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3665                     (plane_bytes_per_line / 512 < 1))
3666                         selected_result = method2;
3667                 else if ((ddb_allocation /
3668                         fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
3669                         selected_result = min_fixed_16_16(method1, method2);
3670                 else
3671                         selected_result = method1;
3672         }
3673
3674         res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
3675         res_lines = DIV_ROUND_UP(selected_result.val,
3676                                  plane_blocks_per_line.val);
3677
3678         if (level >= 1 && level <= 7) {
3679                 if (y_tiled) {
3680                         res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3681                         res_lines += y_min_scanlines;
3682                 } else {
3683                         res_blocks++;
3684                 }
3685         }
3686
3687         if (res_blocks >= ddb_allocation || res_lines > 31) {
3688                 *enabled = false;
3689
3690                 /*
3691                  * If there are no valid level 0 watermarks, then we can't
3692                  * support this display configuration.
3693                  */
3694                 if (level) {
3695                         return 0;
3696                 } else {
3697                         struct drm_plane *plane = pstate->plane;
3698
3699                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3700                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3701                                       plane->base.id, plane->name,
3702                                       res_blocks, ddb_allocation, res_lines);
3703                         return -EINVAL;
3704                 }
3705         }
3706
3707         *out_blocks = res_blocks;
3708         *out_lines = res_lines;
3709         *enabled = true;
3710
3711         return 0;
3712 }
3713
3714 static int
3715 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3716                      struct skl_ddb_allocation *ddb,
3717                      struct intel_crtc_state *cstate,
3718                      struct intel_plane *intel_plane,
3719                      int level,
3720                      struct skl_wm_level *result)
3721 {
3722         struct drm_atomic_state *state = cstate->base.state;
3723         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3724         struct drm_plane *plane = &intel_plane->base;
3725         struct intel_plane_state *intel_pstate = NULL;
3726         uint16_t ddb_blocks;
3727         enum pipe pipe = intel_crtc->pipe;
3728         int ret;
3729
3730         if (state)
3731                 intel_pstate =
3732                         intel_atomic_get_existing_plane_state(state,
3733                                                               intel_plane);
3734
3735         /*
3736          * Note: If we start supporting multiple pending atomic commits against
3737          * the same planes/CRTC's in the future, plane->state will no longer be
3738          * the correct pre-state to use for the calculations here and we'll
3739          * need to change where we get the 'unchanged' plane data from.
3740          *
3741          * For now this is fine because we only allow one queued commit against
3742          * a CRTC.  Even if the plane isn't modified by this transaction and we
3743          * don't have a plane lock, we still have the CRTC's lock, so we know
3744          * that no other transactions are racing with us to update it.
3745          */
3746         if (!intel_pstate)
3747                 intel_pstate = to_intel_plane_state(plane->state);
3748
3749         WARN_ON(!intel_pstate->base.fb);
3750
3751         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3752
3753         ret = skl_compute_plane_wm(dev_priv,
3754                                    cstate,
3755                                    intel_pstate,
3756                                    ddb_blocks,
3757                                    level,
3758                                    &result->plane_res_b,
3759                                    &result->plane_res_l,
3760                                    &result->plane_en);
3761         if (ret)
3762                 return ret;
3763
3764         return 0;
3765 }
3766
3767 static uint32_t
3768 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3769 {
3770         struct drm_atomic_state *state = cstate->base.state;
3771         struct drm_i915_private *dev_priv = to_i915(state->dev);
3772         uint32_t pixel_rate;
3773         uint32_t linetime_wm;
3774
3775         if (!cstate->base.active)
3776                 return 0;
3777
3778         pixel_rate = ilk_pipe_pixel_rate(cstate);
3779
3780         if (WARN_ON(pixel_rate == 0))
3781                 return 0;
3782
3783         linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
3784                                    1000, pixel_rate);
3785
3786         /* Display WA #1135: bxt. */
3787         if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
3788                 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
3789
3790         return linetime_wm;
3791 }
3792
3793 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3794                                       struct skl_wm_level *trans_wm /* out */)
3795 {
3796         if (!cstate->base.active)
3797                 return;
3798
3799         /* Until we know more, just disable transition WMs */
3800         trans_wm->plane_en = false;
3801 }
3802
3803 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3804                              struct skl_ddb_allocation *ddb,
3805                              struct skl_pipe_wm *pipe_wm)
3806 {
3807         struct drm_device *dev = cstate->base.crtc->dev;
3808         const struct drm_i915_private *dev_priv = to_i915(dev);
3809         struct intel_plane *intel_plane;
3810         struct skl_plane_wm *wm;
3811         int level, max_level = ilk_wm_max_level(dev_priv);
3812         int ret;
3813
3814         /*
3815          * We'll only calculate watermarks for planes that are actually
3816          * enabled, so make sure all other planes are set as disabled.
3817          */
3818         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3819
3820         for_each_intel_plane_mask(&dev_priv->drm,
3821                                   intel_plane,
3822                                   cstate->base.plane_mask) {
3823                 wm = &pipe_wm->planes[intel_plane->id];
3824
3825                 for (level = 0; level <= max_level; level++) {
3826                         ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3827                                                    intel_plane, level,
3828                                                    &wm->wm[level]);
3829                         if (ret)
3830                                 return ret;
3831                 }
3832                 skl_compute_transition_wm(cstate, &wm->trans_wm);
3833         }
3834         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3835
3836         return 0;
3837 }
3838
3839 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3840                                 i915_reg_t reg,
3841                                 const struct skl_ddb_entry *entry)
3842 {
3843         if (entry->end)
3844                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3845         else
3846                 I915_WRITE(reg, 0);
3847 }
3848
3849 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3850                                i915_reg_t reg,
3851                                const struct skl_wm_level *level)
3852 {
3853         uint32_t val = 0;
3854
3855         if (level->plane_en) {
3856                 val |= PLANE_WM_EN;
3857                 val |= level->plane_res_b;
3858                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3859         }
3860
3861         I915_WRITE(reg, val);
3862 }
3863
3864 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3865                                const struct skl_plane_wm *wm,
3866                                const struct skl_ddb_allocation *ddb,
3867                                enum plane_id plane_id)
3868 {
3869         struct drm_crtc *crtc = &intel_crtc->base;
3870         struct drm_device *dev = crtc->dev;
3871         struct drm_i915_private *dev_priv = to_i915(dev);
3872         int level, max_level = ilk_wm_max_level(dev_priv);
3873         enum pipe pipe = intel_crtc->pipe;
3874
3875         for (level = 0; level <= max_level; level++) {
3876                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3877                                    &wm->wm[level]);
3878         }
3879         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3880                            &wm->trans_wm);
3881
3882         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
3883                             &ddb->plane[pipe][plane_id]);
3884         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
3885                             &ddb->y_plane[pipe][plane_id]);
3886 }
3887
3888 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3889                                 const struct skl_plane_wm *wm,
3890                                 const struct skl_ddb_allocation *ddb)
3891 {
3892         struct drm_crtc *crtc = &intel_crtc->base;
3893         struct drm_device *dev = crtc->dev;
3894         struct drm_i915_private *dev_priv = to_i915(dev);
3895         int level, max_level = ilk_wm_max_level(dev_priv);
3896         enum pipe pipe = intel_crtc->pipe;
3897
3898         for (level = 0; level <= max_level; level++) {
3899                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3900                                    &wm->wm[level]);
3901         }
3902         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3903
3904         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3905                             &ddb->plane[pipe][PLANE_CURSOR]);
3906 }
3907
3908 bool skl_wm_level_equals(const struct skl_wm_level *l1,
3909                          const struct skl_wm_level *l2)
3910 {
3911         if (l1->plane_en != l2->plane_en)
3912                 return false;
3913
3914         /* If both planes aren't enabled, the rest shouldn't matter */
3915         if (!l1->plane_en)
3916                 return true;
3917
3918         return (l1->plane_res_l == l2->plane_res_l &&
3919                 l1->plane_res_b == l2->plane_res_b);
3920 }
3921
3922 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3923                                            const struct skl_ddb_entry *b)
3924 {
3925         return a->start < b->end && b->start < a->end;
3926 }
3927
3928 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3929                                  const struct skl_ddb_entry *ddb,
3930                                  int ignore)
3931 {
3932         int i;
3933
3934         for (i = 0; i < I915_MAX_PIPES; i++)
3935                 if (i != ignore && entries[i] &&
3936                     skl_ddb_entries_overlap(ddb, entries[i]))
3937                         return true;
3938
3939         return false;
3940 }
3941
3942 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3943                               const struct skl_pipe_wm *old_pipe_wm,
3944                               struct skl_pipe_wm *pipe_wm, /* out */
3945                               struct skl_ddb_allocation *ddb, /* out */
3946                               bool *changed /* out */)
3947 {
3948         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3949         int ret;
3950
3951         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3952         if (ret)
3953                 return ret;
3954
3955         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3956                 *changed = false;
3957         else
3958                 *changed = true;
3959
3960         return 0;
3961 }
3962
3963 static uint32_t
3964 pipes_modified(struct drm_atomic_state *state)
3965 {
3966         struct drm_crtc *crtc;
3967         struct drm_crtc_state *cstate;
3968         uint32_t i, ret = 0;
3969
3970         for_each_crtc_in_state(state, crtc, cstate, i)
3971                 ret |= drm_crtc_mask(crtc);
3972
3973         return ret;
3974 }
3975
3976 static int
3977 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3978 {
3979         struct drm_atomic_state *state = cstate->base.state;
3980         struct drm_device *dev = state->dev;
3981         struct drm_crtc *crtc = cstate->base.crtc;
3982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3983         struct drm_i915_private *dev_priv = to_i915(dev);
3984         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3985         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3986         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3987         struct drm_plane_state *plane_state;
3988         struct drm_plane *plane;
3989         enum pipe pipe = intel_crtc->pipe;
3990
3991         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3992
3993         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3994                 enum plane_id plane_id = to_intel_plane(plane)->id;
3995
3996                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
3997                                         &new_ddb->plane[pipe][plane_id]) &&
3998                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
3999                                         &new_ddb->y_plane[pipe][plane_id]))
4000                         continue;
4001
4002                 plane_state = drm_atomic_get_plane_state(state, plane);
4003                 if (IS_ERR(plane_state))
4004                         return PTR_ERR(plane_state);
4005         }
4006
4007         return 0;
4008 }
4009
4010 static int
4011 skl_compute_ddb(struct drm_atomic_state *state)
4012 {
4013         struct drm_device *dev = state->dev;
4014         struct drm_i915_private *dev_priv = to_i915(dev);
4015         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4016         struct intel_crtc *intel_crtc;
4017         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4018         uint32_t realloc_pipes = pipes_modified(state);
4019         int ret;
4020
4021         /*
4022          * If this is our first atomic update following hardware readout,
4023          * we can't trust the DDB that the BIOS programmed for us.  Let's
4024          * pretend that all pipes switched active status so that we'll
4025          * ensure a full DDB recompute.
4026          */
4027         if (dev_priv->wm.distrust_bios_wm) {
4028                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4029                                        state->acquire_ctx);
4030                 if (ret)
4031                         return ret;
4032
4033                 intel_state->active_pipe_changes = ~0;
4034
4035                 /*
4036                  * We usually only initialize intel_state->active_crtcs if we
4037                  * we're doing a modeset; make sure this field is always
4038                  * initialized during the sanitization process that happens
4039                  * on the first commit too.
4040                  */
4041                 if (!intel_state->modeset)
4042                         intel_state->active_crtcs = dev_priv->active_crtcs;
4043         }
4044
4045         /*
4046          * If the modeset changes which CRTC's are active, we need to
4047          * recompute the DDB allocation for *all* active pipes, even
4048          * those that weren't otherwise being modified in any way by this
4049          * atomic commit.  Due to the shrinking of the per-pipe allocations
4050          * when new active CRTC's are added, it's possible for a pipe that
4051          * we were already using and aren't changing at all here to suddenly
4052          * become invalid if its DDB needs exceeds its new allocation.
4053          *
4054          * Note that if we wind up doing a full DDB recompute, we can't let
4055          * any other display updates race with this transaction, so we need
4056          * to grab the lock on *all* CRTC's.
4057          */
4058         if (intel_state->active_pipe_changes) {
4059                 realloc_pipes = ~0;
4060                 intel_state->wm_results.dirty_pipes = ~0;
4061         }
4062
4063         /*
4064          * We're not recomputing for the pipes not included in the commit, so
4065          * make sure we start with the current state.
4066          */
4067         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4068
4069         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4070                 struct intel_crtc_state *cstate;
4071
4072                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4073                 if (IS_ERR(cstate))
4074                         return PTR_ERR(cstate);
4075
4076                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4077                 if (ret)
4078                         return ret;
4079
4080                 ret = skl_ddb_add_affected_planes(cstate);
4081                 if (ret)
4082                         return ret;
4083         }
4084
4085         return 0;
4086 }
4087
4088 static void
4089 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4090                      struct skl_wm_values *src,
4091                      enum pipe pipe)
4092 {
4093         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4094                sizeof(dst->ddb.y_plane[pipe]));
4095         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4096                sizeof(dst->ddb.plane[pipe]));
4097 }
4098
4099 static void
4100 skl_print_wm_changes(const struct drm_atomic_state *state)
4101 {
4102         const struct drm_device *dev = state->dev;
4103         const struct drm_i915_private *dev_priv = to_i915(dev);
4104         const struct intel_atomic_state *intel_state =
4105                 to_intel_atomic_state(state);
4106         const struct drm_crtc *crtc;
4107         const struct drm_crtc_state *cstate;
4108         const struct intel_plane *intel_plane;
4109         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4110         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4111         int i;
4112
4113         for_each_crtc_in_state(state, crtc, cstate, i) {
4114                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115                 enum pipe pipe = intel_crtc->pipe;
4116
4117                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4118                         enum plane_id plane_id = intel_plane->id;
4119                         const struct skl_ddb_entry *old, *new;
4120
4121                         old = &old_ddb->plane[pipe][plane_id];
4122                         new = &new_ddb->plane[pipe][plane_id];
4123
4124                         if (skl_ddb_entry_equal(old, new))
4125                                 continue;
4126
4127                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4128                                          intel_plane->base.base.id,
4129                                          intel_plane->base.name,
4130                                          old->start, old->end,
4131                                          new->start, new->end);
4132                 }
4133         }
4134 }
4135
4136 static int
4137 skl_compute_wm(struct drm_atomic_state *state)
4138 {
4139         struct drm_crtc *crtc;
4140         struct drm_crtc_state *cstate;
4141         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4142         struct skl_wm_values *results = &intel_state->wm_results;
4143         struct skl_pipe_wm *pipe_wm;
4144         bool changed = false;
4145         int ret, i;
4146
4147         /*
4148          * If this transaction isn't actually touching any CRTC's, don't
4149          * bother with watermark calculation.  Note that if we pass this
4150          * test, we're guaranteed to hold at least one CRTC state mutex,
4151          * which means we can safely use values like dev_priv->active_crtcs
4152          * since any racing commits that want to update them would need to
4153          * hold _all_ CRTC state mutexes.
4154          */
4155         for_each_crtc_in_state(state, crtc, cstate, i)
4156                 changed = true;
4157         if (!changed)
4158                 return 0;
4159
4160         /* Clear all dirty flags */
4161         results->dirty_pipes = 0;
4162
4163         ret = skl_compute_ddb(state);
4164         if (ret)
4165                 return ret;
4166
4167         /*
4168          * Calculate WM's for all pipes that are part of this transaction.
4169          * Note that the DDB allocation above may have added more CRTC's that
4170          * weren't otherwise being modified (and set bits in dirty_pipes) if
4171          * pipe allocations had to change.
4172          *
4173          * FIXME:  Now that we're doing this in the atomic check phase, we
4174          * should allow skl_update_pipe_wm() to return failure in cases where
4175          * no suitable watermark values can be found.
4176          */
4177         for_each_crtc_in_state(state, crtc, cstate, i) {
4178                 struct intel_crtc_state *intel_cstate =
4179                         to_intel_crtc_state(cstate);
4180                 const struct skl_pipe_wm *old_pipe_wm =
4181                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4182
4183                 pipe_wm = &intel_cstate->wm.skl.optimal;
4184                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4185                                          &results->ddb, &changed);
4186                 if (ret)
4187                         return ret;
4188
4189                 if (changed)
4190                         results->dirty_pipes |= drm_crtc_mask(crtc);
4191
4192                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4193                         /* This pipe's WM's did not change */
4194                         continue;
4195
4196                 intel_cstate->update_wm_pre = true;
4197         }
4198
4199         skl_print_wm_changes(state);
4200
4201         return 0;
4202 }
4203
4204 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4205                                       struct intel_crtc_state *cstate)
4206 {
4207         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4208         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4209         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4210         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4211         enum pipe pipe = crtc->pipe;
4212         enum plane_id plane_id;
4213
4214         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4215                 return;
4216
4217         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4218
4219         for_each_plane_id_on_crtc(crtc, plane_id) {
4220                 if (plane_id != PLANE_CURSOR)
4221                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4222                                            ddb, plane_id);
4223                 else
4224                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4225                                             ddb);
4226         }
4227 }
4228
4229 static void skl_initial_wm(struct intel_atomic_state *state,
4230                            struct intel_crtc_state *cstate)
4231 {
4232         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4233         struct drm_device *dev = intel_crtc->base.dev;
4234         struct drm_i915_private *dev_priv = to_i915(dev);
4235         struct skl_wm_values *results = &state->wm_results;
4236         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4237         enum pipe pipe = intel_crtc->pipe;
4238
4239         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4240                 return;
4241
4242         mutex_lock(&dev_priv->wm.wm_mutex);
4243
4244         if (cstate->base.active_changed)
4245                 skl_atomic_update_crtc_wm(state, cstate);
4246
4247         skl_copy_wm_for_pipe(hw_vals, results, pipe);
4248
4249         mutex_unlock(&dev_priv->wm.wm_mutex);
4250 }
4251
4252 static void ilk_compute_wm_config(struct drm_device *dev,
4253                                   struct intel_wm_config *config)
4254 {
4255         struct intel_crtc *crtc;
4256
4257         /* Compute the currently _active_ config */
4258         for_each_intel_crtc(dev, crtc) {
4259                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4260
4261                 if (!wm->pipe_enabled)
4262                         continue;
4263
4264                 config->sprites_enabled |= wm->sprites_enabled;
4265                 config->sprites_scaled |= wm->sprites_scaled;
4266                 config->num_pipes_active++;
4267         }
4268 }
4269
4270 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4271 {
4272         struct drm_device *dev = &dev_priv->drm;
4273         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4274         struct ilk_wm_maximums max;
4275         struct intel_wm_config config = {};
4276         struct ilk_wm_values results = {};
4277         enum intel_ddb_partitioning partitioning;
4278
4279         ilk_compute_wm_config(dev, &config);
4280
4281         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4282         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4283
4284         /* 5/6 split only in single pipe config on IVB+ */
4285         if (INTEL_GEN(dev_priv) >= 7 &&
4286             config.num_pipes_active == 1 && config.sprites_enabled) {
4287                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4288                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4289
4290                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4291         } else {
4292                 best_lp_wm = &lp_wm_1_2;
4293         }
4294
4295         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4296                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4297
4298         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4299
4300         ilk_write_wm_values(dev_priv, &results);
4301 }
4302
4303 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4304                                    struct intel_crtc_state *cstate)
4305 {
4306         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4307         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4308
4309         mutex_lock(&dev_priv->wm.wm_mutex);
4310         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4311         ilk_program_watermarks(dev_priv);
4312         mutex_unlock(&dev_priv->wm.wm_mutex);
4313 }
4314
4315 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4316                                     struct intel_crtc_state *cstate)
4317 {
4318         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4319         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4320
4321         mutex_lock(&dev_priv->wm.wm_mutex);
4322         if (cstate->wm.need_postvbl_update) {
4323                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4324                 ilk_program_watermarks(dev_priv);
4325         }
4326         mutex_unlock(&dev_priv->wm.wm_mutex);
4327 }
4328
4329 static inline void skl_wm_level_from_reg_val(uint32_t val,
4330                                              struct skl_wm_level *level)
4331 {
4332         level->plane_en = val & PLANE_WM_EN;
4333         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4334         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4335                 PLANE_WM_LINES_MASK;
4336 }
4337
4338 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4339                               struct skl_pipe_wm *out)
4340 {
4341         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4343         enum pipe pipe = intel_crtc->pipe;
4344         int level, max_level;
4345         enum plane_id plane_id;
4346         uint32_t val;
4347
4348         max_level = ilk_wm_max_level(dev_priv);
4349
4350         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4351                 struct skl_plane_wm *wm = &out->planes[plane_id];
4352
4353                 for (level = 0; level <= max_level; level++) {
4354                         if (plane_id != PLANE_CURSOR)
4355                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
4356                         else
4357                                 val = I915_READ(CUR_WM(pipe, level));
4358
4359                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
4360                 }
4361
4362                 if (plane_id != PLANE_CURSOR)
4363                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4364                 else
4365                         val = I915_READ(CUR_WM_TRANS(pipe));
4366
4367                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4368         }
4369
4370         if (!intel_crtc->active)
4371                 return;
4372
4373         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4374 }
4375
4376 void skl_wm_get_hw_state(struct drm_device *dev)
4377 {
4378         struct drm_i915_private *dev_priv = to_i915(dev);
4379         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4380         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4381         struct drm_crtc *crtc;
4382         struct intel_crtc *intel_crtc;
4383         struct intel_crtc_state *cstate;
4384
4385         skl_ddb_get_hw_state(dev_priv, ddb);
4386         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4387                 intel_crtc = to_intel_crtc(crtc);
4388                 cstate = to_intel_crtc_state(crtc->state);
4389
4390                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4391
4392                 if (intel_crtc->active)
4393                         hw->dirty_pipes |= drm_crtc_mask(crtc);
4394         }
4395
4396         if (dev_priv->active_crtcs) {
4397                 /* Fully recompute DDB on first atomic commit */
4398                 dev_priv->wm.distrust_bios_wm = true;
4399         } else {
4400                 /* Easy/common case; just sanitize DDB now if everything off */
4401                 memset(ddb, 0, sizeof(*ddb));
4402         }
4403 }
4404
4405 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4406 {
4407         struct drm_device *dev = crtc->dev;
4408         struct drm_i915_private *dev_priv = to_i915(dev);
4409         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4411         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4412         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4413         enum pipe pipe = intel_crtc->pipe;
4414         static const i915_reg_t wm0_pipe_reg[] = {
4415                 [PIPE_A] = WM0_PIPEA_ILK,
4416                 [PIPE_B] = WM0_PIPEB_ILK,
4417                 [PIPE_C] = WM0_PIPEC_IVB,
4418         };
4419
4420         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4421         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4422                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4423
4424         memset(active, 0, sizeof(*active));
4425
4426         active->pipe_enabled = intel_crtc->active;
4427
4428         if (active->pipe_enabled) {
4429                 u32 tmp = hw->wm_pipe[pipe];
4430
4431                 /*
4432                  * For active pipes LP0 watermark is marked as
4433                  * enabled, and LP1+ watermaks as disabled since
4434                  * we can't really reverse compute them in case
4435                  * multiple pipes are active.
4436                  */
4437                 active->wm[0].enable = true;
4438                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4439                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4440                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4441                 active->linetime = hw->wm_linetime[pipe];
4442         } else {
4443                 int level, max_level = ilk_wm_max_level(dev_priv);
4444
4445                 /*
4446                  * For inactive pipes, all watermark levels
4447                  * should be marked as enabled but zeroed,
4448                  * which is what we'd compute them to.
4449                  */
4450                 for (level = 0; level <= max_level; level++)
4451                         active->wm[level].enable = true;
4452         }
4453
4454         intel_crtc->wm.active.ilk = *active;
4455 }
4456
4457 #define _FW_WM(value, plane) \
4458         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4459 #define _FW_WM_VLV(value, plane) \
4460         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4461
4462 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4463                                struct vlv_wm_values *wm)
4464 {
4465         enum pipe pipe;
4466         uint32_t tmp;
4467
4468         for_each_pipe(dev_priv, pipe) {
4469                 tmp = I915_READ(VLV_DDL(pipe));
4470
4471                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
4472                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4473                 wm->ddl[pipe].plane[PLANE_CURSOR] =
4474                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4475                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
4476                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4477                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
4478                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4479         }
4480
4481         tmp = I915_READ(DSPFW1);
4482         wm->sr.plane = _FW_WM(tmp, SR);
4483         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
4484         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
4485         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4486
4487         tmp = I915_READ(DSPFW2);
4488         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
4489         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
4490         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4491
4492         tmp = I915_READ(DSPFW3);
4493         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4494
4495         if (IS_CHERRYVIEW(dev_priv)) {
4496                 tmp = I915_READ(DSPFW7_CHV);
4497                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4498                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4499
4500                 tmp = I915_READ(DSPFW8_CHV);
4501                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
4502                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4503
4504                 tmp = I915_READ(DSPFW9_CHV);
4505                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
4506                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4507
4508                 tmp = I915_READ(DSPHOWM);
4509                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4510                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4511                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4512                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
4513                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4514                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4515                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4516                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4517                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4518                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4519         } else {
4520                 tmp = I915_READ(DSPFW7);
4521                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4522                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4523
4524                 tmp = I915_READ(DSPHOWM);
4525                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4526                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4527                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4528                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4529                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4530                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4531                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4532         }
4533 }
4534
4535 #undef _FW_WM
4536 #undef _FW_WM_VLV
4537
4538 void vlv_wm_get_hw_state(struct drm_device *dev)
4539 {
4540         struct drm_i915_private *dev_priv = to_i915(dev);
4541         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4542         struct intel_plane *plane;
4543         enum pipe pipe;
4544         u32 val;
4545
4546         vlv_read_wm_values(dev_priv, wm);
4547
4548         for_each_intel_plane(dev, plane)
4549                 plane->wm.fifo_size = vlv_get_fifo_size(plane);
4550
4551         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4552         wm->level = VLV_WM_LEVEL_PM2;
4553
4554         if (IS_CHERRYVIEW(dev_priv)) {
4555                 mutex_lock(&dev_priv->rps.hw_lock);
4556
4557                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4558                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4559                         wm->level = VLV_WM_LEVEL_PM5;
4560
4561                 /*
4562                  * If DDR DVFS is disabled in the BIOS, Punit
4563                  * will never ack the request. So if that happens
4564                  * assume we don't have to enable/disable DDR DVFS
4565                  * dynamically. To test that just set the REQ_ACK
4566                  * bit to poke the Punit, but don't change the
4567                  * HIGH/LOW bits so that we don't actually change
4568                  * the current state.
4569                  */
4570                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4571                 val |= FORCE_DDR_FREQ_REQ_ACK;
4572                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4573
4574                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4575                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4576                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4577                                       "assuming DDR DVFS is disabled\n");
4578                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4579                 } else {
4580                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4581                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4582                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4583                 }
4584
4585                 mutex_unlock(&dev_priv->rps.hw_lock);
4586         }
4587
4588         for_each_pipe(dev_priv, pipe)
4589                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4590                               pipe_name(pipe),
4591                               wm->pipe[pipe].plane[PLANE_PRIMARY],
4592                               wm->pipe[pipe].plane[PLANE_CURSOR],
4593                               wm->pipe[pipe].plane[PLANE_SPRITE0],
4594                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
4595
4596         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4597                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4598 }
4599
4600 void ilk_wm_get_hw_state(struct drm_device *dev)
4601 {
4602         struct drm_i915_private *dev_priv = to_i915(dev);
4603         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4604         struct drm_crtc *crtc;
4605
4606         for_each_crtc(dev, crtc)
4607                 ilk_pipe_wm_get_hw_state(crtc);
4608
4609         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4610         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4611         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4612
4613         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4614         if (INTEL_GEN(dev_priv) >= 7) {
4615                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4616                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4617         }
4618
4619         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4620                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4621                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4622         else if (IS_IVYBRIDGE(dev_priv))
4623                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4624                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4625
4626         hw->enable_fbc_wm =
4627                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4628 }
4629
4630 /**
4631  * intel_update_watermarks - update FIFO watermark values based on current modes
4632  *
4633  * Calculate watermark values for the various WM regs based on current mode
4634  * and plane configuration.
4635  *
4636  * There are several cases to deal with here:
4637  *   - normal (i.e. non-self-refresh)
4638  *   - self-refresh (SR) mode
4639  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4640  *   - lines are small relative to FIFO size (buffer can hold more than 2
4641  *     lines), so need to account for TLB latency
4642  *
4643  *   The normal calculation is:
4644  *     watermark = dotclock * bytes per pixel * latency
4645  *   where latency is platform & configuration dependent (we assume pessimal
4646  *   values here).
4647  *
4648  *   The SR calculation is:
4649  *     watermark = (trunc(latency/line time)+1) * surface width *
4650  *       bytes per pixel
4651  *   where
4652  *     line time = htotal / dotclock
4653  *     surface width = hdisplay for normal plane and 64 for cursor
4654  *   and latency is assumed to be high, as above.
4655  *
4656  * The final value programmed to the register should always be rounded up,
4657  * and include an extra 2 entries to account for clock crossings.
4658  *
4659  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4660  * to set the non-SR watermarks to 8.
4661  */
4662 void intel_update_watermarks(struct intel_crtc *crtc)
4663 {
4664         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4665
4666         if (dev_priv->display.update_wm)
4667                 dev_priv->display.update_wm(crtc);
4668 }
4669
4670 /*
4671  * Lock protecting IPS related data structures
4672  */
4673 DEFINE_SPINLOCK(mchdev_lock);
4674
4675 /* Global for IPS driver to get at the current i915 device. Protected by
4676  * mchdev_lock. */
4677 static struct drm_i915_private *i915_mch_dev;
4678
4679 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4680 {
4681         u16 rgvswctl;
4682
4683         assert_spin_locked(&mchdev_lock);
4684
4685         rgvswctl = I915_READ16(MEMSWCTL);
4686         if (rgvswctl & MEMCTL_CMD_STS) {
4687                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4688                 return false; /* still busy with another command */
4689         }
4690
4691         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4692                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4693         I915_WRITE16(MEMSWCTL, rgvswctl);
4694         POSTING_READ16(MEMSWCTL);
4695
4696         rgvswctl |= MEMCTL_CMD_STS;
4697         I915_WRITE16(MEMSWCTL, rgvswctl);
4698
4699         return true;
4700 }
4701
4702 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4703 {
4704         u32 rgvmodectl;
4705         u8 fmax, fmin, fstart, vstart;
4706
4707         spin_lock_irq(&mchdev_lock);
4708
4709         rgvmodectl = I915_READ(MEMMODECTL);
4710
4711         /* Enable temp reporting */
4712         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4713         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4714
4715         /* 100ms RC evaluation intervals */
4716         I915_WRITE(RCUPEI, 100000);
4717         I915_WRITE(RCDNEI, 100000);
4718
4719         /* Set max/min thresholds to 90ms and 80ms respectively */
4720         I915_WRITE(RCBMAXAVG, 90000);
4721         I915_WRITE(RCBMINAVG, 80000);
4722
4723         I915_WRITE(MEMIHYST, 1);
4724
4725         /* Set up min, max, and cur for interrupt handling */
4726         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4727         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4728         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4729                 MEMMODE_FSTART_SHIFT;
4730
4731         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4732                 PXVFREQ_PX_SHIFT;
4733
4734         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4735         dev_priv->ips.fstart = fstart;
4736
4737         dev_priv->ips.max_delay = fstart;
4738         dev_priv->ips.min_delay = fmin;
4739         dev_priv->ips.cur_delay = fstart;
4740
4741         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4742                          fmax, fmin, fstart);
4743
4744         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4745
4746         /*
4747          * Interrupts will be enabled in ironlake_irq_postinstall
4748          */
4749
4750         I915_WRITE(VIDSTART, vstart);
4751         POSTING_READ(VIDSTART);
4752
4753         rgvmodectl |= MEMMODE_SWMODE_EN;
4754         I915_WRITE(MEMMODECTL, rgvmodectl);
4755
4756         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4757                 DRM_ERROR("stuck trying to change perf mode\n");
4758         mdelay(1);
4759
4760         ironlake_set_drps(dev_priv, fstart);
4761
4762         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4763                 I915_READ(DDREC) + I915_READ(CSIEC);
4764         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4765         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4766         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4767
4768         spin_unlock_irq(&mchdev_lock);
4769 }
4770
4771 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4772 {
4773         u16 rgvswctl;
4774
4775         spin_lock_irq(&mchdev_lock);
4776
4777         rgvswctl = I915_READ16(MEMSWCTL);
4778
4779         /* Ack interrupts, disable EFC interrupt */
4780         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4781         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4782         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4783         I915_WRITE(DEIIR, DE_PCU_EVENT);
4784         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4785
4786         /* Go back to the starting frequency */
4787         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4788         mdelay(1);
4789         rgvswctl |= MEMCTL_CMD_STS;
4790         I915_WRITE(MEMSWCTL, rgvswctl);
4791         mdelay(1);
4792
4793         spin_unlock_irq(&mchdev_lock);
4794 }
4795
4796 /* There's a funny hw issue where the hw returns all 0 when reading from
4797  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4798  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4799  * all limits and the gpu stuck at whatever frequency it is at atm).
4800  */
4801 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4802 {
4803         u32 limits;
4804
4805         /* Only set the down limit when we've reached the lowest level to avoid
4806          * getting more interrupts, otherwise leave this clear. This prevents a
4807          * race in the hw when coming out of rc6: There's a tiny window where
4808          * the hw runs at the minimal clock before selecting the desired
4809          * frequency, if the down threshold expires in that window we will not
4810          * receive a down interrupt. */
4811         if (IS_GEN9(dev_priv)) {
4812                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4813                 if (val <= dev_priv->rps.min_freq_softlimit)
4814                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4815         } else {
4816                 limits = dev_priv->rps.max_freq_softlimit << 24;
4817                 if (val <= dev_priv->rps.min_freq_softlimit)
4818                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4819         }
4820
4821         return limits;
4822 }
4823
4824 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4825 {
4826         int new_power;
4827         u32 threshold_up = 0, threshold_down = 0; /* in % */
4828         u32 ei_up = 0, ei_down = 0;
4829
4830         new_power = dev_priv->rps.power;
4831         switch (dev_priv->rps.power) {
4832         case LOW_POWER:
4833                 if (val > dev_priv->rps.efficient_freq + 1 &&
4834                     val > dev_priv->rps.cur_freq)
4835                         new_power = BETWEEN;
4836                 break;
4837
4838         case BETWEEN:
4839                 if (val <= dev_priv->rps.efficient_freq &&
4840                     val < dev_priv->rps.cur_freq)
4841                         new_power = LOW_POWER;
4842                 else if (val >= dev_priv->rps.rp0_freq &&
4843                          val > dev_priv->rps.cur_freq)
4844                         new_power = HIGH_POWER;
4845                 break;
4846
4847         case HIGH_POWER:
4848                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4849                     val < dev_priv->rps.cur_freq)
4850                         new_power = BETWEEN;
4851                 break;
4852         }
4853         /* Max/min bins are special */
4854         if (val <= dev_priv->rps.min_freq_softlimit)
4855                 new_power = LOW_POWER;
4856         if (val >= dev_priv->rps.max_freq_softlimit)
4857                 new_power = HIGH_POWER;
4858         if (new_power == dev_priv->rps.power)
4859                 return;
4860
4861         /* Note the units here are not exactly 1us, but 1280ns. */
4862         switch (new_power) {
4863         case LOW_POWER:
4864                 /* Upclock if more than 95% busy over 16ms */
4865                 ei_up = 16000;
4866                 threshold_up = 95;
4867
4868                 /* Downclock if less than 85% busy over 32ms */
4869                 ei_down = 32000;
4870                 threshold_down = 85;
4871                 break;
4872
4873         case BETWEEN:
4874                 /* Upclock if more than 90% busy over 13ms */
4875                 ei_up = 13000;
4876                 threshold_up = 90;
4877
4878                 /* Downclock if less than 75% busy over 32ms */
4879                 ei_down = 32000;
4880                 threshold_down = 75;
4881                 break;
4882
4883         case HIGH_POWER:
4884                 /* Upclock if more than 85% busy over 10ms */
4885                 ei_up = 10000;
4886                 threshold_up = 85;
4887
4888                 /* Downclock if less than 60% busy over 32ms */
4889                 ei_down = 32000;
4890                 threshold_down = 60;
4891                 break;
4892         }
4893
4894         /* When byt can survive without system hang with dynamic
4895          * sw freq adjustments, this restriction can be lifted.
4896          */
4897         if (IS_VALLEYVIEW(dev_priv))
4898                 goto skip_hw_write;
4899
4900         I915_WRITE(GEN6_RP_UP_EI,
4901                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4902         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4903                    GT_INTERVAL_FROM_US(dev_priv,
4904                                        ei_up * threshold_up / 100));
4905
4906         I915_WRITE(GEN6_RP_DOWN_EI,
4907                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4908         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4909                    GT_INTERVAL_FROM_US(dev_priv,
4910                                        ei_down * threshold_down / 100));
4911
4912         I915_WRITE(GEN6_RP_CONTROL,
4913                    GEN6_RP_MEDIA_TURBO |
4914                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4915                    GEN6_RP_MEDIA_IS_GFX |
4916                    GEN6_RP_ENABLE |
4917                    GEN6_RP_UP_BUSY_AVG |
4918                    GEN6_RP_DOWN_IDLE_AVG);
4919
4920 skip_hw_write:
4921         dev_priv->rps.power = new_power;
4922         dev_priv->rps.up_threshold = threshold_up;
4923         dev_priv->rps.down_threshold = threshold_down;
4924         dev_priv->rps.last_adj = 0;
4925 }
4926
4927 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4928 {
4929         u32 mask = 0;
4930
4931         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4932         if (val > dev_priv->rps.min_freq_softlimit)
4933                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4934         if (val < dev_priv->rps.max_freq_softlimit)
4935                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4936
4937         mask &= dev_priv->pm_rps_events;
4938
4939         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4940 }
4941
4942 /* gen6_set_rps is called to update the frequency request, but should also be
4943  * called when the range (min_delay and max_delay) is modified so that we can
4944  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4945 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4946 {
4947         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4948         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4949                 return;
4950
4951         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4952         WARN_ON(val > dev_priv->rps.max_freq);
4953         WARN_ON(val < dev_priv->rps.min_freq);
4954
4955         /* min/max delay may still have been modified so be sure to
4956          * write the limits value.
4957          */
4958         if (val != dev_priv->rps.cur_freq) {
4959                 gen6_set_rps_thresholds(dev_priv, val);
4960
4961                 if (IS_GEN9(dev_priv))
4962                         I915_WRITE(GEN6_RPNSWREQ,
4963                                    GEN9_FREQUENCY(val));
4964                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4965                         I915_WRITE(GEN6_RPNSWREQ,
4966                                    HSW_FREQUENCY(val));
4967                 else
4968                         I915_WRITE(GEN6_RPNSWREQ,
4969                                    GEN6_FREQUENCY(val) |
4970                                    GEN6_OFFSET(0) |
4971                                    GEN6_AGGRESSIVE_TURBO);
4972         }
4973
4974         /* Make sure we continue to get interrupts
4975          * until we hit the minimum or maximum frequencies.
4976          */
4977         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4978         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4979
4980         POSTING_READ(GEN6_RPNSWREQ);
4981
4982         dev_priv->rps.cur_freq = val;
4983         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4984 }
4985
4986 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4987 {
4988         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4989         WARN_ON(val > dev_priv->rps.max_freq);
4990         WARN_ON(val < dev_priv->rps.min_freq);
4991
4992         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4993                       "Odd GPU freq value\n"))
4994                 val &= ~1;
4995
4996         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4997
4998         if (val != dev_priv->rps.cur_freq) {
4999                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5000                 if (!IS_CHERRYVIEW(dev_priv))
5001                         gen6_set_rps_thresholds(dev_priv, val);
5002         }
5003
5004         dev_priv->rps.cur_freq = val;
5005         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5006 }
5007
5008 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5009  *
5010  * * If Gfx is Idle, then
5011  * 1. Forcewake Media well.
5012  * 2. Request idle freq.
5013  * 3. Release Forcewake of Media well.
5014 */
5015 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5016 {
5017         u32 val = dev_priv->rps.idle_freq;
5018
5019         if (dev_priv->rps.cur_freq <= val)
5020                 return;
5021
5022         /* The punit delays the write of the frequency and voltage until it
5023          * determines the GPU is awake. During normal usage we don't want to
5024          * waste power changing the frequency if the GPU is sleeping (rc6).
5025          * However, the GPU and driver is now idle and we do not want to delay
5026          * switching to minimum voltage (reducing power whilst idle) as we do
5027          * not expect to be woken in the near future and so must flush the
5028          * change by waking the device.
5029          *
5030          * We choose to take the media powerwell (either would do to trick the
5031          * punit into committing the voltage change) as that takes a lot less
5032          * power than the render powerwell.
5033          */
5034         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5035         valleyview_set_rps(dev_priv, val);
5036         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5037 }
5038
5039 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5040 {
5041         mutex_lock(&dev_priv->rps.hw_lock);
5042         if (dev_priv->rps.enabled) {
5043                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5044                         gen6_rps_reset_ei(dev_priv);
5045                 I915_WRITE(GEN6_PMINTRMSK,
5046                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5047
5048                 gen6_enable_rps_interrupts(dev_priv);
5049
5050                 /* Ensure we start at the user's desired frequency */
5051                 intel_set_rps(dev_priv,
5052                               clamp(dev_priv->rps.cur_freq,
5053                                     dev_priv->rps.min_freq_softlimit,
5054                                     dev_priv->rps.max_freq_softlimit));
5055         }
5056         mutex_unlock(&dev_priv->rps.hw_lock);
5057 }
5058
5059 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5060 {
5061         /* Flush our bottom-half so that it does not race with us
5062          * setting the idle frequency and so that it is bounded by
5063          * our rpm wakeref. And then disable the interrupts to stop any
5064          * futher RPS reclocking whilst we are asleep.
5065          */
5066         gen6_disable_rps_interrupts(dev_priv);
5067
5068         mutex_lock(&dev_priv->rps.hw_lock);
5069         if (dev_priv->rps.enabled) {
5070                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5071                         vlv_set_rps_idle(dev_priv);
5072                 else
5073                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5074                 dev_priv->rps.last_adj = 0;
5075                 I915_WRITE(GEN6_PMINTRMSK,
5076                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5077         }
5078         mutex_unlock(&dev_priv->rps.hw_lock);
5079
5080         spin_lock(&dev_priv->rps.client_lock);
5081         while (!list_empty(&dev_priv->rps.clients))
5082                 list_del_init(dev_priv->rps.clients.next);
5083         spin_unlock(&dev_priv->rps.client_lock);
5084 }
5085
5086 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5087                     struct intel_rps_client *rps,
5088                     unsigned long submitted)
5089 {
5090         /* This is intentionally racy! We peek at the state here, then
5091          * validate inside the RPS worker.
5092          */
5093         if (!(dev_priv->gt.awake &&
5094               dev_priv->rps.enabled &&
5095               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5096                 return;
5097
5098         /* Force a RPS boost (and don't count it against the client) if
5099          * the GPU is severely congested.
5100          */
5101         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5102                 rps = NULL;
5103
5104         spin_lock(&dev_priv->rps.client_lock);
5105         if (rps == NULL || list_empty(&rps->link)) {
5106                 spin_lock_irq(&dev_priv->irq_lock);
5107                 if (dev_priv->rps.interrupts_enabled) {
5108                         dev_priv->rps.client_boost = true;
5109                         schedule_work(&dev_priv->rps.work);
5110                 }
5111                 spin_unlock_irq(&dev_priv->irq_lock);
5112
5113                 if (rps != NULL) {
5114                         list_add(&rps->link, &dev_priv->rps.clients);
5115                         rps->boosts++;
5116                 } else
5117                         dev_priv->rps.boosts++;
5118         }
5119         spin_unlock(&dev_priv->rps.client_lock);
5120 }
5121
5122 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5123 {
5124         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5125                 valleyview_set_rps(dev_priv, val);
5126         else
5127                 gen6_set_rps(dev_priv, val);
5128 }
5129
5130 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5131 {
5132         I915_WRITE(GEN6_RC_CONTROL, 0);
5133         I915_WRITE(GEN9_PG_ENABLE, 0);
5134 }
5135
5136 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5137 {
5138         I915_WRITE(GEN6_RP_CONTROL, 0);
5139 }
5140
5141 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5142 {
5143         I915_WRITE(GEN6_RC_CONTROL, 0);
5144         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5145         I915_WRITE(GEN6_RP_CONTROL, 0);
5146 }
5147
5148 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5149 {
5150         I915_WRITE(GEN6_RC_CONTROL, 0);
5151 }
5152
5153 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5154 {
5155         /* we're doing forcewake before Disabling RC6,
5156          * This what the BIOS expects when going into suspend */
5157         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5158
5159         I915_WRITE(GEN6_RC_CONTROL, 0);
5160
5161         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5162 }
5163
5164 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5165 {
5166         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5167                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5168                         mode = GEN6_RC_CTL_RC6_ENABLE;
5169                 else
5170                         mode = 0;
5171         }
5172         if (HAS_RC6p(dev_priv))
5173                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5174                                  "RC6 %s RC6p %s RC6pp %s\n",
5175                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5176                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5177                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5178
5179         else
5180                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5181                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5182 }
5183
5184 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5185 {
5186         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5187         bool enable_rc6 = true;
5188         unsigned long rc6_ctx_base;
5189         u32 rc_ctl;
5190         int rc_sw_target;
5191
5192         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5193         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5194                        RC_SW_TARGET_STATE_SHIFT;
5195         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5196                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5197                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5198                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5199                          rc_sw_target);
5200
5201         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5202                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5203                 enable_rc6 = false;
5204         }
5205
5206         /*
5207          * The exact context size is not known for BXT, so assume a page size
5208          * for this check.
5209          */
5210         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5211         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5212               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5213                                         ggtt->stolen_reserved_size))) {
5214                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5215                 enable_rc6 = false;
5216         }
5217
5218         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5219               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5220               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5221               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5222                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5223                 enable_rc6 = false;
5224         }
5225
5226         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5227             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5228             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5229                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5230                 enable_rc6 = false;
5231         }
5232
5233         if (!I915_READ(GEN6_GFXPAUSE)) {
5234                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5235                 enable_rc6 = false;
5236         }
5237
5238         if (!I915_READ(GEN8_MISC_CTRL0)) {
5239                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5240                 enable_rc6 = false;
5241         }
5242
5243         return enable_rc6;
5244 }
5245
5246 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5247 {
5248         /* No RC6 before Ironlake and code is gone for ilk. */
5249         if (INTEL_INFO(dev_priv)->gen < 6)
5250                 return 0;
5251
5252         if (!enable_rc6)
5253                 return 0;
5254
5255         if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5256                 DRM_INFO("RC6 disabled by BIOS\n");
5257                 return 0;
5258         }
5259
5260         /* Respect the kernel parameter if it is set */
5261         if (enable_rc6 >= 0) {
5262                 int mask;
5263
5264                 if (HAS_RC6p(dev_priv))
5265                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5266                                INTEL_RC6pp_ENABLE;
5267                 else
5268                         mask = INTEL_RC6_ENABLE;
5269
5270                 if ((enable_rc6 & mask) != enable_rc6)
5271                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5272                                          "(requested %d, valid %d)\n",
5273                                          enable_rc6 & mask, enable_rc6, mask);
5274
5275                 return enable_rc6 & mask;
5276         }
5277
5278         if (IS_IVYBRIDGE(dev_priv))
5279                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5280
5281         return INTEL_RC6_ENABLE;
5282 }
5283
5284 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5285 {
5286         /* All of these values are in units of 50MHz */
5287
5288         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5289         if (IS_GEN9_LP(dev_priv)) {
5290                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5291                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5292                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5293                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5294         } else {
5295                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5296                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5297                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5298                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5299         }
5300         /* hw_max = RP0 until we check for overclocking */
5301         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5302
5303         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5304         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5305             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5306                 u32 ddcc_status = 0;
5307
5308                 if (sandybridge_pcode_read(dev_priv,
5309                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5310                                            &ddcc_status) == 0)
5311                         dev_priv->rps.efficient_freq =
5312                                 clamp_t(u8,
5313                                         ((ddcc_status >> 8) & 0xff),
5314                                         dev_priv->rps.min_freq,
5315                                         dev_priv->rps.max_freq);
5316         }
5317
5318         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5319                 /* Store the frequency values in 16.66 MHZ units, which is
5320                  * the natural hardware unit for SKL
5321                  */
5322                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5323                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5324                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5325                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5326                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5327         }
5328 }
5329
5330 static void reset_rps(struct drm_i915_private *dev_priv,
5331                       void (*set)(struct drm_i915_private *, u8))
5332 {
5333         u8 freq = dev_priv->rps.cur_freq;
5334
5335         /* force a reset */
5336         dev_priv->rps.power = -1;
5337         dev_priv->rps.cur_freq = -1;
5338
5339         set(dev_priv, freq);
5340 }
5341
5342 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5343 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5344 {
5345         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5346
5347         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5348         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5349                 /*
5350                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5351                  * clear out the Control register just to avoid inconsitency
5352                  * with debugfs interface, which will show  Turbo as enabled
5353                  * only and that is not expected by the User after adding the
5354                  * WaGsvDisableTurbo. Apart from this there is no problem even
5355                  * if the Turbo is left enabled in the Control register, as the
5356                  * Up/Down interrupts would remain masked.
5357                  */
5358                 gen9_disable_rps(dev_priv);
5359                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5360                 return;
5361         }
5362
5363         /* Program defaults and thresholds for RPS*/
5364         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5365                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5366
5367         /* 1 second timeout*/
5368         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5369                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5370
5371         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5372
5373         /* Leaning on the below call to gen6_set_rps to program/setup the
5374          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5375          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5376         reset_rps(dev_priv, gen6_set_rps);
5377
5378         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5379 }
5380
5381 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5382 {
5383         struct intel_engine_cs *engine;
5384         enum intel_engine_id id;
5385         uint32_t rc6_mask = 0;
5386
5387         /* 1a: Software RC state - RC0 */
5388         I915_WRITE(GEN6_RC_STATE, 0);
5389
5390         /* 1b: Get forcewake during program sequence. Although the driver
5391          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5392         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5393
5394         /* 2a: Disable RC states. */
5395         I915_WRITE(GEN6_RC_CONTROL, 0);
5396
5397         /* 2b: Program RC6 thresholds.*/
5398
5399         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5400         if (IS_SKYLAKE(dev_priv))
5401                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5402         else
5403                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5404         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5405         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5406         for_each_engine(engine, dev_priv, id)
5407                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5408
5409         if (HAS_GUC(dev_priv))
5410                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5411
5412         I915_WRITE(GEN6_RC_SLEEP, 0);
5413
5414         /* 2c: Program Coarse Power Gating Policies. */
5415         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5416         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5417
5418         /* 3a: Enable RC6 */
5419         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5420                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5421         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5422         /* WaRsUseTimeoutMode:bxt */
5423         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5424                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5425                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5426                            GEN7_RC_CTL_TO_MODE |
5427                            rc6_mask);
5428         } else {
5429                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5430                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5431                            GEN6_RC_CTL_EI_MODE(1) |
5432                            rc6_mask);
5433         }
5434
5435         /*
5436          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5437          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5438          */
5439         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5440                 I915_WRITE(GEN9_PG_ENABLE, 0);
5441         else
5442                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5443                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5444
5445         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5446 }
5447
5448 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5449 {
5450         struct intel_engine_cs *engine;
5451         enum intel_engine_id id;
5452         uint32_t rc6_mask = 0;
5453
5454         /* 1a: Software RC state - RC0 */
5455         I915_WRITE(GEN6_RC_STATE, 0);
5456
5457         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5458          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5459         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5460
5461         /* 2a: Disable RC states. */
5462         I915_WRITE(GEN6_RC_CONTROL, 0);
5463
5464         /* 2b: Program RC6 thresholds.*/
5465         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5466         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5467         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5468         for_each_engine(engine, dev_priv, id)
5469                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5470         I915_WRITE(GEN6_RC_SLEEP, 0);
5471         if (IS_BROADWELL(dev_priv))
5472                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5473         else
5474                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5475
5476         /* 3: Enable RC6 */
5477         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5478                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5479         intel_print_rc6_info(dev_priv, rc6_mask);
5480         if (IS_BROADWELL(dev_priv))
5481                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5482                                 GEN7_RC_CTL_TO_MODE |
5483                                 rc6_mask);
5484         else
5485                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5486                                 GEN6_RC_CTL_EI_MODE(1) |
5487                                 rc6_mask);
5488
5489         /* 4 Program defaults and thresholds for RPS*/
5490         I915_WRITE(GEN6_RPNSWREQ,
5491                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5492         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5493                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5494         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5495         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5496
5497         /* Docs recommend 900MHz, and 300 MHz respectively */
5498         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5499                    dev_priv->rps.max_freq_softlimit << 24 |
5500                    dev_priv->rps.min_freq_softlimit << 16);
5501
5502         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5503         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5504         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5505         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5506
5507         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5508
5509         /* 5: Enable RPS */
5510         I915_WRITE(GEN6_RP_CONTROL,
5511                    GEN6_RP_MEDIA_TURBO |
5512                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5513                    GEN6_RP_MEDIA_IS_GFX |
5514                    GEN6_RP_ENABLE |
5515                    GEN6_RP_UP_BUSY_AVG |
5516                    GEN6_RP_DOWN_IDLE_AVG);
5517
5518         /* 6: Ring frequency + overclocking (our driver does this later */
5519
5520         reset_rps(dev_priv, gen6_set_rps);
5521
5522         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5523 }
5524
5525 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5526 {
5527         struct intel_engine_cs *engine;
5528         enum intel_engine_id id;
5529         u32 rc6vids, rc6_mask = 0;
5530         u32 gtfifodbg;
5531         int rc6_mode;
5532         int ret;
5533
5534         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5535
5536         /* Here begins a magic sequence of register writes to enable
5537          * auto-downclocking.
5538          *
5539          * Perhaps there might be some value in exposing these to
5540          * userspace...
5541          */
5542         I915_WRITE(GEN6_RC_STATE, 0);
5543
5544         /* Clear the DBG now so we don't confuse earlier errors */
5545         gtfifodbg = I915_READ(GTFIFODBG);
5546         if (gtfifodbg) {
5547                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5548                 I915_WRITE(GTFIFODBG, gtfifodbg);
5549         }
5550
5551         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5552
5553         /* disable the counters and set deterministic thresholds */
5554         I915_WRITE(GEN6_RC_CONTROL, 0);
5555
5556         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5557         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5558         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5559         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5560         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5561
5562         for_each_engine(engine, dev_priv, id)
5563                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5564
5565         I915_WRITE(GEN6_RC_SLEEP, 0);
5566         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5567         if (IS_IVYBRIDGE(dev_priv))
5568                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5569         else
5570                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5571         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5572         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5573
5574         /* Check if we are enabling RC6 */
5575         rc6_mode = intel_enable_rc6();
5576         if (rc6_mode & INTEL_RC6_ENABLE)
5577                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5578
5579         /* We don't use those on Haswell */
5580         if (!IS_HASWELL(dev_priv)) {
5581                 if (rc6_mode & INTEL_RC6p_ENABLE)
5582                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5583
5584                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5585                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5586         }
5587
5588         intel_print_rc6_info(dev_priv, rc6_mask);
5589
5590         I915_WRITE(GEN6_RC_CONTROL,
5591                    rc6_mask |
5592                    GEN6_RC_CTL_EI_MODE(1) |
5593                    GEN6_RC_CTL_HW_ENABLE);
5594
5595         /* Power down if completely idle for over 50ms */
5596         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5597         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5598
5599         reset_rps(dev_priv, gen6_set_rps);
5600
5601         rc6vids = 0;
5602         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5603         if (IS_GEN6(dev_priv) && ret) {
5604                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5605         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5606                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5607                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5608                 rc6vids &= 0xffff00;
5609                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5610                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5611                 if (ret)
5612                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5613         }
5614
5615         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5616 }
5617
5618 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5619 {
5620         int min_freq = 15;
5621         unsigned int gpu_freq;
5622         unsigned int max_ia_freq, min_ring_freq;
5623         unsigned int max_gpu_freq, min_gpu_freq;
5624         int scaling_factor = 180;
5625         struct cpufreq_policy *policy;
5626
5627         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5628
5629         policy = cpufreq_cpu_get(0);
5630         if (policy) {
5631                 max_ia_freq = policy->cpuinfo.max_freq;
5632                 cpufreq_cpu_put(policy);
5633         } else {
5634                 /*
5635                  * Default to measured freq if none found, PCU will ensure we
5636                  * don't go over
5637                  */
5638                 max_ia_freq = tsc_khz;
5639         }
5640
5641         /* Convert from kHz to MHz */
5642         max_ia_freq /= 1000;
5643
5644         min_ring_freq = I915_READ(DCLK) & 0xf;
5645         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5646         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5647
5648         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5649                 /* Convert GT frequency to 50 HZ units */
5650                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5651                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5652         } else {
5653                 min_gpu_freq = dev_priv->rps.min_freq;
5654                 max_gpu_freq = dev_priv->rps.max_freq;
5655         }
5656
5657         /*
5658          * For each potential GPU frequency, load a ring frequency we'd like
5659          * to use for memory access.  We do this by specifying the IA frequency
5660          * the PCU should use as a reference to determine the ring frequency.
5661          */
5662         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5663                 int diff = max_gpu_freq - gpu_freq;
5664                 unsigned int ia_freq = 0, ring_freq = 0;
5665
5666                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5667                         /*
5668                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5669                          * No floor required for ring frequency on SKL.
5670                          */
5671                         ring_freq = gpu_freq;
5672                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5673                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5674                         ring_freq = max(min_ring_freq, gpu_freq);
5675                 } else if (IS_HASWELL(dev_priv)) {
5676                         ring_freq = mult_frac(gpu_freq, 5, 4);
5677                         ring_freq = max(min_ring_freq, ring_freq);
5678                         /* leave ia_freq as the default, chosen by cpufreq */
5679                 } else {
5680                         /* On older processors, there is no separate ring
5681                          * clock domain, so in order to boost the bandwidth
5682                          * of the ring, we need to upclock the CPU (ia_freq).
5683                          *
5684                          * For GPU frequencies less than 750MHz,
5685                          * just use the lowest ring freq.
5686                          */
5687                         if (gpu_freq < min_freq)
5688                                 ia_freq = 800;
5689                         else
5690                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5691                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5692                 }
5693
5694                 sandybridge_pcode_write(dev_priv,
5695                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5696                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5697                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5698                                         gpu_freq);
5699         }
5700 }
5701
5702 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5703 {
5704         u32 val, rp0;
5705
5706         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5707
5708         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5709         case 8:
5710                 /* (2 * 4) config */
5711                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5712                 break;
5713         case 12:
5714                 /* (2 * 6) config */
5715                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5716                 break;
5717         case 16:
5718                 /* (2 * 8) config */
5719         default:
5720                 /* Setting (2 * 8) Min RP0 for any other combination */
5721                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5722                 break;
5723         }
5724
5725         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5726
5727         return rp0;
5728 }
5729
5730 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5731 {
5732         u32 val, rpe;
5733
5734         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5735         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5736
5737         return rpe;
5738 }
5739
5740 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5741 {
5742         u32 val, rp1;
5743
5744         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5745         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5746
5747         return rp1;
5748 }
5749
5750 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5751 {
5752         u32 val, rp1;
5753
5754         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5755
5756         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5757
5758         return rp1;
5759 }
5760
5761 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5762 {
5763         u32 val, rp0;
5764
5765         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5766
5767         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5768         /* Clamp to max */
5769         rp0 = min_t(u32, rp0, 0xea);
5770
5771         return rp0;
5772 }
5773
5774 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5775 {
5776         u32 val, rpe;
5777
5778         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5779         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5780         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5781         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5782
5783         return rpe;
5784 }
5785
5786 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5787 {
5788         u32 val;
5789
5790         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5791         /*
5792          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5793          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5794          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5795          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5796          * to make sure it matches what Punit accepts.
5797          */
5798         return max_t(u32, val, 0xc0);
5799 }
5800
5801 /* Check that the pctx buffer wasn't move under us. */
5802 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5803 {
5804         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5805
5806         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5807                              dev_priv->vlv_pctx->stolen->start);
5808 }
5809
5810
5811 /* Check that the pcbr address is not empty. */
5812 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5813 {
5814         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5815
5816         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5817 }
5818
5819 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5820 {
5821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5822         unsigned long pctx_paddr, paddr;
5823         u32 pcbr;
5824         int pctx_size = 32*1024;
5825
5826         pcbr = I915_READ(VLV_PCBR);
5827         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5828                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5829                 paddr = (dev_priv->mm.stolen_base +
5830                          (ggtt->stolen_size - pctx_size));
5831
5832                 pctx_paddr = (paddr & (~4095));
5833                 I915_WRITE(VLV_PCBR, pctx_paddr);
5834         }
5835
5836         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5837 }
5838
5839 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5840 {
5841         struct drm_i915_gem_object *pctx;
5842         unsigned long pctx_paddr;
5843         u32 pcbr;
5844         int pctx_size = 24*1024;
5845
5846         pcbr = I915_READ(VLV_PCBR);
5847         if (pcbr) {
5848                 /* BIOS set it up already, grab the pre-alloc'd space */
5849                 int pcbr_offset;
5850
5851                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5852                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5853                                                                       pcbr_offset,
5854                                                                       I915_GTT_OFFSET_NONE,
5855                                                                       pctx_size);
5856                 goto out;
5857         }
5858
5859         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5860
5861         /*
5862          * From the Gunit register HAS:
5863          * The Gfx driver is expected to program this register and ensure
5864          * proper allocation within Gfx stolen memory.  For example, this
5865          * register should be programmed such than the PCBR range does not
5866          * overlap with other ranges, such as the frame buffer, protected
5867          * memory, or any other relevant ranges.
5868          */
5869         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5870         if (!pctx) {
5871                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5872                 goto out;
5873         }
5874
5875         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5876         I915_WRITE(VLV_PCBR, pctx_paddr);
5877
5878 out:
5879         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5880         dev_priv->vlv_pctx = pctx;
5881 }
5882
5883 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5884 {
5885         if (WARN_ON(!dev_priv->vlv_pctx))
5886                 return;
5887
5888         i915_gem_object_put(dev_priv->vlv_pctx);
5889         dev_priv->vlv_pctx = NULL;
5890 }
5891
5892 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5893 {
5894         dev_priv->rps.gpll_ref_freq =
5895                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5896                                   CCK_GPLL_CLOCK_CONTROL,
5897                                   dev_priv->czclk_freq);
5898
5899         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5900                          dev_priv->rps.gpll_ref_freq);
5901 }
5902
5903 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5904 {
5905         u32 val;
5906
5907         valleyview_setup_pctx(dev_priv);
5908
5909         vlv_init_gpll_ref_freq(dev_priv);
5910
5911         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5912         switch ((val >> 6) & 3) {
5913         case 0:
5914         case 1:
5915                 dev_priv->mem_freq = 800;
5916                 break;
5917         case 2:
5918                 dev_priv->mem_freq = 1066;
5919                 break;
5920         case 3:
5921                 dev_priv->mem_freq = 1333;
5922                 break;
5923         }
5924         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5925
5926         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5927         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5928         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5929                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5930                          dev_priv->rps.max_freq);
5931
5932         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5933         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5934                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5935                          dev_priv->rps.efficient_freq);
5936
5937         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5938         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5939                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5940                          dev_priv->rps.rp1_freq);
5941
5942         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5943         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5944                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5945                          dev_priv->rps.min_freq);
5946 }
5947
5948 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5949 {
5950         u32 val;
5951
5952         cherryview_setup_pctx(dev_priv);
5953
5954         vlv_init_gpll_ref_freq(dev_priv);
5955
5956         mutex_lock(&dev_priv->sb_lock);
5957         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5958         mutex_unlock(&dev_priv->sb_lock);
5959
5960         switch ((val >> 2) & 0x7) {
5961         case 3:
5962                 dev_priv->mem_freq = 2000;
5963                 break;
5964         default:
5965                 dev_priv->mem_freq = 1600;
5966                 break;
5967         }
5968         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5969
5970         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5971         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5972         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5973                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5974                          dev_priv->rps.max_freq);
5975
5976         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5977         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5978                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5979                          dev_priv->rps.efficient_freq);
5980
5981         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5982         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5983                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5984                          dev_priv->rps.rp1_freq);
5985
5986         /* PUnit validated range is only [RPe, RP0] */
5987         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5988         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5989                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5990                          dev_priv->rps.min_freq);
5991
5992         WARN_ONCE((dev_priv->rps.max_freq |
5993                    dev_priv->rps.efficient_freq |
5994                    dev_priv->rps.rp1_freq |
5995                    dev_priv->rps.min_freq) & 1,
5996                   "Odd GPU freq values\n");
5997 }
5998
5999 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6000 {
6001         valleyview_cleanup_pctx(dev_priv);
6002 }
6003
6004 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6005 {
6006         struct intel_engine_cs *engine;
6007         enum intel_engine_id id;
6008         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6009
6010         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6011
6012         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6013                                              GT_FIFO_FREE_ENTRIES_CHV);
6014         if (gtfifodbg) {
6015                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6016                                  gtfifodbg);
6017                 I915_WRITE(GTFIFODBG, gtfifodbg);
6018         }
6019
6020         cherryview_check_pctx(dev_priv);
6021
6022         /* 1a & 1b: Get forcewake during program sequence. Although the driver
6023          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6024         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6025
6026         /*  Disable RC states. */
6027         I915_WRITE(GEN6_RC_CONTROL, 0);
6028
6029         /* 2a: Program RC6 thresholds.*/
6030         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6031         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6032         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6033
6034         for_each_engine(engine, dev_priv, id)
6035                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6036         I915_WRITE(GEN6_RC_SLEEP, 0);
6037
6038         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6039         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6040
6041         /* allows RC6 residency counter to work */
6042         I915_WRITE(VLV_COUNTER_CONTROL,
6043                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6044                                       VLV_MEDIA_RC6_COUNT_EN |
6045                                       VLV_RENDER_RC6_COUNT_EN));
6046
6047         /* For now we assume BIOS is allocating and populating the PCBR  */
6048         pcbr = I915_READ(VLV_PCBR);
6049
6050         /* 3: Enable RC6 */
6051         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6052             (pcbr >> VLV_PCBR_ADDR_SHIFT))
6053                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6054
6055         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6056
6057         /* 4 Program defaults and thresholds for RPS*/
6058         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6059         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6060         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6061         I915_WRITE(GEN6_RP_UP_EI, 66000);
6062         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6063
6064         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6065
6066         /* 5: Enable RPS */
6067         I915_WRITE(GEN6_RP_CONTROL,
6068                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6069                    GEN6_RP_MEDIA_IS_GFX |
6070                    GEN6_RP_ENABLE |
6071                    GEN6_RP_UP_BUSY_AVG |
6072                    GEN6_RP_DOWN_IDLE_AVG);
6073
6074         /* Setting Fixed Bias */
6075         val = VLV_OVERRIDE_EN |
6076                   VLV_SOC_TDP_EN |
6077                   CHV_BIAS_CPU_50_SOC_50;
6078         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6079
6080         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6081
6082         /* RPS code assumes GPLL is used */
6083         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6084
6085         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6086         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6087
6088         reset_rps(dev_priv, valleyview_set_rps);
6089
6090         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6091 }
6092
6093 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6094 {
6095         struct intel_engine_cs *engine;
6096         enum intel_engine_id id;
6097         u32 gtfifodbg, val, rc6_mode = 0;
6098
6099         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6100
6101         valleyview_check_pctx(dev_priv);
6102
6103         gtfifodbg = I915_READ(GTFIFODBG);
6104         if (gtfifodbg) {
6105                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6106                                  gtfifodbg);
6107                 I915_WRITE(GTFIFODBG, gtfifodbg);
6108         }
6109
6110         /* If VLV, Forcewake all wells, else re-direct to regular path */
6111         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6112
6113         /*  Disable RC states. */
6114         I915_WRITE(GEN6_RC_CONTROL, 0);
6115
6116         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6117         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6118         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6119         I915_WRITE(GEN6_RP_UP_EI, 66000);
6120         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6121
6122         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6123
6124         I915_WRITE(GEN6_RP_CONTROL,
6125                    GEN6_RP_MEDIA_TURBO |
6126                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6127                    GEN6_RP_MEDIA_IS_GFX |
6128                    GEN6_RP_ENABLE |
6129                    GEN6_RP_UP_BUSY_AVG |
6130                    GEN6_RP_DOWN_IDLE_CONT);
6131
6132         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6133         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6134         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6135
6136         for_each_engine(engine, dev_priv, id)
6137                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6138
6139         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6140
6141         /* allows RC6 residency counter to work */
6142         I915_WRITE(VLV_COUNTER_CONTROL,
6143                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6144                                       VLV_RENDER_RC0_COUNT_EN |
6145                                       VLV_MEDIA_RC6_COUNT_EN |
6146                                       VLV_RENDER_RC6_COUNT_EN));
6147
6148         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6149                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6150
6151         intel_print_rc6_info(dev_priv, rc6_mode);
6152
6153         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6154
6155         /* Setting Fixed Bias */
6156         val = VLV_OVERRIDE_EN |
6157                   VLV_SOC_TDP_EN |
6158                   VLV_BIAS_CPU_125_SOC_875;
6159         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6160
6161         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6162
6163         /* RPS code assumes GPLL is used */
6164         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6165
6166         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6167         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6168
6169         reset_rps(dev_priv, valleyview_set_rps);
6170
6171         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6172 }
6173
6174 static unsigned long intel_pxfreq(u32 vidfreq)
6175 {
6176         unsigned long freq;
6177         int div = (vidfreq & 0x3f0000) >> 16;
6178         int post = (vidfreq & 0x3000) >> 12;
6179         int pre = (vidfreq & 0x7);
6180
6181         if (!pre)
6182                 return 0;
6183
6184         freq = ((div * 133333) / ((1<<post) * pre));
6185
6186         return freq;
6187 }
6188
6189 static const struct cparams {
6190         u16 i;
6191         u16 t;
6192         u16 m;
6193         u16 c;
6194 } cparams[] = {
6195         { 1, 1333, 301, 28664 },
6196         { 1, 1066, 294, 24460 },
6197         { 1, 800, 294, 25192 },
6198         { 0, 1333, 276, 27605 },
6199         { 0, 1066, 276, 27605 },
6200         { 0, 800, 231, 23784 },
6201 };
6202
6203 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6204 {
6205         u64 total_count, diff, ret;
6206         u32 count1, count2, count3, m = 0, c = 0;
6207         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6208         int i;
6209
6210         assert_spin_locked(&mchdev_lock);
6211
6212         diff1 = now - dev_priv->ips.last_time1;
6213
6214         /* Prevent division-by-zero if we are asking too fast.
6215          * Also, we don't get interesting results if we are polling
6216          * faster than once in 10ms, so just return the saved value
6217          * in such cases.
6218          */
6219         if (diff1 <= 10)
6220                 return dev_priv->ips.chipset_power;
6221
6222         count1 = I915_READ(DMIEC);
6223         count2 = I915_READ(DDREC);
6224         count3 = I915_READ(CSIEC);
6225
6226         total_count = count1 + count2 + count3;
6227
6228         /* FIXME: handle per-counter overflow */
6229         if (total_count < dev_priv->ips.last_count1) {
6230                 diff = ~0UL - dev_priv->ips.last_count1;
6231                 diff += total_count;
6232         } else {
6233                 diff = total_count - dev_priv->ips.last_count1;
6234         }
6235
6236         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6237                 if (cparams[i].i == dev_priv->ips.c_m &&
6238                     cparams[i].t == dev_priv->ips.r_t) {
6239                         m = cparams[i].m;
6240                         c = cparams[i].c;
6241                         break;
6242                 }
6243         }
6244
6245         diff = div_u64(diff, diff1);
6246         ret = ((m * diff) + c);
6247         ret = div_u64(ret, 10);
6248
6249         dev_priv->ips.last_count1 = total_count;
6250         dev_priv->ips.last_time1 = now;
6251
6252         dev_priv->ips.chipset_power = ret;
6253
6254         return ret;
6255 }
6256
6257 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6258 {
6259         unsigned long val;
6260
6261         if (INTEL_INFO(dev_priv)->gen != 5)
6262                 return 0;
6263
6264         spin_lock_irq(&mchdev_lock);
6265
6266         val = __i915_chipset_val(dev_priv);
6267
6268         spin_unlock_irq(&mchdev_lock);
6269
6270         return val;
6271 }
6272
6273 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6274 {
6275         unsigned long m, x, b;
6276         u32 tsfs;
6277
6278         tsfs = I915_READ(TSFS);
6279
6280         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6281         x = I915_READ8(TR1);
6282
6283         b = tsfs & TSFS_INTR_MASK;
6284
6285         return ((m * x) / 127) - b;
6286 }
6287
6288 static int _pxvid_to_vd(u8 pxvid)
6289 {
6290         if (pxvid == 0)
6291                 return 0;
6292
6293         if (pxvid >= 8 && pxvid < 31)
6294                 pxvid = 31;
6295
6296         return (pxvid + 2) * 125;
6297 }
6298
6299 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6300 {
6301         const int vd = _pxvid_to_vd(pxvid);
6302         const int vm = vd - 1125;
6303
6304         if (INTEL_INFO(dev_priv)->is_mobile)
6305                 return vm > 0 ? vm : 0;
6306
6307         return vd;
6308 }
6309
6310 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6311 {
6312         u64 now, diff, diffms;
6313         u32 count;
6314
6315         assert_spin_locked(&mchdev_lock);
6316
6317         now = ktime_get_raw_ns();
6318         diffms = now - dev_priv->ips.last_time2;
6319         do_div(diffms, NSEC_PER_MSEC);
6320
6321         /* Don't divide by 0 */
6322         if (!diffms)
6323                 return;
6324
6325         count = I915_READ(GFXEC);
6326
6327         if (count < dev_priv->ips.last_count2) {
6328                 diff = ~0UL - dev_priv->ips.last_count2;
6329                 diff += count;
6330         } else {
6331                 diff = count - dev_priv->ips.last_count2;
6332         }
6333
6334         dev_priv->ips.last_count2 = count;
6335         dev_priv->ips.last_time2 = now;
6336
6337         /* More magic constants... */
6338         diff = diff * 1181;
6339         diff = div_u64(diff, diffms * 10);
6340         dev_priv->ips.gfx_power = diff;
6341 }
6342
6343 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6344 {
6345         if (INTEL_INFO(dev_priv)->gen != 5)
6346                 return;
6347
6348         spin_lock_irq(&mchdev_lock);
6349
6350         __i915_update_gfx_val(dev_priv);
6351
6352         spin_unlock_irq(&mchdev_lock);
6353 }
6354
6355 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6356 {
6357         unsigned long t, corr, state1, corr2, state2;
6358         u32 pxvid, ext_v;
6359
6360         assert_spin_locked(&mchdev_lock);
6361
6362         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6363         pxvid = (pxvid >> 24) & 0x7f;
6364         ext_v = pvid_to_extvid(dev_priv, pxvid);
6365
6366         state1 = ext_v;
6367
6368         t = i915_mch_val(dev_priv);
6369
6370         /* Revel in the empirically derived constants */
6371
6372         /* Correction factor in 1/100000 units */
6373         if (t > 80)
6374                 corr = ((t * 2349) + 135940);
6375         else if (t >= 50)
6376                 corr = ((t * 964) + 29317);
6377         else /* < 50 */
6378                 corr = ((t * 301) + 1004);
6379
6380         corr = corr * ((150142 * state1) / 10000 - 78642);
6381         corr /= 100000;
6382         corr2 = (corr * dev_priv->ips.corr);
6383
6384         state2 = (corr2 * state1) / 10000;
6385         state2 /= 100; /* convert to mW */
6386
6387         __i915_update_gfx_val(dev_priv);
6388
6389         return dev_priv->ips.gfx_power + state2;
6390 }
6391
6392 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6393 {
6394         unsigned long val;
6395
6396         if (INTEL_INFO(dev_priv)->gen != 5)
6397                 return 0;
6398
6399         spin_lock_irq(&mchdev_lock);
6400
6401         val = __i915_gfx_val(dev_priv);
6402
6403         spin_unlock_irq(&mchdev_lock);
6404
6405         return val;
6406 }
6407
6408 /**
6409  * i915_read_mch_val - return value for IPS use
6410  *
6411  * Calculate and return a value for the IPS driver to use when deciding whether
6412  * we have thermal and power headroom to increase CPU or GPU power budget.
6413  */
6414 unsigned long i915_read_mch_val(void)
6415 {
6416         struct drm_i915_private *dev_priv;
6417         unsigned long chipset_val, graphics_val, ret = 0;
6418
6419         spin_lock_irq(&mchdev_lock);
6420         if (!i915_mch_dev)
6421                 goto out_unlock;
6422         dev_priv = i915_mch_dev;
6423
6424         chipset_val = __i915_chipset_val(dev_priv);
6425         graphics_val = __i915_gfx_val(dev_priv);
6426
6427         ret = chipset_val + graphics_val;
6428
6429 out_unlock:
6430         spin_unlock_irq(&mchdev_lock);
6431
6432         return ret;
6433 }
6434 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6435
6436 /**
6437  * i915_gpu_raise - raise GPU frequency limit
6438  *
6439  * Raise the limit; IPS indicates we have thermal headroom.
6440  */
6441 bool i915_gpu_raise(void)
6442 {
6443         struct drm_i915_private *dev_priv;
6444         bool ret = true;
6445
6446         spin_lock_irq(&mchdev_lock);
6447         if (!i915_mch_dev) {
6448                 ret = false;
6449                 goto out_unlock;
6450         }
6451         dev_priv = i915_mch_dev;
6452
6453         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6454                 dev_priv->ips.max_delay--;
6455
6456 out_unlock:
6457         spin_unlock_irq(&mchdev_lock);
6458
6459         return ret;
6460 }
6461 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6462
6463 /**
6464  * i915_gpu_lower - lower GPU frequency limit
6465  *
6466  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6467  * frequency maximum.
6468  */
6469 bool i915_gpu_lower(void)
6470 {
6471         struct drm_i915_private *dev_priv;
6472         bool ret = true;
6473
6474         spin_lock_irq(&mchdev_lock);
6475         if (!i915_mch_dev) {
6476                 ret = false;
6477                 goto out_unlock;
6478         }
6479         dev_priv = i915_mch_dev;
6480
6481         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6482                 dev_priv->ips.max_delay++;
6483
6484 out_unlock:
6485         spin_unlock_irq(&mchdev_lock);
6486
6487         return ret;
6488 }
6489 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6490
6491 /**
6492  * i915_gpu_busy - indicate GPU business to IPS
6493  *
6494  * Tell the IPS driver whether or not the GPU is busy.
6495  */
6496 bool i915_gpu_busy(void)
6497 {
6498         bool ret = false;
6499
6500         spin_lock_irq(&mchdev_lock);
6501         if (i915_mch_dev)
6502                 ret = i915_mch_dev->gt.awake;
6503         spin_unlock_irq(&mchdev_lock);
6504
6505         return ret;
6506 }
6507 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6508
6509 /**
6510  * i915_gpu_turbo_disable - disable graphics turbo
6511  *
6512  * Disable graphics turbo by resetting the max frequency and setting the
6513  * current frequency to the default.
6514  */
6515 bool i915_gpu_turbo_disable(void)
6516 {
6517         struct drm_i915_private *dev_priv;
6518         bool ret = true;
6519
6520         spin_lock_irq(&mchdev_lock);
6521         if (!i915_mch_dev) {
6522                 ret = false;
6523                 goto out_unlock;
6524         }
6525         dev_priv = i915_mch_dev;
6526
6527         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6528
6529         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6530                 ret = false;
6531
6532 out_unlock:
6533         spin_unlock_irq(&mchdev_lock);
6534
6535         return ret;
6536 }
6537 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6538
6539 /**
6540  * Tells the intel_ips driver that the i915 driver is now loaded, if
6541  * IPS got loaded first.
6542  *
6543  * This awkward dance is so that neither module has to depend on the
6544  * other in order for IPS to do the appropriate communication of
6545  * GPU turbo limits to i915.
6546  */
6547 static void
6548 ips_ping_for_i915_load(void)
6549 {
6550         void (*link)(void);
6551
6552         link = symbol_get(ips_link_to_i915_driver);
6553         if (link) {
6554                 link();
6555                 symbol_put(ips_link_to_i915_driver);
6556         }
6557 }
6558
6559 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6560 {
6561         /* We only register the i915 ips part with intel-ips once everything is
6562          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6563         spin_lock_irq(&mchdev_lock);
6564         i915_mch_dev = dev_priv;
6565         spin_unlock_irq(&mchdev_lock);
6566
6567         ips_ping_for_i915_load();
6568 }
6569
6570 void intel_gpu_ips_teardown(void)
6571 {
6572         spin_lock_irq(&mchdev_lock);
6573         i915_mch_dev = NULL;
6574         spin_unlock_irq(&mchdev_lock);
6575 }
6576
6577 static void intel_init_emon(struct drm_i915_private *dev_priv)
6578 {
6579         u32 lcfuse;
6580         u8 pxw[16];
6581         int i;
6582
6583         /* Disable to program */
6584         I915_WRITE(ECR, 0);
6585         POSTING_READ(ECR);
6586
6587         /* Program energy weights for various events */
6588         I915_WRITE(SDEW, 0x15040d00);
6589         I915_WRITE(CSIEW0, 0x007f0000);
6590         I915_WRITE(CSIEW1, 0x1e220004);
6591         I915_WRITE(CSIEW2, 0x04000004);
6592
6593         for (i = 0; i < 5; i++)
6594                 I915_WRITE(PEW(i), 0);
6595         for (i = 0; i < 3; i++)
6596                 I915_WRITE(DEW(i), 0);
6597
6598         /* Program P-state weights to account for frequency power adjustment */
6599         for (i = 0; i < 16; i++) {
6600                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6601                 unsigned long freq = intel_pxfreq(pxvidfreq);
6602                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6603                         PXVFREQ_PX_SHIFT;
6604                 unsigned long val;
6605
6606                 val = vid * vid;
6607                 val *= (freq / 1000);
6608                 val *= 255;
6609                 val /= (127*127*900);
6610                 if (val > 0xff)
6611                         DRM_ERROR("bad pxval: %ld\n", val);
6612                 pxw[i] = val;
6613         }
6614         /* Render standby states get 0 weight */
6615         pxw[14] = 0;
6616         pxw[15] = 0;
6617
6618         for (i = 0; i < 4; i++) {
6619                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6620                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6621                 I915_WRITE(PXW(i), val);
6622         }
6623
6624         /* Adjust magic regs to magic values (more experimental results) */
6625         I915_WRITE(OGW0, 0);
6626         I915_WRITE(OGW1, 0);
6627         I915_WRITE(EG0, 0x00007f00);
6628         I915_WRITE(EG1, 0x0000000e);
6629         I915_WRITE(EG2, 0x000e0000);
6630         I915_WRITE(EG3, 0x68000300);
6631         I915_WRITE(EG4, 0x42000000);
6632         I915_WRITE(EG5, 0x00140031);
6633         I915_WRITE(EG6, 0);
6634         I915_WRITE(EG7, 0);
6635
6636         for (i = 0; i < 8; i++)
6637                 I915_WRITE(PXWL(i), 0);
6638
6639         /* Enable PMON + select events */
6640         I915_WRITE(ECR, 0x80000019);
6641
6642         lcfuse = I915_READ(LCFUSE02);
6643
6644         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6645 }
6646
6647 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6648 {
6649         /*
6650          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6651          * requirement.
6652          */
6653         if (!i915.enable_rc6) {
6654                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6655                 intel_runtime_pm_get(dev_priv);
6656         }
6657
6658         mutex_lock(&dev_priv->drm.struct_mutex);
6659         mutex_lock(&dev_priv->rps.hw_lock);
6660
6661         /* Initialize RPS limits (for userspace) */
6662         if (IS_CHERRYVIEW(dev_priv))
6663                 cherryview_init_gt_powersave(dev_priv);
6664         else if (IS_VALLEYVIEW(dev_priv))
6665                 valleyview_init_gt_powersave(dev_priv);
6666         else if (INTEL_GEN(dev_priv) >= 6)
6667                 gen6_init_rps_frequencies(dev_priv);
6668
6669         /* Derive initial user preferences/limits from the hardware limits */
6670         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6671         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6672
6673         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6674         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6675
6676         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6677                 dev_priv->rps.min_freq_softlimit =
6678                         max_t(int,
6679                               dev_priv->rps.efficient_freq,
6680                               intel_freq_opcode(dev_priv, 450));
6681
6682         /* After setting max-softlimit, find the overclock max freq */
6683         if (IS_GEN6(dev_priv) ||
6684             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6685                 u32 params = 0;
6686
6687                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6688                 if (params & BIT(31)) { /* OC supported */
6689                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6690                                          (dev_priv->rps.max_freq & 0xff) * 50,
6691                                          (params & 0xff) * 50);
6692                         dev_priv->rps.max_freq = params & 0xff;
6693                 }
6694         }
6695
6696         /* Finally allow us to boost to max by default */
6697         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6698
6699         mutex_unlock(&dev_priv->rps.hw_lock);
6700         mutex_unlock(&dev_priv->drm.struct_mutex);
6701
6702         intel_autoenable_gt_powersave(dev_priv);
6703 }
6704
6705 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6706 {
6707         if (IS_VALLEYVIEW(dev_priv))
6708                 valleyview_cleanup_gt_powersave(dev_priv);
6709
6710         if (!i915.enable_rc6)
6711                 intel_runtime_pm_put(dev_priv);
6712 }
6713
6714 /**
6715  * intel_suspend_gt_powersave - suspend PM work and helper threads
6716  * @dev_priv: i915 device
6717  *
6718  * We don't want to disable RC6 or other features here, we just want
6719  * to make sure any work we've queued has finished and won't bother
6720  * us while we're suspended.
6721  */
6722 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6723 {
6724         if (INTEL_GEN(dev_priv) < 6)
6725                 return;
6726
6727         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6728                 intel_runtime_pm_put(dev_priv);
6729
6730         /* gen6_rps_idle() will be called later to disable interrupts */
6731 }
6732
6733 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6734 {
6735         dev_priv->rps.enabled = true; /* force disabling */
6736         intel_disable_gt_powersave(dev_priv);
6737
6738         gen6_reset_rps_interrupts(dev_priv);
6739 }
6740
6741 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6742 {
6743         if (!READ_ONCE(dev_priv->rps.enabled))
6744                 return;
6745
6746         mutex_lock(&dev_priv->rps.hw_lock);
6747
6748         if (INTEL_GEN(dev_priv) >= 9) {
6749                 gen9_disable_rc6(dev_priv);
6750                 gen9_disable_rps(dev_priv);
6751         } else if (IS_CHERRYVIEW(dev_priv)) {
6752                 cherryview_disable_rps(dev_priv);
6753         } else if (IS_VALLEYVIEW(dev_priv)) {
6754                 valleyview_disable_rps(dev_priv);
6755         } else if (INTEL_GEN(dev_priv) >= 6) {
6756                 gen6_disable_rps(dev_priv);
6757         }  else if (IS_IRONLAKE_M(dev_priv)) {
6758                 ironlake_disable_drps(dev_priv);
6759         }
6760
6761         dev_priv->rps.enabled = false;
6762         mutex_unlock(&dev_priv->rps.hw_lock);
6763 }
6764
6765 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6766 {
6767         /* We shouldn't be disabling as we submit, so this should be less
6768          * racy than it appears!
6769          */
6770         if (READ_ONCE(dev_priv->rps.enabled))
6771                 return;
6772
6773         /* Powersaving is controlled by the host when inside a VM */
6774         if (intel_vgpu_active(dev_priv))
6775                 return;
6776
6777         mutex_lock(&dev_priv->rps.hw_lock);
6778
6779         if (IS_CHERRYVIEW(dev_priv)) {
6780                 cherryview_enable_rps(dev_priv);
6781         } else if (IS_VALLEYVIEW(dev_priv)) {
6782                 valleyview_enable_rps(dev_priv);
6783         } else if (INTEL_GEN(dev_priv) >= 9) {
6784                 gen9_enable_rc6(dev_priv);
6785                 gen9_enable_rps(dev_priv);
6786                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6787                         gen6_update_ring_freq(dev_priv);
6788         } else if (IS_BROADWELL(dev_priv)) {
6789                 gen8_enable_rps(dev_priv);
6790                 gen6_update_ring_freq(dev_priv);
6791         } else if (INTEL_GEN(dev_priv) >= 6) {
6792                 gen6_enable_rps(dev_priv);
6793                 gen6_update_ring_freq(dev_priv);
6794         } else if (IS_IRONLAKE_M(dev_priv)) {
6795                 ironlake_enable_drps(dev_priv);
6796                 intel_init_emon(dev_priv);
6797         }
6798
6799         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6800         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6801
6802         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6803         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6804
6805         dev_priv->rps.enabled = true;
6806         mutex_unlock(&dev_priv->rps.hw_lock);
6807 }
6808
6809 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6810 {
6811         struct drm_i915_private *dev_priv =
6812                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6813         struct intel_engine_cs *rcs;
6814         struct drm_i915_gem_request *req;
6815
6816         if (READ_ONCE(dev_priv->rps.enabled))
6817                 goto out;
6818
6819         rcs = dev_priv->engine[RCS];
6820         if (rcs->last_retired_context)
6821                 goto out;
6822
6823         if (!rcs->init_context)
6824                 goto out;
6825
6826         mutex_lock(&dev_priv->drm.struct_mutex);
6827
6828         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6829         if (IS_ERR(req))
6830                 goto unlock;
6831
6832         if (!i915.enable_execlists && i915_switch_context(req) == 0)
6833                 rcs->init_context(req);
6834
6835         /* Mark the device busy, calling intel_enable_gt_powersave() */
6836         i915_add_request_no_flush(req);
6837
6838 unlock:
6839         mutex_unlock(&dev_priv->drm.struct_mutex);
6840 out:
6841         intel_runtime_pm_put(dev_priv);
6842 }
6843
6844 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6845 {
6846         if (READ_ONCE(dev_priv->rps.enabled))
6847                 return;
6848
6849         if (IS_IRONLAKE_M(dev_priv)) {
6850                 ironlake_enable_drps(dev_priv);
6851                 intel_init_emon(dev_priv);
6852         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6853                 /*
6854                  * PCU communication is slow and this doesn't need to be
6855                  * done at any specific time, so do this out of our fast path
6856                  * to make resume and init faster.
6857                  *
6858                  * We depend on the HW RC6 power context save/restore
6859                  * mechanism when entering D3 through runtime PM suspend. So
6860                  * disable RPM until RPS/RC6 is properly setup. We can only
6861                  * get here via the driver load/system resume/runtime resume
6862                  * paths, so the _noresume version is enough (and in case of
6863                  * runtime resume it's necessary).
6864                  */
6865                 if (queue_delayed_work(dev_priv->wq,
6866                                        &dev_priv->rps.autoenable_work,
6867                                        round_jiffies_up_relative(HZ)))
6868                         intel_runtime_pm_get_noresume(dev_priv);
6869         }
6870 }
6871
6872 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6873 {
6874         /*
6875          * On Ibex Peak and Cougar Point, we need to disable clock
6876          * gating for the panel power sequencer or it will fail to
6877          * start up when no ports are active.
6878          */
6879         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6880 }
6881
6882 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6883 {
6884         enum pipe pipe;
6885
6886         for_each_pipe(dev_priv, pipe) {
6887                 I915_WRITE(DSPCNTR(pipe),
6888                            I915_READ(DSPCNTR(pipe)) |
6889                            DISPPLANE_TRICKLE_FEED_DISABLE);
6890
6891                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6892                 POSTING_READ(DSPSURF(pipe));
6893         }
6894 }
6895
6896 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6897 {
6898         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6899         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6900         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6901
6902         /*
6903          * Don't touch WM1S_LP_EN here.
6904          * Doing so could cause underruns.
6905          */
6906 }
6907
6908 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6909 {
6910         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6911
6912         /*
6913          * Required for FBC
6914          * WaFbcDisableDpfcClockGating:ilk
6915          */
6916         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6917                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6918                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6919
6920         I915_WRITE(PCH_3DCGDIS0,
6921                    MARIUNIT_CLOCK_GATE_DISABLE |
6922                    SVSMUNIT_CLOCK_GATE_DISABLE);
6923         I915_WRITE(PCH_3DCGDIS1,
6924                    VFMUNIT_CLOCK_GATE_DISABLE);
6925
6926         /*
6927          * According to the spec the following bits should be set in
6928          * order to enable memory self-refresh
6929          * The bit 22/21 of 0x42004
6930          * The bit 5 of 0x42020
6931          * The bit 15 of 0x45000
6932          */
6933         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6934                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6935                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6936         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6937         I915_WRITE(DISP_ARB_CTL,
6938                    (I915_READ(DISP_ARB_CTL) |
6939                     DISP_FBC_WM_DIS));
6940
6941         ilk_init_lp_watermarks(dev_priv);
6942
6943         /*
6944          * Based on the document from hardware guys the following bits
6945          * should be set unconditionally in order to enable FBC.
6946          * The bit 22 of 0x42000
6947          * The bit 22 of 0x42004
6948          * The bit 7,8,9 of 0x42020.
6949          */
6950         if (IS_IRONLAKE_M(dev_priv)) {
6951                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6952                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6953                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6954                            ILK_FBCQ_DIS);
6955                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6956                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6957                            ILK_DPARB_GATE);
6958         }
6959
6960         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6961
6962         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6963                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6964                    ILK_ELPIN_409_SELECT);
6965         I915_WRITE(_3D_CHICKEN2,
6966                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6967                    _3D_CHICKEN2_WM_READ_PIPELINED);
6968
6969         /* WaDisableRenderCachePipelinedFlush:ilk */
6970         I915_WRITE(CACHE_MODE_0,
6971                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6972
6973         /* WaDisable_RenderCache_OperationalFlush:ilk */
6974         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6975
6976         g4x_disable_trickle_feed(dev_priv);
6977
6978         ibx_init_clock_gating(dev_priv);
6979 }
6980
6981 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6982 {
6983         int pipe;
6984         uint32_t val;
6985
6986         /*
6987          * On Ibex Peak and Cougar Point, we need to disable clock
6988          * gating for the panel power sequencer or it will fail to
6989          * start up when no ports are active.
6990          */
6991         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6992                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6993                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6994         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6995                    DPLS_EDP_PPS_FIX_DIS);
6996         /* The below fixes the weird display corruption, a few pixels shifted
6997          * downward, on (only) LVDS of some HP laptops with IVY.
6998          */
6999         for_each_pipe(dev_priv, pipe) {
7000                 val = I915_READ(TRANS_CHICKEN2(pipe));
7001                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7002                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7003                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7004                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7005                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7006                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7007                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7008                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7009         }
7010         /* WADP0ClockGatingDisable */
7011         for_each_pipe(dev_priv, pipe) {
7012                 I915_WRITE(TRANS_CHICKEN1(pipe),
7013                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7014         }
7015 }
7016
7017 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7018 {
7019         uint32_t tmp;
7020
7021         tmp = I915_READ(MCH_SSKPD);
7022         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7023                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7024                               tmp);
7025 }
7026
7027 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7028 {
7029         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7030
7031         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7032
7033         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7034                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7035                    ILK_ELPIN_409_SELECT);
7036
7037         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7038         I915_WRITE(_3D_CHICKEN,
7039                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7040
7041         /* WaDisable_RenderCache_OperationalFlush:snb */
7042         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7043
7044         /*
7045          * BSpec recoomends 8x4 when MSAA is used,
7046          * however in practice 16x4 seems fastest.
7047          *
7048          * Note that PS/WM thread counts depend on the WIZ hashing
7049          * disable bit, which we don't touch here, but it's good
7050          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7051          */
7052         I915_WRITE(GEN6_GT_MODE,
7053                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7054
7055         ilk_init_lp_watermarks(dev_priv);
7056
7057         I915_WRITE(CACHE_MODE_0,
7058                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7059
7060         I915_WRITE(GEN6_UCGCTL1,
7061                    I915_READ(GEN6_UCGCTL1) |
7062                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7063                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7064
7065         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7066          * gating disable must be set.  Failure to set it results in
7067          * flickering pixels due to Z write ordering failures after
7068          * some amount of runtime in the Mesa "fire" demo, and Unigine
7069          * Sanctuary and Tropics, and apparently anything else with
7070          * alpha test or pixel discard.
7071          *
7072          * According to the spec, bit 11 (RCCUNIT) must also be set,
7073          * but we didn't debug actual testcases to find it out.
7074          *
7075          * WaDisableRCCUnitClockGating:snb
7076          * WaDisableRCPBUnitClockGating:snb
7077          */
7078         I915_WRITE(GEN6_UCGCTL2,
7079                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7080                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7081
7082         /* WaStripsFansDisableFastClipPerformanceFix:snb */
7083         I915_WRITE(_3D_CHICKEN3,
7084                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7085
7086         /*
7087          * Bspec says:
7088          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7089          * 3DSTATE_SF number of SF output attributes is more than 16."
7090          */
7091         I915_WRITE(_3D_CHICKEN3,
7092                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7093
7094         /*
7095          * According to the spec the following bits should be
7096          * set in order to enable memory self-refresh and fbc:
7097          * The bit21 and bit22 of 0x42000
7098          * The bit21 and bit22 of 0x42004
7099          * The bit5 and bit7 of 0x42020
7100          * The bit14 of 0x70180
7101          * The bit14 of 0x71180
7102          *
7103          * WaFbcAsynchFlipDisableFbcQueue:snb
7104          */
7105         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7106                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7107                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7108         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7109                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7110                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7111         I915_WRITE(ILK_DSPCLK_GATE_D,
7112                    I915_READ(ILK_DSPCLK_GATE_D) |
7113                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7114                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7115
7116         g4x_disable_trickle_feed(dev_priv);
7117
7118         cpt_init_clock_gating(dev_priv);
7119
7120         gen6_check_mch_setup(dev_priv);
7121 }
7122
7123 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7124 {
7125         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7126
7127         /*
7128          * WaVSThreadDispatchOverride:ivb,vlv
7129          *
7130          * This actually overrides the dispatch
7131          * mode for all thread types.
7132          */
7133         reg &= ~GEN7_FF_SCHED_MASK;
7134         reg |= GEN7_FF_TS_SCHED_HW;
7135         reg |= GEN7_FF_VS_SCHED_HW;
7136         reg |= GEN7_FF_DS_SCHED_HW;
7137
7138         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7139 }
7140
7141 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7142 {
7143         /*
7144          * TODO: this bit should only be enabled when really needed, then
7145          * disabled when not needed anymore in order to save power.
7146          */
7147         if (HAS_PCH_LPT_LP(dev_priv))
7148                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7149                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7150                            PCH_LP_PARTITION_LEVEL_DISABLE);
7151
7152         /* WADPOClockGatingDisable:hsw */
7153         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7154                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7155                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7156 }
7157
7158 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7159 {
7160         if (HAS_PCH_LPT_LP(dev_priv)) {
7161                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7162
7163                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7164                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7165         }
7166 }
7167
7168 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7169                                    int general_prio_credits,
7170                                    int high_prio_credits)
7171 {
7172         u32 misccpctl;
7173
7174         /* WaTempDisableDOPClkGating:bdw */
7175         misccpctl = I915_READ(GEN7_MISCCPCTL);
7176         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7177
7178         I915_WRITE(GEN8_L3SQCREG1,
7179                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7180                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7181
7182         /*
7183          * Wait at least 100 clocks before re-enabling clock gating.
7184          * See the definition of L3SQCREG1 in BSpec.
7185          */
7186         POSTING_READ(GEN8_L3SQCREG1);
7187         udelay(1);
7188         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7189 }
7190
7191 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7192 {
7193         gen9_init_clock_gating(dev_priv);
7194
7195         /* WaDisableSDEUnitClockGating:kbl */
7196         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7197                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7198                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7199
7200         /* WaDisableGamClockGating:kbl */
7201         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7202                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7203                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7204
7205         /* WaFbcNukeOnHostModify:kbl */
7206         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7207                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7208 }
7209
7210 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7211 {
7212         gen9_init_clock_gating(dev_priv);
7213
7214         /* WAC6entrylatency:skl */
7215         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7216                    FBC_LLC_FULLY_OPEN);
7217
7218         /* WaFbcNukeOnHostModify:skl */
7219         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7220                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7221 }
7222
7223 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7224 {
7225         enum pipe pipe;
7226
7227         ilk_init_lp_watermarks(dev_priv);
7228
7229         /* WaSwitchSolVfFArbitrationPriority:bdw */
7230         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7231
7232         /* WaPsrDPAMaskVBlankInSRD:bdw */
7233         I915_WRITE(CHICKEN_PAR1_1,
7234                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7235
7236         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7237         for_each_pipe(dev_priv, pipe) {
7238                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7239                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7240                            BDW_DPRS_MASK_VBLANK_SRD);
7241         }
7242
7243         /* WaVSRefCountFullforceMissDisable:bdw */
7244         /* WaDSRefCountFullforceMissDisable:bdw */
7245         I915_WRITE(GEN7_FF_THREAD_MODE,
7246                    I915_READ(GEN7_FF_THREAD_MODE) &
7247                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7248
7249         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7250                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7251
7252         /* WaDisableSDEUnitClockGating:bdw */
7253         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7254                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7255
7256         /* WaProgramL3SqcReg1Default:bdw */
7257         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7258
7259         /*
7260          * WaGttCachingOffByDefault:bdw
7261          * GTT cache may not work with big pages, so if those
7262          * are ever enabled GTT cache may need to be disabled.
7263          */
7264         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7265
7266         /* WaKVMNotificationOnConfigChange:bdw */
7267         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7268                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7269
7270         lpt_init_clock_gating(dev_priv);
7271 }
7272
7273 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7274 {
7275         ilk_init_lp_watermarks(dev_priv);
7276
7277         /* L3 caching of data atomics doesn't work -- disable it. */
7278         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7279         I915_WRITE(HSW_ROW_CHICKEN3,
7280                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7281
7282         /* This is required by WaCatErrorRejectionIssue:hsw */
7283         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7284                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7285                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7286
7287         /* WaVSRefCountFullforceMissDisable:hsw */
7288         I915_WRITE(GEN7_FF_THREAD_MODE,
7289                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7290
7291         /* WaDisable_RenderCache_OperationalFlush:hsw */
7292         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7293
7294         /* enable HiZ Raw Stall Optimization */
7295         I915_WRITE(CACHE_MODE_0_GEN7,
7296                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7297
7298         /* WaDisable4x2SubspanOptimization:hsw */
7299         I915_WRITE(CACHE_MODE_1,
7300                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7301
7302         /*
7303          * BSpec recommends 8x4 when MSAA is used,
7304          * however in practice 16x4 seems fastest.
7305          *
7306          * Note that PS/WM thread counts depend on the WIZ hashing
7307          * disable bit, which we don't touch here, but it's good
7308          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7309          */
7310         I915_WRITE(GEN7_GT_MODE,
7311                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7312
7313         /* WaSampleCChickenBitEnable:hsw */
7314         I915_WRITE(HALF_SLICE_CHICKEN3,
7315                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7316
7317         /* WaSwitchSolVfFArbitrationPriority:hsw */
7318         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7319
7320         /* WaRsPkgCStateDisplayPMReq:hsw */
7321         I915_WRITE(CHICKEN_PAR1_1,
7322                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7323
7324         lpt_init_clock_gating(dev_priv);
7325 }
7326
7327 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7328 {
7329         uint32_t snpcr;
7330
7331         ilk_init_lp_watermarks(dev_priv);
7332
7333         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7334
7335         /* WaDisableEarlyCull:ivb */
7336         I915_WRITE(_3D_CHICKEN3,
7337                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7338
7339         /* WaDisableBackToBackFlipFix:ivb */
7340         I915_WRITE(IVB_CHICKEN3,
7341                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7342                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7343
7344         /* WaDisablePSDDualDispatchEnable:ivb */
7345         if (IS_IVB_GT1(dev_priv))
7346                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7347                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7348
7349         /* WaDisable_RenderCache_OperationalFlush:ivb */
7350         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7351
7352         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7353         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7354                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7355
7356         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7357         I915_WRITE(GEN7_L3CNTLREG1,
7358                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7359         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7360                    GEN7_WA_L3_CHICKEN_MODE);
7361         if (IS_IVB_GT1(dev_priv))
7362                 I915_WRITE(GEN7_ROW_CHICKEN2,
7363                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7364         else {
7365                 /* must write both registers */
7366                 I915_WRITE(GEN7_ROW_CHICKEN2,
7367                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7368                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7369                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7370         }
7371
7372         /* WaForceL3Serialization:ivb */
7373         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7374                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7375
7376         /*
7377          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7378          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7379          */
7380         I915_WRITE(GEN6_UCGCTL2,
7381                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7382
7383         /* This is required by WaCatErrorRejectionIssue:ivb */
7384         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7385                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7386                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7387
7388         g4x_disable_trickle_feed(dev_priv);
7389
7390         gen7_setup_fixed_func_scheduler(dev_priv);
7391
7392         if (0) { /* causes HiZ corruption on ivb:gt1 */
7393                 /* enable HiZ Raw Stall Optimization */
7394                 I915_WRITE(CACHE_MODE_0_GEN7,
7395                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7396         }
7397
7398         /* WaDisable4x2SubspanOptimization:ivb */
7399         I915_WRITE(CACHE_MODE_1,
7400                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7401
7402         /*
7403          * BSpec recommends 8x4 when MSAA is used,
7404          * however in practice 16x4 seems fastest.
7405          *
7406          * Note that PS/WM thread counts depend on the WIZ hashing
7407          * disable bit, which we don't touch here, but it's good
7408          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7409          */
7410         I915_WRITE(GEN7_GT_MODE,
7411                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7412
7413         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7414         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7415         snpcr |= GEN6_MBC_SNPCR_MED;
7416         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7417
7418         if (!HAS_PCH_NOP(dev_priv))
7419                 cpt_init_clock_gating(dev_priv);
7420
7421         gen6_check_mch_setup(dev_priv);
7422 }
7423
7424 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7425 {
7426         /* WaDisableEarlyCull:vlv */
7427         I915_WRITE(_3D_CHICKEN3,
7428                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7429
7430         /* WaDisableBackToBackFlipFix:vlv */
7431         I915_WRITE(IVB_CHICKEN3,
7432                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7433                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7434
7435         /* WaPsdDispatchEnable:vlv */
7436         /* WaDisablePSDDualDispatchEnable:vlv */
7437         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7438                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7439                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7440
7441         /* WaDisable_RenderCache_OperationalFlush:vlv */
7442         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7443
7444         /* WaForceL3Serialization:vlv */
7445         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7446                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7447
7448         /* WaDisableDopClockGating:vlv */
7449         I915_WRITE(GEN7_ROW_CHICKEN2,
7450                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7451
7452         /* This is required by WaCatErrorRejectionIssue:vlv */
7453         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7454                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7455                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7456
7457         gen7_setup_fixed_func_scheduler(dev_priv);
7458
7459         /*
7460          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7461          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7462          */
7463         I915_WRITE(GEN6_UCGCTL2,
7464                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7465
7466         /* WaDisableL3Bank2xClockGate:vlv
7467          * Disabling L3 clock gating- MMIO 940c[25] = 1
7468          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7469         I915_WRITE(GEN7_UCGCTL4,
7470                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7471
7472         /*
7473          * BSpec says this must be set, even though
7474          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7475          */
7476         I915_WRITE(CACHE_MODE_1,
7477                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7478
7479         /*
7480          * BSpec recommends 8x4 when MSAA is used,
7481          * however in practice 16x4 seems fastest.
7482          *
7483          * Note that PS/WM thread counts depend on the WIZ hashing
7484          * disable bit, which we don't touch here, but it's good
7485          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7486          */
7487         I915_WRITE(GEN7_GT_MODE,
7488                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7489
7490         /*
7491          * WaIncreaseL3CreditsForVLVB0:vlv
7492          * This is the hardware default actually.
7493          */
7494         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7495
7496         /*
7497          * WaDisableVLVClockGating_VBIIssue:vlv
7498          * Disable clock gating on th GCFG unit to prevent a delay
7499          * in the reporting of vblank events.
7500          */
7501         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7502 }
7503
7504 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7505 {
7506         /* WaVSRefCountFullforceMissDisable:chv */
7507         /* WaDSRefCountFullforceMissDisable:chv */
7508         I915_WRITE(GEN7_FF_THREAD_MODE,
7509                    I915_READ(GEN7_FF_THREAD_MODE) &
7510                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7511
7512         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7513         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7514                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7515
7516         /* WaDisableCSUnitClockGating:chv */
7517         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7518                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7519
7520         /* WaDisableSDEUnitClockGating:chv */
7521         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7522                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7523
7524         /*
7525          * WaProgramL3SqcReg1Default:chv
7526          * See gfxspecs/Related Documents/Performance Guide/
7527          * LSQC Setting Recommendations.
7528          */
7529         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7530
7531         /*
7532          * GTT cache may not work with big pages, so if those
7533          * are ever enabled GTT cache may need to be disabled.
7534          */
7535         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7536 }
7537
7538 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7539 {
7540         uint32_t dspclk_gate;
7541
7542         I915_WRITE(RENCLK_GATE_D1, 0);
7543         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7544                    GS_UNIT_CLOCK_GATE_DISABLE |
7545                    CL_UNIT_CLOCK_GATE_DISABLE);
7546         I915_WRITE(RAMCLK_GATE_D, 0);
7547         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7548                 OVRUNIT_CLOCK_GATE_DISABLE |
7549                 OVCUNIT_CLOCK_GATE_DISABLE;
7550         if (IS_GM45(dev_priv))
7551                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7552         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7553
7554         /* WaDisableRenderCachePipelinedFlush */
7555         I915_WRITE(CACHE_MODE_0,
7556                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7557
7558         /* WaDisable_RenderCache_OperationalFlush:g4x */
7559         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7560
7561         g4x_disable_trickle_feed(dev_priv);
7562 }
7563
7564 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7565 {
7566         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7567         I915_WRITE(RENCLK_GATE_D2, 0);
7568         I915_WRITE(DSPCLK_GATE_D, 0);
7569         I915_WRITE(RAMCLK_GATE_D, 0);
7570         I915_WRITE16(DEUC, 0);
7571         I915_WRITE(MI_ARB_STATE,
7572                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7573
7574         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7575         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7576 }
7577
7578 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7579 {
7580         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7581                    I965_RCC_CLOCK_GATE_DISABLE |
7582                    I965_RCPB_CLOCK_GATE_DISABLE |
7583                    I965_ISC_CLOCK_GATE_DISABLE |
7584                    I965_FBC_CLOCK_GATE_DISABLE);
7585         I915_WRITE(RENCLK_GATE_D2, 0);
7586         I915_WRITE(MI_ARB_STATE,
7587                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7588
7589         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7590         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7591 }
7592
7593 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7594 {
7595         u32 dstate = I915_READ(D_STATE);
7596
7597         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7598                 DSTATE_DOT_CLOCK_GATING;
7599         I915_WRITE(D_STATE, dstate);
7600
7601         if (IS_PINEVIEW(dev_priv))
7602                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7603
7604         /* IIR "flip pending" means done if this bit is set */
7605         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7606
7607         /* interrupts should cause a wake up from C3 */
7608         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7609
7610         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7611         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7612
7613         I915_WRITE(MI_ARB_STATE,
7614                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7615 }
7616
7617 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7618 {
7619         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7620
7621         /* interrupts should cause a wake up from C3 */
7622         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7623                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7624
7625         I915_WRITE(MEM_MODE,
7626                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7627 }
7628
7629 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7630 {
7631         I915_WRITE(MEM_MODE,
7632                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7633                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7634 }
7635
7636 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7637 {
7638         dev_priv->display.init_clock_gating(dev_priv);
7639 }
7640
7641 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7642 {
7643         if (HAS_PCH_LPT(dev_priv))
7644                 lpt_suspend_hw(dev_priv);
7645 }
7646
7647 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7648 {
7649         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7650 }
7651
7652 /**
7653  * intel_init_clock_gating_hooks - setup the clock gating hooks
7654  * @dev_priv: device private
7655  *
7656  * Setup the hooks that configure which clocks of a given platform can be
7657  * gated and also apply various GT and display specific workarounds for these
7658  * platforms. Note that some GT specific workarounds are applied separately
7659  * when GPU contexts or batchbuffers start their execution.
7660  */
7661 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7662 {
7663         if (IS_SKYLAKE(dev_priv))
7664                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7665         else if (IS_KABYLAKE(dev_priv))
7666                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7667         else if (IS_GEN9_LP(dev_priv))
7668                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7669         else if (IS_BROADWELL(dev_priv))
7670                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7671         else if (IS_CHERRYVIEW(dev_priv))
7672                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7673         else if (IS_HASWELL(dev_priv))
7674                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7675         else if (IS_IVYBRIDGE(dev_priv))
7676                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7677         else if (IS_VALLEYVIEW(dev_priv))
7678                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7679         else if (IS_GEN6(dev_priv))
7680                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7681         else if (IS_GEN5(dev_priv))
7682                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7683         else if (IS_G4X(dev_priv))
7684                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7685         else if (IS_I965GM(dev_priv))
7686                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7687         else if (IS_I965G(dev_priv))
7688                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7689         else if (IS_GEN3(dev_priv))
7690                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7691         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7692                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7693         else if (IS_GEN2(dev_priv))
7694                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7695         else {
7696                 MISSING_CASE(INTEL_DEVID(dev_priv));
7697                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7698         }
7699 }
7700
7701 /* Set up chip specific power management-related functions */
7702 void intel_init_pm(struct drm_i915_private *dev_priv)
7703 {
7704         intel_fbc_init(dev_priv);
7705
7706         /* For cxsr */
7707         if (IS_PINEVIEW(dev_priv))
7708                 i915_pineview_get_mem_freq(dev_priv);
7709         else if (IS_GEN5(dev_priv))
7710                 i915_ironlake_get_mem_freq(dev_priv);
7711
7712         /* For FIFO watermark updates */
7713         if (INTEL_GEN(dev_priv) >= 9) {
7714                 skl_setup_wm_latency(dev_priv);
7715                 dev_priv->display.initial_watermarks = skl_initial_wm;
7716                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7717                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7718         } else if (HAS_PCH_SPLIT(dev_priv)) {
7719                 ilk_setup_wm_latency(dev_priv);
7720
7721                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7722                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7723                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7724                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7725                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7726                         dev_priv->display.compute_intermediate_wm =
7727                                 ilk_compute_intermediate_wm;
7728                         dev_priv->display.initial_watermarks =
7729                                 ilk_initial_watermarks;
7730                         dev_priv->display.optimize_watermarks =
7731                                 ilk_optimize_watermarks;
7732                 } else {
7733                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7734                                       "Disable CxSR\n");
7735                 }
7736         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7737                 vlv_setup_wm_latency(dev_priv);
7738                 dev_priv->display.update_wm = vlv_update_wm;
7739         } else if (IS_PINEVIEW(dev_priv)) {
7740                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7741                                             dev_priv->is_ddr3,
7742                                             dev_priv->fsb_freq,
7743                                             dev_priv->mem_freq)) {
7744                         DRM_INFO("failed to find known CxSR latency "
7745                                  "(found ddr%s fsb freq %d, mem freq %d), "
7746                                  "disabling CxSR\n",
7747                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7748                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7749                         /* Disable CxSR and never update its watermark again */
7750                         intel_set_memory_cxsr(dev_priv, false);
7751                         dev_priv->display.update_wm = NULL;
7752                 } else
7753                         dev_priv->display.update_wm = pineview_update_wm;
7754         } else if (IS_G4X(dev_priv)) {
7755                 dev_priv->display.update_wm = g4x_update_wm;
7756         } else if (IS_GEN4(dev_priv)) {
7757                 dev_priv->display.update_wm = i965_update_wm;
7758         } else if (IS_GEN3(dev_priv)) {
7759                 dev_priv->display.update_wm = i9xx_update_wm;
7760                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7761         } else if (IS_GEN2(dev_priv)) {
7762                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7763                         dev_priv->display.update_wm = i845_update_wm;
7764                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7765                 } else {
7766                         dev_priv->display.update_wm = i9xx_update_wm;
7767                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7768                 }
7769         } else {
7770                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7771         }
7772 }
7773
7774 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7775 {
7776         uint32_t flags =
7777                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7778
7779         switch (flags) {
7780         case GEN6_PCODE_SUCCESS:
7781                 return 0;
7782         case GEN6_PCODE_UNIMPLEMENTED_CMD:
7783         case GEN6_PCODE_ILLEGAL_CMD:
7784                 return -ENXIO;
7785         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7786         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7787                 return -EOVERFLOW;
7788         case GEN6_PCODE_TIMEOUT:
7789                 return -ETIMEDOUT;
7790         default:
7791                 MISSING_CASE(flags)
7792                 return 0;
7793         }
7794 }
7795
7796 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7797 {
7798         uint32_t flags =
7799                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7800
7801         switch (flags) {
7802         case GEN6_PCODE_SUCCESS:
7803                 return 0;
7804         case GEN6_PCODE_ILLEGAL_CMD:
7805                 return -ENXIO;
7806         case GEN7_PCODE_TIMEOUT:
7807                 return -ETIMEDOUT;
7808         case GEN7_PCODE_ILLEGAL_DATA:
7809                 return -EINVAL;
7810         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7811                 return -EOVERFLOW;
7812         default:
7813                 MISSING_CASE(flags);
7814                 return 0;
7815         }
7816 }
7817
7818 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7819 {
7820         int status;
7821
7822         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7823
7824         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7825          * use te fw I915_READ variants to reduce the amount of work
7826          * required when reading/writing.
7827          */
7828
7829         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7830                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7831                 return -EAGAIN;
7832         }
7833
7834         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7835         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7836         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7837
7838         if (intel_wait_for_register_fw(dev_priv,
7839                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7840                                        500)) {
7841                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7842                 return -ETIMEDOUT;
7843         }
7844
7845         *val = I915_READ_FW(GEN6_PCODE_DATA);
7846         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7847
7848         if (INTEL_GEN(dev_priv) > 6)
7849                 status = gen7_check_mailbox_status(dev_priv);
7850         else
7851                 status = gen6_check_mailbox_status(dev_priv);
7852
7853         if (status) {
7854                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7855                                  status);
7856                 return status;
7857         }
7858
7859         return 0;
7860 }
7861
7862 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7863                             u32 mbox, u32 val)
7864 {
7865         int status;
7866
7867         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7868
7869         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7870          * use te fw I915_READ variants to reduce the amount of work
7871          * required when reading/writing.
7872          */
7873
7874         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7875                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7876                 return -EAGAIN;
7877         }
7878
7879         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7880         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7881         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7882
7883         if (intel_wait_for_register_fw(dev_priv,
7884                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7885                                        500)) {
7886                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7887                 return -ETIMEDOUT;
7888         }
7889
7890         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7891
7892         if (INTEL_GEN(dev_priv) > 6)
7893                 status = gen7_check_mailbox_status(dev_priv);
7894         else
7895                 status = gen6_check_mailbox_status(dev_priv);
7896
7897         if (status) {
7898                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7899                                  status);
7900                 return status;
7901         }
7902
7903         return 0;
7904 }
7905
7906 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7907                                   u32 request, u32 reply_mask, u32 reply,
7908                                   u32 *status)
7909 {
7910         u32 val = request;
7911
7912         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
7913
7914         return *status || ((val & reply_mask) == reply);
7915 }
7916
7917 /**
7918  * skl_pcode_request - send PCODE request until acknowledgment
7919  * @dev_priv: device private
7920  * @mbox: PCODE mailbox ID the request is targeted for
7921  * @request: request ID
7922  * @reply_mask: mask used to check for request acknowledgment
7923  * @reply: value used to check for request acknowledgment
7924  * @timeout_base_ms: timeout for polling with preemption enabled
7925  *
7926  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7927  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7928  * The request is acknowledged once the PCODE reply dword equals @reply after
7929  * applying @reply_mask. Polling is first attempted with preemption enabled
7930  * for @timeout_base_ms and if this times out for another 50 ms with
7931  * preemption disabled.
7932  *
7933  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7934  * other error as reported by PCODE.
7935  */
7936 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7937                       u32 reply_mask, u32 reply, int timeout_base_ms)
7938 {
7939         u32 status;
7940         int ret;
7941
7942         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7943
7944 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7945                                    &status)
7946
7947         /*
7948          * Prime the PCODE by doing a request first. Normally it guarantees
7949          * that a subsequent request, at most @timeout_base_ms later, succeeds.
7950          * _wait_for() doesn't guarantee when its passed condition is evaluated
7951          * first, so send the first request explicitly.
7952          */
7953         if (COND) {
7954                 ret = 0;
7955                 goto out;
7956         }
7957         ret = _wait_for(COND, timeout_base_ms * 1000, 10);
7958         if (!ret)
7959                 goto out;
7960
7961         /*
7962          * The above can time out if the number of requests was low (2 in the
7963          * worst case) _and_ PCODE was busy for some reason even after a
7964          * (queued) request and @timeout_base_ms delay. As a workaround retry
7965          * the poll with preemption disabled to maximize the number of
7966          * requests. Increase the timeout from @timeout_base_ms to 50ms to
7967          * account for interrupts that could reduce the number of these
7968          * requests, and for any quirks of the PCODE firmware that delays
7969          * the request completion.
7970          */
7971         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
7972         WARN_ON_ONCE(timeout_base_ms > 3);
7973         preempt_disable();
7974         ret = wait_for_atomic(COND, 50);
7975         preempt_enable();
7976
7977 out:
7978         return ret ? ret : status;
7979 #undef COND
7980 }
7981
7982 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7983 {
7984         /*
7985          * N = val - 0xb7
7986          * Slow = Fast = GPLL ref * N
7987          */
7988         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7989 }
7990
7991 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7992 {
7993         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7994 }
7995
7996 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7997 {
7998         /*
7999          * N = val / 2
8000          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8001          */
8002         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8003 }
8004
8005 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8006 {
8007         /* CHV needs even values */
8008         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8009 }
8010
8011 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8012 {
8013         if (IS_GEN9(dev_priv))
8014                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8015                                          GEN9_FREQ_SCALER);
8016         else if (IS_CHERRYVIEW(dev_priv))
8017                 return chv_gpu_freq(dev_priv, val);
8018         else if (IS_VALLEYVIEW(dev_priv))
8019                 return byt_gpu_freq(dev_priv, val);
8020         else
8021                 return val * GT_FREQUENCY_MULTIPLIER;
8022 }
8023
8024 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8025 {
8026         if (IS_GEN9(dev_priv))
8027                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8028                                          GT_FREQUENCY_MULTIPLIER);
8029         else if (IS_CHERRYVIEW(dev_priv))
8030                 return chv_freq_opcode(dev_priv, val);
8031         else if (IS_VALLEYVIEW(dev_priv))
8032                 return byt_freq_opcode(dev_priv, val);
8033         else
8034                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8035 }
8036
8037 struct request_boost {
8038         struct work_struct work;
8039         struct drm_i915_gem_request *req;
8040 };
8041
8042 static void __intel_rps_boost_work(struct work_struct *work)
8043 {
8044         struct request_boost *boost = container_of(work, struct request_boost, work);
8045         struct drm_i915_gem_request *req = boost->req;
8046
8047         if (!i915_gem_request_completed(req))
8048                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8049
8050         i915_gem_request_put(req);
8051         kfree(boost);
8052 }
8053
8054 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8055 {
8056         struct request_boost *boost;
8057
8058         if (req == NULL || INTEL_GEN(req->i915) < 6)
8059                 return;
8060
8061         if (i915_gem_request_completed(req))
8062                 return;
8063
8064         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8065         if (boost == NULL)
8066                 return;
8067
8068         boost->req = i915_gem_request_get(req);
8069
8070         INIT_WORK(&boost->work, __intel_rps_boost_work);
8071         queue_work(req->i915->wq, &boost->work);
8072 }
8073
8074 void intel_pm_setup(struct drm_i915_private *dev_priv)
8075 {
8076         mutex_init(&dev_priv->rps.hw_lock);
8077         spin_lock_init(&dev_priv->rps.client_lock);
8078
8079         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8080                           __intel_autoenable_gt_powersave);
8081         INIT_LIST_HEAD(&dev_priv->rps.clients);
8082
8083         dev_priv->pm.suspended = false;
8084         atomic_set(&dev_priv->pm.wakeref_count, 0);
8085 }