]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Introduce vlv_invert_wm_value()
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68         /* WaEnableChickenDCPR:skl,bxt,kbl */
69         I915_WRITE(GEN8_CHICKEN_DCPR_1,
70                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73         /* WaFbcWakeMemOn:skl,bxt,kbl */
74         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75                    DISP_FBC_WM_DIS |
76                    DISP_FBC_MEMORY_WAKE);
77
78         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80                    ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85         gen9_init_clock_gating(dev_priv);
86
87         /* WaDisableSDEUnitClockGating:bxt */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91         /*
92          * FIXME:
93          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94          */
95         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98         /*
99          * Wa: Backlight PWM may stop in the asserted state, causing backlight
100          * to stay fully on.
101          */
102         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
103                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
104                            PWM1_GATING_DIS | PWM2_GATING_DIS);
105 }
106
107 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 {
109         u32 tmp;
110
111         tmp = I915_READ(CLKCFG);
112
113         switch (tmp & CLKCFG_FSB_MASK) {
114         case CLKCFG_FSB_533:
115                 dev_priv->fsb_freq = 533; /* 133*4 */
116                 break;
117         case CLKCFG_FSB_800:
118                 dev_priv->fsb_freq = 800; /* 200*4 */
119                 break;
120         case CLKCFG_FSB_667:
121                 dev_priv->fsb_freq =  667; /* 167*4 */
122                 break;
123         case CLKCFG_FSB_400:
124                 dev_priv->fsb_freq = 400; /* 100*4 */
125                 break;
126         }
127
128         switch (tmp & CLKCFG_MEM_MASK) {
129         case CLKCFG_MEM_533:
130                 dev_priv->mem_freq = 533;
131                 break;
132         case CLKCFG_MEM_667:
133                 dev_priv->mem_freq = 667;
134                 break;
135         case CLKCFG_MEM_800:
136                 dev_priv->mem_freq = 800;
137                 break;
138         }
139
140         /* detect pineview DDR3 setting */
141         tmp = I915_READ(CSHRDDR3CTL);
142         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 {
147         u16 ddrpll, csipll;
148
149         ddrpll = I915_READ16(DDRMPLL1);
150         csipll = I915_READ16(CSIPLL0);
151
152         switch (ddrpll & 0xff) {
153         case 0xc:
154                 dev_priv->mem_freq = 800;
155                 break;
156         case 0x10:
157                 dev_priv->mem_freq = 1066;
158                 break;
159         case 0x14:
160                 dev_priv->mem_freq = 1333;
161                 break;
162         case 0x18:
163                 dev_priv->mem_freq = 1600;
164                 break;
165         default:
166                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
167                                  ddrpll & 0xff);
168                 dev_priv->mem_freq = 0;
169                 break;
170         }
171
172         dev_priv->ips.r_t = dev_priv->mem_freq;
173
174         switch (csipll & 0x3ff) {
175         case 0x00c:
176                 dev_priv->fsb_freq = 3200;
177                 break;
178         case 0x00e:
179                 dev_priv->fsb_freq = 3733;
180                 break;
181         case 0x010:
182                 dev_priv->fsb_freq = 4266;
183                 break;
184         case 0x012:
185                 dev_priv->fsb_freq = 4800;
186                 break;
187         case 0x014:
188                 dev_priv->fsb_freq = 5333;
189                 break;
190         case 0x016:
191                 dev_priv->fsb_freq = 5866;
192                 break;
193         case 0x018:
194                 dev_priv->fsb_freq = 6400;
195                 break;
196         default:
197                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
198                                  csipll & 0x3ff);
199                 dev_priv->fsb_freq = 0;
200                 break;
201         }
202
203         if (dev_priv->fsb_freq == 3200) {
204                 dev_priv->ips.c_m = 0;
205         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206                 dev_priv->ips.c_m = 1;
207         } else {
208                 dev_priv->ips.c_m = 2;
209         }
210 }
211
212 static const struct cxsr_latency cxsr_latency_table[] = {
213         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
214         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
215         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
216         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
217         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
218
219         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
220         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
221         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
222         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
223         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
224
225         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
226         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
227         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
228         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
229         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
230
231         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
232         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
233         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
234         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
235         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
236
237         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
238         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
239         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
240         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
241         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
242
243         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
244         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
245         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
246         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
247         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
248 };
249
250 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
251                                                          bool is_ddr3,
252                                                          int fsb,
253                                                          int mem)
254 {
255         const struct cxsr_latency *latency;
256         int i;
257
258         if (fsb == 0 || mem == 0)
259                 return NULL;
260
261         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
262                 latency = &cxsr_latency_table[i];
263                 if (is_desktop == latency->is_desktop &&
264                     is_ddr3 == latency->is_ddr3 &&
265                     fsb == latency->fsb_freq && mem == latency->mem_freq)
266                         return latency;
267         }
268
269         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
270
271         return NULL;
272 }
273
274 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
275 {
276         u32 val;
277
278         mutex_lock(&dev_priv->rps.hw_lock);
279
280         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
281         if (enable)
282                 val &= ~FORCE_DDR_HIGH_FREQ;
283         else
284                 val |= FORCE_DDR_HIGH_FREQ;
285         val &= ~FORCE_DDR_LOW_FREQ;
286         val |= FORCE_DDR_FREQ_REQ_ACK;
287         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
288
289         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
290                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
291                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
292
293         mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
297 {
298         u32 val;
299
300         mutex_lock(&dev_priv->rps.hw_lock);
301
302         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
303         if (enable)
304                 val |= DSP_MAXFIFO_PM5_ENABLE;
305         else
306                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
307         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
308
309         mutex_unlock(&dev_priv->rps.hw_lock);
310 }
311
312 #define FW_WM(value, plane) \
313         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
314
315 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316 {
317         u32 val;
318
319         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321                 POSTING_READ(FW_BLC_SELF_VLV);
322                 dev_priv->wm.vlv.cxsr = enable;
323         } else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325                 POSTING_READ(FW_BLC_SELF);
326         } else if (IS_PINEVIEW(dev_priv)) {
327                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
328                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
329                 I915_WRITE(DSPFW3, val);
330                 POSTING_READ(DSPFW3);
331         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
333                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
334                 I915_WRITE(FW_BLC_SELF, val);
335                 POSTING_READ(FW_BLC_SELF);
336         } else if (IS_I915GM(dev_priv)) {
337                 /*
338                  * FIXME can't find a bit like this for 915G, and
339                  * and yet it does have the related watermark in
340                  * FW_BLC_SELF. What's going on?
341                  */
342                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
343                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
344                 I915_WRITE(INSTPM, val);
345                 POSTING_READ(INSTPM);
346         } else {
347                 return;
348         }
349
350         DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 }
352
353
354 /*
355  * Latency for FIFO fetches is dependent on several factors:
356  *   - memory configuration (speed, channels)
357  *   - chipset
358  *   - current MCH state
359  * It can be fairly high in some situations, so here we assume a fairly
360  * pessimal value.  It's a tradeoff between extra memory fetches (if we
361  * set this value too high, the FIFO will fetch frequently to stay full)
362  * and power consumption (set it too low to save power and we might see
363  * FIFO underruns and display "flicker").
364  *
365  * A value of 5us seems to be a good balance; safe for very low end
366  * platforms but not overly aggressive on lower latency configs.
367  */
368 static const int pessimal_latency_ns = 5000;
369
370 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
371         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
372
373 static int vlv_get_fifo_size(struct intel_plane *plane)
374 {
375         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
376         int sprite0_start, sprite1_start, size;
377
378         if (plane->id == PLANE_CURSOR)
379                 return 63;
380
381         switch (plane->pipe) {
382                 uint32_t dsparb, dsparb2, dsparb3;
383         case PIPE_A:
384                 dsparb = I915_READ(DSPARB);
385                 dsparb2 = I915_READ(DSPARB2);
386                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388                 break;
389         case PIPE_B:
390                 dsparb = I915_READ(DSPARB);
391                 dsparb2 = I915_READ(DSPARB2);
392                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394                 break;
395         case PIPE_C:
396                 dsparb2 = I915_READ(DSPARB2);
397                 dsparb3 = I915_READ(DSPARB3);
398                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400                 break;
401         default:
402                 return 0;
403         }
404
405         switch (plane->id) {
406         case PLANE_PRIMARY:
407                 size = sprite0_start;
408                 break;
409         case PLANE_SPRITE0:
410                 size = sprite1_start - sprite0_start;
411                 break;
412         case PLANE_SPRITE1:
413                 size = 512 - 1 - sprite1_start;
414                 break;
415         default:
416                 return 0;
417         }
418
419         DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
420
421         return size;
422 }
423
424 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 {
426         uint32_t dsparb = I915_READ(DSPARB);
427         int size;
428
429         size = dsparb & 0x7f;
430         if (plane)
431                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
432
433         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
434                       plane ? "B" : "A", size);
435
436         return size;
437 }
438
439 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 {
441         uint32_t dsparb = I915_READ(DSPARB);
442         int size;
443
444         size = dsparb & 0x1ff;
445         if (plane)
446                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
447         size >>= 1; /* Convert to cachelines */
448
449         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
450                       plane ? "B" : "A", size);
451
452         return size;
453 }
454
455 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 {
457         uint32_t dsparb = I915_READ(DSPARB);
458         int size;
459
460         size = dsparb & 0x7f;
461         size >>= 2; /* Convert to cachelines */
462
463         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
464                       plane ? "B" : "A",
465                       size);
466
467         return size;
468 }
469
470 /* Pineview has different values for various configs */
471 static const struct intel_watermark_params pineview_display_wm = {
472         .fifo_size = PINEVIEW_DISPLAY_FIFO,
473         .max_wm = PINEVIEW_MAX_WM,
474         .default_wm = PINEVIEW_DFT_WM,
475         .guard_size = PINEVIEW_GUARD_WM,
476         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 };
478 static const struct intel_watermark_params pineview_display_hplloff_wm = {
479         .fifo_size = PINEVIEW_DISPLAY_FIFO,
480         .max_wm = PINEVIEW_MAX_WM,
481         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
482         .guard_size = PINEVIEW_GUARD_WM,
483         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 };
485 static const struct intel_watermark_params pineview_cursor_wm = {
486         .fifo_size = PINEVIEW_CURSOR_FIFO,
487         .max_wm = PINEVIEW_CURSOR_MAX_WM,
488         .default_wm = PINEVIEW_CURSOR_DFT_WM,
489         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
490         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 };
492 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493         .fifo_size = PINEVIEW_CURSOR_FIFO,
494         .max_wm = PINEVIEW_CURSOR_MAX_WM,
495         .default_wm = PINEVIEW_CURSOR_DFT_WM,
496         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
497         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 };
499 static const struct intel_watermark_params g4x_wm_info = {
500         .fifo_size = G4X_FIFO_SIZE,
501         .max_wm = G4X_MAX_WM,
502         .default_wm = G4X_MAX_WM,
503         .guard_size = 2,
504         .cacheline_size = G4X_FIFO_LINE_SIZE,
505 };
506 static const struct intel_watermark_params g4x_cursor_wm_info = {
507         .fifo_size = I965_CURSOR_FIFO,
508         .max_wm = I965_CURSOR_MAX_WM,
509         .default_wm = I965_CURSOR_DFT_WM,
510         .guard_size = 2,
511         .cacheline_size = G4X_FIFO_LINE_SIZE,
512 };
513 static const struct intel_watermark_params i965_cursor_wm_info = {
514         .fifo_size = I965_CURSOR_FIFO,
515         .max_wm = I965_CURSOR_MAX_WM,
516         .default_wm = I965_CURSOR_DFT_WM,
517         .guard_size = 2,
518         .cacheline_size = I915_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params i945_wm_info = {
521         .fifo_size = I945_FIFO_SIZE,
522         .max_wm = I915_MAX_WM,
523         .default_wm = 1,
524         .guard_size = 2,
525         .cacheline_size = I915_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params i915_wm_info = {
528         .fifo_size = I915_FIFO_SIZE,
529         .max_wm = I915_MAX_WM,
530         .default_wm = 1,
531         .guard_size = 2,
532         .cacheline_size = I915_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params i830_a_wm_info = {
535         .fifo_size = I855GM_FIFO_SIZE,
536         .max_wm = I915_MAX_WM,
537         .default_wm = 1,
538         .guard_size = 2,
539         .cacheline_size = I830_FIFO_LINE_SIZE,
540 };
541 static const struct intel_watermark_params i830_bc_wm_info = {
542         .fifo_size = I855GM_FIFO_SIZE,
543         .max_wm = I915_MAX_WM/2,
544         .default_wm = 1,
545         .guard_size = 2,
546         .cacheline_size = I830_FIFO_LINE_SIZE,
547 };
548 static const struct intel_watermark_params i845_wm_info = {
549         .fifo_size = I830_FIFO_SIZE,
550         .max_wm = I915_MAX_WM,
551         .default_wm = 1,
552         .guard_size = 2,
553         .cacheline_size = I830_FIFO_LINE_SIZE,
554 };
555
556 /**
557  * intel_calculate_wm - calculate watermark level
558  * @clock_in_khz: pixel clock
559  * @wm: chip FIFO params
560  * @cpp: bytes per pixel
561  * @latency_ns: memory latency for the platform
562  *
563  * Calculate the watermark level (the level at which the display plane will
564  * start fetching from memory again).  Each chip has a different display
565  * FIFO size and allocation, so the caller needs to figure that out and pass
566  * in the correct intel_watermark_params structure.
567  *
568  * As the pixel clock runs, the FIFO will be drained at a rate that depends
569  * on the pixel size.  When it reaches the watermark level, it'll start
570  * fetching FIFO line sized based chunks from memory until the FIFO fills
571  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
572  * will occur, and a display engine hang could result.
573  */
574 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
575                                         const struct intel_watermark_params *wm,
576                                         int fifo_size, int cpp,
577                                         unsigned long latency_ns)
578 {
579         long entries_required, wm_size;
580
581         /*
582          * Note: we need to make sure we don't overflow for various clock &
583          * latency values.
584          * clocks go from a few thousand to several hundred thousand.
585          * latency is usually a few thousand
586          */
587         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588                 1000;
589         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
590
591         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
592
593         wm_size = fifo_size - (entries_required + wm->guard_size);
594
595         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
596
597         /* Don't promote wm_size to unsigned... */
598         if (wm_size > (long)wm->max_wm)
599                 wm_size = wm->max_wm;
600         if (wm_size <= 0)
601                 wm_size = wm->default_wm;
602
603         /*
604          * Bspec seems to indicate that the value shouldn't be lower than
605          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
606          * Lets go for 8 which is the burst size since certain platforms
607          * already use a hardcoded 8 (which is what the spec says should be
608          * done).
609          */
610         if (wm_size <= 8)
611                 wm_size = 8;
612
613         return wm_size;
614 }
615
616 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617 {
618         struct intel_crtc *crtc, *enabled = NULL;
619
620         for_each_intel_crtc(&dev_priv->drm, crtc) {
621                 if (intel_crtc_active(crtc)) {
622                         if (enabled)
623                                 return NULL;
624                         enabled = crtc;
625                 }
626         }
627
628         return enabled;
629 }
630
631 static void pineview_update_wm(struct intel_crtc *unused_crtc)
632 {
633         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634         struct intel_crtc *crtc;
635         const struct cxsr_latency *latency;
636         u32 reg;
637         unsigned long wm;
638
639         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
640                                          dev_priv->is_ddr3,
641                                          dev_priv->fsb_freq,
642                                          dev_priv->mem_freq);
643         if (!latency) {
644                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645                 intel_set_memory_cxsr(dev_priv, false);
646                 return;
647         }
648
649         crtc = single_enabled_crtc(dev_priv);
650         if (crtc) {
651                 const struct drm_display_mode *adjusted_mode =
652                         &crtc->config->base.adjusted_mode;
653                 const struct drm_framebuffer *fb =
654                         crtc->base.primary->state->fb;
655                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
656                 int clock = adjusted_mode->crtc_clock;
657
658                 /* Display SR */
659                 wm = intel_calculate_wm(clock, &pineview_display_wm,
660                                         pineview_display_wm.fifo_size,
661                                         cpp, latency->display_sr);
662                 reg = I915_READ(DSPFW1);
663                 reg &= ~DSPFW_SR_MASK;
664                 reg |= FW_WM(wm, SR);
665                 I915_WRITE(DSPFW1, reg);
666                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
667
668                 /* cursor SR */
669                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
670                                         pineview_display_wm.fifo_size,
671                                         cpp, latency->cursor_sr);
672                 reg = I915_READ(DSPFW3);
673                 reg &= ~DSPFW_CURSOR_SR_MASK;
674                 reg |= FW_WM(wm, CURSOR_SR);
675                 I915_WRITE(DSPFW3, reg);
676
677                 /* Display HPLL off SR */
678                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
679                                         pineview_display_hplloff_wm.fifo_size,
680                                         cpp, latency->display_hpll_disable);
681                 reg = I915_READ(DSPFW3);
682                 reg &= ~DSPFW_HPLL_SR_MASK;
683                 reg |= FW_WM(wm, HPLL_SR);
684                 I915_WRITE(DSPFW3, reg);
685
686                 /* cursor HPLL off SR */
687                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
688                                         pineview_display_hplloff_wm.fifo_size,
689                                         cpp, latency->cursor_hpll_disable);
690                 reg = I915_READ(DSPFW3);
691                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
692                 reg |= FW_WM(wm, HPLL_CURSOR);
693                 I915_WRITE(DSPFW3, reg);
694                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
695
696                 intel_set_memory_cxsr(dev_priv, true);
697         } else {
698                 intel_set_memory_cxsr(dev_priv, false);
699         }
700 }
701
702 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703                             int plane,
704                             const struct intel_watermark_params *display,
705                             int display_latency_ns,
706                             const struct intel_watermark_params *cursor,
707                             int cursor_latency_ns,
708                             int *plane_wm,
709                             int *cursor_wm)
710 {
711         struct intel_crtc *crtc;
712         const struct drm_display_mode *adjusted_mode;
713         const struct drm_framebuffer *fb;
714         int htotal, hdisplay, clock, cpp;
715         int line_time_us, line_count;
716         int entries, tlb_miss;
717
718         crtc = intel_get_crtc_for_plane(dev_priv, plane);
719         if (!intel_crtc_active(crtc)) {
720                 *cursor_wm = cursor->guard_size;
721                 *plane_wm = display->guard_size;
722                 return false;
723         }
724
725         adjusted_mode = &crtc->config->base.adjusted_mode;
726         fb = crtc->base.primary->state->fb;
727         clock = adjusted_mode->crtc_clock;
728         htotal = adjusted_mode->crtc_htotal;
729         hdisplay = crtc->config->pipe_src_w;
730         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
731
732         /* Use the small buffer method to calculate plane watermark */
733         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735         if (tlb_miss > 0)
736                 entries += tlb_miss;
737         entries = DIV_ROUND_UP(entries, display->cacheline_size);
738         *plane_wm = entries + display->guard_size;
739         if (*plane_wm > (int)display->max_wm)
740                 *plane_wm = display->max_wm;
741
742         /* Use the large buffer method to calculate cursor watermark */
743         line_time_us = max(htotal * 1000 / clock, 1);
744         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745         entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747         if (tlb_miss > 0)
748                 entries += tlb_miss;
749         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750         *cursor_wm = entries + cursor->guard_size;
751         if (*cursor_wm > (int)cursor->max_wm)
752                 *cursor_wm = (int)cursor->max_wm;
753
754         return true;
755 }
756
757 /*
758  * Check the wm result.
759  *
760  * If any calculated watermark values is larger than the maximum value that
761  * can be programmed into the associated watermark register, that watermark
762  * must be disabled.
763  */
764 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765                            int display_wm, int cursor_wm,
766                            const struct intel_watermark_params *display,
767                            const struct intel_watermark_params *cursor)
768 {
769         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770                       display_wm, cursor_wm);
771
772         if (display_wm > display->max_wm) {
773                 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774                               display_wm, display->max_wm);
775                 return false;
776         }
777
778         if (cursor_wm > cursor->max_wm) {
779                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780                               cursor_wm, cursor->max_wm);
781                 return false;
782         }
783
784         if (!(display_wm || cursor_wm)) {
785                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786                 return false;
787         }
788
789         return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793                              int plane,
794                              int latency_ns,
795                              const struct intel_watermark_params *display,
796                              const struct intel_watermark_params *cursor,
797                              int *display_wm, int *cursor_wm)
798 {
799         struct intel_crtc *crtc;
800         const struct drm_display_mode *adjusted_mode;
801         const struct drm_framebuffer *fb;
802         int hdisplay, htotal, cpp, clock;
803         unsigned long line_time_us;
804         int line_count, line_size;
805         int small, large;
806         int entries;
807
808         if (!latency_ns) {
809                 *display_wm = *cursor_wm = 0;
810                 return false;
811         }
812
813         crtc = intel_get_crtc_for_plane(dev_priv, plane);
814         adjusted_mode = &crtc->config->base.adjusted_mode;
815         fb = crtc->base.primary->state->fb;
816         clock = adjusted_mode->crtc_clock;
817         htotal = adjusted_mode->crtc_htotal;
818         hdisplay = crtc->config->pipe_src_w;
819         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
820
821         line_time_us = max(htotal * 1000 / clock, 1);
822         line_count = (latency_ns / line_time_us + 1000) / 1000;
823         line_size = hdisplay * cpp;
824
825         /* Use the minimum of the small and large buffer method for primary */
826         small = ((clock * cpp / 1000) * latency_ns) / 1000;
827         large = line_count * line_size;
828
829         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
830         *display_wm = entries + display->guard_size;
831
832         /* calculate the self-refresh watermark for display cursor */
833         entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
835         *cursor_wm = entries + cursor->guard_size;
836
837         return g4x_check_srwm(dev_priv,
838                               *display_wm, *cursor_wm,
839                               display, cursor);
840 }
841
842 #define FW_WM_VLV(value, plane) \
843         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
844
845 static void vlv_write_wm_values(struct intel_crtc *crtc,
846                                 const struct vlv_wm_values *wm)
847 {
848         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
849         enum pipe pipe = crtc->pipe;
850
851         I915_WRITE(VLV_DDL(pipe),
852                    (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
853                    (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
854                    (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
855                    (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
856
857         I915_WRITE(DSPFW1,
858                    FW_WM(wm->sr.plane, SR) |
859                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
860                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
861                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
862         I915_WRITE(DSPFW2,
863                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
864                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
865                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
866         I915_WRITE(DSPFW3,
867                    FW_WM(wm->sr.cursor, CURSOR_SR));
868
869         if (IS_CHERRYVIEW(dev_priv)) {
870                 I915_WRITE(DSPFW7_CHV,
871                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
872                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
873                 I915_WRITE(DSPFW8_CHV,
874                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
875                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
876                 I915_WRITE(DSPFW9_CHV,
877                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
878                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
879                 I915_WRITE(DSPHOWM,
880                            FW_WM(wm->sr.plane >> 9, SR_HI) |
881                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
882                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
883                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
884                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
885                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
886                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
887                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
888                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
889                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
890         } else {
891                 I915_WRITE(DSPFW7,
892                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
893                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
894                 I915_WRITE(DSPHOWM,
895                            FW_WM(wm->sr.plane >> 9, SR_HI) |
896                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
897                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
898                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
899                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
900                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
901                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
902         }
903
904         /* zero (unused) WM1 watermarks */
905         I915_WRITE(DSPFW4, 0);
906         I915_WRITE(DSPFW5, 0);
907         I915_WRITE(DSPFW6, 0);
908         I915_WRITE(DSPHOWM1, 0);
909
910         POSTING_READ(DSPFW1);
911 }
912
913 #undef FW_WM_VLV
914
915 enum vlv_wm_level {
916         VLV_WM_LEVEL_PM2,
917         VLV_WM_LEVEL_PM5,
918         VLV_WM_LEVEL_DDR_DVFS,
919 };
920
921 /* latency must be in 0.1us units. */
922 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
923                                    unsigned int pipe_htotal,
924                                    unsigned int horiz_pixels,
925                                    unsigned int cpp,
926                                    unsigned int latency)
927 {
928         unsigned int ret;
929
930         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931         ret = (ret + 1) * horiz_pixels * cpp;
932         ret = DIV_ROUND_UP(ret, 64);
933
934         return ret;
935 }
936
937 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 {
939         /* all latencies in usec */
940         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944         if (IS_CHERRYVIEW(dev_priv)) {
945                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949         }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953                                      struct intel_crtc *crtc,
954                                      const struct intel_plane_state *state,
955                                      int level)
956 {
957         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958         int clock, htotal, cpp, width, wm;
959
960         if (dev_priv->wm.pri_latency[level] == 0)
961                 return USHRT_MAX;
962
963         if (!state->base.visible)
964                 return 0;
965
966         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967         clock = crtc->config->base.adjusted_mode.crtc_clock;
968         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969         width = crtc->config->pipe_src_w;
970         if (WARN_ON(htotal == 0))
971                 htotal = 1;
972
973         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974                 /*
975                  * FIXME the formula gives values that are
976                  * too big for the cursor FIFO, and hence we
977                  * would never be able to use cursors. For
978                  * now just hardcode the watermark.
979                  */
980                 wm = 63;
981         } else {
982                 wm = vlv_wm_method2(clock, htotal, width, cpp,
983                                     dev_priv->wm.pri_latency[level] * 10);
984         }
985
986         return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991         struct drm_device *dev = crtc->base.dev;
992         struct vlv_wm_state *wm_state = &crtc->wm_state;
993         struct intel_plane *plane;
994         unsigned int total_rate = 0;
995         const int fifo_size = 512 - 1;
996         int fifo_extra, fifo_left = fifo_size;
997
998         for_each_intel_plane_on_crtc(dev, crtc, plane) {
999                 struct intel_plane_state *state =
1000                         to_intel_plane_state(plane->base.state);
1001
1002                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003                         continue;
1004
1005                 if (state->base.visible) {
1006                         wm_state->num_active_planes++;
1007                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008                 }
1009         }
1010
1011         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012                 struct intel_plane_state *state =
1013                         to_intel_plane_state(plane->base.state);
1014                 unsigned int rate;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017                         plane->wm.fifo_size = 63;
1018                         continue;
1019                 }
1020
1021                 if (!state->base.visible) {
1022                         plane->wm.fifo_size = 0;
1023                         continue;
1024                 }
1025
1026                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028                 fifo_left -= plane->wm.fifo_size;
1029         }
1030
1031         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033         /* spread the remainder evenly */
1034         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035                 int plane_extra;
1036
1037                 if (fifo_left == 0)
1038                         break;
1039
1040                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041                         continue;
1042
1043                 /* give it all to the first plane if none are active */
1044                 if (plane->wm.fifo_size == 0 &&
1045                     wm_state->num_active_planes)
1046                         continue;
1047
1048                 plane_extra = min(fifo_extra, fifo_left);
1049                 plane->wm.fifo_size += plane_extra;
1050                 fifo_left -= plane_extra;
1051         }
1052
1053         WARN_ON(fifo_left != 0);
1054 }
1055
1056 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1057 {
1058         if (wm > fifo_size)
1059                 return USHRT_MAX;
1060         else
1061                 return fifo_size - wm;
1062 }
1063
1064 static void vlv_invert_wms(struct intel_crtc *crtc)
1065 {
1066         struct vlv_wm_state *wm_state = &crtc->wm_state;
1067         int level;
1068
1069         for (level = 0; level < wm_state->num_levels; level++) {
1070                 struct drm_device *dev = crtc->base.dev;
1071                 const int sr_fifo_size =
1072                         INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1073                 struct intel_plane *plane;
1074
1075                 wm_state->sr[level].plane =
1076                         vlv_invert_wm_value(wm_state->sr[level].plane,
1077                                             sr_fifo_size);
1078                 wm_state->sr[level].cursor =
1079                         vlv_invert_wm_value(wm_state->sr[level].cursor,
1080                                             63);
1081
1082                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1083                         wm_state->wm[level].plane[plane->id] =
1084                                 vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
1085                                                     plane->wm.fifo_size);
1086                 }
1087         }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092         struct drm_device *dev = crtc->base.dev;
1093         struct drm_i915_private *dev_priv = to_i915(dev);
1094         struct vlv_wm_state *wm_state = &crtc->wm_state;
1095         struct intel_plane *plane;
1096         int level;
1097
1098         memset(wm_state, 0, sizeof(*wm_state));
1099
1100         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101         wm_state->num_levels = dev_priv->wm.max_level + 1;
1102
1103         wm_state->num_active_planes = 0;
1104
1105         vlv_compute_fifo(crtc);
1106
1107         if (wm_state->num_active_planes != 1)
1108                 wm_state->cxsr = false;
1109
1110         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1111                 struct intel_plane_state *state =
1112                         to_intel_plane_state(plane->base.state);
1113                 int level;
1114
1115                 if (!state->base.visible)
1116                         continue;
1117
1118                 /* normal watermarks */
1119                 for (level = 0; level < wm_state->num_levels; level++) {
1120                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1121                         int max_wm = plane->wm.fifo_size;
1122
1123                         /* hack */
1124                         if (WARN_ON(level == 0 && wm > max_wm))
1125                                 wm = max_wm;
1126
1127                         if (wm > max_wm)
1128                                 break;
1129
1130                         wm_state->wm[level].plane[plane->id] = wm;
1131                 }
1132
1133                 wm_state->num_levels = level;
1134
1135                 if (!wm_state->cxsr)
1136                         continue;
1137
1138                 /* maxfifo watermarks */
1139                 if (plane->id == PLANE_CURSOR) {
1140                         for (level = 0; level < wm_state->num_levels; level++)
1141                                 wm_state->sr[level].cursor =
1142                                         wm_state->wm[level].plane[PLANE_CURSOR];
1143                 } else {
1144                         for (level = 0; level < wm_state->num_levels; level++)
1145                                 wm_state->sr[level].plane =
1146                                         max(wm_state->sr[level].plane,
1147                                             wm_state->wm[level].plane[plane->id]);
1148                 }
1149         }
1150
1151         /* clear any (partially) filled invalid levels */
1152         for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1153                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1154                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1155         }
1156
1157         vlv_invert_wms(crtc);
1158 }
1159
1160 #define VLV_FIFO(plane, value) \
1161         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1162
1163 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1164 {
1165         struct drm_device *dev = crtc->base.dev;
1166         struct drm_i915_private *dev_priv = to_i915(dev);
1167         struct intel_plane *plane;
1168         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1169
1170         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1171                 switch (plane->id) {
1172                 case PLANE_PRIMARY:
1173                         sprite0_start = plane->wm.fifo_size;
1174                         break;
1175                 case PLANE_SPRITE0:
1176                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1177                         break;
1178                 case PLANE_SPRITE1:
1179                         fifo_size = sprite1_start + plane->wm.fifo_size;
1180                         break;
1181                 case PLANE_CURSOR:
1182                         WARN_ON(plane->wm.fifo_size != 63);
1183                         break;
1184                 default:
1185                         MISSING_CASE(plane->id);
1186                         break;
1187                 }
1188         }
1189
1190         WARN_ON(fifo_size != 512 - 1);
1191
1192         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1193                       pipe_name(crtc->pipe), sprite0_start,
1194                       sprite1_start, fifo_size);
1195
1196         switch (crtc->pipe) {
1197                 uint32_t dsparb, dsparb2, dsparb3;
1198         case PIPE_A:
1199                 dsparb = I915_READ(DSPARB);
1200                 dsparb2 = I915_READ(DSPARB2);
1201
1202                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1203                             VLV_FIFO(SPRITEB, 0xff));
1204                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1205                            VLV_FIFO(SPRITEB, sprite1_start));
1206
1207                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1208                              VLV_FIFO(SPRITEB_HI, 0x1));
1209                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1210                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1211
1212                 I915_WRITE(DSPARB, dsparb);
1213                 I915_WRITE(DSPARB2, dsparb2);
1214                 break;
1215         case PIPE_B:
1216                 dsparb = I915_READ(DSPARB);
1217                 dsparb2 = I915_READ(DSPARB2);
1218
1219                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1220                             VLV_FIFO(SPRITED, 0xff));
1221                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1222                            VLV_FIFO(SPRITED, sprite1_start));
1223
1224                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1225                              VLV_FIFO(SPRITED_HI, 0xff));
1226                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1227                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1228
1229                 I915_WRITE(DSPARB, dsparb);
1230                 I915_WRITE(DSPARB2, dsparb2);
1231                 break;
1232         case PIPE_C:
1233                 dsparb3 = I915_READ(DSPARB3);
1234                 dsparb2 = I915_READ(DSPARB2);
1235
1236                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1237                              VLV_FIFO(SPRITEF, 0xff));
1238                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1239                             VLV_FIFO(SPRITEF, sprite1_start));
1240
1241                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1242                              VLV_FIFO(SPRITEF_HI, 0xff));
1243                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1244                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1245
1246                 I915_WRITE(DSPARB3, dsparb3);
1247                 I915_WRITE(DSPARB2, dsparb2);
1248                 break;
1249         default:
1250                 break;
1251         }
1252 }
1253
1254 #undef VLV_FIFO
1255
1256 static void vlv_merge_wm(struct drm_device *dev,
1257                          struct vlv_wm_values *wm)
1258 {
1259         struct intel_crtc *crtc;
1260         int num_active_crtcs = 0;
1261
1262         wm->level = to_i915(dev)->wm.max_level;
1263         wm->cxsr = true;
1264
1265         for_each_intel_crtc(dev, crtc) {
1266                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1267
1268                 if (!crtc->active)
1269                         continue;
1270
1271                 if (!wm_state->cxsr)
1272                         wm->cxsr = false;
1273
1274                 num_active_crtcs++;
1275                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1276         }
1277
1278         if (num_active_crtcs != 1)
1279                 wm->cxsr = false;
1280
1281         if (num_active_crtcs > 1)
1282                 wm->level = VLV_WM_LEVEL_PM2;
1283
1284         for_each_intel_crtc(dev, crtc) {
1285                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1286                 enum pipe pipe = crtc->pipe;
1287
1288                 if (!crtc->active)
1289                         continue;
1290
1291                 wm->pipe[pipe] = wm_state->wm[wm->level];
1292                 if (wm->cxsr)
1293                         wm->sr = wm_state->sr[wm->level];
1294
1295                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1296                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1297                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1298                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1299         }
1300 }
1301
1302 static void vlv_update_wm(struct intel_crtc *crtc)
1303 {
1304         struct drm_device *dev = crtc->base.dev;
1305         struct drm_i915_private *dev_priv = to_i915(dev);
1306         enum pipe pipe = crtc->pipe;
1307         struct vlv_wm_values wm = {};
1308
1309         vlv_compute_wm(crtc);
1310         vlv_merge_wm(dev, &wm);
1311
1312         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313                 /* FIXME should be part of crtc atomic commit */
1314                 vlv_pipe_set_fifo_size(crtc);
1315                 return;
1316         }
1317
1318         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320                 chv_set_memory_dvfs(dev_priv, false);
1321
1322         if (wm.level < VLV_WM_LEVEL_PM5 &&
1323             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324                 chv_set_memory_pm5(dev_priv, false);
1325
1326         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327                 intel_set_memory_cxsr(dev_priv, false);
1328
1329         /* FIXME should be part of crtc atomic commit */
1330         vlv_pipe_set_fifo_size(crtc);
1331
1332         vlv_write_wm_values(crtc, &wm);
1333
1334         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336                       pipe_name(pipe), wm.pipe[pipe].plane[PLANE_PRIMARY], wm.pipe[pipe].plane[PLANE_CURSOR],
1337                       wm.pipe[pipe].plane[PLANE_SPRITE0], wm.pipe[pipe].plane[PLANE_SPRITE1],
1338                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339
1340         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341                 intel_set_memory_cxsr(dev_priv, true);
1342
1343         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345                 chv_set_memory_pm5(dev_priv, true);
1346
1347         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349                 chv_set_memory_dvfs(dev_priv, true);
1350
1351         dev_priv->wm.vlv = wm;
1352 }
1353
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1355
1356 static void g4x_update_wm(struct intel_crtc *crtc)
1357 {
1358         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1359         static const int sr_latency_ns = 12000;
1360         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1361         int plane_sr, cursor_sr;
1362         unsigned int enabled = 0;
1363         bool cxsr_enabled;
1364
1365         if (g4x_compute_wm0(dev_priv, PIPE_A,
1366                             &g4x_wm_info, pessimal_latency_ns,
1367                             &g4x_cursor_wm_info, pessimal_latency_ns,
1368                             &planea_wm, &cursora_wm))
1369                 enabled |= 1 << PIPE_A;
1370
1371         if (g4x_compute_wm0(dev_priv, PIPE_B,
1372                             &g4x_wm_info, pessimal_latency_ns,
1373                             &g4x_cursor_wm_info, pessimal_latency_ns,
1374                             &planeb_wm, &cursorb_wm))
1375                 enabled |= 1 << PIPE_B;
1376
1377         if (single_plane_enabled(enabled) &&
1378             g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1379                              sr_latency_ns,
1380                              &g4x_wm_info,
1381                              &g4x_cursor_wm_info,
1382                              &plane_sr, &cursor_sr)) {
1383                 cxsr_enabled = true;
1384         } else {
1385                 cxsr_enabled = false;
1386                 intel_set_memory_cxsr(dev_priv, false);
1387                 plane_sr = cursor_sr = 0;
1388         }
1389
1390         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1391                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392                       planea_wm, cursora_wm,
1393                       planeb_wm, cursorb_wm,
1394                       plane_sr, cursor_sr);
1395
1396         I915_WRITE(DSPFW1,
1397                    FW_WM(plane_sr, SR) |
1398                    FW_WM(cursorb_wm, CURSORB) |
1399                    FW_WM(planeb_wm, PLANEB) |
1400                    FW_WM(planea_wm, PLANEA));
1401         I915_WRITE(DSPFW2,
1402                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403                    FW_WM(cursora_wm, CURSORA));
1404         /* HPLL off in SR has some issues on G4x... disable it */
1405         I915_WRITE(DSPFW3,
1406                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1407                    FW_WM(cursor_sr, CURSOR_SR));
1408
1409         if (cxsr_enabled)
1410                 intel_set_memory_cxsr(dev_priv, true);
1411 }
1412
1413 static void i965_update_wm(struct intel_crtc *unused_crtc)
1414 {
1415         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1416         struct intel_crtc *crtc;
1417         int srwm = 1;
1418         int cursor_sr = 16;
1419         bool cxsr_enabled;
1420
1421         /* Calc sr entries for one plane configs */
1422         crtc = single_enabled_crtc(dev_priv);
1423         if (crtc) {
1424                 /* self-refresh has much higher latency */
1425                 static const int sr_latency_ns = 12000;
1426                 const struct drm_display_mode *adjusted_mode =
1427                         &crtc->config->base.adjusted_mode;
1428                 const struct drm_framebuffer *fb =
1429                         crtc->base.primary->state->fb;
1430                 int clock = adjusted_mode->crtc_clock;
1431                 int htotal = adjusted_mode->crtc_htotal;
1432                 int hdisplay = crtc->config->pipe_src_w;
1433                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1434                 unsigned long line_time_us;
1435                 int entries;
1436
1437                 line_time_us = max(htotal * 1000 / clock, 1);
1438
1439                 /* Use ns/us then divide to preserve precision */
1440                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1441                         cpp * hdisplay;
1442                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1443                 srwm = I965_FIFO_SIZE - entries;
1444                 if (srwm < 0)
1445                         srwm = 1;
1446                 srwm &= 0x1ff;
1447                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1448                               entries, srwm);
1449
1450                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1451                         cpp * crtc->base.cursor->state->crtc_w;
1452                 entries = DIV_ROUND_UP(entries,
1453                                           i965_cursor_wm_info.cacheline_size);
1454                 cursor_sr = i965_cursor_wm_info.fifo_size -
1455                         (entries + i965_cursor_wm_info.guard_size);
1456
1457                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1458                         cursor_sr = i965_cursor_wm_info.max_wm;
1459
1460                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1461                               "cursor %d\n", srwm, cursor_sr);
1462
1463                 cxsr_enabled = true;
1464         } else {
1465                 cxsr_enabled = false;
1466                 /* Turn off self refresh if both pipes are enabled */
1467                 intel_set_memory_cxsr(dev_priv, false);
1468         }
1469
1470         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1471                       srwm);
1472
1473         /* 965 has limitations... */
1474         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1475                    FW_WM(8, CURSORB) |
1476                    FW_WM(8, PLANEB) |
1477                    FW_WM(8, PLANEA));
1478         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1479                    FW_WM(8, PLANEC_OLD));
1480         /* update cursor SR watermark */
1481         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1482
1483         if (cxsr_enabled)
1484                 intel_set_memory_cxsr(dev_priv, true);
1485 }
1486
1487 #undef FW_WM
1488
1489 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1490 {
1491         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1492         const struct intel_watermark_params *wm_info;
1493         uint32_t fwater_lo;
1494         uint32_t fwater_hi;
1495         int cwm, srwm = 1;
1496         int fifo_size;
1497         int planea_wm, planeb_wm;
1498         struct intel_crtc *crtc, *enabled = NULL;
1499
1500         if (IS_I945GM(dev_priv))
1501                 wm_info = &i945_wm_info;
1502         else if (!IS_GEN2(dev_priv))
1503                 wm_info = &i915_wm_info;
1504         else
1505                 wm_info = &i830_a_wm_info;
1506
1507         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1508         crtc = intel_get_crtc_for_plane(dev_priv, 0);
1509         if (intel_crtc_active(crtc)) {
1510                 const struct drm_display_mode *adjusted_mode =
1511                         &crtc->config->base.adjusted_mode;
1512                 const struct drm_framebuffer *fb =
1513                         crtc->base.primary->state->fb;
1514                 int cpp;
1515
1516                 if (IS_GEN2(dev_priv))
1517                         cpp = 4;
1518                 else
1519                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1520
1521                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1522                                                wm_info, fifo_size, cpp,
1523                                                pessimal_latency_ns);
1524                 enabled = crtc;
1525         } else {
1526                 planea_wm = fifo_size - wm_info->guard_size;
1527                 if (planea_wm > (long)wm_info->max_wm)
1528                         planea_wm = wm_info->max_wm;
1529         }
1530
1531         if (IS_GEN2(dev_priv))
1532                 wm_info = &i830_bc_wm_info;
1533
1534         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1535         crtc = intel_get_crtc_for_plane(dev_priv, 1);
1536         if (intel_crtc_active(crtc)) {
1537                 const struct drm_display_mode *adjusted_mode =
1538                         &crtc->config->base.adjusted_mode;
1539                 const struct drm_framebuffer *fb =
1540                         crtc->base.primary->state->fb;
1541                 int cpp;
1542
1543                 if (IS_GEN2(dev_priv))
1544                         cpp = 4;
1545                 else
1546                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1547
1548                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1549                                                wm_info, fifo_size, cpp,
1550                                                pessimal_latency_ns);
1551                 if (enabled == NULL)
1552                         enabled = crtc;
1553                 else
1554                         enabled = NULL;
1555         } else {
1556                 planeb_wm = fifo_size - wm_info->guard_size;
1557                 if (planeb_wm > (long)wm_info->max_wm)
1558                         planeb_wm = wm_info->max_wm;
1559         }
1560
1561         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1562
1563         if (IS_I915GM(dev_priv) && enabled) {
1564                 struct drm_i915_gem_object *obj;
1565
1566                 obj = intel_fb_obj(enabled->base.primary->state->fb);
1567
1568                 /* self-refresh seems busted with untiled */
1569                 if (!i915_gem_object_is_tiled(obj))
1570                         enabled = NULL;
1571         }
1572
1573         /*
1574          * Overlay gets an aggressive default since video jitter is bad.
1575          */
1576         cwm = 2;
1577
1578         /* Play safe and disable self-refresh before adjusting watermarks. */
1579         intel_set_memory_cxsr(dev_priv, false);
1580
1581         /* Calc sr entries for one plane configs */
1582         if (HAS_FW_BLC(dev_priv) && enabled) {
1583                 /* self-refresh has much higher latency */
1584                 static const int sr_latency_ns = 6000;
1585                 const struct drm_display_mode *adjusted_mode =
1586                         &enabled->config->base.adjusted_mode;
1587                 const struct drm_framebuffer *fb =
1588                         enabled->base.primary->state->fb;
1589                 int clock = adjusted_mode->crtc_clock;
1590                 int htotal = adjusted_mode->crtc_htotal;
1591                 int hdisplay = enabled->config->pipe_src_w;
1592                 int cpp;
1593                 unsigned long line_time_us;
1594                 int entries;
1595
1596                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1597                         cpp = 4;
1598                 else
1599                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1600
1601                 line_time_us = max(htotal * 1000 / clock, 1);
1602
1603                 /* Use ns/us then divide to preserve precision */
1604                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1605                         cpp * hdisplay;
1606                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1607                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1608                 srwm = wm_info->fifo_size - entries;
1609                 if (srwm < 0)
1610                         srwm = 1;
1611
1612                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1613                         I915_WRITE(FW_BLC_SELF,
1614                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1615                 else
1616                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1617         }
1618
1619         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1620                       planea_wm, planeb_wm, cwm, srwm);
1621
1622         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1623         fwater_hi = (cwm & 0x1f);
1624
1625         /* Set request length to 8 cachelines per fetch */
1626         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1627         fwater_hi = fwater_hi | (1 << 8);
1628
1629         I915_WRITE(FW_BLC, fwater_lo);
1630         I915_WRITE(FW_BLC2, fwater_hi);
1631
1632         if (enabled)
1633                 intel_set_memory_cxsr(dev_priv, true);
1634 }
1635
1636 static void i845_update_wm(struct intel_crtc *unused_crtc)
1637 {
1638         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1639         struct intel_crtc *crtc;
1640         const struct drm_display_mode *adjusted_mode;
1641         uint32_t fwater_lo;
1642         int planea_wm;
1643
1644         crtc = single_enabled_crtc(dev_priv);
1645         if (crtc == NULL)
1646                 return;
1647
1648         adjusted_mode = &crtc->config->base.adjusted_mode;
1649         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1650                                        &i845_wm_info,
1651                                        dev_priv->display.get_fifo_size(dev_priv, 0),
1652                                        4, pessimal_latency_ns);
1653         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1654         fwater_lo |= (3<<8) | planea_wm;
1655
1656         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1657
1658         I915_WRITE(FW_BLC, fwater_lo);
1659 }
1660
1661 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1662 {
1663         uint32_t pixel_rate;
1664
1665         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1666
1667         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1668          * adjust the pixel_rate here. */
1669
1670         if (pipe_config->pch_pfit.enabled) {
1671                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1672                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1673
1674                 pipe_w = pipe_config->pipe_src_w;
1675                 pipe_h = pipe_config->pipe_src_h;
1676
1677                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1678                 pfit_h = pfit_size & 0xFFFF;
1679                 if (pipe_w < pfit_w)
1680                         pipe_w = pfit_w;
1681                 if (pipe_h < pfit_h)
1682                         pipe_h = pfit_h;
1683
1684                 if (WARN_ON(!pfit_w || !pfit_h))
1685                         return pixel_rate;
1686
1687                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1688                                      pfit_w * pfit_h);
1689         }
1690
1691         return pixel_rate;
1692 }
1693
1694 /* latency must be in 0.1us units. */
1695 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1696 {
1697         uint64_t ret;
1698
1699         if (WARN(latency == 0, "Latency value missing\n"))
1700                 return UINT_MAX;
1701
1702         ret = (uint64_t) pixel_rate * cpp * latency;
1703         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1704
1705         return ret;
1706 }
1707
1708 /* latency must be in 0.1us units. */
1709 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1710                                uint32_t horiz_pixels, uint8_t cpp,
1711                                uint32_t latency)
1712 {
1713         uint32_t ret;
1714
1715         if (WARN(latency == 0, "Latency value missing\n"))
1716                 return UINT_MAX;
1717         if (WARN_ON(!pipe_htotal))
1718                 return UINT_MAX;
1719
1720         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1721         ret = (ret + 1) * horiz_pixels * cpp;
1722         ret = DIV_ROUND_UP(ret, 64) + 2;
1723         return ret;
1724 }
1725
1726 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1727                            uint8_t cpp)
1728 {
1729         /*
1730          * Neither of these should be possible since this function shouldn't be
1731          * called if the CRTC is off or the plane is invisible.  But let's be
1732          * extra paranoid to avoid a potential divide-by-zero if we screw up
1733          * elsewhere in the driver.
1734          */
1735         if (WARN_ON(!cpp))
1736                 return 0;
1737         if (WARN_ON(!horiz_pixels))
1738                 return 0;
1739
1740         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1741 }
1742
1743 struct ilk_wm_maximums {
1744         uint16_t pri;
1745         uint16_t spr;
1746         uint16_t cur;
1747         uint16_t fbc;
1748 };
1749
1750 /*
1751  * For both WM_PIPE and WM_LP.
1752  * mem_value must be in 0.1us units.
1753  */
1754 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1755                                    const struct intel_plane_state *pstate,
1756                                    uint32_t mem_value,
1757                                    bool is_lp)
1758 {
1759         int cpp = pstate->base.fb ?
1760                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1761         uint32_t method1, method2;
1762
1763         if (!cstate->base.active || !pstate->base.visible)
1764                 return 0;
1765
1766         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1767
1768         if (!is_lp)
1769                 return method1;
1770
1771         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1772                                  cstate->base.adjusted_mode.crtc_htotal,
1773                                  drm_rect_width(&pstate->base.dst),
1774                                  cpp, mem_value);
1775
1776         return min(method1, method2);
1777 }
1778
1779 /*
1780  * For both WM_PIPE and WM_LP.
1781  * mem_value must be in 0.1us units.
1782  */
1783 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1784                                    const struct intel_plane_state *pstate,
1785                                    uint32_t mem_value)
1786 {
1787         int cpp = pstate->base.fb ?
1788                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1789         uint32_t method1, method2;
1790
1791         if (!cstate->base.active || !pstate->base.visible)
1792                 return 0;
1793
1794         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1795         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1796                                  cstate->base.adjusted_mode.crtc_htotal,
1797                                  drm_rect_width(&pstate->base.dst),
1798                                  cpp, mem_value);
1799         return min(method1, method2);
1800 }
1801
1802 /*
1803  * For both WM_PIPE and WM_LP.
1804  * mem_value must be in 0.1us units.
1805  */
1806 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1807                                    const struct intel_plane_state *pstate,
1808                                    uint32_t mem_value)
1809 {
1810         /*
1811          * We treat the cursor plane as always-on for the purposes of watermark
1812          * calculation.  Until we have two-stage watermark programming merged,
1813          * this is necessary to avoid flickering.
1814          */
1815         int cpp = 4;
1816         int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1817
1818         if (!cstate->base.active)
1819                 return 0;
1820
1821         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1822                               cstate->base.adjusted_mode.crtc_htotal,
1823                               width, cpp, mem_value);
1824 }
1825
1826 /* Only for WM_LP. */
1827 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1828                                    const struct intel_plane_state *pstate,
1829                                    uint32_t pri_val)
1830 {
1831         int cpp = pstate->base.fb ?
1832                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1833
1834         if (!cstate->base.active || !pstate->base.visible)
1835                 return 0;
1836
1837         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1838 }
1839
1840 static unsigned int
1841 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1842 {
1843         if (INTEL_GEN(dev_priv) >= 8)
1844                 return 3072;
1845         else if (INTEL_GEN(dev_priv) >= 7)
1846                 return 768;
1847         else
1848                 return 512;
1849 }
1850
1851 static unsigned int
1852 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1853                      int level, bool is_sprite)
1854 {
1855         if (INTEL_GEN(dev_priv) >= 8)
1856                 /* BDW primary/sprite plane watermarks */
1857                 return level == 0 ? 255 : 2047;
1858         else if (INTEL_GEN(dev_priv) >= 7)
1859                 /* IVB/HSW primary/sprite plane watermarks */
1860                 return level == 0 ? 127 : 1023;
1861         else if (!is_sprite)
1862                 /* ILK/SNB primary plane watermarks */
1863                 return level == 0 ? 127 : 511;
1864         else
1865                 /* ILK/SNB sprite plane watermarks */
1866                 return level == 0 ? 63 : 255;
1867 }
1868
1869 static unsigned int
1870 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1871 {
1872         if (INTEL_GEN(dev_priv) >= 7)
1873                 return level == 0 ? 63 : 255;
1874         else
1875                 return level == 0 ? 31 : 63;
1876 }
1877
1878 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1879 {
1880         if (INTEL_GEN(dev_priv) >= 8)
1881                 return 31;
1882         else
1883                 return 15;
1884 }
1885
1886 /* Calculate the maximum primary/sprite plane watermark */
1887 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1888                                      int level,
1889                                      const struct intel_wm_config *config,
1890                                      enum intel_ddb_partitioning ddb_partitioning,
1891                                      bool is_sprite)
1892 {
1893         struct drm_i915_private *dev_priv = to_i915(dev);
1894         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1895
1896         /* if sprites aren't enabled, sprites get nothing */
1897         if (is_sprite && !config->sprites_enabled)
1898                 return 0;
1899
1900         /* HSW allows LP1+ watermarks even with multiple pipes */
1901         if (level == 0 || config->num_pipes_active > 1) {
1902                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1903
1904                 /*
1905                  * For some reason the non self refresh
1906                  * FIFO size is only half of the self
1907                  * refresh FIFO size on ILK/SNB.
1908                  */
1909                 if (INTEL_GEN(dev_priv) <= 6)
1910                         fifo_size /= 2;
1911         }
1912
1913         if (config->sprites_enabled) {
1914                 /* level 0 is always calculated with 1:1 split */
1915                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1916                         if (is_sprite)
1917                                 fifo_size *= 5;
1918                         fifo_size /= 6;
1919                 } else {
1920                         fifo_size /= 2;
1921                 }
1922         }
1923
1924         /* clamp to max that the registers can hold */
1925         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1926 }
1927
1928 /* Calculate the maximum cursor plane watermark */
1929 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1930                                       int level,
1931                                       const struct intel_wm_config *config)
1932 {
1933         /* HSW LP1+ watermarks w/ multiple pipes */
1934         if (level > 0 && config->num_pipes_active > 1)
1935                 return 64;
1936
1937         /* otherwise just report max that registers can hold */
1938         return ilk_cursor_wm_reg_max(to_i915(dev), level);
1939 }
1940
1941 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1942                                     int level,
1943                                     const struct intel_wm_config *config,
1944                                     enum intel_ddb_partitioning ddb_partitioning,
1945                                     struct ilk_wm_maximums *max)
1946 {
1947         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1948         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1949         max->cur = ilk_cursor_wm_max(dev, level, config);
1950         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1951 }
1952
1953 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1954                                         int level,
1955                                         struct ilk_wm_maximums *max)
1956 {
1957         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
1958         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
1959         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
1960         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1961 }
1962
1963 static bool ilk_validate_wm_level(int level,
1964                                   const struct ilk_wm_maximums *max,
1965                                   struct intel_wm_level *result)
1966 {
1967         bool ret;
1968
1969         /* already determined to be invalid? */
1970         if (!result->enable)
1971                 return false;
1972
1973         result->enable = result->pri_val <= max->pri &&
1974                          result->spr_val <= max->spr &&
1975                          result->cur_val <= max->cur;
1976
1977         ret = result->enable;
1978
1979         /*
1980          * HACK until we can pre-compute everything,
1981          * and thus fail gracefully if LP0 watermarks
1982          * are exceeded...
1983          */
1984         if (level == 0 && !result->enable) {
1985                 if (result->pri_val > max->pri)
1986                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1987                                       level, result->pri_val, max->pri);
1988                 if (result->spr_val > max->spr)
1989                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1990                                       level, result->spr_val, max->spr);
1991                 if (result->cur_val > max->cur)
1992                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1993                                       level, result->cur_val, max->cur);
1994
1995                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1996                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1997                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1998                 result->enable = true;
1999         }
2000
2001         return ret;
2002 }
2003
2004 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2005                                  const struct intel_crtc *intel_crtc,
2006                                  int level,
2007                                  struct intel_crtc_state *cstate,
2008                                  struct intel_plane_state *pristate,
2009                                  struct intel_plane_state *sprstate,
2010                                  struct intel_plane_state *curstate,
2011                                  struct intel_wm_level *result)
2012 {
2013         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2014         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2015         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2016
2017         /* WM1+ latency values stored in 0.5us units */
2018         if (level > 0) {
2019                 pri_latency *= 5;
2020                 spr_latency *= 5;
2021                 cur_latency *= 5;
2022         }
2023
2024         if (pristate) {
2025                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2026                                                      pri_latency, level);
2027                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2028         }
2029
2030         if (sprstate)
2031                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2032
2033         if (curstate)
2034                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2035
2036         result->enable = true;
2037 }
2038
2039 static uint32_t
2040 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2041 {
2042         const struct intel_atomic_state *intel_state =
2043                 to_intel_atomic_state(cstate->base.state);
2044         const struct drm_display_mode *adjusted_mode =
2045                 &cstate->base.adjusted_mode;
2046         u32 linetime, ips_linetime;
2047
2048         if (!cstate->base.active)
2049                 return 0;
2050         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2051                 return 0;
2052         if (WARN_ON(intel_state->cdclk == 0))
2053                 return 0;
2054
2055         /* The WM are computed with base on how long it takes to fill a single
2056          * row at the given clock rate, multiplied by 8.
2057          * */
2058         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2059                                      adjusted_mode->crtc_clock);
2060         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061                                          intel_state->cdclk);
2062
2063         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2064                PIPE_WM_LINETIME_TIME(linetime);
2065 }
2066
2067 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2068                                   uint16_t wm[8])
2069 {
2070         if (IS_GEN9(dev_priv)) {
2071                 uint32_t val;
2072                 int ret, i;
2073                 int level, max_level = ilk_wm_max_level(dev_priv);
2074
2075                 /* read the first set of memory latencies[0:3] */
2076                 val = 0; /* data0 to be programmed to 0 for first set */
2077                 mutex_lock(&dev_priv->rps.hw_lock);
2078                 ret = sandybridge_pcode_read(dev_priv,
2079                                              GEN9_PCODE_READ_MEM_LATENCY,
2080                                              &val);
2081                 mutex_unlock(&dev_priv->rps.hw_lock);
2082
2083                 if (ret) {
2084                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2085                         return;
2086                 }
2087
2088                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2089                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2090                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2091                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2092                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2093                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2094                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2095
2096                 /* read the second set of memory latencies[4:7] */
2097                 val = 1; /* data0 to be programmed to 1 for second set */
2098                 mutex_lock(&dev_priv->rps.hw_lock);
2099                 ret = sandybridge_pcode_read(dev_priv,
2100                                              GEN9_PCODE_READ_MEM_LATENCY,
2101                                              &val);
2102                 mutex_unlock(&dev_priv->rps.hw_lock);
2103                 if (ret) {
2104                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2105                         return;
2106                 }
2107
2108                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2109                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2110                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2111                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2112                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2113                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2114                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2115
2116                 /*
2117                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2118                  * need to be disabled. We make sure to sanitize the values out
2119                  * of the punit to satisfy this requirement.
2120                  */
2121                 for (level = 1; level <= max_level; level++) {
2122                         if (wm[level] == 0) {
2123                                 for (i = level + 1; i <= max_level; i++)
2124                                         wm[i] = 0;
2125                                 break;
2126                         }
2127                 }
2128
2129                 /*
2130                  * WaWmMemoryReadLatency:skl
2131                  *
2132                  * punit doesn't take into account the read latency so we need
2133                  * to add 2us to the various latency levels we retrieve from the
2134                  * punit when level 0 response data us 0us.
2135                  */
2136                 if (wm[0] == 0) {
2137                         wm[0] += 2;
2138                         for (level = 1; level <= max_level; level++) {
2139                                 if (wm[level] == 0)
2140                                         break;
2141                                 wm[level] += 2;
2142                         }
2143                 }
2144
2145         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2146                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2147
2148                 wm[0] = (sskpd >> 56) & 0xFF;
2149                 if (wm[0] == 0)
2150                         wm[0] = sskpd & 0xF;
2151                 wm[1] = (sskpd >> 4) & 0xFF;
2152                 wm[2] = (sskpd >> 12) & 0xFF;
2153                 wm[3] = (sskpd >> 20) & 0x1FF;
2154                 wm[4] = (sskpd >> 32) & 0x1FF;
2155         } else if (INTEL_GEN(dev_priv) >= 6) {
2156                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2157
2158                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2159                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2160                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2161                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2162         } else if (INTEL_GEN(dev_priv) >= 5) {
2163                 uint32_t mltr = I915_READ(MLTR_ILK);
2164
2165                 /* ILK primary LP0 latency is 700 ns */
2166                 wm[0] = 7;
2167                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2168                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2169         }
2170 }
2171
2172 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2173                                        uint16_t wm[5])
2174 {
2175         /* ILK sprite LP0 latency is 1300 ns */
2176         if (IS_GEN5(dev_priv))
2177                 wm[0] = 13;
2178 }
2179
2180 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2181                                        uint16_t wm[5])
2182 {
2183         /* ILK cursor LP0 latency is 1300 ns */
2184         if (IS_GEN5(dev_priv))
2185                 wm[0] = 13;
2186
2187         /* WaDoubleCursorLP3Latency:ivb */
2188         if (IS_IVYBRIDGE(dev_priv))
2189                 wm[3] *= 2;
2190 }
2191
2192 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2193 {
2194         /* how many WM levels are we expecting */
2195         if (INTEL_GEN(dev_priv) >= 9)
2196                 return 7;
2197         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2198                 return 4;
2199         else if (INTEL_GEN(dev_priv) >= 6)
2200                 return 3;
2201         else
2202                 return 2;
2203 }
2204
2205 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2206                                    const char *name,
2207                                    const uint16_t wm[8])
2208 {
2209         int level, max_level = ilk_wm_max_level(dev_priv);
2210
2211         for (level = 0; level <= max_level; level++) {
2212                 unsigned int latency = wm[level];
2213
2214                 if (latency == 0) {
2215                         DRM_ERROR("%s WM%d latency not provided\n",
2216                                   name, level);
2217                         continue;
2218                 }
2219
2220                 /*
2221                  * - latencies are in us on gen9.
2222                  * - before then, WM1+ latency values are in 0.5us units
2223                  */
2224                 if (IS_GEN9(dev_priv))
2225                         latency *= 10;
2226                 else if (level > 0)
2227                         latency *= 5;
2228
2229                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2230                               name, level, wm[level],
2231                               latency / 10, latency % 10);
2232         }
2233 }
2234
2235 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2236                                     uint16_t wm[5], uint16_t min)
2237 {
2238         int level, max_level = ilk_wm_max_level(dev_priv);
2239
2240         if (wm[0] >= min)
2241                 return false;
2242
2243         wm[0] = max(wm[0], min);
2244         for (level = 1; level <= max_level; level++)
2245                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2246
2247         return true;
2248 }
2249
2250 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2251 {
2252         bool changed;
2253
2254         /*
2255          * The BIOS provided WM memory latency values are often
2256          * inadequate for high resolution displays. Adjust them.
2257          */
2258         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2259                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2260                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2261
2262         if (!changed)
2263                 return;
2264
2265         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2266         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2267         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2268         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2269 }
2270
2271 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2272 {
2273         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2274
2275         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2276                sizeof(dev_priv->wm.pri_latency));
2277         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2278                sizeof(dev_priv->wm.pri_latency));
2279
2280         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2281         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2282
2283         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2284         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2285         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2286
2287         if (IS_GEN6(dev_priv))
2288                 snb_wm_latency_quirk(dev_priv);
2289 }
2290
2291 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2292 {
2293         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2294         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2295 }
2296
2297 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2298                                  struct intel_pipe_wm *pipe_wm)
2299 {
2300         /* LP0 watermark maximums depend on this pipe alone */
2301         const struct intel_wm_config config = {
2302                 .num_pipes_active = 1,
2303                 .sprites_enabled = pipe_wm->sprites_enabled,
2304                 .sprites_scaled = pipe_wm->sprites_scaled,
2305         };
2306         struct ilk_wm_maximums max;
2307
2308         /* LP0 watermarks always use 1/2 DDB partitioning */
2309         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2310
2311         /* At least LP0 must be valid */
2312         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2313                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2314                 return false;
2315         }
2316
2317         return true;
2318 }
2319
2320 /* Compute new watermarks for the pipe */
2321 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2322 {
2323         struct drm_atomic_state *state = cstate->base.state;
2324         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2325         struct intel_pipe_wm *pipe_wm;
2326         struct drm_device *dev = state->dev;
2327         const struct drm_i915_private *dev_priv = to_i915(dev);
2328         struct intel_plane *intel_plane;
2329         struct intel_plane_state *pristate = NULL;
2330         struct intel_plane_state *sprstate = NULL;
2331         struct intel_plane_state *curstate = NULL;
2332         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2333         struct ilk_wm_maximums max;
2334
2335         pipe_wm = &cstate->wm.ilk.optimal;
2336
2337         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2338                 struct intel_plane_state *ps;
2339
2340                 ps = intel_atomic_get_existing_plane_state(state,
2341                                                            intel_plane);
2342                 if (!ps)
2343                         continue;
2344
2345                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2346                         pristate = ps;
2347                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2348                         sprstate = ps;
2349                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2350                         curstate = ps;
2351         }
2352
2353         pipe_wm->pipe_enabled = cstate->base.active;
2354         if (sprstate) {
2355                 pipe_wm->sprites_enabled = sprstate->base.visible;
2356                 pipe_wm->sprites_scaled = sprstate->base.visible &&
2357                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2358                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2359         }
2360
2361         usable_level = max_level;
2362
2363         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2364         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2365                 usable_level = 1;
2366
2367         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2368         if (pipe_wm->sprites_scaled)
2369                 usable_level = 0;
2370
2371         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2372                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2373
2374         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2375         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2376
2377         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2378                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2379
2380         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2381                 return -EINVAL;
2382
2383         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2384
2385         for (level = 1; level <= max_level; level++) {
2386                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2387
2388                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2389                                      pristate, sprstate, curstate, wm);
2390
2391                 /*
2392                  * Disable any watermark level that exceeds the
2393                  * register maximums since such watermarks are
2394                  * always invalid.
2395                  */
2396                 if (level > usable_level)
2397                         continue;
2398
2399                 if (ilk_validate_wm_level(level, &max, wm))
2400                         pipe_wm->wm[level] = *wm;
2401                 else
2402                         usable_level = level;
2403         }
2404
2405         return 0;
2406 }
2407
2408 /*
2409  * Build a set of 'intermediate' watermark values that satisfy both the old
2410  * state and the new state.  These can be programmed to the hardware
2411  * immediately.
2412  */
2413 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2414                                        struct intel_crtc *intel_crtc,
2415                                        struct intel_crtc_state *newstate)
2416 {
2417         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2418         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2419         int level, max_level = ilk_wm_max_level(to_i915(dev));
2420
2421         /*
2422          * Start with the final, target watermarks, then combine with the
2423          * currently active watermarks to get values that are safe both before
2424          * and after the vblank.
2425          */
2426         *a = newstate->wm.ilk.optimal;
2427         a->pipe_enabled |= b->pipe_enabled;
2428         a->sprites_enabled |= b->sprites_enabled;
2429         a->sprites_scaled |= b->sprites_scaled;
2430
2431         for (level = 0; level <= max_level; level++) {
2432                 struct intel_wm_level *a_wm = &a->wm[level];
2433                 const struct intel_wm_level *b_wm = &b->wm[level];
2434
2435                 a_wm->enable &= b_wm->enable;
2436                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2437                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2438                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2439                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2440         }
2441
2442         /*
2443          * We need to make sure that these merged watermark values are
2444          * actually a valid configuration themselves.  If they're not,
2445          * there's no safe way to transition from the old state to
2446          * the new state, so we need to fail the atomic transaction.
2447          */
2448         if (!ilk_validate_pipe_wm(dev, a))
2449                 return -EINVAL;
2450
2451         /*
2452          * If our intermediate WM are identical to the final WM, then we can
2453          * omit the post-vblank programming; only update if it's different.
2454          */
2455         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2456                 newstate->wm.need_postvbl_update = false;
2457
2458         return 0;
2459 }
2460
2461 /*
2462  * Merge the watermarks from all active pipes for a specific level.
2463  */
2464 static void ilk_merge_wm_level(struct drm_device *dev,
2465                                int level,
2466                                struct intel_wm_level *ret_wm)
2467 {
2468         const struct intel_crtc *intel_crtc;
2469
2470         ret_wm->enable = true;
2471
2472         for_each_intel_crtc(dev, intel_crtc) {
2473                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2474                 const struct intel_wm_level *wm = &active->wm[level];
2475
2476                 if (!active->pipe_enabled)
2477                         continue;
2478
2479                 /*
2480                  * The watermark values may have been used in the past,
2481                  * so we must maintain them in the registers for some
2482                  * time even if the level is now disabled.
2483                  */
2484                 if (!wm->enable)
2485                         ret_wm->enable = false;
2486
2487                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2488                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2489                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2490                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2491         }
2492 }
2493
2494 /*
2495  * Merge all low power watermarks for all active pipes.
2496  */
2497 static void ilk_wm_merge(struct drm_device *dev,
2498                          const struct intel_wm_config *config,
2499                          const struct ilk_wm_maximums *max,
2500                          struct intel_pipe_wm *merged)
2501 {
2502         struct drm_i915_private *dev_priv = to_i915(dev);
2503         int level, max_level = ilk_wm_max_level(dev_priv);
2504         int last_enabled_level = max_level;
2505
2506         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2507         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2508             config->num_pipes_active > 1)
2509                 last_enabled_level = 0;
2510
2511         /* ILK: FBC WM must be disabled always */
2512         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2513
2514         /* merge each WM1+ level */
2515         for (level = 1; level <= max_level; level++) {
2516                 struct intel_wm_level *wm = &merged->wm[level];
2517
2518                 ilk_merge_wm_level(dev, level, wm);
2519
2520                 if (level > last_enabled_level)
2521                         wm->enable = false;
2522                 else if (!ilk_validate_wm_level(level, max, wm))
2523                         /* make sure all following levels get disabled */
2524                         last_enabled_level = level - 1;
2525
2526                 /*
2527                  * The spec says it is preferred to disable
2528                  * FBC WMs instead of disabling a WM level.
2529                  */
2530                 if (wm->fbc_val > max->fbc) {
2531                         if (wm->enable)
2532                                 merged->fbc_wm_enabled = false;
2533                         wm->fbc_val = 0;
2534                 }
2535         }
2536
2537         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2538         /*
2539          * FIXME this is racy. FBC might get enabled later.
2540          * What we should check here is whether FBC can be
2541          * enabled sometime later.
2542          */
2543         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2544             intel_fbc_is_active(dev_priv)) {
2545                 for (level = 2; level <= max_level; level++) {
2546                         struct intel_wm_level *wm = &merged->wm[level];
2547
2548                         wm->enable = false;
2549                 }
2550         }
2551 }
2552
2553 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2554 {
2555         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2556         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2557 }
2558
2559 /* The value we need to program into the WM_LPx latency field */
2560 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2561 {
2562         struct drm_i915_private *dev_priv = to_i915(dev);
2563
2564         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2565                 return 2 * level;
2566         else
2567                 return dev_priv->wm.pri_latency[level];
2568 }
2569
2570 static void ilk_compute_wm_results(struct drm_device *dev,
2571                                    const struct intel_pipe_wm *merged,
2572                                    enum intel_ddb_partitioning partitioning,
2573                                    struct ilk_wm_values *results)
2574 {
2575         struct drm_i915_private *dev_priv = to_i915(dev);
2576         struct intel_crtc *intel_crtc;
2577         int level, wm_lp;
2578
2579         results->enable_fbc_wm = merged->fbc_wm_enabled;
2580         results->partitioning = partitioning;
2581
2582         /* LP1+ register values */
2583         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2584                 const struct intel_wm_level *r;
2585
2586                 level = ilk_wm_lp_to_level(wm_lp, merged);
2587
2588                 r = &merged->wm[level];
2589
2590                 /*
2591                  * Maintain the watermark values even if the level is
2592                  * disabled. Doing otherwise could cause underruns.
2593                  */
2594                 results->wm_lp[wm_lp - 1] =
2595                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2596                         (r->pri_val << WM1_LP_SR_SHIFT) |
2597                         r->cur_val;
2598
2599                 if (r->enable)
2600                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2601
2602                 if (INTEL_GEN(dev_priv) >= 8)
2603                         results->wm_lp[wm_lp - 1] |=
2604                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2605                 else
2606                         results->wm_lp[wm_lp - 1] |=
2607                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2608
2609                 /*
2610                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2611                  * level is disabled. Doing otherwise could cause underruns.
2612                  */
2613                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2614                         WARN_ON(wm_lp != 1);
2615                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2616                 } else
2617                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2618         }
2619
2620         /* LP0 register values */
2621         for_each_intel_crtc(dev, intel_crtc) {
2622                 enum pipe pipe = intel_crtc->pipe;
2623                 const struct intel_wm_level *r =
2624                         &intel_crtc->wm.active.ilk.wm[0];
2625
2626                 if (WARN_ON(!r->enable))
2627                         continue;
2628
2629                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2630
2631                 results->wm_pipe[pipe] =
2632                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2633                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2634                         r->cur_val;
2635         }
2636 }
2637
2638 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2639  * case both are at the same level. Prefer r1 in case they're the same. */
2640 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2641                                                   struct intel_pipe_wm *r1,
2642                                                   struct intel_pipe_wm *r2)
2643 {
2644         int level, max_level = ilk_wm_max_level(to_i915(dev));
2645         int level1 = 0, level2 = 0;
2646
2647         for (level = 1; level <= max_level; level++) {
2648                 if (r1->wm[level].enable)
2649                         level1 = level;
2650                 if (r2->wm[level].enable)
2651                         level2 = level;
2652         }
2653
2654         if (level1 == level2) {
2655                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2656                         return r2;
2657                 else
2658                         return r1;
2659         } else if (level1 > level2) {
2660                 return r1;
2661         } else {
2662                 return r2;
2663         }
2664 }
2665
2666 /* dirty bits used to track which watermarks need changes */
2667 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2668 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2669 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2670 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2671 #define WM_DIRTY_FBC (1 << 24)
2672 #define WM_DIRTY_DDB (1 << 25)
2673
2674 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2675                                          const struct ilk_wm_values *old,
2676                                          const struct ilk_wm_values *new)
2677 {
2678         unsigned int dirty = 0;
2679         enum pipe pipe;
2680         int wm_lp;
2681
2682         for_each_pipe(dev_priv, pipe) {
2683                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2684                         dirty |= WM_DIRTY_LINETIME(pipe);
2685                         /* Must disable LP1+ watermarks too */
2686                         dirty |= WM_DIRTY_LP_ALL;
2687                 }
2688
2689                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2690                         dirty |= WM_DIRTY_PIPE(pipe);
2691                         /* Must disable LP1+ watermarks too */
2692                         dirty |= WM_DIRTY_LP_ALL;
2693                 }
2694         }
2695
2696         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2697                 dirty |= WM_DIRTY_FBC;
2698                 /* Must disable LP1+ watermarks too */
2699                 dirty |= WM_DIRTY_LP_ALL;
2700         }
2701
2702         if (old->partitioning != new->partitioning) {
2703                 dirty |= WM_DIRTY_DDB;
2704                 /* Must disable LP1+ watermarks too */
2705                 dirty |= WM_DIRTY_LP_ALL;
2706         }
2707
2708         /* LP1+ watermarks already deemed dirty, no need to continue */
2709         if (dirty & WM_DIRTY_LP_ALL)
2710                 return dirty;
2711
2712         /* Find the lowest numbered LP1+ watermark in need of an update... */
2713         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2714                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2715                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2716                         break;
2717         }
2718
2719         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2720         for (; wm_lp <= 3; wm_lp++)
2721                 dirty |= WM_DIRTY_LP(wm_lp);
2722
2723         return dirty;
2724 }
2725
2726 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2727                                unsigned int dirty)
2728 {
2729         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2730         bool changed = false;
2731
2732         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2733                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2734                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2735                 changed = true;
2736         }
2737         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2738                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2739                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2740                 changed = true;
2741         }
2742         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2743                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2744                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2745                 changed = true;
2746         }
2747
2748         /*
2749          * Don't touch WM1S_LP_EN here.
2750          * Doing so could cause underruns.
2751          */
2752
2753         return changed;
2754 }
2755
2756 /*
2757  * The spec says we shouldn't write when we don't need, because every write
2758  * causes WMs to be re-evaluated, expending some power.
2759  */
2760 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2761                                 struct ilk_wm_values *results)
2762 {
2763         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2764         unsigned int dirty;
2765         uint32_t val;
2766
2767         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2768         if (!dirty)
2769                 return;
2770
2771         _ilk_disable_lp_wm(dev_priv, dirty);
2772
2773         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2774                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2775         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2776                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2777         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2778                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2779
2780         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2781                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2782         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2783                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2784         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2785                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2786
2787         if (dirty & WM_DIRTY_DDB) {
2788                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2789                         val = I915_READ(WM_MISC);
2790                         if (results->partitioning == INTEL_DDB_PART_1_2)
2791                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2792                         else
2793                                 val |= WM_MISC_DATA_PARTITION_5_6;
2794                         I915_WRITE(WM_MISC, val);
2795                 } else {
2796                         val = I915_READ(DISP_ARB_CTL2);
2797                         if (results->partitioning == INTEL_DDB_PART_1_2)
2798                                 val &= ~DISP_DATA_PARTITION_5_6;
2799                         else
2800                                 val |= DISP_DATA_PARTITION_5_6;
2801                         I915_WRITE(DISP_ARB_CTL2, val);
2802                 }
2803         }
2804
2805         if (dirty & WM_DIRTY_FBC) {
2806                 val = I915_READ(DISP_ARB_CTL);
2807                 if (results->enable_fbc_wm)
2808                         val &= ~DISP_FBC_WM_DIS;
2809                 else
2810                         val |= DISP_FBC_WM_DIS;
2811                 I915_WRITE(DISP_ARB_CTL, val);
2812         }
2813
2814         if (dirty & WM_DIRTY_LP(1) &&
2815             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2816                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2817
2818         if (INTEL_GEN(dev_priv) >= 7) {
2819                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2820                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2821                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2822                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2823         }
2824
2825         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2826                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2827         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2828                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2829         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2830                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2831
2832         dev_priv->wm.hw = *results;
2833 }
2834
2835 bool ilk_disable_lp_wm(struct drm_device *dev)
2836 {
2837         struct drm_i915_private *dev_priv = to_i915(dev);
2838
2839         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2840 }
2841
2842 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
2843
2844 /*
2845  * FIXME: We still don't have the proper code detect if we need to apply the WA,
2846  * so assume we'll always need it in order to avoid underruns.
2847  */
2848 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2849 {
2850         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2851
2852         if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2853             IS_KABYLAKE(dev_priv))
2854                 return true;
2855
2856         return false;
2857 }
2858
2859 static bool
2860 intel_has_sagv(struct drm_i915_private *dev_priv)
2861 {
2862         if (IS_KABYLAKE(dev_priv))
2863                 return true;
2864
2865         if (IS_SKYLAKE(dev_priv) &&
2866             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2867                 return true;
2868
2869         return false;
2870 }
2871
2872 /*
2873  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2874  * depending on power and performance requirements. The display engine access
2875  * to system memory is blocked during the adjustment time. Because of the
2876  * blocking time, having this enabled can cause full system hangs and/or pipe
2877  * underruns if we don't meet all of the following requirements:
2878  *
2879  *  - <= 1 pipe enabled
2880  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2881  *  - We're not using an interlaced display configuration
2882  */
2883 int
2884 intel_enable_sagv(struct drm_i915_private *dev_priv)
2885 {
2886         int ret;
2887
2888         if (!intel_has_sagv(dev_priv))
2889                 return 0;
2890
2891         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2892                 return 0;
2893
2894         DRM_DEBUG_KMS("Enabling the SAGV\n");
2895         mutex_lock(&dev_priv->rps.hw_lock);
2896
2897         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2898                                       GEN9_SAGV_ENABLE);
2899
2900         /* We don't need to wait for the SAGV when enabling */
2901         mutex_unlock(&dev_priv->rps.hw_lock);
2902
2903         /*
2904          * Some skl systems, pre-release machines in particular,
2905          * don't actually have an SAGV.
2906          */
2907         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2908                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2909                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2910                 return 0;
2911         } else if (ret < 0) {
2912                 DRM_ERROR("Failed to enable the SAGV\n");
2913                 return ret;
2914         }
2915
2916         dev_priv->sagv_status = I915_SAGV_ENABLED;
2917         return 0;
2918 }
2919
2920 static int
2921 intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2922 {
2923         int ret;
2924         uint32_t temp = GEN9_SAGV_DISABLE;
2925
2926         ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2927                                      &temp);
2928         if (ret)
2929                 return ret;
2930         else
2931                 return temp & GEN9_SAGV_IS_DISABLED;
2932 }
2933
2934 int
2935 intel_disable_sagv(struct drm_i915_private *dev_priv)
2936 {
2937         int ret, result;
2938
2939         if (!intel_has_sagv(dev_priv))
2940                 return 0;
2941
2942         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2943                 return 0;
2944
2945         DRM_DEBUG_KMS("Disabling the SAGV\n");
2946         mutex_lock(&dev_priv->rps.hw_lock);
2947
2948         /* bspec says to keep retrying for at least 1 ms */
2949         ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2950         mutex_unlock(&dev_priv->rps.hw_lock);
2951
2952         if (ret == -ETIMEDOUT) {
2953                 DRM_ERROR("Request to disable SAGV timed out\n");
2954                 return -ETIMEDOUT;
2955         }
2956
2957         /*
2958          * Some skl systems, pre-release machines in particular,
2959          * don't actually have an SAGV.
2960          */
2961         if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2962                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2963                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2964                 return 0;
2965         } else if (result < 0) {
2966                 DRM_ERROR("Failed to disable the SAGV\n");
2967                 return result;
2968         }
2969
2970         dev_priv->sagv_status = I915_SAGV_DISABLED;
2971         return 0;
2972 }
2973
2974 bool intel_can_enable_sagv(struct drm_atomic_state *state)
2975 {
2976         struct drm_device *dev = state->dev;
2977         struct drm_i915_private *dev_priv = to_i915(dev);
2978         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2979         struct intel_crtc *crtc;
2980         struct intel_plane *plane;
2981         struct intel_crtc_state *cstate;
2982         enum pipe pipe;
2983         int level, latency;
2984
2985         if (!intel_has_sagv(dev_priv))
2986                 return false;
2987
2988         /*
2989          * SKL workaround: bspec recommends we disable the SAGV when we have
2990          * more then one pipe enabled
2991          *
2992          * If there are no active CRTCs, no additional checks need be performed
2993          */
2994         if (hweight32(intel_state->active_crtcs) == 0)
2995                 return true;
2996         else if (hweight32(intel_state->active_crtcs) > 1)
2997                 return false;
2998
2999         /* Since we're now guaranteed to only have one active CRTC... */
3000         pipe = ffs(intel_state->active_crtcs) - 1;
3001         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3002         cstate = to_intel_crtc_state(crtc->base.state);
3003
3004         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3005                 return false;
3006
3007         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3008                 struct skl_plane_wm *wm =
3009                         &cstate->wm.skl.optimal.planes[plane->id];
3010
3011                 /* Skip this plane if it's not enabled */
3012                 if (!wm->wm[0].plane_en)
3013                         continue;
3014
3015                 /* Find the highest enabled wm level for this plane */
3016                 for (level = ilk_wm_max_level(dev_priv);
3017                      !wm->wm[level].plane_en; --level)
3018                      { }
3019
3020                 latency = dev_priv->wm.skl_latency[level];
3021
3022                 if (skl_needs_memory_bw_wa(intel_state) &&
3023                     plane->base.state->fb->modifier ==
3024                     I915_FORMAT_MOD_X_TILED)
3025                         latency += 15;
3026
3027                 /*
3028                  * If any of the planes on this pipe don't enable wm levels
3029                  * that incur memory latencies higher then 30µs we can't enable
3030                  * the SAGV
3031                  */
3032                 if (latency < SKL_SAGV_BLOCK_TIME)
3033                         return false;
3034         }
3035
3036         return true;
3037 }
3038
3039 static void
3040 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3041                                    const struct intel_crtc_state *cstate,
3042                                    struct skl_ddb_entry *alloc, /* out */
3043                                    int *num_active /* out */)
3044 {
3045         struct drm_atomic_state *state = cstate->base.state;
3046         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3047         struct drm_i915_private *dev_priv = to_i915(dev);
3048         struct drm_crtc *for_crtc = cstate->base.crtc;
3049         unsigned int pipe_size, ddb_size;
3050         int nth_active_pipe;
3051
3052         if (WARN_ON(!state) || !cstate->base.active) {
3053                 alloc->start = 0;
3054                 alloc->end = 0;
3055                 *num_active = hweight32(dev_priv->active_crtcs);
3056                 return;
3057         }
3058
3059         if (intel_state->active_pipe_changes)
3060                 *num_active = hweight32(intel_state->active_crtcs);
3061         else
3062                 *num_active = hweight32(dev_priv->active_crtcs);
3063
3064         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3065         WARN_ON(ddb_size == 0);
3066
3067         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3068
3069         /*
3070          * If the state doesn't change the active CRTC's, then there's
3071          * no need to recalculate; the existing pipe allocation limits
3072          * should remain unchanged.  Note that we're safe from racing
3073          * commits since any racing commit that changes the active CRTC
3074          * list would need to grab _all_ crtc locks, including the one
3075          * we currently hold.
3076          */
3077         if (!intel_state->active_pipe_changes) {
3078                 /*
3079                  * alloc may be cleared by clear_intel_crtc_state,
3080                  * copy from old state to be sure
3081                  */
3082                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3083                 return;
3084         }
3085
3086         nth_active_pipe = hweight32(intel_state->active_crtcs &
3087                                     (drm_crtc_mask(for_crtc) - 1));
3088         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3089         alloc->start = nth_active_pipe * ddb_size / *num_active;
3090         alloc->end = alloc->start + pipe_size;
3091 }
3092
3093 static unsigned int skl_cursor_allocation(int num_active)
3094 {
3095         if (num_active == 1)
3096                 return 32;
3097
3098         return 8;
3099 }
3100
3101 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3102 {
3103         entry->start = reg & 0x3ff;
3104         entry->end = (reg >> 16) & 0x3ff;
3105         if (entry->end)
3106                 entry->end += 1;
3107 }
3108
3109 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3110                           struct skl_ddb_allocation *ddb /* out */)
3111 {
3112         struct intel_crtc *crtc;
3113
3114         memset(ddb, 0, sizeof(*ddb));
3115
3116         for_each_intel_crtc(&dev_priv->drm, crtc) {
3117                 enum intel_display_power_domain power_domain;
3118                 enum plane_id plane_id;
3119                 enum pipe pipe = crtc->pipe;
3120
3121                 power_domain = POWER_DOMAIN_PIPE(pipe);
3122                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3123                         continue;
3124
3125                 for_each_plane_id_on_crtc(crtc, plane_id) {
3126                         u32 val;
3127
3128                         if (plane_id != PLANE_CURSOR)
3129                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3130                         else
3131                                 val = I915_READ(CUR_BUF_CFG(pipe));
3132
3133                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3134                 }
3135
3136                 intel_display_power_put(dev_priv, power_domain);
3137         }
3138 }
3139
3140 /*
3141  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3142  * The bspec defines downscale amount as:
3143  *
3144  * """
3145  * Horizontal down scale amount = maximum[1, Horizontal source size /
3146  *                                           Horizontal destination size]
3147  * Vertical down scale amount = maximum[1, Vertical source size /
3148  *                                         Vertical destination size]
3149  * Total down scale amount = Horizontal down scale amount *
3150  *                           Vertical down scale amount
3151  * """
3152  *
3153  * Return value is provided in 16.16 fixed point form to retain fractional part.
3154  * Caller should take care of dividing & rounding off the value.
3155  */
3156 static uint32_t
3157 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3158 {
3159         uint32_t downscale_h, downscale_w;
3160         uint32_t src_w, src_h, dst_w, dst_h;
3161
3162         if (WARN_ON(!pstate->base.visible))
3163                 return DRM_PLANE_HELPER_NO_SCALING;
3164
3165         /* n.b., src is 16.16 fixed point, dst is whole integer */
3166         src_w = drm_rect_width(&pstate->base.src);
3167         src_h = drm_rect_height(&pstate->base.src);
3168         dst_w = drm_rect_width(&pstate->base.dst);
3169         dst_h = drm_rect_height(&pstate->base.dst);
3170         if (drm_rotation_90_or_270(pstate->base.rotation))
3171                 swap(dst_w, dst_h);
3172
3173         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3174         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3175
3176         /* Provide result in 16.16 fixed point */
3177         return (uint64_t)downscale_w * downscale_h >> 16;
3178 }
3179
3180 static unsigned int
3181 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3182                              const struct drm_plane_state *pstate,
3183                              int y)
3184 {
3185         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3186         struct drm_framebuffer *fb = pstate->fb;
3187         uint32_t down_scale_amount, data_rate;
3188         uint32_t width = 0, height = 0;
3189         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3190
3191         if (!intel_pstate->base.visible)
3192                 return 0;
3193         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3194                 return 0;
3195         if (y && format != DRM_FORMAT_NV12)
3196                 return 0;
3197
3198         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3199         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3200
3201         if (drm_rotation_90_or_270(pstate->rotation))
3202                 swap(width, height);
3203
3204         /* for planar format */
3205         if (format == DRM_FORMAT_NV12) {
3206                 if (y)  /* y-plane data rate */
3207                         data_rate = width * height *
3208                                 drm_format_plane_cpp(format, 0);
3209                 else    /* uv-plane data rate */
3210                         data_rate = (width / 2) * (height / 2) *
3211                                 drm_format_plane_cpp(format, 1);
3212         } else {
3213                 /* for packed formats */
3214                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3215         }
3216
3217         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3218
3219         return (uint64_t)data_rate * down_scale_amount >> 16;
3220 }
3221
3222 /*
3223  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3224  * a 8192x4096@32bpp framebuffer:
3225  *   3 * 4096 * 8192  * 4 < 2^32
3226  */
3227 static unsigned int
3228 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3229                                  unsigned *plane_data_rate,
3230                                  unsigned *plane_y_data_rate)
3231 {
3232         struct drm_crtc_state *cstate = &intel_cstate->base;
3233         struct drm_atomic_state *state = cstate->state;
3234         struct drm_plane *plane;
3235         const struct drm_plane_state *pstate;
3236         unsigned int total_data_rate = 0;
3237
3238         if (WARN_ON(!state))
3239                 return 0;
3240
3241         /* Calculate and cache data rate for each plane */
3242         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3243                 enum plane_id plane_id = to_intel_plane(plane)->id;
3244                 unsigned int rate;
3245
3246                 /* packed/uv */
3247                 rate = skl_plane_relative_data_rate(intel_cstate,
3248                                                     pstate, 0);
3249                 plane_data_rate[plane_id] = rate;
3250
3251                 total_data_rate += rate;
3252
3253                 /* y-plane */
3254                 rate = skl_plane_relative_data_rate(intel_cstate,
3255                                                     pstate, 1);
3256                 plane_y_data_rate[plane_id] = rate;
3257
3258                 total_data_rate += rate;
3259         }
3260
3261         return total_data_rate;
3262 }
3263
3264 static uint16_t
3265 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3266                   const int y)
3267 {
3268         struct drm_framebuffer *fb = pstate->fb;
3269         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3270         uint32_t src_w, src_h;
3271         uint32_t min_scanlines = 8;
3272         uint8_t plane_bpp;
3273
3274         if (WARN_ON(!fb))
3275                 return 0;
3276
3277         /* For packed formats, no y-plane, return 0 */
3278         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3279                 return 0;
3280
3281         /* For Non Y-tile return 8-blocks */
3282         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3283             fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3284                 return 8;
3285
3286         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3287         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3288
3289         if (drm_rotation_90_or_270(pstate->rotation))
3290                 swap(src_w, src_h);
3291
3292         /* Halve UV plane width and height for NV12 */
3293         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3294                 src_w /= 2;
3295                 src_h /= 2;
3296         }
3297
3298         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3299                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3300         else
3301                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3302
3303         if (drm_rotation_90_or_270(pstate->rotation)) {
3304                 switch (plane_bpp) {
3305                 case 1:
3306                         min_scanlines = 32;
3307                         break;
3308                 case 2:
3309                         min_scanlines = 16;
3310                         break;
3311                 case 4:
3312                         min_scanlines = 8;
3313                         break;
3314                 case 8:
3315                         min_scanlines = 4;
3316                         break;
3317                 default:
3318                         WARN(1, "Unsupported pixel depth %u for rotation",
3319                              plane_bpp);
3320                         min_scanlines = 32;
3321                 }
3322         }
3323
3324         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3325 }
3326
3327 static void
3328 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3329                  uint16_t *minimum, uint16_t *y_minimum)
3330 {
3331         const struct drm_plane_state *pstate;
3332         struct drm_plane *plane;
3333
3334         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3335                 enum plane_id plane_id = to_intel_plane(plane)->id;
3336
3337                 if (plane_id == PLANE_CURSOR)
3338                         continue;
3339
3340                 if (!pstate->visible)
3341                         continue;
3342
3343                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
3344                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3345         }
3346
3347         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3348 }
3349
3350 static int
3351 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3352                       struct skl_ddb_allocation *ddb /* out */)
3353 {
3354         struct drm_atomic_state *state = cstate->base.state;
3355         struct drm_crtc *crtc = cstate->base.crtc;
3356         struct drm_device *dev = crtc->dev;
3357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3358         enum pipe pipe = intel_crtc->pipe;
3359         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3360         uint16_t alloc_size, start;
3361         uint16_t minimum[I915_MAX_PLANES] = {};
3362         uint16_t y_minimum[I915_MAX_PLANES] = {};
3363         unsigned int total_data_rate;
3364         enum plane_id plane_id;
3365         int num_active;
3366         unsigned plane_data_rate[I915_MAX_PLANES] = {};
3367         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3368
3369         /* Clear the partitioning for disabled planes. */
3370         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3371         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3372
3373         if (WARN_ON(!state))
3374                 return 0;
3375
3376         if (!cstate->base.active) {
3377                 alloc->start = alloc->end = 0;
3378                 return 0;
3379         }
3380
3381         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3382         alloc_size = skl_ddb_entry_size(alloc);
3383         if (alloc_size == 0) {
3384                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3385                 return 0;
3386         }
3387
3388         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3389
3390         /*
3391          * 1. Allocate the mininum required blocks for each active plane
3392          * and allocate the cursor, it doesn't require extra allocation
3393          * proportional to the data rate.
3394          */
3395
3396         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3397                 alloc_size -= minimum[plane_id];
3398                 alloc_size -= y_minimum[plane_id];
3399         }
3400
3401         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3402         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3403
3404         /*
3405          * 2. Distribute the remaining space in proportion to the amount of
3406          * data each plane needs to fetch from memory.
3407          *
3408          * FIXME: we may not allocate every single block here.
3409          */
3410         total_data_rate = skl_get_total_relative_data_rate(cstate,
3411                                                            plane_data_rate,
3412                                                            plane_y_data_rate);
3413         if (total_data_rate == 0)
3414                 return 0;
3415
3416         start = alloc->start;
3417         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3418                 unsigned int data_rate, y_data_rate;
3419                 uint16_t plane_blocks, y_plane_blocks = 0;
3420
3421                 if (plane_id == PLANE_CURSOR)
3422                         continue;
3423
3424                 data_rate = plane_data_rate[plane_id];
3425
3426                 /*
3427                  * allocation for (packed formats) or (uv-plane part of planar format):
3428                  * promote the expression to 64 bits to avoid overflowing, the
3429                  * result is < available as data_rate / total_data_rate < 1
3430                  */
3431                 plane_blocks = minimum[plane_id];
3432                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3433                                         total_data_rate);
3434
3435                 /* Leave disabled planes at (0,0) */
3436                 if (data_rate) {
3437                         ddb->plane[pipe][plane_id].start = start;
3438                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
3439                 }
3440
3441                 start += plane_blocks;
3442
3443                 /*
3444                  * allocation for y_plane part of planar format:
3445                  */
3446                 y_data_rate = plane_y_data_rate[plane_id];
3447
3448                 y_plane_blocks = y_minimum[plane_id];
3449                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3450                                         total_data_rate);
3451
3452                 if (y_data_rate) {
3453                         ddb->y_plane[pipe][plane_id].start = start;
3454                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3455                 }
3456
3457                 start += y_plane_blocks;
3458         }
3459
3460         return 0;
3461 }
3462
3463 /*
3464  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3465  * for the read latency) and cpp should always be <= 8, so that
3466  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3467  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3468 */
3469 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3470 {
3471         uint32_t wm_intermediate_val, ret;
3472
3473         if (latency == 0)
3474                 return UINT_MAX;
3475
3476         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3477         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3478
3479         return ret;
3480 }
3481
3482 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3483                                uint32_t latency, uint32_t plane_blocks_per_line)
3484 {
3485         uint32_t ret;
3486         uint32_t wm_intermediate_val;
3487
3488         if (latency == 0)
3489                 return UINT_MAX;
3490
3491         wm_intermediate_val = latency * pixel_rate;
3492         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3493                                 plane_blocks_per_line;
3494
3495         return ret;
3496 }
3497
3498 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3499                                               struct intel_plane_state *pstate)
3500 {
3501         uint64_t adjusted_pixel_rate;
3502         uint64_t downscale_amount;
3503         uint64_t pixel_rate;
3504
3505         /* Shouldn't reach here on disabled planes... */
3506         if (WARN_ON(!pstate->base.visible))
3507                 return 0;
3508
3509         /*
3510          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3511          * with additional adjustments for plane-specific scaling.
3512          */
3513         adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3514         downscale_amount = skl_plane_downscale_amount(pstate);
3515
3516         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3517         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3518
3519         return pixel_rate;
3520 }
3521
3522 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3523                                 struct intel_crtc_state *cstate,
3524                                 struct intel_plane_state *intel_pstate,
3525                                 uint16_t ddb_allocation,
3526                                 int level,
3527                                 uint16_t *out_blocks, /* out */
3528                                 uint8_t *out_lines, /* out */
3529                                 bool *enabled /* out */)
3530 {
3531         struct drm_plane_state *pstate = &intel_pstate->base;
3532         struct drm_framebuffer *fb = pstate->fb;
3533         uint32_t latency = dev_priv->wm.skl_latency[level];
3534         uint32_t method1, method2;
3535         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3536         uint32_t res_blocks, res_lines;
3537         uint32_t selected_result;
3538         uint8_t cpp;
3539         uint32_t width = 0, height = 0;
3540         uint32_t plane_pixel_rate;
3541         uint32_t y_tile_minimum, y_min_scanlines;
3542         struct intel_atomic_state *state =
3543                 to_intel_atomic_state(cstate->base.state);
3544         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3545
3546         if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3547                 *enabled = false;
3548                 return 0;
3549         }
3550
3551         if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3552                 latency += 15;
3553
3554         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3555         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3556
3557         if (drm_rotation_90_or_270(pstate->rotation))
3558                 swap(width, height);
3559
3560         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3561         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3562
3563         if (drm_rotation_90_or_270(pstate->rotation)) {
3564                 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3565                         drm_format_plane_cpp(fb->pixel_format, 1) :
3566                         drm_format_plane_cpp(fb->pixel_format, 0);
3567
3568                 switch (cpp) {
3569                 case 1:
3570                         y_min_scanlines = 16;
3571                         break;
3572                 case 2:
3573                         y_min_scanlines = 8;
3574                         break;
3575                 case 4:
3576                         y_min_scanlines = 4;
3577                         break;
3578                 default:
3579                         MISSING_CASE(cpp);
3580                         return -EINVAL;
3581                 }
3582         } else {
3583                 y_min_scanlines = 4;
3584         }
3585
3586         if (apply_memory_bw_wa)
3587                 y_min_scanlines *= 2;
3588
3589         plane_bytes_per_line = width * cpp;
3590         if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3591             fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3592                 plane_blocks_per_line =
3593                       DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3594                 plane_blocks_per_line /= y_min_scanlines;
3595         } else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3596                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3597                                         + 1;
3598         } else {
3599                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3600         }
3601
3602         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3603         method2 = skl_wm_method2(plane_pixel_rate,
3604                                  cstate->base.adjusted_mode.crtc_htotal,
3605                                  latency,
3606                                  plane_blocks_per_line);
3607
3608         y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3609
3610         if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3611             fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3612                 selected_result = max(method2, y_tile_minimum);
3613         } else {
3614                 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3615                     (plane_bytes_per_line / 512 < 1))
3616                         selected_result = method2;
3617                 else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3618                         selected_result = min(method1, method2);
3619                 else
3620                         selected_result = method1;
3621         }
3622
3623         res_blocks = selected_result + 1;
3624         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3625
3626         if (level >= 1 && level <= 7) {
3627                 if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3628                     fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3629                         res_blocks += y_tile_minimum;
3630                         res_lines += y_min_scanlines;
3631                 } else {
3632                         res_blocks++;
3633                 }
3634         }
3635
3636         if (res_blocks >= ddb_allocation || res_lines > 31) {
3637                 *enabled = false;
3638
3639                 /*
3640                  * If there are no valid level 0 watermarks, then we can't
3641                  * support this display configuration.
3642                  */
3643                 if (level) {
3644                         return 0;
3645                 } else {
3646                         struct drm_plane *plane = pstate->plane;
3647
3648                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3649                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3650                                       plane->base.id, plane->name,
3651                                       res_blocks, ddb_allocation, res_lines);
3652                         return -EINVAL;
3653                 }
3654         }
3655
3656         *out_blocks = res_blocks;
3657         *out_lines = res_lines;
3658         *enabled = true;
3659
3660         return 0;
3661 }
3662
3663 static int
3664 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3665                      struct skl_ddb_allocation *ddb,
3666                      struct intel_crtc_state *cstate,
3667                      struct intel_plane *intel_plane,
3668                      int level,
3669                      struct skl_wm_level *result)
3670 {
3671         struct drm_atomic_state *state = cstate->base.state;
3672         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3673         struct drm_plane *plane = &intel_plane->base;
3674         struct intel_plane_state *intel_pstate = NULL;
3675         uint16_t ddb_blocks;
3676         enum pipe pipe = intel_crtc->pipe;
3677         int ret;
3678
3679         if (state)
3680                 intel_pstate =
3681                         intel_atomic_get_existing_plane_state(state,
3682                                                               intel_plane);
3683
3684         /*
3685          * Note: If we start supporting multiple pending atomic commits against
3686          * the same planes/CRTC's in the future, plane->state will no longer be
3687          * the correct pre-state to use for the calculations here and we'll
3688          * need to change where we get the 'unchanged' plane data from.
3689          *
3690          * For now this is fine because we only allow one queued commit against
3691          * a CRTC.  Even if the plane isn't modified by this transaction and we
3692          * don't have a plane lock, we still have the CRTC's lock, so we know
3693          * that no other transactions are racing with us to update it.
3694          */
3695         if (!intel_pstate)
3696                 intel_pstate = to_intel_plane_state(plane->state);
3697
3698         WARN_ON(!intel_pstate->base.fb);
3699
3700         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3701
3702         ret = skl_compute_plane_wm(dev_priv,
3703                                    cstate,
3704                                    intel_pstate,
3705                                    ddb_blocks,
3706                                    level,
3707                                    &result->plane_res_b,
3708                                    &result->plane_res_l,
3709                                    &result->plane_en);
3710         if (ret)
3711                 return ret;
3712
3713         return 0;
3714 }
3715
3716 static uint32_t
3717 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3718 {
3719         uint32_t pixel_rate;
3720
3721         if (!cstate->base.active)
3722                 return 0;
3723
3724         pixel_rate = ilk_pipe_pixel_rate(cstate);
3725
3726         if (WARN_ON(pixel_rate == 0))
3727                 return 0;
3728
3729         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3730                             pixel_rate);
3731 }
3732
3733 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3734                                       struct skl_wm_level *trans_wm /* out */)
3735 {
3736         if (!cstate->base.active)
3737                 return;
3738
3739         /* Until we know more, just disable transition WMs */
3740         trans_wm->plane_en = false;
3741 }
3742
3743 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3744                              struct skl_ddb_allocation *ddb,
3745                              struct skl_pipe_wm *pipe_wm)
3746 {
3747         struct drm_device *dev = cstate->base.crtc->dev;
3748         const struct drm_i915_private *dev_priv = to_i915(dev);
3749         struct intel_plane *intel_plane;
3750         struct skl_plane_wm *wm;
3751         int level, max_level = ilk_wm_max_level(dev_priv);
3752         int ret;
3753
3754         /*
3755          * We'll only calculate watermarks for planes that are actually
3756          * enabled, so make sure all other planes are set as disabled.
3757          */
3758         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3759
3760         for_each_intel_plane_mask(&dev_priv->drm,
3761                                   intel_plane,
3762                                   cstate->base.plane_mask) {
3763                 wm = &pipe_wm->planes[intel_plane->id];
3764
3765                 for (level = 0; level <= max_level; level++) {
3766                         ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3767                                                    intel_plane, level,
3768                                                    &wm->wm[level]);
3769                         if (ret)
3770                                 return ret;
3771                 }
3772                 skl_compute_transition_wm(cstate, &wm->trans_wm);
3773         }
3774         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3775
3776         return 0;
3777 }
3778
3779 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3780                                 i915_reg_t reg,
3781                                 const struct skl_ddb_entry *entry)
3782 {
3783         if (entry->end)
3784                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3785         else
3786                 I915_WRITE(reg, 0);
3787 }
3788
3789 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3790                                i915_reg_t reg,
3791                                const struct skl_wm_level *level)
3792 {
3793         uint32_t val = 0;
3794
3795         if (level->plane_en) {
3796                 val |= PLANE_WM_EN;
3797                 val |= level->plane_res_b;
3798                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3799         }
3800
3801         I915_WRITE(reg, val);
3802 }
3803
3804 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3805                                const struct skl_plane_wm *wm,
3806                                const struct skl_ddb_allocation *ddb,
3807                                enum plane_id plane_id)
3808 {
3809         struct drm_crtc *crtc = &intel_crtc->base;
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_i915_private *dev_priv = to_i915(dev);
3812         int level, max_level = ilk_wm_max_level(dev_priv);
3813         enum pipe pipe = intel_crtc->pipe;
3814
3815         for (level = 0; level <= max_level; level++) {
3816                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3817                                    &wm->wm[level]);
3818         }
3819         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3820                            &wm->trans_wm);
3821
3822         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
3823                             &ddb->plane[pipe][plane_id]);
3824         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
3825                             &ddb->y_plane[pipe][plane_id]);
3826 }
3827
3828 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3829                                 const struct skl_plane_wm *wm,
3830                                 const struct skl_ddb_allocation *ddb)
3831 {
3832         struct drm_crtc *crtc = &intel_crtc->base;
3833         struct drm_device *dev = crtc->dev;
3834         struct drm_i915_private *dev_priv = to_i915(dev);
3835         int level, max_level = ilk_wm_max_level(dev_priv);
3836         enum pipe pipe = intel_crtc->pipe;
3837
3838         for (level = 0; level <= max_level; level++) {
3839                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3840                                    &wm->wm[level]);
3841         }
3842         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3843
3844         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3845                             &ddb->plane[pipe][PLANE_CURSOR]);
3846 }
3847
3848 bool skl_wm_level_equals(const struct skl_wm_level *l1,
3849                          const struct skl_wm_level *l2)
3850 {
3851         if (l1->plane_en != l2->plane_en)
3852                 return false;
3853
3854         /* If both planes aren't enabled, the rest shouldn't matter */
3855         if (!l1->plane_en)
3856                 return true;
3857
3858         return (l1->plane_res_l == l2->plane_res_l &&
3859                 l1->plane_res_b == l2->plane_res_b);
3860 }
3861
3862 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3863                                            const struct skl_ddb_entry *b)
3864 {
3865         return a->start < b->end && b->start < a->end;
3866 }
3867
3868 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3869                                  const struct skl_ddb_entry *ddb,
3870                                  int ignore)
3871 {
3872         int i;
3873
3874         for (i = 0; i < I915_MAX_PIPES; i++)
3875                 if (i != ignore && entries[i] &&
3876                     skl_ddb_entries_overlap(ddb, entries[i]))
3877                         return true;
3878
3879         return false;
3880 }
3881
3882 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3883                               const struct skl_pipe_wm *old_pipe_wm,
3884                               struct skl_pipe_wm *pipe_wm, /* out */
3885                               struct skl_ddb_allocation *ddb, /* out */
3886                               bool *changed /* out */)
3887 {
3888         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3889         int ret;
3890
3891         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3892         if (ret)
3893                 return ret;
3894
3895         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3896                 *changed = false;
3897         else
3898                 *changed = true;
3899
3900         return 0;
3901 }
3902
3903 static uint32_t
3904 pipes_modified(struct drm_atomic_state *state)
3905 {
3906         struct drm_crtc *crtc;
3907         struct drm_crtc_state *cstate;
3908         uint32_t i, ret = 0;
3909
3910         for_each_crtc_in_state(state, crtc, cstate, i)
3911                 ret |= drm_crtc_mask(crtc);
3912
3913         return ret;
3914 }
3915
3916 static int
3917 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3918 {
3919         struct drm_atomic_state *state = cstate->base.state;
3920         struct drm_device *dev = state->dev;
3921         struct drm_crtc *crtc = cstate->base.crtc;
3922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3923         struct drm_i915_private *dev_priv = to_i915(dev);
3924         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3925         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3926         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3927         struct drm_plane_state *plane_state;
3928         struct drm_plane *plane;
3929         enum pipe pipe = intel_crtc->pipe;
3930
3931         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3932
3933         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3934                 enum plane_id plane_id = to_intel_plane(plane)->id;
3935
3936                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
3937                                         &new_ddb->plane[pipe][plane_id]) &&
3938                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
3939                                         &new_ddb->y_plane[pipe][plane_id]))
3940                         continue;
3941
3942                 plane_state = drm_atomic_get_plane_state(state, plane);
3943                 if (IS_ERR(plane_state))
3944                         return PTR_ERR(plane_state);
3945         }
3946
3947         return 0;
3948 }
3949
3950 static int
3951 skl_compute_ddb(struct drm_atomic_state *state)
3952 {
3953         struct drm_device *dev = state->dev;
3954         struct drm_i915_private *dev_priv = to_i915(dev);
3955         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3956         struct intel_crtc *intel_crtc;
3957         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3958         uint32_t realloc_pipes = pipes_modified(state);
3959         int ret;
3960
3961         /*
3962          * If this is our first atomic update following hardware readout,
3963          * we can't trust the DDB that the BIOS programmed for us.  Let's
3964          * pretend that all pipes switched active status so that we'll
3965          * ensure a full DDB recompute.
3966          */
3967         if (dev_priv->wm.distrust_bios_wm) {
3968                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
3969                                        state->acquire_ctx);
3970                 if (ret)
3971                         return ret;
3972
3973                 intel_state->active_pipe_changes = ~0;
3974
3975                 /*
3976                  * We usually only initialize intel_state->active_crtcs if we
3977                  * we're doing a modeset; make sure this field is always
3978                  * initialized during the sanitization process that happens
3979                  * on the first commit too.
3980                  */
3981                 if (!intel_state->modeset)
3982                         intel_state->active_crtcs = dev_priv->active_crtcs;
3983         }
3984
3985         /*
3986          * If the modeset changes which CRTC's are active, we need to
3987          * recompute the DDB allocation for *all* active pipes, even
3988          * those that weren't otherwise being modified in any way by this
3989          * atomic commit.  Due to the shrinking of the per-pipe allocations
3990          * when new active CRTC's are added, it's possible for a pipe that
3991          * we were already using and aren't changing at all here to suddenly
3992          * become invalid if its DDB needs exceeds its new allocation.
3993          *
3994          * Note that if we wind up doing a full DDB recompute, we can't let
3995          * any other display updates race with this transaction, so we need
3996          * to grab the lock on *all* CRTC's.
3997          */
3998         if (intel_state->active_pipe_changes) {
3999                 realloc_pipes = ~0;
4000                 intel_state->wm_results.dirty_pipes = ~0;
4001         }
4002
4003         /*
4004          * We're not recomputing for the pipes not included in the commit, so
4005          * make sure we start with the current state.
4006          */
4007         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4008
4009         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4010                 struct intel_crtc_state *cstate;
4011
4012                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4013                 if (IS_ERR(cstate))
4014                         return PTR_ERR(cstate);
4015
4016                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4017                 if (ret)
4018                         return ret;
4019
4020                 ret = skl_ddb_add_affected_planes(cstate);
4021                 if (ret)
4022                         return ret;
4023         }
4024
4025         return 0;
4026 }
4027
4028 static void
4029 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4030                      struct skl_wm_values *src,
4031                      enum pipe pipe)
4032 {
4033         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4034                sizeof(dst->ddb.y_plane[pipe]));
4035         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4036                sizeof(dst->ddb.plane[pipe]));
4037 }
4038
4039 static void
4040 skl_print_wm_changes(const struct drm_atomic_state *state)
4041 {
4042         const struct drm_device *dev = state->dev;
4043         const struct drm_i915_private *dev_priv = to_i915(dev);
4044         const struct intel_atomic_state *intel_state =
4045                 to_intel_atomic_state(state);
4046         const struct drm_crtc *crtc;
4047         const struct drm_crtc_state *cstate;
4048         const struct intel_plane *intel_plane;
4049         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4050         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4051         int i;
4052
4053         for_each_crtc_in_state(state, crtc, cstate, i) {
4054                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055                 enum pipe pipe = intel_crtc->pipe;
4056
4057                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4058                         enum plane_id plane_id = intel_plane->id;
4059                         const struct skl_ddb_entry *old, *new;
4060
4061                         old = &old_ddb->plane[pipe][plane_id];
4062                         new = &new_ddb->plane[pipe][plane_id];
4063
4064                         if (skl_ddb_entry_equal(old, new))
4065                                 continue;
4066
4067                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4068                                          intel_plane->base.base.id,
4069                                          intel_plane->base.name,
4070                                          old->start, old->end,
4071                                          new->start, new->end);
4072                 }
4073         }
4074 }
4075
4076 static int
4077 skl_compute_wm(struct drm_atomic_state *state)
4078 {
4079         struct drm_crtc *crtc;
4080         struct drm_crtc_state *cstate;
4081         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4082         struct skl_wm_values *results = &intel_state->wm_results;
4083         struct skl_pipe_wm *pipe_wm;
4084         bool changed = false;
4085         int ret, i;
4086
4087         /*
4088          * If this transaction isn't actually touching any CRTC's, don't
4089          * bother with watermark calculation.  Note that if we pass this
4090          * test, we're guaranteed to hold at least one CRTC state mutex,
4091          * which means we can safely use values like dev_priv->active_crtcs
4092          * since any racing commits that want to update them would need to
4093          * hold _all_ CRTC state mutexes.
4094          */
4095         for_each_crtc_in_state(state, crtc, cstate, i)
4096                 changed = true;
4097         if (!changed)
4098                 return 0;
4099
4100         /* Clear all dirty flags */
4101         results->dirty_pipes = 0;
4102
4103         ret = skl_compute_ddb(state);
4104         if (ret)
4105                 return ret;
4106
4107         /*
4108          * Calculate WM's for all pipes that are part of this transaction.
4109          * Note that the DDB allocation above may have added more CRTC's that
4110          * weren't otherwise being modified (and set bits in dirty_pipes) if
4111          * pipe allocations had to change.
4112          *
4113          * FIXME:  Now that we're doing this in the atomic check phase, we
4114          * should allow skl_update_pipe_wm() to return failure in cases where
4115          * no suitable watermark values can be found.
4116          */
4117         for_each_crtc_in_state(state, crtc, cstate, i) {
4118                 struct intel_crtc_state *intel_cstate =
4119                         to_intel_crtc_state(cstate);
4120                 const struct skl_pipe_wm *old_pipe_wm =
4121                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4122
4123                 pipe_wm = &intel_cstate->wm.skl.optimal;
4124                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4125                                          &results->ddb, &changed);
4126                 if (ret)
4127                         return ret;
4128
4129                 if (changed)
4130                         results->dirty_pipes |= drm_crtc_mask(crtc);
4131
4132                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4133                         /* This pipe's WM's did not change */
4134                         continue;
4135
4136                 intel_cstate->update_wm_pre = true;
4137         }
4138
4139         skl_print_wm_changes(state);
4140
4141         return 0;
4142 }
4143
4144 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4145                                       struct intel_crtc_state *cstate)
4146 {
4147         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4148         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4149         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4150         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4151         enum pipe pipe = crtc->pipe;
4152         enum plane_id plane_id;
4153
4154         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4155                 return;
4156
4157         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4158
4159         for_each_plane_id_on_crtc(crtc, plane_id) {
4160                 if (plane_id != PLANE_CURSOR)
4161                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4162                                            ddb, plane_id);
4163                 else
4164                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4165                                             ddb);
4166         }
4167 }
4168
4169 static void skl_initial_wm(struct intel_atomic_state *state,
4170                            struct intel_crtc_state *cstate)
4171 {
4172         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4173         struct drm_device *dev = intel_crtc->base.dev;
4174         struct drm_i915_private *dev_priv = to_i915(dev);
4175         struct skl_wm_values *results = &state->wm_results;
4176         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4177         enum pipe pipe = intel_crtc->pipe;
4178
4179         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4180                 return;
4181
4182         mutex_lock(&dev_priv->wm.wm_mutex);
4183
4184         if (cstate->base.active_changed)
4185                 skl_atomic_update_crtc_wm(state, cstate);
4186
4187         skl_copy_wm_for_pipe(hw_vals, results, pipe);
4188
4189         mutex_unlock(&dev_priv->wm.wm_mutex);
4190 }
4191
4192 static void ilk_compute_wm_config(struct drm_device *dev,
4193                                   struct intel_wm_config *config)
4194 {
4195         struct intel_crtc *crtc;
4196
4197         /* Compute the currently _active_ config */
4198         for_each_intel_crtc(dev, crtc) {
4199                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4200
4201                 if (!wm->pipe_enabled)
4202                         continue;
4203
4204                 config->sprites_enabled |= wm->sprites_enabled;
4205                 config->sprites_scaled |= wm->sprites_scaled;
4206                 config->num_pipes_active++;
4207         }
4208 }
4209
4210 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4211 {
4212         struct drm_device *dev = &dev_priv->drm;
4213         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4214         struct ilk_wm_maximums max;
4215         struct intel_wm_config config = {};
4216         struct ilk_wm_values results = {};
4217         enum intel_ddb_partitioning partitioning;
4218
4219         ilk_compute_wm_config(dev, &config);
4220
4221         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4222         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4223
4224         /* 5/6 split only in single pipe config on IVB+ */
4225         if (INTEL_GEN(dev_priv) >= 7 &&
4226             config.num_pipes_active == 1 && config.sprites_enabled) {
4227                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4228                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4229
4230                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4231         } else {
4232                 best_lp_wm = &lp_wm_1_2;
4233         }
4234
4235         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4236                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4237
4238         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4239
4240         ilk_write_wm_values(dev_priv, &results);
4241 }
4242
4243 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4244                                    struct intel_crtc_state *cstate)
4245 {
4246         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4247         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4248
4249         mutex_lock(&dev_priv->wm.wm_mutex);
4250         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4251         ilk_program_watermarks(dev_priv);
4252         mutex_unlock(&dev_priv->wm.wm_mutex);
4253 }
4254
4255 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4256                                     struct intel_crtc_state *cstate)
4257 {
4258         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4259         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4260
4261         mutex_lock(&dev_priv->wm.wm_mutex);
4262         if (cstate->wm.need_postvbl_update) {
4263                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4264                 ilk_program_watermarks(dev_priv);
4265         }
4266         mutex_unlock(&dev_priv->wm.wm_mutex);
4267 }
4268
4269 static inline void skl_wm_level_from_reg_val(uint32_t val,
4270                                              struct skl_wm_level *level)
4271 {
4272         level->plane_en = val & PLANE_WM_EN;
4273         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4274         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4275                 PLANE_WM_LINES_MASK;
4276 }
4277
4278 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4279                               struct skl_pipe_wm *out)
4280 {
4281         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4283         enum pipe pipe = intel_crtc->pipe;
4284         int level, max_level;
4285         enum plane_id plane_id;
4286         uint32_t val;
4287
4288         max_level = ilk_wm_max_level(dev_priv);
4289
4290         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4291                 struct skl_plane_wm *wm = &out->planes[plane_id];
4292
4293                 for (level = 0; level <= max_level; level++) {
4294                         if (plane_id != PLANE_CURSOR)
4295                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
4296                         else
4297                                 val = I915_READ(CUR_WM(pipe, level));
4298
4299                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
4300                 }
4301
4302                 if (plane_id != PLANE_CURSOR)
4303                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4304                 else
4305                         val = I915_READ(CUR_WM_TRANS(pipe));
4306
4307                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4308         }
4309
4310         if (!intel_crtc->active)
4311                 return;
4312
4313         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4314 }
4315
4316 void skl_wm_get_hw_state(struct drm_device *dev)
4317 {
4318         struct drm_i915_private *dev_priv = to_i915(dev);
4319         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4320         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4321         struct drm_crtc *crtc;
4322         struct intel_crtc *intel_crtc;
4323         struct intel_crtc_state *cstate;
4324
4325         skl_ddb_get_hw_state(dev_priv, ddb);
4326         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4327                 intel_crtc = to_intel_crtc(crtc);
4328                 cstate = to_intel_crtc_state(crtc->state);
4329
4330                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4331
4332                 if (intel_crtc->active)
4333                         hw->dirty_pipes |= drm_crtc_mask(crtc);
4334         }
4335
4336         if (dev_priv->active_crtcs) {
4337                 /* Fully recompute DDB on first atomic commit */
4338                 dev_priv->wm.distrust_bios_wm = true;
4339         } else {
4340                 /* Easy/common case; just sanitize DDB now if everything off */
4341                 memset(ddb, 0, sizeof(*ddb));
4342         }
4343 }
4344
4345 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4346 {
4347         struct drm_device *dev = crtc->dev;
4348         struct drm_i915_private *dev_priv = to_i915(dev);
4349         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4351         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4352         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4353         enum pipe pipe = intel_crtc->pipe;
4354         static const i915_reg_t wm0_pipe_reg[] = {
4355                 [PIPE_A] = WM0_PIPEA_ILK,
4356                 [PIPE_B] = WM0_PIPEB_ILK,
4357                 [PIPE_C] = WM0_PIPEC_IVB,
4358         };
4359
4360         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4361         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4362                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4363
4364         memset(active, 0, sizeof(*active));
4365
4366         active->pipe_enabled = intel_crtc->active;
4367
4368         if (active->pipe_enabled) {
4369                 u32 tmp = hw->wm_pipe[pipe];
4370
4371                 /*
4372                  * For active pipes LP0 watermark is marked as
4373                  * enabled, and LP1+ watermaks as disabled since
4374                  * we can't really reverse compute them in case
4375                  * multiple pipes are active.
4376                  */
4377                 active->wm[0].enable = true;
4378                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4379                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4380                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4381                 active->linetime = hw->wm_linetime[pipe];
4382         } else {
4383                 int level, max_level = ilk_wm_max_level(dev_priv);
4384
4385                 /*
4386                  * For inactive pipes, all watermark levels
4387                  * should be marked as enabled but zeroed,
4388                  * which is what we'd compute them to.
4389                  */
4390                 for (level = 0; level <= max_level; level++)
4391                         active->wm[level].enable = true;
4392         }
4393
4394         intel_crtc->wm.active.ilk = *active;
4395 }
4396
4397 #define _FW_WM(value, plane) \
4398         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4399 #define _FW_WM_VLV(value, plane) \
4400         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4401
4402 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4403                                struct vlv_wm_values *wm)
4404 {
4405         enum pipe pipe;
4406         uint32_t tmp;
4407
4408         for_each_pipe(dev_priv, pipe) {
4409                 tmp = I915_READ(VLV_DDL(pipe));
4410
4411                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
4412                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4413                 wm->ddl[pipe].plane[PLANE_CURSOR] =
4414                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4415                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
4416                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4417                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
4418                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4419         }
4420
4421         tmp = I915_READ(DSPFW1);
4422         wm->sr.plane = _FW_WM(tmp, SR);
4423         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
4424         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
4425         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4426
4427         tmp = I915_READ(DSPFW2);
4428         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
4429         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
4430         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4431
4432         tmp = I915_READ(DSPFW3);
4433         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4434
4435         if (IS_CHERRYVIEW(dev_priv)) {
4436                 tmp = I915_READ(DSPFW7_CHV);
4437                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4438                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4439
4440                 tmp = I915_READ(DSPFW8_CHV);
4441                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
4442                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4443
4444                 tmp = I915_READ(DSPFW9_CHV);
4445                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
4446                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4447
4448                 tmp = I915_READ(DSPHOWM);
4449                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4450                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4451                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4452                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
4453                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4454                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4455                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4456                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4457                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4458                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4459         } else {
4460                 tmp = I915_READ(DSPFW7);
4461                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4462                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4463
4464                 tmp = I915_READ(DSPHOWM);
4465                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4466                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4467                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4468                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4469                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4470                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4471                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4472         }
4473 }
4474
4475 #undef _FW_WM
4476 #undef _FW_WM_VLV
4477
4478 void vlv_wm_get_hw_state(struct drm_device *dev)
4479 {
4480         struct drm_i915_private *dev_priv = to_i915(dev);
4481         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4482         struct intel_plane *plane;
4483         enum pipe pipe;
4484         u32 val;
4485
4486         vlv_read_wm_values(dev_priv, wm);
4487
4488         for_each_intel_plane(dev, plane)
4489                 plane->wm.fifo_size = vlv_get_fifo_size(plane);
4490
4491         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4492         wm->level = VLV_WM_LEVEL_PM2;
4493
4494         if (IS_CHERRYVIEW(dev_priv)) {
4495                 mutex_lock(&dev_priv->rps.hw_lock);
4496
4497                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4498                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4499                         wm->level = VLV_WM_LEVEL_PM5;
4500
4501                 /*
4502                  * If DDR DVFS is disabled in the BIOS, Punit
4503                  * will never ack the request. So if that happens
4504                  * assume we don't have to enable/disable DDR DVFS
4505                  * dynamically. To test that just set the REQ_ACK
4506                  * bit to poke the Punit, but don't change the
4507                  * HIGH/LOW bits so that we don't actually change
4508                  * the current state.
4509                  */
4510                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4511                 val |= FORCE_DDR_FREQ_REQ_ACK;
4512                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4513
4514                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4515                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4516                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4517                                       "assuming DDR DVFS is disabled\n");
4518                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4519                 } else {
4520                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4521                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4522                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4523                 }
4524
4525                 mutex_unlock(&dev_priv->rps.hw_lock);
4526         }
4527
4528         for_each_pipe(dev_priv, pipe)
4529                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4530                               pipe_name(pipe),
4531                               wm->pipe[pipe].plane[PLANE_PRIMARY],
4532                               wm->pipe[pipe].plane[PLANE_CURSOR],
4533                               wm->pipe[pipe].plane[PLANE_SPRITE0],
4534                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
4535
4536         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4537                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4538 }
4539
4540 void ilk_wm_get_hw_state(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = to_i915(dev);
4543         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4544         struct drm_crtc *crtc;
4545
4546         for_each_crtc(dev, crtc)
4547                 ilk_pipe_wm_get_hw_state(crtc);
4548
4549         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4550         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4551         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4552
4553         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4554         if (INTEL_GEN(dev_priv) >= 7) {
4555                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4556                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4557         }
4558
4559         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4560                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4561                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4562         else if (IS_IVYBRIDGE(dev_priv))
4563                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4564                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4565
4566         hw->enable_fbc_wm =
4567                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4568 }
4569
4570 /**
4571  * intel_update_watermarks - update FIFO watermark values based on current modes
4572  *
4573  * Calculate watermark values for the various WM regs based on current mode
4574  * and plane configuration.
4575  *
4576  * There are several cases to deal with here:
4577  *   - normal (i.e. non-self-refresh)
4578  *   - self-refresh (SR) mode
4579  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4580  *   - lines are small relative to FIFO size (buffer can hold more than 2
4581  *     lines), so need to account for TLB latency
4582  *
4583  *   The normal calculation is:
4584  *     watermark = dotclock * bytes per pixel * latency
4585  *   where latency is platform & configuration dependent (we assume pessimal
4586  *   values here).
4587  *
4588  *   The SR calculation is:
4589  *     watermark = (trunc(latency/line time)+1) * surface width *
4590  *       bytes per pixel
4591  *   where
4592  *     line time = htotal / dotclock
4593  *     surface width = hdisplay for normal plane and 64 for cursor
4594  *   and latency is assumed to be high, as above.
4595  *
4596  * The final value programmed to the register should always be rounded up,
4597  * and include an extra 2 entries to account for clock crossings.
4598  *
4599  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4600  * to set the non-SR watermarks to 8.
4601  */
4602 void intel_update_watermarks(struct intel_crtc *crtc)
4603 {
4604         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4605
4606         if (dev_priv->display.update_wm)
4607                 dev_priv->display.update_wm(crtc);
4608 }
4609
4610 /*
4611  * Lock protecting IPS related data structures
4612  */
4613 DEFINE_SPINLOCK(mchdev_lock);
4614
4615 /* Global for IPS driver to get at the current i915 device. Protected by
4616  * mchdev_lock. */
4617 static struct drm_i915_private *i915_mch_dev;
4618
4619 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4620 {
4621         u16 rgvswctl;
4622
4623         assert_spin_locked(&mchdev_lock);
4624
4625         rgvswctl = I915_READ16(MEMSWCTL);
4626         if (rgvswctl & MEMCTL_CMD_STS) {
4627                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4628                 return false; /* still busy with another command */
4629         }
4630
4631         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4632                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4633         I915_WRITE16(MEMSWCTL, rgvswctl);
4634         POSTING_READ16(MEMSWCTL);
4635
4636         rgvswctl |= MEMCTL_CMD_STS;
4637         I915_WRITE16(MEMSWCTL, rgvswctl);
4638
4639         return true;
4640 }
4641
4642 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4643 {
4644         u32 rgvmodectl;
4645         u8 fmax, fmin, fstart, vstart;
4646
4647         spin_lock_irq(&mchdev_lock);
4648
4649         rgvmodectl = I915_READ(MEMMODECTL);
4650
4651         /* Enable temp reporting */
4652         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4653         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4654
4655         /* 100ms RC evaluation intervals */
4656         I915_WRITE(RCUPEI, 100000);
4657         I915_WRITE(RCDNEI, 100000);
4658
4659         /* Set max/min thresholds to 90ms and 80ms respectively */
4660         I915_WRITE(RCBMAXAVG, 90000);
4661         I915_WRITE(RCBMINAVG, 80000);
4662
4663         I915_WRITE(MEMIHYST, 1);
4664
4665         /* Set up min, max, and cur for interrupt handling */
4666         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4667         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4668         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4669                 MEMMODE_FSTART_SHIFT;
4670
4671         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4672                 PXVFREQ_PX_SHIFT;
4673
4674         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4675         dev_priv->ips.fstart = fstart;
4676
4677         dev_priv->ips.max_delay = fstart;
4678         dev_priv->ips.min_delay = fmin;
4679         dev_priv->ips.cur_delay = fstart;
4680
4681         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4682                          fmax, fmin, fstart);
4683
4684         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4685
4686         /*
4687          * Interrupts will be enabled in ironlake_irq_postinstall
4688          */
4689
4690         I915_WRITE(VIDSTART, vstart);
4691         POSTING_READ(VIDSTART);
4692
4693         rgvmodectl |= MEMMODE_SWMODE_EN;
4694         I915_WRITE(MEMMODECTL, rgvmodectl);
4695
4696         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4697                 DRM_ERROR("stuck trying to change perf mode\n");
4698         mdelay(1);
4699
4700         ironlake_set_drps(dev_priv, fstart);
4701
4702         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4703                 I915_READ(DDREC) + I915_READ(CSIEC);
4704         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4705         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4706         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4707
4708         spin_unlock_irq(&mchdev_lock);
4709 }
4710
4711 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4712 {
4713         u16 rgvswctl;
4714
4715         spin_lock_irq(&mchdev_lock);
4716
4717         rgvswctl = I915_READ16(MEMSWCTL);
4718
4719         /* Ack interrupts, disable EFC interrupt */
4720         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4721         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4722         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4723         I915_WRITE(DEIIR, DE_PCU_EVENT);
4724         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4725
4726         /* Go back to the starting frequency */
4727         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4728         mdelay(1);
4729         rgvswctl |= MEMCTL_CMD_STS;
4730         I915_WRITE(MEMSWCTL, rgvswctl);
4731         mdelay(1);
4732
4733         spin_unlock_irq(&mchdev_lock);
4734 }
4735
4736 /* There's a funny hw issue where the hw returns all 0 when reading from
4737  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4738  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4739  * all limits and the gpu stuck at whatever frequency it is at atm).
4740  */
4741 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4742 {
4743         u32 limits;
4744
4745         /* Only set the down limit when we've reached the lowest level to avoid
4746          * getting more interrupts, otherwise leave this clear. This prevents a
4747          * race in the hw when coming out of rc6: There's a tiny window where
4748          * the hw runs at the minimal clock before selecting the desired
4749          * frequency, if the down threshold expires in that window we will not
4750          * receive a down interrupt. */
4751         if (IS_GEN9(dev_priv)) {
4752                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4753                 if (val <= dev_priv->rps.min_freq_softlimit)
4754                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4755         } else {
4756                 limits = dev_priv->rps.max_freq_softlimit << 24;
4757                 if (val <= dev_priv->rps.min_freq_softlimit)
4758                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4759         }
4760
4761         return limits;
4762 }
4763
4764 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4765 {
4766         int new_power;
4767         u32 threshold_up = 0, threshold_down = 0; /* in % */
4768         u32 ei_up = 0, ei_down = 0;
4769
4770         new_power = dev_priv->rps.power;
4771         switch (dev_priv->rps.power) {
4772         case LOW_POWER:
4773                 if (val > dev_priv->rps.efficient_freq + 1 &&
4774                     val > dev_priv->rps.cur_freq)
4775                         new_power = BETWEEN;
4776                 break;
4777
4778         case BETWEEN:
4779                 if (val <= dev_priv->rps.efficient_freq &&
4780                     val < dev_priv->rps.cur_freq)
4781                         new_power = LOW_POWER;
4782                 else if (val >= dev_priv->rps.rp0_freq &&
4783                          val > dev_priv->rps.cur_freq)
4784                         new_power = HIGH_POWER;
4785                 break;
4786
4787         case HIGH_POWER:
4788                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4789                     val < dev_priv->rps.cur_freq)
4790                         new_power = BETWEEN;
4791                 break;
4792         }
4793         /* Max/min bins are special */
4794         if (val <= dev_priv->rps.min_freq_softlimit)
4795                 new_power = LOW_POWER;
4796         if (val >= dev_priv->rps.max_freq_softlimit)
4797                 new_power = HIGH_POWER;
4798         if (new_power == dev_priv->rps.power)
4799                 return;
4800
4801         /* Note the units here are not exactly 1us, but 1280ns. */
4802         switch (new_power) {
4803         case LOW_POWER:
4804                 /* Upclock if more than 95% busy over 16ms */
4805                 ei_up = 16000;
4806                 threshold_up = 95;
4807
4808                 /* Downclock if less than 85% busy over 32ms */
4809                 ei_down = 32000;
4810                 threshold_down = 85;
4811                 break;
4812
4813         case BETWEEN:
4814                 /* Upclock if more than 90% busy over 13ms */
4815                 ei_up = 13000;
4816                 threshold_up = 90;
4817
4818                 /* Downclock if less than 75% busy over 32ms */
4819                 ei_down = 32000;
4820                 threshold_down = 75;
4821                 break;
4822
4823         case HIGH_POWER:
4824                 /* Upclock if more than 85% busy over 10ms */
4825                 ei_up = 10000;
4826                 threshold_up = 85;
4827
4828                 /* Downclock if less than 60% busy over 32ms */
4829                 ei_down = 32000;
4830                 threshold_down = 60;
4831                 break;
4832         }
4833
4834         I915_WRITE(GEN6_RP_UP_EI,
4835                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4836         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4837                    GT_INTERVAL_FROM_US(dev_priv,
4838                                        ei_up * threshold_up / 100));
4839
4840         I915_WRITE(GEN6_RP_DOWN_EI,
4841                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4842         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4843                    GT_INTERVAL_FROM_US(dev_priv,
4844                                        ei_down * threshold_down / 100));
4845
4846         I915_WRITE(GEN6_RP_CONTROL,
4847                    GEN6_RP_MEDIA_TURBO |
4848                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4849                    GEN6_RP_MEDIA_IS_GFX |
4850                    GEN6_RP_ENABLE |
4851                    GEN6_RP_UP_BUSY_AVG |
4852                    GEN6_RP_DOWN_IDLE_AVG);
4853
4854         dev_priv->rps.power = new_power;
4855         dev_priv->rps.up_threshold = threshold_up;
4856         dev_priv->rps.down_threshold = threshold_down;
4857         dev_priv->rps.last_adj = 0;
4858 }
4859
4860 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4861 {
4862         u32 mask = 0;
4863
4864         if (val > dev_priv->rps.min_freq_softlimit)
4865                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4866         if (val < dev_priv->rps.max_freq_softlimit)
4867                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4868
4869         mask &= dev_priv->pm_rps_events;
4870
4871         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4872 }
4873
4874 /* gen6_set_rps is called to update the frequency request, but should also be
4875  * called when the range (min_delay and max_delay) is modified so that we can
4876  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4877 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4878 {
4879         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4880         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4881                 return;
4882
4883         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4884         WARN_ON(val > dev_priv->rps.max_freq);
4885         WARN_ON(val < dev_priv->rps.min_freq);
4886
4887         /* min/max delay may still have been modified so be sure to
4888          * write the limits value.
4889          */
4890         if (val != dev_priv->rps.cur_freq) {
4891                 gen6_set_rps_thresholds(dev_priv, val);
4892
4893                 if (IS_GEN9(dev_priv))
4894                         I915_WRITE(GEN6_RPNSWREQ,
4895                                    GEN9_FREQUENCY(val));
4896                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4897                         I915_WRITE(GEN6_RPNSWREQ,
4898                                    HSW_FREQUENCY(val));
4899                 else
4900                         I915_WRITE(GEN6_RPNSWREQ,
4901                                    GEN6_FREQUENCY(val) |
4902                                    GEN6_OFFSET(0) |
4903                                    GEN6_AGGRESSIVE_TURBO);
4904         }
4905
4906         /* Make sure we continue to get interrupts
4907          * until we hit the minimum or maximum frequencies.
4908          */
4909         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4910         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4911
4912         POSTING_READ(GEN6_RPNSWREQ);
4913
4914         dev_priv->rps.cur_freq = val;
4915         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4916 }
4917
4918 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4919 {
4920         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4921         WARN_ON(val > dev_priv->rps.max_freq);
4922         WARN_ON(val < dev_priv->rps.min_freq);
4923
4924         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4925                       "Odd GPU freq value\n"))
4926                 val &= ~1;
4927
4928         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4929
4930         if (val != dev_priv->rps.cur_freq) {
4931                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4932                 if (!IS_CHERRYVIEW(dev_priv))
4933                         gen6_set_rps_thresholds(dev_priv, val);
4934         }
4935
4936         dev_priv->rps.cur_freq = val;
4937         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4938 }
4939
4940 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4941  *
4942  * * If Gfx is Idle, then
4943  * 1. Forcewake Media well.
4944  * 2. Request idle freq.
4945  * 3. Release Forcewake of Media well.
4946 */
4947 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4948 {
4949         u32 val = dev_priv->rps.idle_freq;
4950
4951         if (dev_priv->rps.cur_freq <= val)
4952                 return;
4953
4954         /* Wake up the media well, as that takes a lot less
4955          * power than the Render well. */
4956         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4957         valleyview_set_rps(dev_priv, val);
4958         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4959 }
4960
4961 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4962 {
4963         mutex_lock(&dev_priv->rps.hw_lock);
4964         if (dev_priv->rps.enabled) {
4965                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4966                         gen6_rps_reset_ei(dev_priv);
4967                 I915_WRITE(GEN6_PMINTRMSK,
4968                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4969
4970                 gen6_enable_rps_interrupts(dev_priv);
4971
4972                 /* Ensure we start at the user's desired frequency */
4973                 intel_set_rps(dev_priv,
4974                               clamp(dev_priv->rps.cur_freq,
4975                                     dev_priv->rps.min_freq_softlimit,
4976                                     dev_priv->rps.max_freq_softlimit));
4977         }
4978         mutex_unlock(&dev_priv->rps.hw_lock);
4979 }
4980
4981 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4982 {
4983         /* Flush our bottom-half so that it does not race with us
4984          * setting the idle frequency and so that it is bounded by
4985          * our rpm wakeref. And then disable the interrupts to stop any
4986          * futher RPS reclocking whilst we are asleep.
4987          */
4988         gen6_disable_rps_interrupts(dev_priv);
4989
4990         mutex_lock(&dev_priv->rps.hw_lock);
4991         if (dev_priv->rps.enabled) {
4992                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4993                         vlv_set_rps_idle(dev_priv);
4994                 else
4995                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4996                 dev_priv->rps.last_adj = 0;
4997                 I915_WRITE(GEN6_PMINTRMSK,
4998                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4999         }
5000         mutex_unlock(&dev_priv->rps.hw_lock);
5001
5002         spin_lock(&dev_priv->rps.client_lock);
5003         while (!list_empty(&dev_priv->rps.clients))
5004                 list_del_init(dev_priv->rps.clients.next);
5005         spin_unlock(&dev_priv->rps.client_lock);
5006 }
5007
5008 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5009                     struct intel_rps_client *rps,
5010                     unsigned long submitted)
5011 {
5012         /* This is intentionally racy! We peek at the state here, then
5013          * validate inside the RPS worker.
5014          */
5015         if (!(dev_priv->gt.awake &&
5016               dev_priv->rps.enabled &&
5017               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5018                 return;
5019
5020         /* Force a RPS boost (and don't count it against the client) if
5021          * the GPU is severely congested.
5022          */
5023         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5024                 rps = NULL;
5025
5026         spin_lock(&dev_priv->rps.client_lock);
5027         if (rps == NULL || list_empty(&rps->link)) {
5028                 spin_lock_irq(&dev_priv->irq_lock);
5029                 if (dev_priv->rps.interrupts_enabled) {
5030                         dev_priv->rps.client_boost = true;
5031                         schedule_work(&dev_priv->rps.work);
5032                 }
5033                 spin_unlock_irq(&dev_priv->irq_lock);
5034
5035                 if (rps != NULL) {
5036                         list_add(&rps->link, &dev_priv->rps.clients);
5037                         rps->boosts++;
5038                 } else
5039                         dev_priv->rps.boosts++;
5040         }
5041         spin_unlock(&dev_priv->rps.client_lock);
5042 }
5043
5044 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5045 {
5046         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5047                 valleyview_set_rps(dev_priv, val);
5048         else
5049                 gen6_set_rps(dev_priv, val);
5050 }
5051
5052 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5053 {
5054         I915_WRITE(GEN6_RC_CONTROL, 0);
5055         I915_WRITE(GEN9_PG_ENABLE, 0);
5056 }
5057
5058 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5059 {
5060         I915_WRITE(GEN6_RP_CONTROL, 0);
5061 }
5062
5063 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5064 {
5065         I915_WRITE(GEN6_RC_CONTROL, 0);
5066         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5067         I915_WRITE(GEN6_RP_CONTROL, 0);
5068 }
5069
5070 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5071 {
5072         I915_WRITE(GEN6_RC_CONTROL, 0);
5073 }
5074
5075 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5076 {
5077         /* we're doing forcewake before Disabling RC6,
5078          * This what the BIOS expects when going into suspend */
5079         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5080
5081         I915_WRITE(GEN6_RC_CONTROL, 0);
5082
5083         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5084 }
5085
5086 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5087 {
5088         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5089                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5090                         mode = GEN6_RC_CTL_RC6_ENABLE;
5091                 else
5092                         mode = 0;
5093         }
5094         if (HAS_RC6p(dev_priv))
5095                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5096                                  "RC6 %s RC6p %s RC6pp %s\n",
5097                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5098                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5099                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5100
5101         else
5102                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5103                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5104 }
5105
5106 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5107 {
5108         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5109         bool enable_rc6 = true;
5110         unsigned long rc6_ctx_base;
5111         u32 rc_ctl;
5112         int rc_sw_target;
5113
5114         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5115         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5116                        RC_SW_TARGET_STATE_SHIFT;
5117         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5118                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5119                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5120                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5121                          rc_sw_target);
5122
5123         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5124                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5125                 enable_rc6 = false;
5126         }
5127
5128         /*
5129          * The exact context size is not known for BXT, so assume a page size
5130          * for this check.
5131          */
5132         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5133         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5134               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5135                                         ggtt->stolen_reserved_size))) {
5136                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5137                 enable_rc6 = false;
5138         }
5139
5140         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5141               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5142               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5143               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5144                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5145                 enable_rc6 = false;
5146         }
5147
5148         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5149             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5150             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5151                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5152                 enable_rc6 = false;
5153         }
5154
5155         if (!I915_READ(GEN6_GFXPAUSE)) {
5156                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5157                 enable_rc6 = false;
5158         }
5159
5160         if (!I915_READ(GEN8_MISC_CTRL0)) {
5161                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5162                 enable_rc6 = false;
5163         }
5164
5165         return enable_rc6;
5166 }
5167
5168 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5169 {
5170         /* No RC6 before Ironlake and code is gone for ilk. */
5171         if (INTEL_INFO(dev_priv)->gen < 6)
5172                 return 0;
5173
5174         if (!enable_rc6)
5175                 return 0;
5176
5177         if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5178                 DRM_INFO("RC6 disabled by BIOS\n");
5179                 return 0;
5180         }
5181
5182         /* Respect the kernel parameter if it is set */
5183         if (enable_rc6 >= 0) {
5184                 int mask;
5185
5186                 if (HAS_RC6p(dev_priv))
5187                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5188                                INTEL_RC6pp_ENABLE;
5189                 else
5190                         mask = INTEL_RC6_ENABLE;
5191
5192                 if ((enable_rc6 & mask) != enable_rc6)
5193                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5194                                          "(requested %d, valid %d)\n",
5195                                          enable_rc6 & mask, enable_rc6, mask);
5196
5197                 return enable_rc6 & mask;
5198         }
5199
5200         if (IS_IVYBRIDGE(dev_priv))
5201                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5202
5203         return INTEL_RC6_ENABLE;
5204 }
5205
5206 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5207 {
5208         /* All of these values are in units of 50MHz */
5209
5210         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5211         if (IS_GEN9_LP(dev_priv)) {
5212                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5213                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5214                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5215                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5216         } else {
5217                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5218                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5219                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5220                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5221         }
5222         /* hw_max = RP0 until we check for overclocking */
5223         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5224
5225         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5226         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5227             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5228                 u32 ddcc_status = 0;
5229
5230                 if (sandybridge_pcode_read(dev_priv,
5231                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5232                                            &ddcc_status) == 0)
5233                         dev_priv->rps.efficient_freq =
5234                                 clamp_t(u8,
5235                                         ((ddcc_status >> 8) & 0xff),
5236                                         dev_priv->rps.min_freq,
5237                                         dev_priv->rps.max_freq);
5238         }
5239
5240         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5241                 /* Store the frequency values in 16.66 MHZ units, which is
5242                  * the natural hardware unit for SKL
5243                  */
5244                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5245                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5246                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5247                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5248                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5249         }
5250 }
5251
5252 static void reset_rps(struct drm_i915_private *dev_priv,
5253                       void (*set)(struct drm_i915_private *, u8))
5254 {
5255         u8 freq = dev_priv->rps.cur_freq;
5256
5257         /* force a reset */
5258         dev_priv->rps.power = -1;
5259         dev_priv->rps.cur_freq = -1;
5260
5261         set(dev_priv, freq);
5262 }
5263
5264 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5265 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5266 {
5267         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5268
5269         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5270         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5271                 /*
5272                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5273                  * clear out the Control register just to avoid inconsitency
5274                  * with debugfs interface, which will show  Turbo as enabled
5275                  * only and that is not expected by the User after adding the
5276                  * WaGsvDisableTurbo. Apart from this there is no problem even
5277                  * if the Turbo is left enabled in the Control register, as the
5278                  * Up/Down interrupts would remain masked.
5279                  */
5280                 gen9_disable_rps(dev_priv);
5281                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5282                 return;
5283         }
5284
5285         /* Program defaults and thresholds for RPS*/
5286         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5287                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5288
5289         /* 1 second timeout*/
5290         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5291                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5292
5293         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5294
5295         /* Leaning on the below call to gen6_set_rps to program/setup the
5296          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5297          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5298         reset_rps(dev_priv, gen6_set_rps);
5299
5300         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5301 }
5302
5303 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5304 {
5305         struct intel_engine_cs *engine;
5306         enum intel_engine_id id;
5307         uint32_t rc6_mask = 0;
5308
5309         /* 1a: Software RC state - RC0 */
5310         I915_WRITE(GEN6_RC_STATE, 0);
5311
5312         /* 1b: Get forcewake during program sequence. Although the driver
5313          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5314         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5315
5316         /* 2a: Disable RC states. */
5317         I915_WRITE(GEN6_RC_CONTROL, 0);
5318
5319         /* 2b: Program RC6 thresholds.*/
5320
5321         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5322         if (IS_SKYLAKE(dev_priv))
5323                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5324         else
5325                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5326         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5327         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5328         for_each_engine(engine, dev_priv, id)
5329                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5330
5331         if (HAS_GUC(dev_priv))
5332                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5333
5334         I915_WRITE(GEN6_RC_SLEEP, 0);
5335
5336         /* 2c: Program Coarse Power Gating Policies. */
5337         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5338         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5339
5340         /* 3a: Enable RC6 */
5341         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5342                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5343         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5344         /* WaRsUseTimeoutMode:bxt */
5345         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5346                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5347                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5348                            GEN7_RC_CTL_TO_MODE |
5349                            rc6_mask);
5350         } else {
5351                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5352                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5353                            GEN6_RC_CTL_EI_MODE(1) |
5354                            rc6_mask);
5355         }
5356
5357         /*
5358          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5359          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5360          */
5361         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5362                 I915_WRITE(GEN9_PG_ENABLE, 0);
5363         else
5364                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5365                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5366
5367         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5368 }
5369
5370 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5371 {
5372         struct intel_engine_cs *engine;
5373         enum intel_engine_id id;
5374         uint32_t rc6_mask = 0;
5375
5376         /* 1a: Software RC state - RC0 */
5377         I915_WRITE(GEN6_RC_STATE, 0);
5378
5379         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5380          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5381         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5382
5383         /* 2a: Disable RC states. */
5384         I915_WRITE(GEN6_RC_CONTROL, 0);
5385
5386         /* 2b: Program RC6 thresholds.*/
5387         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5388         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5389         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5390         for_each_engine(engine, dev_priv, id)
5391                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5392         I915_WRITE(GEN6_RC_SLEEP, 0);
5393         if (IS_BROADWELL(dev_priv))
5394                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5395         else
5396                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5397
5398         /* 3: Enable RC6 */
5399         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5400                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5401         intel_print_rc6_info(dev_priv, rc6_mask);
5402         if (IS_BROADWELL(dev_priv))
5403                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5404                                 GEN7_RC_CTL_TO_MODE |
5405                                 rc6_mask);
5406         else
5407                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5408                                 GEN6_RC_CTL_EI_MODE(1) |
5409                                 rc6_mask);
5410
5411         /* 4 Program defaults and thresholds for RPS*/
5412         I915_WRITE(GEN6_RPNSWREQ,
5413                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5414         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5415                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5416         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5417         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5418
5419         /* Docs recommend 900MHz, and 300 MHz respectively */
5420         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5421                    dev_priv->rps.max_freq_softlimit << 24 |
5422                    dev_priv->rps.min_freq_softlimit << 16);
5423
5424         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5425         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5426         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5427         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5428
5429         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5430
5431         /* 5: Enable RPS */
5432         I915_WRITE(GEN6_RP_CONTROL,
5433                    GEN6_RP_MEDIA_TURBO |
5434                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5435                    GEN6_RP_MEDIA_IS_GFX |
5436                    GEN6_RP_ENABLE |
5437                    GEN6_RP_UP_BUSY_AVG |
5438                    GEN6_RP_DOWN_IDLE_AVG);
5439
5440         /* 6: Ring frequency + overclocking (our driver does this later */
5441
5442         reset_rps(dev_priv, gen6_set_rps);
5443
5444         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5445 }
5446
5447 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5448 {
5449         struct intel_engine_cs *engine;
5450         enum intel_engine_id id;
5451         u32 rc6vids, rc6_mask = 0;
5452         u32 gtfifodbg;
5453         int rc6_mode;
5454         int ret;
5455
5456         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5457
5458         /* Here begins a magic sequence of register writes to enable
5459          * auto-downclocking.
5460          *
5461          * Perhaps there might be some value in exposing these to
5462          * userspace...
5463          */
5464         I915_WRITE(GEN6_RC_STATE, 0);
5465
5466         /* Clear the DBG now so we don't confuse earlier errors */
5467         gtfifodbg = I915_READ(GTFIFODBG);
5468         if (gtfifodbg) {
5469                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5470                 I915_WRITE(GTFIFODBG, gtfifodbg);
5471         }
5472
5473         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5474
5475         /* disable the counters and set deterministic thresholds */
5476         I915_WRITE(GEN6_RC_CONTROL, 0);
5477
5478         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5479         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5480         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5481         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5482         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5483
5484         for_each_engine(engine, dev_priv, id)
5485                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5486
5487         I915_WRITE(GEN6_RC_SLEEP, 0);
5488         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5489         if (IS_IVYBRIDGE(dev_priv))
5490                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5491         else
5492                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5493         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5494         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5495
5496         /* Check if we are enabling RC6 */
5497         rc6_mode = intel_enable_rc6();
5498         if (rc6_mode & INTEL_RC6_ENABLE)
5499                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5500
5501         /* We don't use those on Haswell */
5502         if (!IS_HASWELL(dev_priv)) {
5503                 if (rc6_mode & INTEL_RC6p_ENABLE)
5504                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5505
5506                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5507                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5508         }
5509
5510         intel_print_rc6_info(dev_priv, rc6_mask);
5511
5512         I915_WRITE(GEN6_RC_CONTROL,
5513                    rc6_mask |
5514                    GEN6_RC_CTL_EI_MODE(1) |
5515                    GEN6_RC_CTL_HW_ENABLE);
5516
5517         /* Power down if completely idle for over 50ms */
5518         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5519         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5520
5521         reset_rps(dev_priv, gen6_set_rps);
5522
5523         rc6vids = 0;
5524         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5525         if (IS_GEN6(dev_priv) && ret) {
5526                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5527         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5528                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5529                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5530                 rc6vids &= 0xffff00;
5531                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5532                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5533                 if (ret)
5534                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5535         }
5536
5537         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5538 }
5539
5540 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5541 {
5542         int min_freq = 15;
5543         unsigned int gpu_freq;
5544         unsigned int max_ia_freq, min_ring_freq;
5545         unsigned int max_gpu_freq, min_gpu_freq;
5546         int scaling_factor = 180;
5547         struct cpufreq_policy *policy;
5548
5549         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5550
5551         policy = cpufreq_cpu_get(0);
5552         if (policy) {
5553                 max_ia_freq = policy->cpuinfo.max_freq;
5554                 cpufreq_cpu_put(policy);
5555         } else {
5556                 /*
5557                  * Default to measured freq if none found, PCU will ensure we
5558                  * don't go over
5559                  */
5560                 max_ia_freq = tsc_khz;
5561         }
5562
5563         /* Convert from kHz to MHz */
5564         max_ia_freq /= 1000;
5565
5566         min_ring_freq = I915_READ(DCLK) & 0xf;
5567         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5568         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5569
5570         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5571                 /* Convert GT frequency to 50 HZ units */
5572                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5573                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5574         } else {
5575                 min_gpu_freq = dev_priv->rps.min_freq;
5576                 max_gpu_freq = dev_priv->rps.max_freq;
5577         }
5578
5579         /*
5580          * For each potential GPU frequency, load a ring frequency we'd like
5581          * to use for memory access.  We do this by specifying the IA frequency
5582          * the PCU should use as a reference to determine the ring frequency.
5583          */
5584         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5585                 int diff = max_gpu_freq - gpu_freq;
5586                 unsigned int ia_freq = 0, ring_freq = 0;
5587
5588                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5589                         /*
5590                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5591                          * No floor required for ring frequency on SKL.
5592                          */
5593                         ring_freq = gpu_freq;
5594                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5595                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5596                         ring_freq = max(min_ring_freq, gpu_freq);
5597                 } else if (IS_HASWELL(dev_priv)) {
5598                         ring_freq = mult_frac(gpu_freq, 5, 4);
5599                         ring_freq = max(min_ring_freq, ring_freq);
5600                         /* leave ia_freq as the default, chosen by cpufreq */
5601                 } else {
5602                         /* On older processors, there is no separate ring
5603                          * clock domain, so in order to boost the bandwidth
5604                          * of the ring, we need to upclock the CPU (ia_freq).
5605                          *
5606                          * For GPU frequencies less than 750MHz,
5607                          * just use the lowest ring freq.
5608                          */
5609                         if (gpu_freq < min_freq)
5610                                 ia_freq = 800;
5611                         else
5612                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5613                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5614                 }
5615
5616                 sandybridge_pcode_write(dev_priv,
5617                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5618                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5619                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5620                                         gpu_freq);
5621         }
5622 }
5623
5624 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5625 {
5626         u32 val, rp0;
5627
5628         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5629
5630         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5631         case 8:
5632                 /* (2 * 4) config */
5633                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5634                 break;
5635         case 12:
5636                 /* (2 * 6) config */
5637                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5638                 break;
5639         case 16:
5640                 /* (2 * 8) config */
5641         default:
5642                 /* Setting (2 * 8) Min RP0 for any other combination */
5643                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5644                 break;
5645         }
5646
5647         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5648
5649         return rp0;
5650 }
5651
5652 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5653 {
5654         u32 val, rpe;
5655
5656         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5657         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5658
5659         return rpe;
5660 }
5661
5662 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5663 {
5664         u32 val, rp1;
5665
5666         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5667         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5668
5669         return rp1;
5670 }
5671
5672 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5673 {
5674         u32 val, rp1;
5675
5676         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5677
5678         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5679
5680         return rp1;
5681 }
5682
5683 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5684 {
5685         u32 val, rp0;
5686
5687         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5688
5689         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5690         /* Clamp to max */
5691         rp0 = min_t(u32, rp0, 0xea);
5692
5693         return rp0;
5694 }
5695
5696 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5697 {
5698         u32 val, rpe;
5699
5700         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5701         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5702         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5703         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5704
5705         return rpe;
5706 }
5707
5708 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5709 {
5710         u32 val;
5711
5712         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5713         /*
5714          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5715          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5716          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5717          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5718          * to make sure it matches what Punit accepts.
5719          */
5720         return max_t(u32, val, 0xc0);
5721 }
5722
5723 /* Check that the pctx buffer wasn't move under us. */
5724 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5725 {
5726         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5727
5728         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5729                              dev_priv->vlv_pctx->stolen->start);
5730 }
5731
5732
5733 /* Check that the pcbr address is not empty. */
5734 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5735 {
5736         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5737
5738         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5739 }
5740
5741 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5742 {
5743         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5744         unsigned long pctx_paddr, paddr;
5745         u32 pcbr;
5746         int pctx_size = 32*1024;
5747
5748         pcbr = I915_READ(VLV_PCBR);
5749         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5750                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5751                 paddr = (dev_priv->mm.stolen_base +
5752                          (ggtt->stolen_size - pctx_size));
5753
5754                 pctx_paddr = (paddr & (~4095));
5755                 I915_WRITE(VLV_PCBR, pctx_paddr);
5756         }
5757
5758         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5759 }
5760
5761 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5762 {
5763         struct drm_i915_gem_object *pctx;
5764         unsigned long pctx_paddr;
5765         u32 pcbr;
5766         int pctx_size = 24*1024;
5767
5768         pcbr = I915_READ(VLV_PCBR);
5769         if (pcbr) {
5770                 /* BIOS set it up already, grab the pre-alloc'd space */
5771                 int pcbr_offset;
5772
5773                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5774                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5775                                                                       pcbr_offset,
5776                                                                       I915_GTT_OFFSET_NONE,
5777                                                                       pctx_size);
5778                 goto out;
5779         }
5780
5781         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5782
5783         /*
5784          * From the Gunit register HAS:
5785          * The Gfx driver is expected to program this register and ensure
5786          * proper allocation within Gfx stolen memory.  For example, this
5787          * register should be programmed such than the PCBR range does not
5788          * overlap with other ranges, such as the frame buffer, protected
5789          * memory, or any other relevant ranges.
5790          */
5791         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5792         if (!pctx) {
5793                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5794                 goto out;
5795         }
5796
5797         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5798         I915_WRITE(VLV_PCBR, pctx_paddr);
5799
5800 out:
5801         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5802         dev_priv->vlv_pctx = pctx;
5803 }
5804
5805 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5806 {
5807         if (WARN_ON(!dev_priv->vlv_pctx))
5808                 return;
5809
5810         i915_gem_object_put(dev_priv->vlv_pctx);
5811         dev_priv->vlv_pctx = NULL;
5812 }
5813
5814 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5815 {
5816         dev_priv->rps.gpll_ref_freq =
5817                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5818                                   CCK_GPLL_CLOCK_CONTROL,
5819                                   dev_priv->czclk_freq);
5820
5821         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5822                          dev_priv->rps.gpll_ref_freq);
5823 }
5824
5825 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5826 {
5827         u32 val;
5828
5829         valleyview_setup_pctx(dev_priv);
5830
5831         vlv_init_gpll_ref_freq(dev_priv);
5832
5833         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5834         switch ((val >> 6) & 3) {
5835         case 0:
5836         case 1:
5837                 dev_priv->mem_freq = 800;
5838                 break;
5839         case 2:
5840                 dev_priv->mem_freq = 1066;
5841                 break;
5842         case 3:
5843                 dev_priv->mem_freq = 1333;
5844                 break;
5845         }
5846         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5847
5848         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5849         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5850         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5851                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5852                          dev_priv->rps.max_freq);
5853
5854         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5855         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5856                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5857                          dev_priv->rps.efficient_freq);
5858
5859         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5860         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5861                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5862                          dev_priv->rps.rp1_freq);
5863
5864         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5865         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5866                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5867                          dev_priv->rps.min_freq);
5868 }
5869
5870 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5871 {
5872         u32 val;
5873
5874         cherryview_setup_pctx(dev_priv);
5875
5876         vlv_init_gpll_ref_freq(dev_priv);
5877
5878         mutex_lock(&dev_priv->sb_lock);
5879         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5880         mutex_unlock(&dev_priv->sb_lock);
5881
5882         switch ((val >> 2) & 0x7) {
5883         case 3:
5884                 dev_priv->mem_freq = 2000;
5885                 break;
5886         default:
5887                 dev_priv->mem_freq = 1600;
5888                 break;
5889         }
5890         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5891
5892         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5893         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5894         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5895                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5896                          dev_priv->rps.max_freq);
5897
5898         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5899         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5900                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5901                          dev_priv->rps.efficient_freq);
5902
5903         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5904         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5905                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5906                          dev_priv->rps.rp1_freq);
5907
5908         /* PUnit validated range is only [RPe, RP0] */
5909         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5910         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5911                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5912                          dev_priv->rps.min_freq);
5913
5914         WARN_ONCE((dev_priv->rps.max_freq |
5915                    dev_priv->rps.efficient_freq |
5916                    dev_priv->rps.rp1_freq |
5917                    dev_priv->rps.min_freq) & 1,
5918                   "Odd GPU freq values\n");
5919 }
5920
5921 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5922 {
5923         valleyview_cleanup_pctx(dev_priv);
5924 }
5925
5926 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5927 {
5928         struct intel_engine_cs *engine;
5929         enum intel_engine_id id;
5930         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5931
5932         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5933
5934         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5935                                              GT_FIFO_FREE_ENTRIES_CHV);
5936         if (gtfifodbg) {
5937                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5938                                  gtfifodbg);
5939                 I915_WRITE(GTFIFODBG, gtfifodbg);
5940         }
5941
5942         cherryview_check_pctx(dev_priv);
5943
5944         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5945          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5946         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5947
5948         /*  Disable RC states. */
5949         I915_WRITE(GEN6_RC_CONTROL, 0);
5950
5951         /* 2a: Program RC6 thresholds.*/
5952         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5953         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5954         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5955
5956         for_each_engine(engine, dev_priv, id)
5957                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5958         I915_WRITE(GEN6_RC_SLEEP, 0);
5959
5960         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5961         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5962
5963         /* allows RC6 residency counter to work */
5964         I915_WRITE(VLV_COUNTER_CONTROL,
5965                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5966                                       VLV_MEDIA_RC6_COUNT_EN |
5967                                       VLV_RENDER_RC6_COUNT_EN));
5968
5969         /* For now we assume BIOS is allocating and populating the PCBR  */
5970         pcbr = I915_READ(VLV_PCBR);
5971
5972         /* 3: Enable RC6 */
5973         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5974             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5975                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5976
5977         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5978
5979         /* 4 Program defaults and thresholds for RPS*/
5980         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5981         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5982         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5983         I915_WRITE(GEN6_RP_UP_EI, 66000);
5984         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5985
5986         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5987
5988         /* 5: Enable RPS */
5989         I915_WRITE(GEN6_RP_CONTROL,
5990                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5991                    GEN6_RP_MEDIA_IS_GFX |
5992                    GEN6_RP_ENABLE |
5993                    GEN6_RP_UP_BUSY_AVG |
5994                    GEN6_RP_DOWN_IDLE_AVG);
5995
5996         /* Setting Fixed Bias */
5997         val = VLV_OVERRIDE_EN |
5998                   VLV_SOC_TDP_EN |
5999                   CHV_BIAS_CPU_50_SOC_50;
6000         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6001
6002         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6003
6004         /* RPS code assumes GPLL is used */
6005         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6006
6007         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6008         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6009
6010         reset_rps(dev_priv, valleyview_set_rps);
6011
6012         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6013 }
6014
6015 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6016 {
6017         struct intel_engine_cs *engine;
6018         enum intel_engine_id id;
6019         u32 gtfifodbg, val, rc6_mode = 0;
6020
6021         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6022
6023         valleyview_check_pctx(dev_priv);
6024
6025         gtfifodbg = I915_READ(GTFIFODBG);
6026         if (gtfifodbg) {
6027                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6028                                  gtfifodbg);
6029                 I915_WRITE(GTFIFODBG, gtfifodbg);
6030         }
6031
6032         /* If VLV, Forcewake all wells, else re-direct to regular path */
6033         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6034
6035         /*  Disable RC states. */
6036         I915_WRITE(GEN6_RC_CONTROL, 0);
6037
6038         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6039         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6040         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6041         I915_WRITE(GEN6_RP_UP_EI, 66000);
6042         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6043
6044         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6045
6046         I915_WRITE(GEN6_RP_CONTROL,
6047                    GEN6_RP_MEDIA_TURBO |
6048                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6049                    GEN6_RP_MEDIA_IS_GFX |
6050                    GEN6_RP_ENABLE |
6051                    GEN6_RP_UP_BUSY_AVG |
6052                    GEN6_RP_DOWN_IDLE_CONT);
6053
6054         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6055         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6056         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6057
6058         for_each_engine(engine, dev_priv, id)
6059                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6060
6061         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6062
6063         /* allows RC6 residency counter to work */
6064         I915_WRITE(VLV_COUNTER_CONTROL,
6065                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6066                                       VLV_RENDER_RC0_COUNT_EN |
6067                                       VLV_MEDIA_RC6_COUNT_EN |
6068                                       VLV_RENDER_RC6_COUNT_EN));
6069
6070         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6071                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6072
6073         intel_print_rc6_info(dev_priv, rc6_mode);
6074
6075         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6076
6077         /* Setting Fixed Bias */
6078         val = VLV_OVERRIDE_EN |
6079                   VLV_SOC_TDP_EN |
6080                   VLV_BIAS_CPU_125_SOC_875;
6081         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6082
6083         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6084
6085         /* RPS code assumes GPLL is used */
6086         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6087
6088         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6089         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6090
6091         reset_rps(dev_priv, valleyview_set_rps);
6092
6093         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6094 }
6095
6096 static unsigned long intel_pxfreq(u32 vidfreq)
6097 {
6098         unsigned long freq;
6099         int div = (vidfreq & 0x3f0000) >> 16;
6100         int post = (vidfreq & 0x3000) >> 12;
6101         int pre = (vidfreq & 0x7);
6102
6103         if (!pre)
6104                 return 0;
6105
6106         freq = ((div * 133333) / ((1<<post) * pre));
6107
6108         return freq;
6109 }
6110
6111 static const struct cparams {
6112         u16 i;
6113         u16 t;
6114         u16 m;
6115         u16 c;
6116 } cparams[] = {
6117         { 1, 1333, 301, 28664 },
6118         { 1, 1066, 294, 24460 },
6119         { 1, 800, 294, 25192 },
6120         { 0, 1333, 276, 27605 },
6121         { 0, 1066, 276, 27605 },
6122         { 0, 800, 231, 23784 },
6123 };
6124
6125 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6126 {
6127         u64 total_count, diff, ret;
6128         u32 count1, count2, count3, m = 0, c = 0;
6129         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6130         int i;
6131
6132         assert_spin_locked(&mchdev_lock);
6133
6134         diff1 = now - dev_priv->ips.last_time1;
6135
6136         /* Prevent division-by-zero if we are asking too fast.
6137          * Also, we don't get interesting results if we are polling
6138          * faster than once in 10ms, so just return the saved value
6139          * in such cases.
6140          */
6141         if (diff1 <= 10)
6142                 return dev_priv->ips.chipset_power;
6143
6144         count1 = I915_READ(DMIEC);
6145         count2 = I915_READ(DDREC);
6146         count3 = I915_READ(CSIEC);
6147
6148         total_count = count1 + count2 + count3;
6149
6150         /* FIXME: handle per-counter overflow */
6151         if (total_count < dev_priv->ips.last_count1) {
6152                 diff = ~0UL - dev_priv->ips.last_count1;
6153                 diff += total_count;
6154         } else {
6155                 diff = total_count - dev_priv->ips.last_count1;
6156         }
6157
6158         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6159                 if (cparams[i].i == dev_priv->ips.c_m &&
6160                     cparams[i].t == dev_priv->ips.r_t) {
6161                         m = cparams[i].m;
6162                         c = cparams[i].c;
6163                         break;
6164                 }
6165         }
6166
6167         diff = div_u64(diff, diff1);
6168         ret = ((m * diff) + c);
6169         ret = div_u64(ret, 10);
6170
6171         dev_priv->ips.last_count1 = total_count;
6172         dev_priv->ips.last_time1 = now;
6173
6174         dev_priv->ips.chipset_power = ret;
6175
6176         return ret;
6177 }
6178
6179 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6180 {
6181         unsigned long val;
6182
6183         if (INTEL_INFO(dev_priv)->gen != 5)
6184                 return 0;
6185
6186         spin_lock_irq(&mchdev_lock);
6187
6188         val = __i915_chipset_val(dev_priv);
6189
6190         spin_unlock_irq(&mchdev_lock);
6191
6192         return val;
6193 }
6194
6195 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6196 {
6197         unsigned long m, x, b;
6198         u32 tsfs;
6199
6200         tsfs = I915_READ(TSFS);
6201
6202         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6203         x = I915_READ8(TR1);
6204
6205         b = tsfs & TSFS_INTR_MASK;
6206
6207         return ((m * x) / 127) - b;
6208 }
6209
6210 static int _pxvid_to_vd(u8 pxvid)
6211 {
6212         if (pxvid == 0)
6213                 return 0;
6214
6215         if (pxvid >= 8 && pxvid < 31)
6216                 pxvid = 31;
6217
6218         return (pxvid + 2) * 125;
6219 }
6220
6221 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6222 {
6223         const int vd = _pxvid_to_vd(pxvid);
6224         const int vm = vd - 1125;
6225
6226         if (INTEL_INFO(dev_priv)->is_mobile)
6227                 return vm > 0 ? vm : 0;
6228
6229         return vd;
6230 }
6231
6232 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6233 {
6234         u64 now, diff, diffms;
6235         u32 count;
6236
6237         assert_spin_locked(&mchdev_lock);
6238
6239         now = ktime_get_raw_ns();
6240         diffms = now - dev_priv->ips.last_time2;
6241         do_div(diffms, NSEC_PER_MSEC);
6242
6243         /* Don't divide by 0 */
6244         if (!diffms)
6245                 return;
6246
6247         count = I915_READ(GFXEC);
6248
6249         if (count < dev_priv->ips.last_count2) {
6250                 diff = ~0UL - dev_priv->ips.last_count2;
6251                 diff += count;
6252         } else {
6253                 diff = count - dev_priv->ips.last_count2;
6254         }
6255
6256         dev_priv->ips.last_count2 = count;
6257         dev_priv->ips.last_time2 = now;
6258
6259         /* More magic constants... */
6260         diff = diff * 1181;
6261         diff = div_u64(diff, diffms * 10);
6262         dev_priv->ips.gfx_power = diff;
6263 }
6264
6265 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6266 {
6267         if (INTEL_INFO(dev_priv)->gen != 5)
6268                 return;
6269
6270         spin_lock_irq(&mchdev_lock);
6271
6272         __i915_update_gfx_val(dev_priv);
6273
6274         spin_unlock_irq(&mchdev_lock);
6275 }
6276
6277 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6278 {
6279         unsigned long t, corr, state1, corr2, state2;
6280         u32 pxvid, ext_v;
6281
6282         assert_spin_locked(&mchdev_lock);
6283
6284         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6285         pxvid = (pxvid >> 24) & 0x7f;
6286         ext_v = pvid_to_extvid(dev_priv, pxvid);
6287
6288         state1 = ext_v;
6289
6290         t = i915_mch_val(dev_priv);
6291
6292         /* Revel in the empirically derived constants */
6293
6294         /* Correction factor in 1/100000 units */
6295         if (t > 80)
6296                 corr = ((t * 2349) + 135940);
6297         else if (t >= 50)
6298                 corr = ((t * 964) + 29317);
6299         else /* < 50 */
6300                 corr = ((t * 301) + 1004);
6301
6302         corr = corr * ((150142 * state1) / 10000 - 78642);
6303         corr /= 100000;
6304         corr2 = (corr * dev_priv->ips.corr);
6305
6306         state2 = (corr2 * state1) / 10000;
6307         state2 /= 100; /* convert to mW */
6308
6309         __i915_update_gfx_val(dev_priv);
6310
6311         return dev_priv->ips.gfx_power + state2;
6312 }
6313
6314 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6315 {
6316         unsigned long val;
6317
6318         if (INTEL_INFO(dev_priv)->gen != 5)
6319                 return 0;
6320
6321         spin_lock_irq(&mchdev_lock);
6322
6323         val = __i915_gfx_val(dev_priv);
6324
6325         spin_unlock_irq(&mchdev_lock);
6326
6327         return val;
6328 }
6329
6330 /**
6331  * i915_read_mch_val - return value for IPS use
6332  *
6333  * Calculate and return a value for the IPS driver to use when deciding whether
6334  * we have thermal and power headroom to increase CPU or GPU power budget.
6335  */
6336 unsigned long i915_read_mch_val(void)
6337 {
6338         struct drm_i915_private *dev_priv;
6339         unsigned long chipset_val, graphics_val, ret = 0;
6340
6341         spin_lock_irq(&mchdev_lock);
6342         if (!i915_mch_dev)
6343                 goto out_unlock;
6344         dev_priv = i915_mch_dev;
6345
6346         chipset_val = __i915_chipset_val(dev_priv);
6347         graphics_val = __i915_gfx_val(dev_priv);
6348
6349         ret = chipset_val + graphics_val;
6350
6351 out_unlock:
6352         spin_unlock_irq(&mchdev_lock);
6353
6354         return ret;
6355 }
6356 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6357
6358 /**
6359  * i915_gpu_raise - raise GPU frequency limit
6360  *
6361  * Raise the limit; IPS indicates we have thermal headroom.
6362  */
6363 bool i915_gpu_raise(void)
6364 {
6365         struct drm_i915_private *dev_priv;
6366         bool ret = true;
6367
6368         spin_lock_irq(&mchdev_lock);
6369         if (!i915_mch_dev) {
6370                 ret = false;
6371                 goto out_unlock;
6372         }
6373         dev_priv = i915_mch_dev;
6374
6375         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6376                 dev_priv->ips.max_delay--;
6377
6378 out_unlock:
6379         spin_unlock_irq(&mchdev_lock);
6380
6381         return ret;
6382 }
6383 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6384
6385 /**
6386  * i915_gpu_lower - lower GPU frequency limit
6387  *
6388  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6389  * frequency maximum.
6390  */
6391 bool i915_gpu_lower(void)
6392 {
6393         struct drm_i915_private *dev_priv;
6394         bool ret = true;
6395
6396         spin_lock_irq(&mchdev_lock);
6397         if (!i915_mch_dev) {
6398                 ret = false;
6399                 goto out_unlock;
6400         }
6401         dev_priv = i915_mch_dev;
6402
6403         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6404                 dev_priv->ips.max_delay++;
6405
6406 out_unlock:
6407         spin_unlock_irq(&mchdev_lock);
6408
6409         return ret;
6410 }
6411 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6412
6413 /**
6414  * i915_gpu_busy - indicate GPU business to IPS
6415  *
6416  * Tell the IPS driver whether or not the GPU is busy.
6417  */
6418 bool i915_gpu_busy(void)
6419 {
6420         bool ret = false;
6421
6422         spin_lock_irq(&mchdev_lock);
6423         if (i915_mch_dev)
6424                 ret = i915_mch_dev->gt.awake;
6425         spin_unlock_irq(&mchdev_lock);
6426
6427         return ret;
6428 }
6429 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6430
6431 /**
6432  * i915_gpu_turbo_disable - disable graphics turbo
6433  *
6434  * Disable graphics turbo by resetting the max frequency and setting the
6435  * current frequency to the default.
6436  */
6437 bool i915_gpu_turbo_disable(void)
6438 {
6439         struct drm_i915_private *dev_priv;
6440         bool ret = true;
6441
6442         spin_lock_irq(&mchdev_lock);
6443         if (!i915_mch_dev) {
6444                 ret = false;
6445                 goto out_unlock;
6446         }
6447         dev_priv = i915_mch_dev;
6448
6449         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6450
6451         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6452                 ret = false;
6453
6454 out_unlock:
6455         spin_unlock_irq(&mchdev_lock);
6456
6457         return ret;
6458 }
6459 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6460
6461 /**
6462  * Tells the intel_ips driver that the i915 driver is now loaded, if
6463  * IPS got loaded first.
6464  *
6465  * This awkward dance is so that neither module has to depend on the
6466  * other in order for IPS to do the appropriate communication of
6467  * GPU turbo limits to i915.
6468  */
6469 static void
6470 ips_ping_for_i915_load(void)
6471 {
6472         void (*link)(void);
6473
6474         link = symbol_get(ips_link_to_i915_driver);
6475         if (link) {
6476                 link();
6477                 symbol_put(ips_link_to_i915_driver);
6478         }
6479 }
6480
6481 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6482 {
6483         /* We only register the i915 ips part with intel-ips once everything is
6484          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6485         spin_lock_irq(&mchdev_lock);
6486         i915_mch_dev = dev_priv;
6487         spin_unlock_irq(&mchdev_lock);
6488
6489         ips_ping_for_i915_load();
6490 }
6491
6492 void intel_gpu_ips_teardown(void)
6493 {
6494         spin_lock_irq(&mchdev_lock);
6495         i915_mch_dev = NULL;
6496         spin_unlock_irq(&mchdev_lock);
6497 }
6498
6499 static void intel_init_emon(struct drm_i915_private *dev_priv)
6500 {
6501         u32 lcfuse;
6502         u8 pxw[16];
6503         int i;
6504
6505         /* Disable to program */
6506         I915_WRITE(ECR, 0);
6507         POSTING_READ(ECR);
6508
6509         /* Program energy weights for various events */
6510         I915_WRITE(SDEW, 0x15040d00);
6511         I915_WRITE(CSIEW0, 0x007f0000);
6512         I915_WRITE(CSIEW1, 0x1e220004);
6513         I915_WRITE(CSIEW2, 0x04000004);
6514
6515         for (i = 0; i < 5; i++)
6516                 I915_WRITE(PEW(i), 0);
6517         for (i = 0; i < 3; i++)
6518                 I915_WRITE(DEW(i), 0);
6519
6520         /* Program P-state weights to account for frequency power adjustment */
6521         for (i = 0; i < 16; i++) {
6522                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6523                 unsigned long freq = intel_pxfreq(pxvidfreq);
6524                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6525                         PXVFREQ_PX_SHIFT;
6526                 unsigned long val;
6527
6528                 val = vid * vid;
6529                 val *= (freq / 1000);
6530                 val *= 255;
6531                 val /= (127*127*900);
6532                 if (val > 0xff)
6533                         DRM_ERROR("bad pxval: %ld\n", val);
6534                 pxw[i] = val;
6535         }
6536         /* Render standby states get 0 weight */
6537         pxw[14] = 0;
6538         pxw[15] = 0;
6539
6540         for (i = 0; i < 4; i++) {
6541                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6542                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6543                 I915_WRITE(PXW(i), val);
6544         }
6545
6546         /* Adjust magic regs to magic values (more experimental results) */
6547         I915_WRITE(OGW0, 0);
6548         I915_WRITE(OGW1, 0);
6549         I915_WRITE(EG0, 0x00007f00);
6550         I915_WRITE(EG1, 0x0000000e);
6551         I915_WRITE(EG2, 0x000e0000);
6552         I915_WRITE(EG3, 0x68000300);
6553         I915_WRITE(EG4, 0x42000000);
6554         I915_WRITE(EG5, 0x00140031);
6555         I915_WRITE(EG6, 0);
6556         I915_WRITE(EG7, 0);
6557
6558         for (i = 0; i < 8; i++)
6559                 I915_WRITE(PXWL(i), 0);
6560
6561         /* Enable PMON + select events */
6562         I915_WRITE(ECR, 0x80000019);
6563
6564         lcfuse = I915_READ(LCFUSE02);
6565
6566         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6567 }
6568
6569 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6570 {
6571         /*
6572          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6573          * requirement.
6574          */
6575         if (!i915.enable_rc6) {
6576                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6577                 intel_runtime_pm_get(dev_priv);
6578         }
6579
6580         mutex_lock(&dev_priv->drm.struct_mutex);
6581         mutex_lock(&dev_priv->rps.hw_lock);
6582
6583         /* Initialize RPS limits (for userspace) */
6584         if (IS_CHERRYVIEW(dev_priv))
6585                 cherryview_init_gt_powersave(dev_priv);
6586         else if (IS_VALLEYVIEW(dev_priv))
6587                 valleyview_init_gt_powersave(dev_priv);
6588         else if (INTEL_GEN(dev_priv) >= 6)
6589                 gen6_init_rps_frequencies(dev_priv);
6590
6591         /* Derive initial user preferences/limits from the hardware limits */
6592         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6593         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6594
6595         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6596         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6597
6598         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6599                 dev_priv->rps.min_freq_softlimit =
6600                         max_t(int,
6601                               dev_priv->rps.efficient_freq,
6602                               intel_freq_opcode(dev_priv, 450));
6603
6604         /* After setting max-softlimit, find the overclock max freq */
6605         if (IS_GEN6(dev_priv) ||
6606             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6607                 u32 params = 0;
6608
6609                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6610                 if (params & BIT(31)) { /* OC supported */
6611                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6612                                          (dev_priv->rps.max_freq & 0xff) * 50,
6613                                          (params & 0xff) * 50);
6614                         dev_priv->rps.max_freq = params & 0xff;
6615                 }
6616         }
6617
6618         /* Finally allow us to boost to max by default */
6619         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6620
6621         mutex_unlock(&dev_priv->rps.hw_lock);
6622         mutex_unlock(&dev_priv->drm.struct_mutex);
6623
6624         intel_autoenable_gt_powersave(dev_priv);
6625 }
6626
6627 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6628 {
6629         if (IS_VALLEYVIEW(dev_priv))
6630                 valleyview_cleanup_gt_powersave(dev_priv);
6631
6632         if (!i915.enable_rc6)
6633                 intel_runtime_pm_put(dev_priv);
6634 }
6635
6636 /**
6637  * intel_suspend_gt_powersave - suspend PM work and helper threads
6638  * @dev_priv: i915 device
6639  *
6640  * We don't want to disable RC6 or other features here, we just want
6641  * to make sure any work we've queued has finished and won't bother
6642  * us while we're suspended.
6643  */
6644 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6645 {
6646         if (INTEL_GEN(dev_priv) < 6)
6647                 return;
6648
6649         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6650                 intel_runtime_pm_put(dev_priv);
6651
6652         /* gen6_rps_idle() will be called later to disable interrupts */
6653 }
6654
6655 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6656 {
6657         dev_priv->rps.enabled = true; /* force disabling */
6658         intel_disable_gt_powersave(dev_priv);
6659
6660         gen6_reset_rps_interrupts(dev_priv);
6661 }
6662
6663 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6664 {
6665         if (!READ_ONCE(dev_priv->rps.enabled))
6666                 return;
6667
6668         mutex_lock(&dev_priv->rps.hw_lock);
6669
6670         if (INTEL_GEN(dev_priv) >= 9) {
6671                 gen9_disable_rc6(dev_priv);
6672                 gen9_disable_rps(dev_priv);
6673         } else if (IS_CHERRYVIEW(dev_priv)) {
6674                 cherryview_disable_rps(dev_priv);
6675         } else if (IS_VALLEYVIEW(dev_priv)) {
6676                 valleyview_disable_rps(dev_priv);
6677         } else if (INTEL_GEN(dev_priv) >= 6) {
6678                 gen6_disable_rps(dev_priv);
6679         }  else if (IS_IRONLAKE_M(dev_priv)) {
6680                 ironlake_disable_drps(dev_priv);
6681         }
6682
6683         dev_priv->rps.enabled = false;
6684         mutex_unlock(&dev_priv->rps.hw_lock);
6685 }
6686
6687 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6688 {
6689         /* We shouldn't be disabling as we submit, so this should be less
6690          * racy than it appears!
6691          */
6692         if (READ_ONCE(dev_priv->rps.enabled))
6693                 return;
6694
6695         /* Powersaving is controlled by the host when inside a VM */
6696         if (intel_vgpu_active(dev_priv))
6697                 return;
6698
6699         mutex_lock(&dev_priv->rps.hw_lock);
6700
6701         if (IS_CHERRYVIEW(dev_priv)) {
6702                 cherryview_enable_rps(dev_priv);
6703         } else if (IS_VALLEYVIEW(dev_priv)) {
6704                 valleyview_enable_rps(dev_priv);
6705         } else if (INTEL_GEN(dev_priv) >= 9) {
6706                 gen9_enable_rc6(dev_priv);
6707                 gen9_enable_rps(dev_priv);
6708                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6709                         gen6_update_ring_freq(dev_priv);
6710         } else if (IS_BROADWELL(dev_priv)) {
6711                 gen8_enable_rps(dev_priv);
6712                 gen6_update_ring_freq(dev_priv);
6713         } else if (INTEL_GEN(dev_priv) >= 6) {
6714                 gen6_enable_rps(dev_priv);
6715                 gen6_update_ring_freq(dev_priv);
6716         } else if (IS_IRONLAKE_M(dev_priv)) {
6717                 ironlake_enable_drps(dev_priv);
6718                 intel_init_emon(dev_priv);
6719         }
6720
6721         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6722         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6723
6724         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6725         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6726
6727         dev_priv->rps.enabled = true;
6728         mutex_unlock(&dev_priv->rps.hw_lock);
6729 }
6730
6731 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6732 {
6733         struct drm_i915_private *dev_priv =
6734                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6735         struct intel_engine_cs *rcs;
6736         struct drm_i915_gem_request *req;
6737
6738         if (READ_ONCE(dev_priv->rps.enabled))
6739                 goto out;
6740
6741         rcs = dev_priv->engine[RCS];
6742         if (rcs->last_context)
6743                 goto out;
6744
6745         if (!rcs->init_context)
6746                 goto out;
6747
6748         mutex_lock(&dev_priv->drm.struct_mutex);
6749
6750         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6751         if (IS_ERR(req))
6752                 goto unlock;
6753
6754         if (!i915.enable_execlists && i915_switch_context(req) == 0)
6755                 rcs->init_context(req);
6756
6757         /* Mark the device busy, calling intel_enable_gt_powersave() */
6758         i915_add_request_no_flush(req);
6759
6760 unlock:
6761         mutex_unlock(&dev_priv->drm.struct_mutex);
6762 out:
6763         intel_runtime_pm_put(dev_priv);
6764 }
6765
6766 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6767 {
6768         if (READ_ONCE(dev_priv->rps.enabled))
6769                 return;
6770
6771         if (IS_IRONLAKE_M(dev_priv)) {
6772                 ironlake_enable_drps(dev_priv);
6773                 intel_init_emon(dev_priv);
6774         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6775                 /*
6776                  * PCU communication is slow and this doesn't need to be
6777                  * done at any specific time, so do this out of our fast path
6778                  * to make resume and init faster.
6779                  *
6780                  * We depend on the HW RC6 power context save/restore
6781                  * mechanism when entering D3 through runtime PM suspend. So
6782                  * disable RPM until RPS/RC6 is properly setup. We can only
6783                  * get here via the driver load/system resume/runtime resume
6784                  * paths, so the _noresume version is enough (and in case of
6785                  * runtime resume it's necessary).
6786                  */
6787                 if (queue_delayed_work(dev_priv->wq,
6788                                        &dev_priv->rps.autoenable_work,
6789                                        round_jiffies_up_relative(HZ)))
6790                         intel_runtime_pm_get_noresume(dev_priv);
6791         }
6792 }
6793
6794 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6795 {
6796         /*
6797          * On Ibex Peak and Cougar Point, we need to disable clock
6798          * gating for the panel power sequencer or it will fail to
6799          * start up when no ports are active.
6800          */
6801         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6802 }
6803
6804 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6805 {
6806         enum pipe pipe;
6807
6808         for_each_pipe(dev_priv, pipe) {
6809                 I915_WRITE(DSPCNTR(pipe),
6810                            I915_READ(DSPCNTR(pipe)) |
6811                            DISPPLANE_TRICKLE_FEED_DISABLE);
6812
6813                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6814                 POSTING_READ(DSPSURF(pipe));
6815         }
6816 }
6817
6818 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6819 {
6820         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6821         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6822         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6823
6824         /*
6825          * Don't touch WM1S_LP_EN here.
6826          * Doing so could cause underruns.
6827          */
6828 }
6829
6830 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6831 {
6832         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6833
6834         /*
6835          * Required for FBC
6836          * WaFbcDisableDpfcClockGating:ilk
6837          */
6838         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6839                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6840                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6841
6842         I915_WRITE(PCH_3DCGDIS0,
6843                    MARIUNIT_CLOCK_GATE_DISABLE |
6844                    SVSMUNIT_CLOCK_GATE_DISABLE);
6845         I915_WRITE(PCH_3DCGDIS1,
6846                    VFMUNIT_CLOCK_GATE_DISABLE);
6847
6848         /*
6849          * According to the spec the following bits should be set in
6850          * order to enable memory self-refresh
6851          * The bit 22/21 of 0x42004
6852          * The bit 5 of 0x42020
6853          * The bit 15 of 0x45000
6854          */
6855         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6856                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6857                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6858         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6859         I915_WRITE(DISP_ARB_CTL,
6860                    (I915_READ(DISP_ARB_CTL) |
6861                     DISP_FBC_WM_DIS));
6862
6863         ilk_init_lp_watermarks(dev_priv);
6864
6865         /*
6866          * Based on the document from hardware guys the following bits
6867          * should be set unconditionally in order to enable FBC.
6868          * The bit 22 of 0x42000
6869          * The bit 22 of 0x42004
6870          * The bit 7,8,9 of 0x42020.
6871          */
6872         if (IS_IRONLAKE_M(dev_priv)) {
6873                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6874                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6875                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6876                            ILK_FBCQ_DIS);
6877                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6878                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6879                            ILK_DPARB_GATE);
6880         }
6881
6882         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6883
6884         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6885                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6886                    ILK_ELPIN_409_SELECT);
6887         I915_WRITE(_3D_CHICKEN2,
6888                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6889                    _3D_CHICKEN2_WM_READ_PIPELINED);
6890
6891         /* WaDisableRenderCachePipelinedFlush:ilk */
6892         I915_WRITE(CACHE_MODE_0,
6893                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6894
6895         /* WaDisable_RenderCache_OperationalFlush:ilk */
6896         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6897
6898         g4x_disable_trickle_feed(dev_priv);
6899
6900         ibx_init_clock_gating(dev_priv);
6901 }
6902
6903 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6904 {
6905         int pipe;
6906         uint32_t val;
6907
6908         /*
6909          * On Ibex Peak and Cougar Point, we need to disable clock
6910          * gating for the panel power sequencer or it will fail to
6911          * start up when no ports are active.
6912          */
6913         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6914                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6915                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6916         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6917                    DPLS_EDP_PPS_FIX_DIS);
6918         /* The below fixes the weird display corruption, a few pixels shifted
6919          * downward, on (only) LVDS of some HP laptops with IVY.
6920          */
6921         for_each_pipe(dev_priv, pipe) {
6922                 val = I915_READ(TRANS_CHICKEN2(pipe));
6923                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6924                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6925                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6926                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6927                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6928                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6929                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6930                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6931         }
6932         /* WADP0ClockGatingDisable */
6933         for_each_pipe(dev_priv, pipe) {
6934                 I915_WRITE(TRANS_CHICKEN1(pipe),
6935                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6936         }
6937 }
6938
6939 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6940 {
6941         uint32_t tmp;
6942
6943         tmp = I915_READ(MCH_SSKPD);
6944         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6945                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6946                               tmp);
6947 }
6948
6949 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6950 {
6951         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6952
6953         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6954
6955         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6956                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6957                    ILK_ELPIN_409_SELECT);
6958
6959         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6960         I915_WRITE(_3D_CHICKEN,
6961                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6962
6963         /* WaDisable_RenderCache_OperationalFlush:snb */
6964         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6965
6966         /*
6967          * BSpec recoomends 8x4 when MSAA is used,
6968          * however in practice 16x4 seems fastest.
6969          *
6970          * Note that PS/WM thread counts depend on the WIZ hashing
6971          * disable bit, which we don't touch here, but it's good
6972          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6973          */
6974         I915_WRITE(GEN6_GT_MODE,
6975                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6976
6977         ilk_init_lp_watermarks(dev_priv);
6978
6979         I915_WRITE(CACHE_MODE_0,
6980                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6981
6982         I915_WRITE(GEN6_UCGCTL1,
6983                    I915_READ(GEN6_UCGCTL1) |
6984                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6985                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6986
6987         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6988          * gating disable must be set.  Failure to set it results in
6989          * flickering pixels due to Z write ordering failures after
6990          * some amount of runtime in the Mesa "fire" demo, and Unigine
6991          * Sanctuary and Tropics, and apparently anything else with
6992          * alpha test or pixel discard.
6993          *
6994          * According to the spec, bit 11 (RCCUNIT) must also be set,
6995          * but we didn't debug actual testcases to find it out.
6996          *
6997          * WaDisableRCCUnitClockGating:snb
6998          * WaDisableRCPBUnitClockGating:snb
6999          */
7000         I915_WRITE(GEN6_UCGCTL2,
7001                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7002                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7003
7004         /* WaStripsFansDisableFastClipPerformanceFix:snb */
7005         I915_WRITE(_3D_CHICKEN3,
7006                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7007
7008         /*
7009          * Bspec says:
7010          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7011          * 3DSTATE_SF number of SF output attributes is more than 16."
7012          */
7013         I915_WRITE(_3D_CHICKEN3,
7014                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7015
7016         /*
7017          * According to the spec the following bits should be
7018          * set in order to enable memory self-refresh and fbc:
7019          * The bit21 and bit22 of 0x42000
7020          * The bit21 and bit22 of 0x42004
7021          * The bit5 and bit7 of 0x42020
7022          * The bit14 of 0x70180
7023          * The bit14 of 0x71180
7024          *
7025          * WaFbcAsynchFlipDisableFbcQueue:snb
7026          */
7027         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7028                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7029                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7030         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7031                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7032                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7033         I915_WRITE(ILK_DSPCLK_GATE_D,
7034                    I915_READ(ILK_DSPCLK_GATE_D) |
7035                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7036                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7037
7038         g4x_disable_trickle_feed(dev_priv);
7039
7040         cpt_init_clock_gating(dev_priv);
7041
7042         gen6_check_mch_setup(dev_priv);
7043 }
7044
7045 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7046 {
7047         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7048
7049         /*
7050          * WaVSThreadDispatchOverride:ivb,vlv
7051          *
7052          * This actually overrides the dispatch
7053          * mode for all thread types.
7054          */
7055         reg &= ~GEN7_FF_SCHED_MASK;
7056         reg |= GEN7_FF_TS_SCHED_HW;
7057         reg |= GEN7_FF_VS_SCHED_HW;
7058         reg |= GEN7_FF_DS_SCHED_HW;
7059
7060         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7061 }
7062
7063 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7064 {
7065         /*
7066          * TODO: this bit should only be enabled when really needed, then
7067          * disabled when not needed anymore in order to save power.
7068          */
7069         if (HAS_PCH_LPT_LP(dev_priv))
7070                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7071                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7072                            PCH_LP_PARTITION_LEVEL_DISABLE);
7073
7074         /* WADPOClockGatingDisable:hsw */
7075         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7076                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7077                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7078 }
7079
7080 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7081 {
7082         if (HAS_PCH_LPT_LP(dev_priv)) {
7083                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7084
7085                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7086                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7087         }
7088 }
7089
7090 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7091                                    int general_prio_credits,
7092                                    int high_prio_credits)
7093 {
7094         u32 misccpctl;
7095
7096         /* WaTempDisableDOPClkGating:bdw */
7097         misccpctl = I915_READ(GEN7_MISCCPCTL);
7098         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7099
7100         I915_WRITE(GEN8_L3SQCREG1,
7101                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7102                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7103
7104         /*
7105          * Wait at least 100 clocks before re-enabling clock gating.
7106          * See the definition of L3SQCREG1 in BSpec.
7107          */
7108         POSTING_READ(GEN8_L3SQCREG1);
7109         udelay(1);
7110         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7111 }
7112
7113 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7114 {
7115         gen9_init_clock_gating(dev_priv);
7116
7117         /* WaDisableSDEUnitClockGating:kbl */
7118         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7119                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7120                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7121
7122         /* WaDisableGamClockGating:kbl */
7123         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7124                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7125                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7126
7127         /* WaFbcNukeOnHostModify:kbl */
7128         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7129                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7130 }
7131
7132 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7133 {
7134         gen9_init_clock_gating(dev_priv);
7135
7136         /* WAC6entrylatency:skl */
7137         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7138                    FBC_LLC_FULLY_OPEN);
7139
7140         /* WaFbcNukeOnHostModify:skl */
7141         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7142                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7143 }
7144
7145 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7146 {
7147         enum pipe pipe;
7148
7149         ilk_init_lp_watermarks(dev_priv);
7150
7151         /* WaSwitchSolVfFArbitrationPriority:bdw */
7152         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7153
7154         /* WaPsrDPAMaskVBlankInSRD:bdw */
7155         I915_WRITE(CHICKEN_PAR1_1,
7156                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7157
7158         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7159         for_each_pipe(dev_priv, pipe) {
7160                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7161                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7162                            BDW_DPRS_MASK_VBLANK_SRD);
7163         }
7164
7165         /* WaVSRefCountFullforceMissDisable:bdw */
7166         /* WaDSRefCountFullforceMissDisable:bdw */
7167         I915_WRITE(GEN7_FF_THREAD_MODE,
7168                    I915_READ(GEN7_FF_THREAD_MODE) &
7169                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7170
7171         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7172                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7173
7174         /* WaDisableSDEUnitClockGating:bdw */
7175         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7176                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7177
7178         /* WaProgramL3SqcReg1Default:bdw */
7179         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7180
7181         /*
7182          * WaGttCachingOffByDefault:bdw
7183          * GTT cache may not work with big pages, so if those
7184          * are ever enabled GTT cache may need to be disabled.
7185          */
7186         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7187
7188         /* WaKVMNotificationOnConfigChange:bdw */
7189         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7190                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7191
7192         lpt_init_clock_gating(dev_priv);
7193 }
7194
7195 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7196 {
7197         ilk_init_lp_watermarks(dev_priv);
7198
7199         /* L3 caching of data atomics doesn't work -- disable it. */
7200         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7201         I915_WRITE(HSW_ROW_CHICKEN3,
7202                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7203
7204         /* This is required by WaCatErrorRejectionIssue:hsw */
7205         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7206                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7207                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7208
7209         /* WaVSRefCountFullforceMissDisable:hsw */
7210         I915_WRITE(GEN7_FF_THREAD_MODE,
7211                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7212
7213         /* WaDisable_RenderCache_OperationalFlush:hsw */
7214         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7215
7216         /* enable HiZ Raw Stall Optimization */
7217         I915_WRITE(CACHE_MODE_0_GEN7,
7218                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7219
7220         /* WaDisable4x2SubspanOptimization:hsw */
7221         I915_WRITE(CACHE_MODE_1,
7222                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7223
7224         /*
7225          * BSpec recommends 8x4 when MSAA is used,
7226          * however in practice 16x4 seems fastest.
7227          *
7228          * Note that PS/WM thread counts depend on the WIZ hashing
7229          * disable bit, which we don't touch here, but it's good
7230          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7231          */
7232         I915_WRITE(GEN7_GT_MODE,
7233                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7234
7235         /* WaSampleCChickenBitEnable:hsw */
7236         I915_WRITE(HALF_SLICE_CHICKEN3,
7237                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7238
7239         /* WaSwitchSolVfFArbitrationPriority:hsw */
7240         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7241
7242         /* WaRsPkgCStateDisplayPMReq:hsw */
7243         I915_WRITE(CHICKEN_PAR1_1,
7244                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7245
7246         lpt_init_clock_gating(dev_priv);
7247 }
7248
7249 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7250 {
7251         uint32_t snpcr;
7252
7253         ilk_init_lp_watermarks(dev_priv);
7254
7255         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7256
7257         /* WaDisableEarlyCull:ivb */
7258         I915_WRITE(_3D_CHICKEN3,
7259                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7260
7261         /* WaDisableBackToBackFlipFix:ivb */
7262         I915_WRITE(IVB_CHICKEN3,
7263                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7264                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7265
7266         /* WaDisablePSDDualDispatchEnable:ivb */
7267         if (IS_IVB_GT1(dev_priv))
7268                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7269                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7270
7271         /* WaDisable_RenderCache_OperationalFlush:ivb */
7272         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7273
7274         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7275         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7276                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7277
7278         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7279         I915_WRITE(GEN7_L3CNTLREG1,
7280                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7281         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7282                    GEN7_WA_L3_CHICKEN_MODE);
7283         if (IS_IVB_GT1(dev_priv))
7284                 I915_WRITE(GEN7_ROW_CHICKEN2,
7285                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7286         else {
7287                 /* must write both registers */
7288                 I915_WRITE(GEN7_ROW_CHICKEN2,
7289                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7290                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7291                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7292         }
7293
7294         /* WaForceL3Serialization:ivb */
7295         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7296                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7297
7298         /*
7299          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7300          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7301          */
7302         I915_WRITE(GEN6_UCGCTL2,
7303                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7304
7305         /* This is required by WaCatErrorRejectionIssue:ivb */
7306         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7307                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7308                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7309
7310         g4x_disable_trickle_feed(dev_priv);
7311
7312         gen7_setup_fixed_func_scheduler(dev_priv);
7313
7314         if (0) { /* causes HiZ corruption on ivb:gt1 */
7315                 /* enable HiZ Raw Stall Optimization */
7316                 I915_WRITE(CACHE_MODE_0_GEN7,
7317                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7318         }
7319
7320         /* WaDisable4x2SubspanOptimization:ivb */
7321         I915_WRITE(CACHE_MODE_1,
7322                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7323
7324         /*
7325          * BSpec recommends 8x4 when MSAA is used,
7326          * however in practice 16x4 seems fastest.
7327          *
7328          * Note that PS/WM thread counts depend on the WIZ hashing
7329          * disable bit, which we don't touch here, but it's good
7330          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7331          */
7332         I915_WRITE(GEN7_GT_MODE,
7333                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7334
7335         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7336         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7337         snpcr |= GEN6_MBC_SNPCR_MED;
7338         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7339
7340         if (!HAS_PCH_NOP(dev_priv))
7341                 cpt_init_clock_gating(dev_priv);
7342
7343         gen6_check_mch_setup(dev_priv);
7344 }
7345
7346 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7347 {
7348         /* WaDisableEarlyCull:vlv */
7349         I915_WRITE(_3D_CHICKEN3,
7350                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7351
7352         /* WaDisableBackToBackFlipFix:vlv */
7353         I915_WRITE(IVB_CHICKEN3,
7354                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7355                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7356
7357         /* WaPsdDispatchEnable:vlv */
7358         /* WaDisablePSDDualDispatchEnable:vlv */
7359         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7360                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7361                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7362
7363         /* WaDisable_RenderCache_OperationalFlush:vlv */
7364         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7365
7366         /* WaForceL3Serialization:vlv */
7367         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7368                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7369
7370         /* WaDisableDopClockGating:vlv */
7371         I915_WRITE(GEN7_ROW_CHICKEN2,
7372                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7373
7374         /* This is required by WaCatErrorRejectionIssue:vlv */
7375         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7376                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7377                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7378
7379         gen7_setup_fixed_func_scheduler(dev_priv);
7380
7381         /*
7382          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7383          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7384          */
7385         I915_WRITE(GEN6_UCGCTL2,
7386                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7387
7388         /* WaDisableL3Bank2xClockGate:vlv
7389          * Disabling L3 clock gating- MMIO 940c[25] = 1
7390          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7391         I915_WRITE(GEN7_UCGCTL4,
7392                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7393
7394         /*
7395          * BSpec says this must be set, even though
7396          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7397          */
7398         I915_WRITE(CACHE_MODE_1,
7399                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7400
7401         /*
7402          * BSpec recommends 8x4 when MSAA is used,
7403          * however in practice 16x4 seems fastest.
7404          *
7405          * Note that PS/WM thread counts depend on the WIZ hashing
7406          * disable bit, which we don't touch here, but it's good
7407          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7408          */
7409         I915_WRITE(GEN7_GT_MODE,
7410                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7411
7412         /*
7413          * WaIncreaseL3CreditsForVLVB0:vlv
7414          * This is the hardware default actually.
7415          */
7416         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7417
7418         /*
7419          * WaDisableVLVClockGating_VBIIssue:vlv
7420          * Disable clock gating on th GCFG unit to prevent a delay
7421          * in the reporting of vblank events.
7422          */
7423         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7424 }
7425
7426 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7427 {
7428         /* WaVSRefCountFullforceMissDisable:chv */
7429         /* WaDSRefCountFullforceMissDisable:chv */
7430         I915_WRITE(GEN7_FF_THREAD_MODE,
7431                    I915_READ(GEN7_FF_THREAD_MODE) &
7432                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7433
7434         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7435         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7436                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7437
7438         /* WaDisableCSUnitClockGating:chv */
7439         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7440                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7441
7442         /* WaDisableSDEUnitClockGating:chv */
7443         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7444                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7445
7446         /*
7447          * WaProgramL3SqcReg1Default:chv
7448          * See gfxspecs/Related Documents/Performance Guide/
7449          * LSQC Setting Recommendations.
7450          */
7451         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7452
7453         /*
7454          * GTT cache may not work with big pages, so if those
7455          * are ever enabled GTT cache may need to be disabled.
7456          */
7457         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7458 }
7459
7460 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7461 {
7462         uint32_t dspclk_gate;
7463
7464         I915_WRITE(RENCLK_GATE_D1, 0);
7465         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7466                    GS_UNIT_CLOCK_GATE_DISABLE |
7467                    CL_UNIT_CLOCK_GATE_DISABLE);
7468         I915_WRITE(RAMCLK_GATE_D, 0);
7469         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7470                 OVRUNIT_CLOCK_GATE_DISABLE |
7471                 OVCUNIT_CLOCK_GATE_DISABLE;
7472         if (IS_GM45(dev_priv))
7473                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7474         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7475
7476         /* WaDisableRenderCachePipelinedFlush */
7477         I915_WRITE(CACHE_MODE_0,
7478                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7479
7480         /* WaDisable_RenderCache_OperationalFlush:g4x */
7481         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7482
7483         g4x_disable_trickle_feed(dev_priv);
7484 }
7485
7486 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7487 {
7488         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7489         I915_WRITE(RENCLK_GATE_D2, 0);
7490         I915_WRITE(DSPCLK_GATE_D, 0);
7491         I915_WRITE(RAMCLK_GATE_D, 0);
7492         I915_WRITE16(DEUC, 0);
7493         I915_WRITE(MI_ARB_STATE,
7494                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7495
7496         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7497         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7498 }
7499
7500 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7501 {
7502         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7503                    I965_RCC_CLOCK_GATE_DISABLE |
7504                    I965_RCPB_CLOCK_GATE_DISABLE |
7505                    I965_ISC_CLOCK_GATE_DISABLE |
7506                    I965_FBC_CLOCK_GATE_DISABLE);
7507         I915_WRITE(RENCLK_GATE_D2, 0);
7508         I915_WRITE(MI_ARB_STATE,
7509                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7510
7511         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7512         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7513 }
7514
7515 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7516 {
7517         u32 dstate = I915_READ(D_STATE);
7518
7519         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7520                 DSTATE_DOT_CLOCK_GATING;
7521         I915_WRITE(D_STATE, dstate);
7522
7523         if (IS_PINEVIEW(dev_priv))
7524                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7525
7526         /* IIR "flip pending" means done if this bit is set */
7527         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7528
7529         /* interrupts should cause a wake up from C3 */
7530         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7531
7532         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7533         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7534
7535         I915_WRITE(MI_ARB_STATE,
7536                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7537 }
7538
7539 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7540 {
7541         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7542
7543         /* interrupts should cause a wake up from C3 */
7544         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7545                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7546
7547         I915_WRITE(MEM_MODE,
7548                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7549 }
7550
7551 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7552 {
7553         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7554
7555         I915_WRITE(MEM_MODE,
7556                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7557                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7558 }
7559
7560 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7561 {
7562         dev_priv->display.init_clock_gating(dev_priv);
7563 }
7564
7565 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7566 {
7567         if (HAS_PCH_LPT(dev_priv))
7568                 lpt_suspend_hw(dev_priv);
7569 }
7570
7571 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7572 {
7573         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7574 }
7575
7576 /**
7577  * intel_init_clock_gating_hooks - setup the clock gating hooks
7578  * @dev_priv: device private
7579  *
7580  * Setup the hooks that configure which clocks of a given platform can be
7581  * gated and also apply various GT and display specific workarounds for these
7582  * platforms. Note that some GT specific workarounds are applied separately
7583  * when GPU contexts or batchbuffers start their execution.
7584  */
7585 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7586 {
7587         if (IS_SKYLAKE(dev_priv))
7588                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7589         else if (IS_KABYLAKE(dev_priv))
7590                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7591         else if (IS_GEN9_LP(dev_priv))
7592                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7593         else if (IS_BROADWELL(dev_priv))
7594                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7595         else if (IS_CHERRYVIEW(dev_priv))
7596                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7597         else if (IS_HASWELL(dev_priv))
7598                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7599         else if (IS_IVYBRIDGE(dev_priv))
7600                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7601         else if (IS_VALLEYVIEW(dev_priv))
7602                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7603         else if (IS_GEN6(dev_priv))
7604                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7605         else if (IS_GEN5(dev_priv))
7606                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7607         else if (IS_G4X(dev_priv))
7608                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7609         else if (IS_CRESTLINE(dev_priv))
7610                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7611         else if (IS_BROADWATER(dev_priv))
7612                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7613         else if (IS_GEN3(dev_priv))
7614                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7615         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7616                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7617         else if (IS_GEN2(dev_priv))
7618                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7619         else {
7620                 MISSING_CASE(INTEL_DEVID(dev_priv));
7621                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7622         }
7623 }
7624
7625 /* Set up chip specific power management-related functions */
7626 void intel_init_pm(struct drm_i915_private *dev_priv)
7627 {
7628         intel_fbc_init(dev_priv);
7629
7630         /* For cxsr */
7631         if (IS_PINEVIEW(dev_priv))
7632                 i915_pineview_get_mem_freq(dev_priv);
7633         else if (IS_GEN5(dev_priv))
7634                 i915_ironlake_get_mem_freq(dev_priv);
7635
7636         /* For FIFO watermark updates */
7637         if (INTEL_GEN(dev_priv) >= 9) {
7638                 skl_setup_wm_latency(dev_priv);
7639                 dev_priv->display.initial_watermarks = skl_initial_wm;
7640                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7641                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7642         } else if (HAS_PCH_SPLIT(dev_priv)) {
7643                 ilk_setup_wm_latency(dev_priv);
7644
7645                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7646                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7647                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7648                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7649                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7650                         dev_priv->display.compute_intermediate_wm =
7651                                 ilk_compute_intermediate_wm;
7652                         dev_priv->display.initial_watermarks =
7653                                 ilk_initial_watermarks;
7654                         dev_priv->display.optimize_watermarks =
7655                                 ilk_optimize_watermarks;
7656                 } else {
7657                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7658                                       "Disable CxSR\n");
7659                 }
7660         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7661                 vlv_setup_wm_latency(dev_priv);
7662                 dev_priv->display.update_wm = vlv_update_wm;
7663         } else if (IS_PINEVIEW(dev_priv)) {
7664                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7665                                             dev_priv->is_ddr3,
7666                                             dev_priv->fsb_freq,
7667                                             dev_priv->mem_freq)) {
7668                         DRM_INFO("failed to find known CxSR latency "
7669                                  "(found ddr%s fsb freq %d, mem freq %d), "
7670                                  "disabling CxSR\n",
7671                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7672                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7673                         /* Disable CxSR and never update its watermark again */
7674                         intel_set_memory_cxsr(dev_priv, false);
7675                         dev_priv->display.update_wm = NULL;
7676                 } else
7677                         dev_priv->display.update_wm = pineview_update_wm;
7678         } else if (IS_G4X(dev_priv)) {
7679                 dev_priv->display.update_wm = g4x_update_wm;
7680         } else if (IS_GEN4(dev_priv)) {
7681                 dev_priv->display.update_wm = i965_update_wm;
7682         } else if (IS_GEN3(dev_priv)) {
7683                 dev_priv->display.update_wm = i9xx_update_wm;
7684                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7685         } else if (IS_GEN2(dev_priv)) {
7686                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7687                         dev_priv->display.update_wm = i845_update_wm;
7688                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7689                 } else {
7690                         dev_priv->display.update_wm = i9xx_update_wm;
7691                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7692                 }
7693         } else {
7694                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7695         }
7696 }
7697
7698 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7699 {
7700         uint32_t flags =
7701                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7702
7703         switch (flags) {
7704         case GEN6_PCODE_SUCCESS:
7705                 return 0;
7706         case GEN6_PCODE_UNIMPLEMENTED_CMD:
7707         case GEN6_PCODE_ILLEGAL_CMD:
7708                 return -ENXIO;
7709         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7710         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7711                 return -EOVERFLOW;
7712         case GEN6_PCODE_TIMEOUT:
7713                 return -ETIMEDOUT;
7714         default:
7715                 MISSING_CASE(flags)
7716                 return 0;
7717         }
7718 }
7719
7720 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7721 {
7722         uint32_t flags =
7723                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7724
7725         switch (flags) {
7726         case GEN6_PCODE_SUCCESS:
7727                 return 0;
7728         case GEN6_PCODE_ILLEGAL_CMD:
7729                 return -ENXIO;
7730         case GEN7_PCODE_TIMEOUT:
7731                 return -ETIMEDOUT;
7732         case GEN7_PCODE_ILLEGAL_DATA:
7733                 return -EINVAL;
7734         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7735                 return -EOVERFLOW;
7736         default:
7737                 MISSING_CASE(flags);
7738                 return 0;
7739         }
7740 }
7741
7742 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7743 {
7744         int status;
7745
7746         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7747
7748         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7749          * use te fw I915_READ variants to reduce the amount of work
7750          * required when reading/writing.
7751          */
7752
7753         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7754                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7755                 return -EAGAIN;
7756         }
7757
7758         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7759         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7760         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7761
7762         if (intel_wait_for_register_fw(dev_priv,
7763                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7764                                        500)) {
7765                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7766                 return -ETIMEDOUT;
7767         }
7768
7769         *val = I915_READ_FW(GEN6_PCODE_DATA);
7770         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7771
7772         if (INTEL_GEN(dev_priv) > 6)
7773                 status = gen7_check_mailbox_status(dev_priv);
7774         else
7775                 status = gen6_check_mailbox_status(dev_priv);
7776
7777         if (status) {
7778                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7779                                  status);
7780                 return status;
7781         }
7782
7783         return 0;
7784 }
7785
7786 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7787                             u32 mbox, u32 val)
7788 {
7789         int status;
7790
7791         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7792
7793         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7794          * use te fw I915_READ variants to reduce the amount of work
7795          * required when reading/writing.
7796          */
7797
7798         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7799                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7800                 return -EAGAIN;
7801         }
7802
7803         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7804         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7805         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7806
7807         if (intel_wait_for_register_fw(dev_priv,
7808                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7809                                        500)) {
7810                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7811                 return -ETIMEDOUT;
7812         }
7813
7814         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7815
7816         if (INTEL_GEN(dev_priv) > 6)
7817                 status = gen7_check_mailbox_status(dev_priv);
7818         else
7819                 status = gen6_check_mailbox_status(dev_priv);
7820
7821         if (status) {
7822                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7823                                  status);
7824                 return status;
7825         }
7826
7827         return 0;
7828 }
7829
7830 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7831 {
7832         /*
7833          * N = val - 0xb7
7834          * Slow = Fast = GPLL ref * N
7835          */
7836         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7837 }
7838
7839 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7840 {
7841         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7842 }
7843
7844 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7845 {
7846         /*
7847          * N = val / 2
7848          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7849          */
7850         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7851 }
7852
7853 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7854 {
7855         /* CHV needs even values */
7856         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7857 }
7858
7859 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7860 {
7861         if (IS_GEN9(dev_priv))
7862                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7863                                          GEN9_FREQ_SCALER);
7864         else if (IS_CHERRYVIEW(dev_priv))
7865                 return chv_gpu_freq(dev_priv, val);
7866         else if (IS_VALLEYVIEW(dev_priv))
7867                 return byt_gpu_freq(dev_priv, val);
7868         else
7869                 return val * GT_FREQUENCY_MULTIPLIER;
7870 }
7871
7872 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7873 {
7874         if (IS_GEN9(dev_priv))
7875                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7876                                          GT_FREQUENCY_MULTIPLIER);
7877         else if (IS_CHERRYVIEW(dev_priv))
7878                 return chv_freq_opcode(dev_priv, val);
7879         else if (IS_VALLEYVIEW(dev_priv))
7880                 return byt_freq_opcode(dev_priv, val);
7881         else
7882                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7883 }
7884
7885 struct request_boost {
7886         struct work_struct work;
7887         struct drm_i915_gem_request *req;
7888 };
7889
7890 static void __intel_rps_boost_work(struct work_struct *work)
7891 {
7892         struct request_boost *boost = container_of(work, struct request_boost, work);
7893         struct drm_i915_gem_request *req = boost->req;
7894
7895         if (!i915_gem_request_completed(req))
7896                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7897
7898         i915_gem_request_put(req);
7899         kfree(boost);
7900 }
7901
7902 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7903 {
7904         struct request_boost *boost;
7905
7906         if (req == NULL || INTEL_GEN(req->i915) < 6)
7907                 return;
7908
7909         if (i915_gem_request_completed(req))
7910                 return;
7911
7912         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7913         if (boost == NULL)
7914                 return;
7915
7916         boost->req = i915_gem_request_get(req);
7917
7918         INIT_WORK(&boost->work, __intel_rps_boost_work);
7919         queue_work(req->i915->wq, &boost->work);
7920 }
7921
7922 void intel_pm_setup(struct drm_i915_private *dev_priv)
7923 {
7924         mutex_init(&dev_priv->rps.hw_lock);
7925         spin_lock_init(&dev_priv->rps.client_lock);
7926
7927         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
7928                           __intel_autoenable_gt_powersave);
7929         INIT_LIST_HEAD(&dev_priv->rps.clients);
7930
7931         dev_priv->pm.suspended = false;
7932         atomic_set(&dev_priv->pm.wakeref_count, 0);
7933 }