]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: simplify platform specific code in hsw_write_wm_values
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int plane, i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
113
114         /* Clear old tags */
115         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
116                 I915_WRITE(FBC_TAG + (i * 4), 0);
117
118         if (IS_GEN4(dev)) {
119                 u32 fbc_ctl2;
120
121                 /* Set it up... */
122                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
123                 fbc_ctl2 |= plane;
124                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
125                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
126         }
127
128         /* enable it... */
129         fbc_ctl = I915_READ(FBC_CONTROL);
130         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
131         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
132         if (IS_I945GM(dev))
133                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
134         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
135         fbc_ctl |= obj->fence_reg;
136         I915_WRITE(FBC_CONTROL, fbc_ctl);
137
138         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
139                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
140 }
141
142 static bool i8xx_fbc_enabled(struct drm_device *dev)
143 {
144         struct drm_i915_private *dev_priv = dev->dev_private;
145
146         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
147 }
148
149 static void g4x_enable_fbc(struct drm_crtc *crtc)
150 {
151         struct drm_device *dev = crtc->dev;
152         struct drm_i915_private *dev_priv = dev->dev_private;
153         struct drm_framebuffer *fb = crtc->fb;
154         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
155         struct drm_i915_gem_object *obj = intel_fb->obj;
156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
157         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
158         u32 dpfc_ctl;
159
160         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
163
164         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
165
166         /* enable it... */
167         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
168
169         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
170 }
171
172 static void g4x_disable_fbc(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175         u32 dpfc_ctl;
176
177         /* Disable compression */
178         dpfc_ctl = I915_READ(DPFC_CONTROL);
179         if (dpfc_ctl & DPFC_CTL_EN) {
180                 dpfc_ctl &= ~DPFC_CTL_EN;
181                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
182
183                 DRM_DEBUG_KMS("disabled FBC\n");
184         }
185 }
186
187 static bool g4x_fbc_enabled(struct drm_device *dev)
188 {
189         struct drm_i915_private *dev_priv = dev->dev_private;
190
191         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
192 }
193
194 static void sandybridge_blit_fbc_update(struct drm_device *dev)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         u32 blt_ecoskpd;
198
199         /* Make sure blitter notifies FBC of writes */
200
201         /* Blitter is part of Media powerwell on VLV. No impact of
202          * his param in other platforms for now */
203         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
204
205         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
206         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
207                 GEN6_BLITTER_LOCK_SHIFT;
208         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
209         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
210         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
211         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
212                          GEN6_BLITTER_LOCK_SHIFT);
213         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
214         POSTING_READ(GEN6_BLITTER_ECOSKPD);
215
216         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
217 }
218
219 static void ironlake_enable_fbc(struct drm_crtc *crtc)
220 {
221         struct drm_device *dev = crtc->dev;
222         struct drm_i915_private *dev_priv = dev->dev_private;
223         struct drm_framebuffer *fb = crtc->fb;
224         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
225         struct drm_i915_gem_object *obj = intel_fb->obj;
226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
227         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
228         u32 dpfc_ctl;
229
230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231         dpfc_ctl &= DPFC_RESERVED;
232         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
233         /* Set persistent mode for front-buffer rendering, ala X. */
234         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
239
240         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
241         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
242         /* enable it... */
243         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
244
245         if (IS_GEN6(dev)) {
246                 I915_WRITE(SNB_DPFC_CTL_SA,
247                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
248                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
249                 sandybridge_blit_fbc_update(dev);
250         }
251
252         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
253 }
254
255 static void ironlake_disable_fbc(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258         u32 dpfc_ctl;
259
260         /* Disable compression */
261         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
262         if (dpfc_ctl & DPFC_CTL_EN) {
263                 dpfc_ctl &= ~DPFC_CTL_EN;
264                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
265
266                 DRM_DEBUG_KMS("disabled FBC\n");
267         }
268 }
269
270 static bool ironlake_fbc_enabled(struct drm_device *dev)
271 {
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
275 }
276
277 static void gen7_enable_fbc(struct drm_crtc *crtc)
278 {
279         struct drm_device *dev = crtc->dev;
280         struct drm_i915_private *dev_priv = dev->dev_private;
281         struct drm_framebuffer *fb = crtc->fb;
282         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
283         struct drm_i915_gem_object *obj = intel_fb->obj;
284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
285
286         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
287
288         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
289                    IVB_DPFC_CTL_FENCE_EN |
290                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
291
292         if (IS_IVYBRIDGE(dev)) {
293                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
294                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
295         } else {
296                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
297                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
298                            HSW_BYPASS_FBC_QUEUE);
299         }
300
301         I915_WRITE(SNB_DPFC_CTL_SA,
302                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305         sandybridge_blit_fbc_update(dev);
306
307         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
308 }
309
310 bool intel_fbc_enabled(struct drm_device *dev)
311 {
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         if (!dev_priv->display.fbc_enabled)
315                 return false;
316
317         return dev_priv->display.fbc_enabled(dev);
318 }
319
320 static void intel_fbc_work_fn(struct work_struct *__work)
321 {
322         struct intel_fbc_work *work =
323                 container_of(to_delayed_work(__work),
324                              struct intel_fbc_work, work);
325         struct drm_device *dev = work->crtc->dev;
326         struct drm_i915_private *dev_priv = dev->dev_private;
327
328         mutex_lock(&dev->struct_mutex);
329         if (work == dev_priv->fbc.fbc_work) {
330                 /* Double check that we haven't switched fb without cancelling
331                  * the prior work.
332                  */
333                 if (work->crtc->fb == work->fb) {
334                         dev_priv->display.enable_fbc(work->crtc);
335
336                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
337                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
338                         dev_priv->fbc.y = work->crtc->y;
339                 }
340
341                 dev_priv->fbc.fbc_work = NULL;
342         }
343         mutex_unlock(&dev->struct_mutex);
344
345         kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350         if (dev_priv->fbc.fbc_work == NULL)
351                 return;
352
353         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355         /* Synchronisation is provided by struct_mutex and checking of
356          * dev_priv->fbc.fbc_work, so we can perform the cancellation
357          * entirely asynchronously.
358          */
359         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
360                 /* tasklet was killed before being run, clean up */
361                 kfree(dev_priv->fbc.fbc_work);
362
363         /* Mark the work as no longer wanted so that if it does
364          * wake-up (because the work was already running and waiting
365          * for our mutex), it will discover that is no longer
366          * necessary to run.
367          */
368         dev_priv->fbc.fbc_work = NULL;
369 }
370
371 static void intel_enable_fbc(struct drm_crtc *crtc)
372 {
373         struct intel_fbc_work *work;
374         struct drm_device *dev = crtc->dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         if (!dev_priv->display.enable_fbc)
378                 return;
379
380         intel_cancel_fbc_work(dev_priv);
381
382         work = kzalloc(sizeof(*work), GFP_KERNEL);
383         if (work == NULL) {
384                 DRM_ERROR("Failed to allocate FBC work structure\n");
385                 dev_priv->display.enable_fbc(crtc);
386                 return;
387         }
388
389         work->crtc = crtc;
390         work->fb = crtc->fb;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc.fbc_work = work;
394
395         /* Delay the actual enabling to let pageflipping cease and the
396          * display to settle before starting the compression. Note that
397          * this delay also serves a second purpose: it allows for a
398          * vblank to pass after disabling the FBC before we attempt
399          * to modify the control registers.
400          *
401          * A more complicated solution would involve tracking vblanks
402          * following the termination of the page-flipping sequence
403          * and indeed performing the enable as a co-routine and not
404          * waiting synchronously upon the vblank.
405          *
406          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425                               enum no_fbc_reason reason)
426 {
427         if (dev_priv->fbc.no_fbc_reason == reason)
428                 return false;
429
430         dev_priv->fbc.no_fbc_reason = reason;
431         return true;
432 }
433
434 /**
435  * intel_update_fbc - enable/disable FBC as needed
436  * @dev: the drm_device
437  *
438  * Set up the framebuffer compression hardware at mode set time.  We
439  * enable it if possible:
440  *   - plane A only (on pre-965)
441  *   - no pixel mulitply/line duplication
442  *   - no alpha buffer discard
443  *   - no dual wide
444  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445  *
446  * We can't assume that any compression will take place (worst case),
447  * so the compressed buffer has to be the same size as the uncompressed
448  * one.  It also must reside (along with the line length buffer) in
449  * stolen memory.
450  *
451  * We need to enable/disable FBC on a global basis.
452  */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         struct drm_crtc *crtc = NULL, *tmp_crtc;
457         struct intel_crtc *intel_crtc;
458         struct drm_framebuffer *fb;
459         struct intel_framebuffer *intel_fb;
460         struct drm_i915_gem_object *obj;
461         const struct drm_display_mode *adjusted_mode;
462         unsigned int max_width, max_height;
463
464         if (!I915_HAS_FBC(dev)) {
465                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
466                 return;
467         }
468
469         if (!i915_powersave) {
470                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
471                         DRM_DEBUG_KMS("fbc disabled per module param\n");
472                 return;
473         }
474
475         /*
476          * If FBC is already on, we just have to verify that we can
477          * keep it that way...
478          * Need to disable if:
479          *   - more than one pipe is active
480          *   - changing FBC params (stride, fence, mode)
481          *   - new fb is too large to fit in compressed buffer
482          *   - going to an unsupported config (interlace, pixel multiply, etc.)
483          */
484         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
485                 if (intel_crtc_active(tmp_crtc) &&
486                     to_intel_crtc(tmp_crtc)->primary_enabled) {
487                         if (crtc) {
488                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
489                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
490                                 goto out_disable;
491                         }
492                         crtc = tmp_crtc;
493                 }
494         }
495
496         if (!crtc || crtc->fb == NULL) {
497                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
498                         DRM_DEBUG_KMS("no output, disabling\n");
499                 goto out_disable;
500         }
501
502         intel_crtc = to_intel_crtc(crtc);
503         fb = crtc->fb;
504         intel_fb = to_intel_framebuffer(fb);
505         obj = intel_fb->obj;
506         adjusted_mode = &intel_crtc->config.adjusted_mode;
507
508         if (i915_enable_fbc < 0 &&
509             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
510                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
511                         DRM_DEBUG_KMS("disabled per chip default\n");
512                 goto out_disable;
513         }
514         if (!i915_enable_fbc) {
515                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
516                         DRM_DEBUG_KMS("fbc disabled per module param\n");
517                 goto out_disable;
518         }
519         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
520             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
521                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
522                         DRM_DEBUG_KMS("mode incompatible with compression, "
523                                       "disabling\n");
524                 goto out_disable;
525         }
526
527         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
528                 max_width = 4096;
529                 max_height = 2048;
530         } else {
531                 max_width = 2048;
532                 max_height = 1536;
533         }
534         if (intel_crtc->config.pipe_src_w > max_width ||
535             intel_crtc->config.pipe_src_h > max_height) {
536                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
537                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538                 goto out_disable;
539         }
540         if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
541             intel_crtc->plane != PLANE_A) {
542                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
543                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
544                 goto out_disable;
545         }
546
547         /* The use of a CPU fence is mandatory in order to detect writes
548          * by the CPU to the scanout and trigger updates to the FBC.
549          */
550         if (obj->tiling_mode != I915_TILING_X ||
551             obj->fence_reg == I915_FENCE_REG_NONE) {
552                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
553                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
554                 goto out_disable;
555         }
556
557         /* If the kernel debugger is active, always disable compression */
558         if (in_dbg_master())
559                 goto out_disable;
560
561         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
562                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
563                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
564                 goto out_disable;
565         }
566
567         /* If the scanout has not changed, don't modify the FBC settings.
568          * Note that we make the fundamental assumption that the fb->obj
569          * cannot be unpinned (and have its GTT offset and fence revoked)
570          * without first being decoupled from the scanout and FBC disabled.
571          */
572         if (dev_priv->fbc.plane == intel_crtc->plane &&
573             dev_priv->fbc.fb_id == fb->base.id &&
574             dev_priv->fbc.y == crtc->y)
575                 return;
576
577         if (intel_fbc_enabled(dev)) {
578                 /* We update FBC along two paths, after changing fb/crtc
579                  * configuration (modeswitching) and after page-flipping
580                  * finishes. For the latter, we know that not only did
581                  * we disable the FBC at the start of the page-flip
582                  * sequence, but also more than one vblank has passed.
583                  *
584                  * For the former case of modeswitching, it is possible
585                  * to switch between two FBC valid configurations
586                  * instantaneously so we do need to disable the FBC
587                  * before we can modify its control registers. We also
588                  * have to wait for the next vblank for that to take
589                  * effect. However, since we delay enabling FBC we can
590                  * assume that a vblank has passed since disabling and
591                  * that we can safely alter the registers in the deferred
592                  * callback.
593                  *
594                  * In the scenario that we go from a valid to invalid
595                  * and then back to valid FBC configuration we have
596                  * no strict enforcement that a vblank occurred since
597                  * disabling the FBC. However, along all current pipe
598                  * disabling paths we do need to wait for a vblank at
599                  * some point. And we wait before enabling FBC anyway.
600                  */
601                 DRM_DEBUG_KMS("disabling active FBC for update\n");
602                 intel_disable_fbc(dev);
603         }
604
605         intel_enable_fbc(crtc);
606         dev_priv->fbc.no_fbc_reason = FBC_OK;
607         return;
608
609 out_disable:
610         /* Multiple disables should be harmless */
611         if (intel_fbc_enabled(dev)) {
612                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
613                 intel_disable_fbc(dev);
614         }
615         i915_gem_stolen_cleanup_compression(dev);
616 }
617
618 static void i915_pineview_get_mem_freq(struct drm_device *dev)
619 {
620         drm_i915_private_t *dev_priv = dev->dev_private;
621         u32 tmp;
622
623         tmp = I915_READ(CLKCFG);
624
625         switch (tmp & CLKCFG_FSB_MASK) {
626         case CLKCFG_FSB_533:
627                 dev_priv->fsb_freq = 533; /* 133*4 */
628                 break;
629         case CLKCFG_FSB_800:
630                 dev_priv->fsb_freq = 800; /* 200*4 */
631                 break;
632         case CLKCFG_FSB_667:
633                 dev_priv->fsb_freq =  667; /* 167*4 */
634                 break;
635         case CLKCFG_FSB_400:
636                 dev_priv->fsb_freq = 400; /* 100*4 */
637                 break;
638         }
639
640         switch (tmp & CLKCFG_MEM_MASK) {
641         case CLKCFG_MEM_533:
642                 dev_priv->mem_freq = 533;
643                 break;
644         case CLKCFG_MEM_667:
645                 dev_priv->mem_freq = 667;
646                 break;
647         case CLKCFG_MEM_800:
648                 dev_priv->mem_freq = 800;
649                 break;
650         }
651
652         /* detect pineview DDR3 setting */
653         tmp = I915_READ(CSHRDDR3CTL);
654         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655 }
656
657 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
658 {
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         u16 ddrpll, csipll;
661
662         ddrpll = I915_READ16(DDRMPLL1);
663         csipll = I915_READ16(CSIPLL0);
664
665         switch (ddrpll & 0xff) {
666         case 0xc:
667                 dev_priv->mem_freq = 800;
668                 break;
669         case 0x10:
670                 dev_priv->mem_freq = 1066;
671                 break;
672         case 0x14:
673                 dev_priv->mem_freq = 1333;
674                 break;
675         case 0x18:
676                 dev_priv->mem_freq = 1600;
677                 break;
678         default:
679                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
680                                  ddrpll & 0xff);
681                 dev_priv->mem_freq = 0;
682                 break;
683         }
684
685         dev_priv->ips.r_t = dev_priv->mem_freq;
686
687         switch (csipll & 0x3ff) {
688         case 0x00c:
689                 dev_priv->fsb_freq = 3200;
690                 break;
691         case 0x00e:
692                 dev_priv->fsb_freq = 3733;
693                 break;
694         case 0x010:
695                 dev_priv->fsb_freq = 4266;
696                 break;
697         case 0x012:
698                 dev_priv->fsb_freq = 4800;
699                 break;
700         case 0x014:
701                 dev_priv->fsb_freq = 5333;
702                 break;
703         case 0x016:
704                 dev_priv->fsb_freq = 5866;
705                 break;
706         case 0x018:
707                 dev_priv->fsb_freq = 6400;
708                 break;
709         default:
710                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
711                                  csipll & 0x3ff);
712                 dev_priv->fsb_freq = 0;
713                 break;
714         }
715
716         if (dev_priv->fsb_freq == 3200) {
717                 dev_priv->ips.c_m = 0;
718         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
719                 dev_priv->ips.c_m = 1;
720         } else {
721                 dev_priv->ips.c_m = 2;
722         }
723 }
724
725 static const struct cxsr_latency cxsr_latency_table[] = {
726         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
727         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
728         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
729         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
730         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
731
732         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
733         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
734         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
735         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
736         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
737
738         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
739         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
740         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
741         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
742         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
743
744         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
745         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
746         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
747         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
748         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
749
750         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
751         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
752         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
753         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
754         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
755
756         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
757         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
758         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
759         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
760         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
761 };
762
763 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
764                                                          int is_ddr3,
765                                                          int fsb,
766                                                          int mem)
767 {
768         const struct cxsr_latency *latency;
769         int i;
770
771         if (fsb == 0 || mem == 0)
772                 return NULL;
773
774         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
775                 latency = &cxsr_latency_table[i];
776                 if (is_desktop == latency->is_desktop &&
777                     is_ddr3 == latency->is_ddr3 &&
778                     fsb == latency->fsb_freq && mem == latency->mem_freq)
779                         return latency;
780         }
781
782         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
783
784         return NULL;
785 }
786
787 static void pineview_disable_cxsr(struct drm_device *dev)
788 {
789         struct drm_i915_private *dev_priv = dev->dev_private;
790
791         /* deactivate cxsr */
792         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
793 }
794
795 /*
796  * Latency for FIFO fetches is dependent on several factors:
797  *   - memory configuration (speed, channels)
798  *   - chipset
799  *   - current MCH state
800  * It can be fairly high in some situations, so here we assume a fairly
801  * pessimal value.  It's a tradeoff between extra memory fetches (if we
802  * set this value too high, the FIFO will fetch frequently to stay full)
803  * and power consumption (set it too low to save power and we might see
804  * FIFO underruns and display "flicker").
805  *
806  * A value of 5us seems to be a good balance; safe for very low end
807  * platforms but not overly aggressive on lower latency configs.
808  */
809 static const int latency_ns = 5000;
810
811 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
812 {
813         struct drm_i915_private *dev_priv = dev->dev_private;
814         uint32_t dsparb = I915_READ(DSPARB);
815         int size;
816
817         size = dsparb & 0x7f;
818         if (plane)
819                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
820
821         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822                       plane ? "B" : "A", size);
823
824         return size;
825 }
826
827 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
828 {
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         uint32_t dsparb = I915_READ(DSPARB);
831         int size;
832
833         size = dsparb & 0x1ff;
834         if (plane)
835                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
836         size >>= 1; /* Convert to cachelines */
837
838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839                       plane ? "B" : "A", size);
840
841         return size;
842 }
843
844 static int i845_get_fifo_size(struct drm_device *dev, int plane)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         uint32_t dsparb = I915_READ(DSPARB);
848         int size;
849
850         size = dsparb & 0x7f;
851         size >>= 2; /* Convert to cachelines */
852
853         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854                       plane ? "B" : "A",
855                       size);
856
857         return size;
858 }
859
860 static int i830_get_fifo_size(struct drm_device *dev, int plane)
861 {
862         struct drm_i915_private *dev_priv = dev->dev_private;
863         uint32_t dsparb = I915_READ(DSPARB);
864         int size;
865
866         size = dsparb & 0x7f;
867         size >>= 1; /* Convert to cachelines */
868
869         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
870                       plane ? "B" : "A", size);
871
872         return size;
873 }
874
875 /* Pineview has different values for various configs */
876 static const struct intel_watermark_params pineview_display_wm = {
877         PINEVIEW_DISPLAY_FIFO,
878         PINEVIEW_MAX_WM,
879         PINEVIEW_DFT_WM,
880         PINEVIEW_GUARD_WM,
881         PINEVIEW_FIFO_LINE_SIZE
882 };
883 static const struct intel_watermark_params pineview_display_hplloff_wm = {
884         PINEVIEW_DISPLAY_FIFO,
885         PINEVIEW_MAX_WM,
886         PINEVIEW_DFT_HPLLOFF_WM,
887         PINEVIEW_GUARD_WM,
888         PINEVIEW_FIFO_LINE_SIZE
889 };
890 static const struct intel_watermark_params pineview_cursor_wm = {
891         PINEVIEW_CURSOR_FIFO,
892         PINEVIEW_CURSOR_MAX_WM,
893         PINEVIEW_CURSOR_DFT_WM,
894         PINEVIEW_CURSOR_GUARD_WM,
895         PINEVIEW_FIFO_LINE_SIZE,
896 };
897 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
898         PINEVIEW_CURSOR_FIFO,
899         PINEVIEW_CURSOR_MAX_WM,
900         PINEVIEW_CURSOR_DFT_WM,
901         PINEVIEW_CURSOR_GUARD_WM,
902         PINEVIEW_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params g4x_wm_info = {
905         G4X_FIFO_SIZE,
906         G4X_MAX_WM,
907         G4X_MAX_WM,
908         2,
909         G4X_FIFO_LINE_SIZE,
910 };
911 static const struct intel_watermark_params g4x_cursor_wm_info = {
912         I965_CURSOR_FIFO,
913         I965_CURSOR_MAX_WM,
914         I965_CURSOR_DFT_WM,
915         2,
916         G4X_FIFO_LINE_SIZE,
917 };
918 static const struct intel_watermark_params valleyview_wm_info = {
919         VALLEYVIEW_FIFO_SIZE,
920         VALLEYVIEW_MAX_WM,
921         VALLEYVIEW_MAX_WM,
922         2,
923         G4X_FIFO_LINE_SIZE,
924 };
925 static const struct intel_watermark_params valleyview_cursor_wm_info = {
926         I965_CURSOR_FIFO,
927         VALLEYVIEW_CURSOR_MAX_WM,
928         I965_CURSOR_DFT_WM,
929         2,
930         G4X_FIFO_LINE_SIZE,
931 };
932 static const struct intel_watermark_params i965_cursor_wm_info = {
933         I965_CURSOR_FIFO,
934         I965_CURSOR_MAX_WM,
935         I965_CURSOR_DFT_WM,
936         2,
937         I915_FIFO_LINE_SIZE,
938 };
939 static const struct intel_watermark_params i945_wm_info = {
940         I945_FIFO_SIZE,
941         I915_MAX_WM,
942         1,
943         2,
944         I915_FIFO_LINE_SIZE
945 };
946 static const struct intel_watermark_params i915_wm_info = {
947         I915_FIFO_SIZE,
948         I915_MAX_WM,
949         1,
950         2,
951         I915_FIFO_LINE_SIZE
952 };
953 static const struct intel_watermark_params i855_wm_info = {
954         I855GM_FIFO_SIZE,
955         I915_MAX_WM,
956         1,
957         2,
958         I830_FIFO_LINE_SIZE
959 };
960 static const struct intel_watermark_params i830_wm_info = {
961         I830_FIFO_SIZE,
962         I915_MAX_WM,
963         1,
964         2,
965         I830_FIFO_LINE_SIZE
966 };
967
968 /**
969  * intel_calculate_wm - calculate watermark level
970  * @clock_in_khz: pixel clock
971  * @wm: chip FIFO params
972  * @pixel_size: display pixel size
973  * @latency_ns: memory latency for the platform
974  *
975  * Calculate the watermark level (the level at which the display plane will
976  * start fetching from memory again).  Each chip has a different display
977  * FIFO size and allocation, so the caller needs to figure that out and pass
978  * in the correct intel_watermark_params structure.
979  *
980  * As the pixel clock runs, the FIFO will be drained at a rate that depends
981  * on the pixel size.  When it reaches the watermark level, it'll start
982  * fetching FIFO line sized based chunks from memory until the FIFO fills
983  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
984  * will occur, and a display engine hang could result.
985  */
986 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
987                                         const struct intel_watermark_params *wm,
988                                         int fifo_size,
989                                         int pixel_size,
990                                         unsigned long latency_ns)
991 {
992         long entries_required, wm_size;
993
994         /*
995          * Note: we need to make sure we don't overflow for various clock &
996          * latency values.
997          * clocks go from a few thousand to several hundred thousand.
998          * latency is usually a few thousand
999          */
1000         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1001                 1000;
1002         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1003
1004         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1005
1006         wm_size = fifo_size - (entries_required + wm->guard_size);
1007
1008         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1009
1010         /* Don't promote wm_size to unsigned... */
1011         if (wm_size > (long)wm->max_wm)
1012                 wm_size = wm->max_wm;
1013         if (wm_size <= 0)
1014                 wm_size = wm->default_wm;
1015         return wm_size;
1016 }
1017
1018 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1019 {
1020         struct drm_crtc *crtc, *enabled = NULL;
1021
1022         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1023                 if (intel_crtc_active(crtc)) {
1024                         if (enabled)
1025                                 return NULL;
1026                         enabled = crtc;
1027                 }
1028         }
1029
1030         return enabled;
1031 }
1032
1033 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1034 {
1035         struct drm_device *dev = unused_crtc->dev;
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         struct drm_crtc *crtc;
1038         const struct cxsr_latency *latency;
1039         u32 reg;
1040         unsigned long wm;
1041
1042         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1043                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1044         if (!latency) {
1045                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1046                 pineview_disable_cxsr(dev);
1047                 return;
1048         }
1049
1050         crtc = single_enabled_crtc(dev);
1051         if (crtc) {
1052                 const struct drm_display_mode *adjusted_mode;
1053                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1054                 int clock;
1055
1056                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1057                 clock = adjusted_mode->crtc_clock;
1058
1059                 /* Display SR */
1060                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1061                                         pineview_display_wm.fifo_size,
1062                                         pixel_size, latency->display_sr);
1063                 reg = I915_READ(DSPFW1);
1064                 reg &= ~DSPFW_SR_MASK;
1065                 reg |= wm << DSPFW_SR_SHIFT;
1066                 I915_WRITE(DSPFW1, reg);
1067                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1068
1069                 /* cursor SR */
1070                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1071                                         pineview_display_wm.fifo_size,
1072                                         pixel_size, latency->cursor_sr);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_CURSOR_SR_MASK;
1075                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* Display HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->display_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_SR_MASK;
1084                 reg |= wm & DSPFW_HPLL_SR_MASK;
1085                 I915_WRITE(DSPFW3, reg);
1086
1087                 /* cursor HPLL off SR */
1088                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1089                                         pineview_display_hplloff_wm.fifo_size,
1090                                         pixel_size, latency->cursor_hpll_disable);
1091                 reg = I915_READ(DSPFW3);
1092                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1093                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1094                 I915_WRITE(DSPFW3, reg);
1095                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1096
1097                 /* activate cxsr */
1098                 I915_WRITE(DSPFW3,
1099                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1100                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1101         } else {
1102                 pineview_disable_cxsr(dev);
1103                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1104         }
1105 }
1106
1107 static bool g4x_compute_wm0(struct drm_device *dev,
1108                             int plane,
1109                             const struct intel_watermark_params *display,
1110                             int display_latency_ns,
1111                             const struct intel_watermark_params *cursor,
1112                             int cursor_latency_ns,
1113                             int *plane_wm,
1114                             int *cursor_wm)
1115 {
1116         struct drm_crtc *crtc;
1117         const struct drm_display_mode *adjusted_mode;
1118         int htotal, hdisplay, clock, pixel_size;
1119         int line_time_us, line_count;
1120         int entries, tlb_miss;
1121
1122         crtc = intel_get_crtc_for_plane(dev, plane);
1123         if (!intel_crtc_active(crtc)) {
1124                 *cursor_wm = cursor->guard_size;
1125                 *plane_wm = display->guard_size;
1126                 return false;
1127         }
1128
1129         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1130         clock = adjusted_mode->crtc_clock;
1131         htotal = adjusted_mode->htotal;
1132         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1133         pixel_size = crtc->fb->bits_per_pixel / 8;
1134
1135         /* Use the small buffer method to calculate plane watermark */
1136         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1137         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1138         if (tlb_miss > 0)
1139                 entries += tlb_miss;
1140         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1141         *plane_wm = entries + display->guard_size;
1142         if (*plane_wm > (int)display->max_wm)
1143                 *plane_wm = display->max_wm;
1144
1145         /* Use the large buffer method to calculate cursor watermark */
1146         line_time_us = ((htotal * 1000) / clock);
1147         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1148         entries = line_count * 64 * pixel_size;
1149         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1150         if (tlb_miss > 0)
1151                 entries += tlb_miss;
1152         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1153         *cursor_wm = entries + cursor->guard_size;
1154         if (*cursor_wm > (int)cursor->max_wm)
1155                 *cursor_wm = (int)cursor->max_wm;
1156
1157         return true;
1158 }
1159
1160 /*
1161  * Check the wm result.
1162  *
1163  * If any calculated watermark values is larger than the maximum value that
1164  * can be programmed into the associated watermark register, that watermark
1165  * must be disabled.
1166  */
1167 static bool g4x_check_srwm(struct drm_device *dev,
1168                            int display_wm, int cursor_wm,
1169                            const struct intel_watermark_params *display,
1170                            const struct intel_watermark_params *cursor)
1171 {
1172         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1173                       display_wm, cursor_wm);
1174
1175         if (display_wm > display->max_wm) {
1176                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1177                               display_wm, display->max_wm);
1178                 return false;
1179         }
1180
1181         if (cursor_wm > cursor->max_wm) {
1182                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1183                               cursor_wm, cursor->max_wm);
1184                 return false;
1185         }
1186
1187         if (!(display_wm || cursor_wm)) {
1188                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1189                 return false;
1190         }
1191
1192         return true;
1193 }
1194
1195 static bool g4x_compute_srwm(struct drm_device *dev,
1196                              int plane,
1197                              int latency_ns,
1198                              const struct intel_watermark_params *display,
1199                              const struct intel_watermark_params *cursor,
1200                              int *display_wm, int *cursor_wm)
1201 {
1202         struct drm_crtc *crtc;
1203         const struct drm_display_mode *adjusted_mode;
1204         int hdisplay, htotal, pixel_size, clock;
1205         unsigned long line_time_us;
1206         int line_count, line_size;
1207         int small, large;
1208         int entries;
1209
1210         if (!latency_ns) {
1211                 *display_wm = *cursor_wm = 0;
1212                 return false;
1213         }
1214
1215         crtc = intel_get_crtc_for_plane(dev, plane);
1216         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1217         clock = adjusted_mode->crtc_clock;
1218         htotal = adjusted_mode->htotal;
1219         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1220         pixel_size = crtc->fb->bits_per_pixel / 8;
1221
1222         line_time_us = (htotal * 1000) / clock;
1223         line_count = (latency_ns / line_time_us + 1000) / 1000;
1224         line_size = hdisplay * pixel_size;
1225
1226         /* Use the minimum of the small and large buffer method for primary */
1227         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1228         large = line_count * line_size;
1229
1230         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1231         *display_wm = entries + display->guard_size;
1232
1233         /* calculate the self-refresh watermark for display cursor */
1234         entries = line_count * pixel_size * 64;
1235         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1236         *cursor_wm = entries + cursor->guard_size;
1237
1238         return g4x_check_srwm(dev,
1239                               *display_wm, *cursor_wm,
1240                               display, cursor);
1241 }
1242
1243 static bool vlv_compute_drain_latency(struct drm_device *dev,
1244                                      int plane,
1245                                      int *plane_prec_mult,
1246                                      int *plane_dl,
1247                                      int *cursor_prec_mult,
1248                                      int *cursor_dl)
1249 {
1250         struct drm_crtc *crtc;
1251         int clock, pixel_size;
1252         int entries;
1253
1254         crtc = intel_get_crtc_for_plane(dev, plane);
1255         if (!intel_crtc_active(crtc))
1256                 return false;
1257
1258         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1259         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1260
1261         entries = (clock / 1000) * pixel_size;
1262         *plane_prec_mult = (entries > 256) ?
1263                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1264         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1265                                                      pixel_size);
1266
1267         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1268         *cursor_prec_mult = (entries > 256) ?
1269                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1270         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1271
1272         return true;
1273 }
1274
1275 /*
1276  * Update drain latency registers of memory arbiter
1277  *
1278  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1279  * to be programmed. Each plane has a drain latency multiplier and a drain
1280  * latency value.
1281  */
1282
1283 static void vlv_update_drain_latency(struct drm_device *dev)
1284 {
1285         struct drm_i915_private *dev_priv = dev->dev_private;
1286         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1287         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1288         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1289                                                         either 16 or 32 */
1290
1291         /* For plane A, Cursor A */
1292         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1293                                       &cursor_prec_mult, &cursora_dl)) {
1294                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1295                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1296                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1297                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1298
1299                 I915_WRITE(VLV_DDL1, cursora_prec |
1300                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1301                                 planea_prec | planea_dl);
1302         }
1303
1304         /* For plane B, Cursor B */
1305         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1306                                       &cursor_prec_mult, &cursorb_dl)) {
1307                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1308                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1309                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1310                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1311
1312                 I915_WRITE(VLV_DDL2, cursorb_prec |
1313                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1314                                 planeb_prec | planeb_dl);
1315         }
1316 }
1317
1318 #define single_plane_enabled(mask) is_power_of_2(mask)
1319
1320 static void valleyview_update_wm(struct drm_crtc *crtc)
1321 {
1322         struct drm_device *dev = crtc->dev;
1323         static const int sr_latency_ns = 12000;
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1326         int plane_sr, cursor_sr;
1327         int ignore_plane_sr, ignore_cursor_sr;
1328         unsigned int enabled = 0;
1329
1330         vlv_update_drain_latency(dev);
1331
1332         if (g4x_compute_wm0(dev, PIPE_A,
1333                             &valleyview_wm_info, latency_ns,
1334                             &valleyview_cursor_wm_info, latency_ns,
1335                             &planea_wm, &cursora_wm))
1336                 enabled |= 1 << PIPE_A;
1337
1338         if (g4x_compute_wm0(dev, PIPE_B,
1339                             &valleyview_wm_info, latency_ns,
1340                             &valleyview_cursor_wm_info, latency_ns,
1341                             &planeb_wm, &cursorb_wm))
1342                 enabled |= 1 << PIPE_B;
1343
1344         if (single_plane_enabled(enabled) &&
1345             g4x_compute_srwm(dev, ffs(enabled) - 1,
1346                              sr_latency_ns,
1347                              &valleyview_wm_info,
1348                              &valleyview_cursor_wm_info,
1349                              &plane_sr, &ignore_cursor_sr) &&
1350             g4x_compute_srwm(dev, ffs(enabled) - 1,
1351                              2*sr_latency_ns,
1352                              &valleyview_wm_info,
1353                              &valleyview_cursor_wm_info,
1354                              &ignore_plane_sr, &cursor_sr)) {
1355                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1356         } else {
1357                 I915_WRITE(FW_BLC_SELF_VLV,
1358                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1359                 plane_sr = cursor_sr = 0;
1360         }
1361
1362         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1363                       planea_wm, cursora_wm,
1364                       planeb_wm, cursorb_wm,
1365                       plane_sr, cursor_sr);
1366
1367         I915_WRITE(DSPFW1,
1368                    (plane_sr << DSPFW_SR_SHIFT) |
1369                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1370                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1371                    planea_wm);
1372         I915_WRITE(DSPFW2,
1373                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1374                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1375         I915_WRITE(DSPFW3,
1376                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1377                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1378 }
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382         struct drm_device *dev = crtc->dev;
1383         static const int sr_latency_ns = 12000;
1384         struct drm_i915_private *dev_priv = dev->dev_private;
1385         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386         int plane_sr, cursor_sr;
1387         unsigned int enabled = 0;
1388
1389         if (g4x_compute_wm0(dev, PIPE_A,
1390                             &g4x_wm_info, latency_ns,
1391                             &g4x_cursor_wm_info, latency_ns,
1392                             &planea_wm, &cursora_wm))
1393                 enabled |= 1 << PIPE_A;
1394
1395         if (g4x_compute_wm0(dev, PIPE_B,
1396                             &g4x_wm_info, latency_ns,
1397                             &g4x_cursor_wm_info, latency_ns,
1398                             &planeb_wm, &cursorb_wm))
1399                 enabled |= 1 << PIPE_B;
1400
1401         if (single_plane_enabled(enabled) &&
1402             g4x_compute_srwm(dev, ffs(enabled) - 1,
1403                              sr_latency_ns,
1404                              &g4x_wm_info,
1405                              &g4x_cursor_wm_info,
1406                              &plane_sr, &cursor_sr)) {
1407                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1408         } else {
1409                 I915_WRITE(FW_BLC_SELF,
1410                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1411                 plane_sr = cursor_sr = 0;
1412         }
1413
1414         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1415                       planea_wm, cursora_wm,
1416                       planeb_wm, cursorb_wm,
1417                       plane_sr, cursor_sr);
1418
1419         I915_WRITE(DSPFW1,
1420                    (plane_sr << DSPFW_SR_SHIFT) |
1421                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1422                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1423                    planea_wm);
1424         I915_WRITE(DSPFW2,
1425                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1426                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1427         /* HPLL off in SR has some issues on G4x... disable it */
1428         I915_WRITE(DSPFW3,
1429                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1430                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1431 }
1432
1433 static void i965_update_wm(struct drm_crtc *unused_crtc)
1434 {
1435         struct drm_device *dev = unused_crtc->dev;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         struct drm_crtc *crtc;
1438         int srwm = 1;
1439         int cursor_sr = 16;
1440
1441         /* Calc sr entries for one plane configs */
1442         crtc = single_enabled_crtc(dev);
1443         if (crtc) {
1444                 /* self-refresh has much higher latency */
1445                 static const int sr_latency_ns = 12000;
1446                 const struct drm_display_mode *adjusted_mode =
1447                         &to_intel_crtc(crtc)->config.adjusted_mode;
1448                 int clock = adjusted_mode->crtc_clock;
1449                 int htotal = adjusted_mode->htotal;
1450                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1451                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1452                 unsigned long line_time_us;
1453                 int entries;
1454
1455                 line_time_us = ((htotal * 1000) / clock);
1456
1457                 /* Use ns/us then divide to preserve precision */
1458                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459                         pixel_size * hdisplay;
1460                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1461                 srwm = I965_FIFO_SIZE - entries;
1462                 if (srwm < 0)
1463                         srwm = 1;
1464                 srwm &= 0x1ff;
1465                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1466                               entries, srwm);
1467
1468                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469                         pixel_size * 64;
1470                 entries = DIV_ROUND_UP(entries,
1471                                           i965_cursor_wm_info.cacheline_size);
1472                 cursor_sr = i965_cursor_wm_info.fifo_size -
1473                         (entries + i965_cursor_wm_info.guard_size);
1474
1475                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1476                         cursor_sr = i965_cursor_wm_info.max_wm;
1477
1478                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1479                               "cursor %d\n", srwm, cursor_sr);
1480
1481                 if (IS_CRESTLINE(dev))
1482                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1483         } else {
1484                 /* Turn off self refresh if both pipes are enabled */
1485                 if (IS_CRESTLINE(dev))
1486                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1487                                    & ~FW_BLC_SELF_EN);
1488         }
1489
1490         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1491                       srwm);
1492
1493         /* 965 has limitations... */
1494         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1495                    (8 << 16) | (8 << 8) | (8 << 0));
1496         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1497         /* update cursor SR watermark */
1498         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1499 }
1500
1501 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1502 {
1503         struct drm_device *dev = unused_crtc->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         const struct intel_watermark_params *wm_info;
1506         uint32_t fwater_lo;
1507         uint32_t fwater_hi;
1508         int cwm, srwm = 1;
1509         int fifo_size;
1510         int planea_wm, planeb_wm;
1511         struct drm_crtc *crtc, *enabled = NULL;
1512
1513         if (IS_I945GM(dev))
1514                 wm_info = &i945_wm_info;
1515         else if (!IS_GEN2(dev))
1516                 wm_info = &i915_wm_info;
1517         else
1518                 wm_info = &i855_wm_info;
1519
1520         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1521         crtc = intel_get_crtc_for_plane(dev, 0);
1522         if (intel_crtc_active(crtc)) {
1523                 const struct drm_display_mode *adjusted_mode;
1524                 int cpp = crtc->fb->bits_per_pixel / 8;
1525                 if (IS_GEN2(dev))
1526                         cpp = 4;
1527
1528                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1529                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1530                                                wm_info, fifo_size, cpp,
1531                                                latency_ns);
1532                 enabled = crtc;
1533         } else
1534                 planea_wm = fifo_size - wm_info->guard_size;
1535
1536         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1537         crtc = intel_get_crtc_for_plane(dev, 1);
1538         if (intel_crtc_active(crtc)) {
1539                 const struct drm_display_mode *adjusted_mode;
1540                 int cpp = crtc->fb->bits_per_pixel / 8;
1541                 if (IS_GEN2(dev))
1542                         cpp = 4;
1543
1544                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1545                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546                                                wm_info, fifo_size, cpp,
1547                                                latency_ns);
1548                 if (enabled == NULL)
1549                         enabled = crtc;
1550                 else
1551                         enabled = NULL;
1552         } else
1553                 planeb_wm = fifo_size - wm_info->guard_size;
1554
1555         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1556
1557         /*
1558          * Overlay gets an aggressive default since video jitter is bad.
1559          */
1560         cwm = 2;
1561
1562         /* Play safe and disable self-refresh before adjusting watermarks. */
1563         if (IS_I945G(dev) || IS_I945GM(dev))
1564                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1565         else if (IS_I915GM(dev))
1566                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1567
1568         /* Calc sr entries for one plane configs */
1569         if (HAS_FW_BLC(dev) && enabled) {
1570                 /* self-refresh has much higher latency */
1571                 static const int sr_latency_ns = 6000;
1572                 const struct drm_display_mode *adjusted_mode =
1573                         &to_intel_crtc(enabled)->config.adjusted_mode;
1574                 int clock = adjusted_mode->crtc_clock;
1575                 int htotal = adjusted_mode->htotal;
1576                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1577                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1578                 unsigned long line_time_us;
1579                 int entries;
1580
1581                 line_time_us = (htotal * 1000) / clock;
1582
1583                 /* Use ns/us then divide to preserve precision */
1584                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1585                         pixel_size * hdisplay;
1586                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1587                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1588                 srwm = wm_info->fifo_size - entries;
1589                 if (srwm < 0)
1590                         srwm = 1;
1591
1592                 if (IS_I945G(dev) || IS_I945GM(dev))
1593                         I915_WRITE(FW_BLC_SELF,
1594                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1595                 else if (IS_I915GM(dev))
1596                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1597         }
1598
1599         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1600                       planea_wm, planeb_wm, cwm, srwm);
1601
1602         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1603         fwater_hi = (cwm & 0x1f);
1604
1605         /* Set request length to 8 cachelines per fetch */
1606         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1607         fwater_hi = fwater_hi | (1 << 8);
1608
1609         I915_WRITE(FW_BLC, fwater_lo);
1610         I915_WRITE(FW_BLC2, fwater_hi);
1611
1612         if (HAS_FW_BLC(dev)) {
1613                 if (enabled) {
1614                         if (IS_I945G(dev) || IS_I945GM(dev))
1615                                 I915_WRITE(FW_BLC_SELF,
1616                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1617                         else if (IS_I915GM(dev))
1618                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1619                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1620                 } else
1621                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1622         }
1623 }
1624
1625 static void i830_update_wm(struct drm_crtc *unused_crtc)
1626 {
1627         struct drm_device *dev = unused_crtc->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         struct drm_crtc *crtc;
1630         const struct drm_display_mode *adjusted_mode;
1631         uint32_t fwater_lo;
1632         int planea_wm;
1633
1634         crtc = single_enabled_crtc(dev);
1635         if (crtc == NULL)
1636                 return;
1637
1638         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1639         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1640                                        &i830_wm_info,
1641                                        dev_priv->display.get_fifo_size(dev, 0),
1642                                        4, latency_ns);
1643         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1644         fwater_lo |= (3<<8) | planea_wm;
1645
1646         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1647
1648         I915_WRITE(FW_BLC, fwater_lo);
1649 }
1650
1651 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1652                                     struct drm_crtc *crtc)
1653 {
1654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1655         uint32_t pixel_rate;
1656
1657         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1658
1659         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660          * adjust the pixel_rate here. */
1661
1662         if (intel_crtc->config.pch_pfit.enabled) {
1663                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1665
1666                 pipe_w = intel_crtc->config.pipe_src_w;
1667                 pipe_h = intel_crtc->config.pipe_src_h;
1668                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669                 pfit_h = pfit_size & 0xFFFF;
1670                 if (pipe_w < pfit_w)
1671                         pipe_w = pfit_w;
1672                 if (pipe_h < pfit_h)
1673                         pipe_h = pfit_h;
1674
1675                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676                                      pfit_w * pfit_h);
1677         }
1678
1679         return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684                                uint32_t latency)
1685 {
1686         uint64_t ret;
1687
1688         if (WARN(latency == 0, "Latency value missing\n"))
1689                 return UINT_MAX;
1690
1691         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694         return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700                                uint32_t latency)
1701 {
1702         uint32_t ret;
1703
1704         if (WARN(latency == 0, "Latency value missing\n"))
1705                 return UINT_MAX;
1706
1707         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709         ret = DIV_ROUND_UP(ret, 64) + 2;
1710         return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714                            uint8_t bytes_per_pixel)
1715 {
1716         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct hsw_pipe_wm_parameters {
1720         bool active;
1721         uint32_t pipe_htotal;
1722         uint32_t pixel_rate;
1723         struct intel_plane_wm_parameters pri;
1724         struct intel_plane_wm_parameters spr;
1725         struct intel_plane_wm_parameters cur;
1726 };
1727
1728 struct hsw_wm_maximums {
1729         uint16_t pri;
1730         uint16_t spr;
1731         uint16_t cur;
1732         uint16_t fbc;
1733 };
1734
1735 /* used in computing the new watermarks state */
1736 struct intel_wm_config {
1737         unsigned int num_pipes_active;
1738         bool sprites_enabled;
1739         bool sprites_scaled;
1740 };
1741
1742 /*
1743  * For both WM_PIPE and WM_LP.
1744  * mem_value must be in 0.1us units.
1745  */
1746 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
1747                                    uint32_t mem_value,
1748                                    bool is_lp)
1749 {
1750         uint32_t method1, method2;
1751
1752         if (!params->active || !params->pri.enabled)
1753                 return 0;
1754
1755         method1 = ilk_wm_method1(params->pixel_rate,
1756                                  params->pri.bytes_per_pixel,
1757                                  mem_value);
1758
1759         if (!is_lp)
1760                 return method1;
1761
1762         method2 = ilk_wm_method2(params->pixel_rate,
1763                                  params->pipe_htotal,
1764                                  params->pri.horiz_pixels,
1765                                  params->pri.bytes_per_pixel,
1766                                  mem_value);
1767
1768         return min(method1, method2);
1769 }
1770
1771 /*
1772  * For both WM_PIPE and WM_LP.
1773  * mem_value must be in 0.1us units.
1774  */
1775 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
1776                                    uint32_t mem_value)
1777 {
1778         uint32_t method1, method2;
1779
1780         if (!params->active || !params->spr.enabled)
1781                 return 0;
1782
1783         method1 = ilk_wm_method1(params->pixel_rate,
1784                                  params->spr.bytes_per_pixel,
1785                                  mem_value);
1786         method2 = ilk_wm_method2(params->pixel_rate,
1787                                  params->pipe_htotal,
1788                                  params->spr.horiz_pixels,
1789                                  params->spr.bytes_per_pixel,
1790                                  mem_value);
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
1799                                    uint32_t mem_value)
1800 {
1801         if (!params->active || !params->cur.enabled)
1802                 return 0;
1803
1804         return ilk_wm_method2(params->pixel_rate,
1805                               params->pipe_htotal,
1806                               params->cur.horiz_pixels,
1807                               params->cur.bytes_per_pixel,
1808                               mem_value);
1809 }
1810
1811 /* Only for WM_LP. */
1812 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
1813                                    uint32_t pri_val)
1814 {
1815         if (!params->active || !params->pri.enabled)
1816                 return 0;
1817
1818         return ilk_wm_fbc(pri_val,
1819                           params->pri.horiz_pixels,
1820                           params->pri.bytes_per_pixel);
1821 }
1822
1823 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1824 {
1825         if (INTEL_INFO(dev)->gen >= 8)
1826                 return 3072;
1827         else if (INTEL_INFO(dev)->gen >= 7)
1828                 return 768;
1829         else
1830                 return 512;
1831 }
1832
1833 /* Calculate the maximum primary/sprite plane watermark */
1834 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1835                                      int level,
1836                                      const struct intel_wm_config *config,
1837                                      enum intel_ddb_partitioning ddb_partitioning,
1838                                      bool is_sprite)
1839 {
1840         unsigned int fifo_size = ilk_display_fifo_size(dev);
1841         unsigned int max;
1842
1843         /* if sprites aren't enabled, sprites get nothing */
1844         if (is_sprite && !config->sprites_enabled)
1845                 return 0;
1846
1847         /* HSW allows LP1+ watermarks even with multiple pipes */
1848         if (level == 0 || config->num_pipes_active > 1) {
1849                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1850
1851                 /*
1852                  * For some reason the non self refresh
1853                  * FIFO size is only half of the self
1854                  * refresh FIFO size on ILK/SNB.
1855                  */
1856                 if (INTEL_INFO(dev)->gen <= 6)
1857                         fifo_size /= 2;
1858         }
1859
1860         if (config->sprites_enabled) {
1861                 /* level 0 is always calculated with 1:1 split */
1862                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1863                         if (is_sprite)
1864                                 fifo_size *= 5;
1865                         fifo_size /= 6;
1866                 } else {
1867                         fifo_size /= 2;
1868                 }
1869         }
1870
1871         /* clamp to max that the registers can hold */
1872         if (INTEL_INFO(dev)->gen >= 8)
1873                 max = level == 0 ? 255 : 2047;
1874         else if (INTEL_INFO(dev)->gen >= 7)
1875                 /* IVB/HSW primary/sprite plane watermarks */
1876                 max = level == 0 ? 127 : 1023;
1877         else if (!is_sprite)
1878                 /* ILK/SNB primary plane watermarks */
1879                 max = level == 0 ? 127 : 511;
1880         else
1881                 /* ILK/SNB sprite plane watermarks */
1882                 max = level == 0 ? 63 : 255;
1883
1884         return min(fifo_size, max);
1885 }
1886
1887 /* Calculate the maximum cursor plane watermark */
1888 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1889                                       int level,
1890                                       const struct intel_wm_config *config)
1891 {
1892         /* HSW LP1+ watermarks w/ multiple pipes */
1893         if (level > 0 && config->num_pipes_active > 1)
1894                 return 64;
1895
1896         /* otherwise just report max that registers can hold */
1897         if (INTEL_INFO(dev)->gen >= 7)
1898                 return level == 0 ? 63 : 255;
1899         else
1900                 return level == 0 ? 31 : 63;
1901 }
1902
1903 /* Calculate the maximum FBC watermark */
1904 static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
1905 {
1906         /* max that registers can hold */
1907         if (INTEL_INFO(dev)->gen >= 8)
1908                 return 31;
1909         else
1910                 return 15;
1911 }
1912
1913 static void ilk_compute_wm_maximums(struct drm_device *dev,
1914                                     int level,
1915                                     const struct intel_wm_config *config,
1916                                     enum intel_ddb_partitioning ddb_partitioning,
1917                                     struct hsw_wm_maximums *max)
1918 {
1919         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1920         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1921         max->cur = ilk_cursor_wm_max(dev, level, config);
1922         max->fbc = ilk_fbc_wm_max(dev);
1923 }
1924
1925 static bool ilk_validate_wm_level(int level,
1926                                   const struct hsw_wm_maximums *max,
1927                                   struct intel_wm_level *result)
1928 {
1929         bool ret;
1930
1931         /* already determined to be invalid? */
1932         if (!result->enable)
1933                 return false;
1934
1935         result->enable = result->pri_val <= max->pri &&
1936                          result->spr_val <= max->spr &&
1937                          result->cur_val <= max->cur;
1938
1939         ret = result->enable;
1940
1941         /*
1942          * HACK until we can pre-compute everything,
1943          * and thus fail gracefully if LP0 watermarks
1944          * are exceeded...
1945          */
1946         if (level == 0 && !result->enable) {
1947                 if (result->pri_val > max->pri)
1948                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1949                                       level, result->pri_val, max->pri);
1950                 if (result->spr_val > max->spr)
1951                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1952                                       level, result->spr_val, max->spr);
1953                 if (result->cur_val > max->cur)
1954                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1955                                       level, result->cur_val, max->cur);
1956
1957                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1958                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1959                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1960                 result->enable = true;
1961         }
1962
1963         return ret;
1964 }
1965
1966 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
1967                                  int level,
1968                                  const struct hsw_pipe_wm_parameters *p,
1969                                  struct intel_wm_level *result)
1970 {
1971         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1972         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1973         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1974
1975         /* WM1+ latency values stored in 0.5us units */
1976         if (level > 0) {
1977                 pri_latency *= 5;
1978                 spr_latency *= 5;
1979                 cur_latency *= 5;
1980         }
1981
1982         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1983         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1984         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1985         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1986         result->enable = true;
1987 }
1988
1989 static uint32_t
1990 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1994         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1995         u32 linetime, ips_linetime;
1996
1997         if (!intel_crtc_active(crtc))
1998                 return 0;
1999
2000         /* The WM are computed with base on how long it takes to fill a single
2001          * row at the given clock rate, multiplied by 8.
2002          * */
2003         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2004         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2005                                          intel_ddi_get_cdclk_freq(dev_priv));
2006
2007         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2008                PIPE_WM_LINETIME_TIME(linetime);
2009 }
2010
2011 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2012 {
2013         struct drm_i915_private *dev_priv = dev->dev_private;
2014
2015         if (IS_HASWELL(dev)) {
2016                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2017
2018                 wm[0] = (sskpd >> 56) & 0xFF;
2019                 if (wm[0] == 0)
2020                         wm[0] = sskpd & 0xF;
2021                 wm[1] = (sskpd >> 4) & 0xFF;
2022                 wm[2] = (sskpd >> 12) & 0xFF;
2023                 wm[3] = (sskpd >> 20) & 0x1FF;
2024                 wm[4] = (sskpd >> 32) & 0x1FF;
2025         } else if (INTEL_INFO(dev)->gen >= 6) {
2026                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2027
2028                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2029                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2030                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2031                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2032         } else if (INTEL_INFO(dev)->gen >= 5) {
2033                 uint32_t mltr = I915_READ(MLTR_ILK);
2034
2035                 /* ILK primary LP0 latency is 700 ns */
2036                 wm[0] = 7;
2037                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2038                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2039         }
2040 }
2041
2042 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2043 {
2044         /* ILK sprite LP0 latency is 1300 ns */
2045         if (INTEL_INFO(dev)->gen == 5)
2046                 wm[0] = 13;
2047 }
2048
2049 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2050 {
2051         /* ILK cursor LP0 latency is 1300 ns */
2052         if (INTEL_INFO(dev)->gen == 5)
2053                 wm[0] = 13;
2054
2055         /* WaDoubleCursorLP3Latency:ivb */
2056         if (IS_IVYBRIDGE(dev))
2057                 wm[3] *= 2;
2058 }
2059
2060 static int ilk_wm_max_level(const struct drm_device *dev)
2061 {
2062         /* how many WM levels are we expecting */
2063         if (IS_HASWELL(dev))
2064                 return 4;
2065         else if (INTEL_INFO(dev)->gen >= 6)
2066                 return 3;
2067         else
2068                 return 2;
2069 }
2070
2071 static void intel_print_wm_latency(struct drm_device *dev,
2072                                    const char *name,
2073                                    const uint16_t wm[5])
2074 {
2075         int level, max_level = ilk_wm_max_level(dev);
2076
2077         for (level = 0; level <= max_level; level++) {
2078                 unsigned int latency = wm[level];
2079
2080                 if (latency == 0) {
2081                         DRM_ERROR("%s WM%d latency not provided\n",
2082                                   name, level);
2083                         continue;
2084                 }
2085
2086                 /* WM1+ latency values in 0.5us units */
2087                 if (level > 0)
2088                         latency *= 5;
2089
2090                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2091                               name, level, wm[level],
2092                               latency / 10, latency % 10);
2093         }
2094 }
2095
2096 static void intel_setup_wm_latency(struct drm_device *dev)
2097 {
2098         struct drm_i915_private *dev_priv = dev->dev_private;
2099
2100         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2101
2102         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2103                sizeof(dev_priv->wm.pri_latency));
2104         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2105                sizeof(dev_priv->wm.pri_latency));
2106
2107         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2108         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2109
2110         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2111         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2112         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2113 }
2114
2115 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2116                                       struct hsw_pipe_wm_parameters *p,
2117                                       struct intel_wm_config *config)
2118 {
2119         struct drm_device *dev = crtc->dev;
2120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2121         enum pipe pipe = intel_crtc->pipe;
2122         struct drm_plane *plane;
2123
2124         p->active = intel_crtc_active(crtc);
2125         if (p->active) {
2126                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2127                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2128                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2129                 p->cur.bytes_per_pixel = 4;
2130                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2131                 p->cur.horiz_pixels = 64;
2132                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2133                 p->pri.enabled = true;
2134                 p->cur.enabled = true;
2135         }
2136
2137         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2138                 config->num_pipes_active += intel_crtc_active(crtc);
2139
2140         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2141                 struct intel_plane *intel_plane = to_intel_plane(plane);
2142
2143                 if (intel_plane->pipe == pipe)
2144                         p->spr = intel_plane->wm;
2145
2146                 config->sprites_enabled |= intel_plane->wm.enabled;
2147                 config->sprites_scaled |= intel_plane->wm.scaled;
2148         }
2149 }
2150
2151 /* Compute new watermarks for the pipe */
2152 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2153                                   const struct hsw_pipe_wm_parameters *params,
2154                                   struct intel_pipe_wm *pipe_wm)
2155 {
2156         struct drm_device *dev = crtc->dev;
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         int level, max_level = ilk_wm_max_level(dev);
2159         /* LP0 watermark maximums depend on this pipe alone */
2160         struct intel_wm_config config = {
2161                 .num_pipes_active = 1,
2162                 .sprites_enabled = params->spr.enabled,
2163                 .sprites_scaled = params->spr.scaled,
2164         };
2165         struct hsw_wm_maximums max;
2166
2167         /* LP0 watermarks always use 1/2 DDB partitioning */
2168         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2169
2170         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2171         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2172                 max_level = 1;
2173
2174         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2175         if (params->spr.scaled)
2176                 max_level = 0;
2177
2178         for (level = 0; level <= max_level; level++)
2179                 ilk_compute_wm_level(dev_priv, level, params,
2180                                      &pipe_wm->wm[level]);
2181
2182         if (IS_HASWELL(dev))
2183                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2184
2185         /* At least LP0 must be valid */
2186         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2187 }
2188
2189 /*
2190  * Merge the watermarks from all active pipes for a specific level.
2191  */
2192 static void ilk_merge_wm_level(struct drm_device *dev,
2193                                int level,
2194                                struct intel_wm_level *ret_wm)
2195 {
2196         const struct intel_crtc *intel_crtc;
2197
2198         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2199                 const struct intel_wm_level *wm =
2200                         &intel_crtc->wm.active.wm[level];
2201
2202                 if (!wm->enable)
2203                         return;
2204
2205                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2206                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2207                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2208                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2209         }
2210
2211         ret_wm->enable = true;
2212 }
2213
2214 /*
2215  * Merge all low power watermarks for all active pipes.
2216  */
2217 static void ilk_wm_merge(struct drm_device *dev,
2218                          const struct intel_wm_config *config,
2219                          const struct hsw_wm_maximums *max,
2220                          struct intel_pipe_wm *merged)
2221 {
2222         int level, max_level = ilk_wm_max_level(dev);
2223
2224         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2225         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2226             config->num_pipes_active > 1)
2227                 return;
2228
2229         /* ILK: FBC WM must be disabled always */
2230         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2231
2232         /* merge each WM1+ level */
2233         for (level = 1; level <= max_level; level++) {
2234                 struct intel_wm_level *wm = &merged->wm[level];
2235
2236                 ilk_merge_wm_level(dev, level, wm);
2237
2238                 if (!ilk_validate_wm_level(level, max, wm))
2239                         break;
2240
2241                 /*
2242                  * The spec says it is preferred to disable
2243                  * FBC WMs instead of disabling a WM level.
2244                  */
2245                 if (wm->fbc_val > max->fbc) {
2246                         merged->fbc_wm_enabled = false;
2247                         wm->fbc_val = 0;
2248                 }
2249         }
2250
2251         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2252         /*
2253          * FIXME this is racy. FBC might get enabled later.
2254          * What we should check here is whether FBC can be
2255          * enabled sometime later.
2256          */
2257         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2258                 for (level = 2; level <= max_level; level++) {
2259                         struct intel_wm_level *wm = &merged->wm[level];
2260
2261                         wm->enable = false;
2262                 }
2263         }
2264 }
2265
2266 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2267 {
2268         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2269         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2270 }
2271
2272 /* The value we need to program into the WM_LPx latency field */
2273 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2274 {
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277         if (IS_HASWELL(dev))
2278                 return 2 * level;
2279         else
2280                 return dev_priv->wm.pri_latency[level];
2281 }
2282
2283 static void hsw_compute_wm_results(struct drm_device *dev,
2284                                    const struct intel_pipe_wm *merged,
2285                                    enum intel_ddb_partitioning partitioning,
2286                                    struct hsw_wm_values *results)
2287 {
2288         struct intel_crtc *intel_crtc;
2289         int level, wm_lp;
2290
2291         results->enable_fbc_wm = merged->fbc_wm_enabled;
2292         results->partitioning = partitioning;
2293
2294         /* LP1+ register values */
2295         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2296                 const struct intel_wm_level *r;
2297
2298                 level = ilk_wm_lp_to_level(wm_lp, merged);
2299
2300                 r = &merged->wm[level];
2301                 if (!r->enable)
2302                         break;
2303
2304                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2305                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2306                         (r->pri_val << WM1_LP_SR_SHIFT) |
2307                         r->cur_val;
2308
2309                 if (INTEL_INFO(dev)->gen >= 8)
2310                         results->wm_lp[wm_lp - 1] |=
2311                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2312                 else
2313                         results->wm_lp[wm_lp - 1] |=
2314                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2315
2316                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2317                         WARN_ON(wm_lp != 1);
2318                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2319                 } else
2320                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2321         }
2322
2323         /* LP0 register values */
2324         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2325                 enum pipe pipe = intel_crtc->pipe;
2326                 const struct intel_wm_level *r =
2327                         &intel_crtc->wm.active.wm[0];
2328
2329                 if (WARN_ON(!r->enable))
2330                         continue;
2331
2332                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2333
2334                 results->wm_pipe[pipe] =
2335                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2336                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2337                         r->cur_val;
2338         }
2339 }
2340
2341 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2342  * case both are at the same level. Prefer r1 in case they're the same. */
2343 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2344                                                   struct intel_pipe_wm *r1,
2345                                                   struct intel_pipe_wm *r2)
2346 {
2347         int level, max_level = ilk_wm_max_level(dev);
2348         int level1 = 0, level2 = 0;
2349
2350         for (level = 1; level <= max_level; level++) {
2351                 if (r1->wm[level].enable)
2352                         level1 = level;
2353                 if (r2->wm[level].enable)
2354                         level2 = level;
2355         }
2356
2357         if (level1 == level2) {
2358                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2359                         return r2;
2360                 else
2361                         return r1;
2362         } else if (level1 > level2) {
2363                 return r1;
2364         } else {
2365                 return r2;
2366         }
2367 }
2368
2369 /* dirty bits used to track which watermarks need changes */
2370 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2371 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2372 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2373 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2374 #define WM_DIRTY_FBC (1 << 24)
2375 #define WM_DIRTY_DDB (1 << 25)
2376
2377 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2378                                          const struct hsw_wm_values *old,
2379                                          const struct hsw_wm_values *new)
2380 {
2381         unsigned int dirty = 0;
2382         enum pipe pipe;
2383         int wm_lp;
2384
2385         for_each_pipe(pipe) {
2386                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2387                         dirty |= WM_DIRTY_LINETIME(pipe);
2388                         /* Must disable LP1+ watermarks too */
2389                         dirty |= WM_DIRTY_LP_ALL;
2390                 }
2391
2392                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2393                         dirty |= WM_DIRTY_PIPE(pipe);
2394                         /* Must disable LP1+ watermarks too */
2395                         dirty |= WM_DIRTY_LP_ALL;
2396                 }
2397         }
2398
2399         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2400                 dirty |= WM_DIRTY_FBC;
2401                 /* Must disable LP1+ watermarks too */
2402                 dirty |= WM_DIRTY_LP_ALL;
2403         }
2404
2405         if (old->partitioning != new->partitioning) {
2406                 dirty |= WM_DIRTY_DDB;
2407                 /* Must disable LP1+ watermarks too */
2408                 dirty |= WM_DIRTY_LP_ALL;
2409         }
2410
2411         /* LP1+ watermarks already deemed dirty, no need to continue */
2412         if (dirty & WM_DIRTY_LP_ALL)
2413                 return dirty;
2414
2415         /* Find the lowest numbered LP1+ watermark in need of an update... */
2416         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2417                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2418                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2419                         break;
2420         }
2421
2422         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2423         for (; wm_lp <= 3; wm_lp++)
2424                 dirty |= WM_DIRTY_LP(wm_lp);
2425
2426         return dirty;
2427 }
2428
2429 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2430                                unsigned int dirty)
2431 {
2432         struct hsw_wm_values *previous = &dev_priv->wm.hw;
2433         bool changed = false;
2434
2435         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2436                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2437                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2438                 changed = true;
2439         }
2440         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2441                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2442                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2443                 changed = true;
2444         }
2445         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2446                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2447                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2448                 changed = true;
2449         }
2450
2451         /*
2452          * Don't touch WM1S_LP_EN here.
2453          * Doing so could cause underruns.
2454          */
2455
2456         return changed;
2457 }
2458
2459 /*
2460  * The spec says we shouldn't write when we don't need, because every write
2461  * causes WMs to be re-evaluated, expending some power.
2462  */
2463 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2464                                 struct hsw_wm_values *results)
2465 {
2466         struct drm_device *dev = dev_priv->dev;
2467         struct hsw_wm_values *previous = &dev_priv->wm.hw;
2468         unsigned int dirty;
2469         uint32_t val;
2470
2471         dirty = ilk_compute_wm_dirty(dev, previous, results);
2472         if (!dirty)
2473                 return;
2474
2475         _ilk_disable_lp_wm(dev_priv, dirty);
2476
2477         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2478                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2479         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2480                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2481         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2482                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2483
2484         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2485                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2486         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2487                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2488         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2489                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2490
2491         if (dirty & WM_DIRTY_DDB) {
2492                 if (IS_HASWELL(dev)) {
2493                         val = I915_READ(WM_MISC);
2494                         if (results->partitioning == INTEL_DDB_PART_1_2)
2495                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2496                         else
2497                                 val |= WM_MISC_DATA_PARTITION_5_6;
2498                         I915_WRITE(WM_MISC, val);
2499                 } else {
2500                         val = I915_READ(DISP_ARB_CTL2);
2501                         if (results->partitioning == INTEL_DDB_PART_1_2)
2502                                 val &= ~DISP_DATA_PARTITION_5_6;
2503                         else
2504                                 val |= DISP_DATA_PARTITION_5_6;
2505                         I915_WRITE(DISP_ARB_CTL2, val);
2506                 }
2507         }
2508
2509         if (dirty & WM_DIRTY_FBC) {
2510                 val = I915_READ(DISP_ARB_CTL);
2511                 if (results->enable_fbc_wm)
2512                         val &= ~DISP_FBC_WM_DIS;
2513                 else
2514                         val |= DISP_FBC_WM_DIS;
2515                 I915_WRITE(DISP_ARB_CTL, val);
2516         }
2517
2518         if (dirty & WM_DIRTY_LP(1) &&
2519             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2520                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2521
2522         if (INTEL_INFO(dev)->gen >= 7) {
2523                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2524                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2525                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2526                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2527         }
2528
2529         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2530                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2531         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2532                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2533         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2534                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2535
2536         dev_priv->wm.hw = *results;
2537 }
2538
2539 static bool ilk_disable_lp_wm(struct drm_device *dev)
2540 {
2541         struct drm_i915_private *dev_priv = dev->dev_private;
2542
2543         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2544 }
2545
2546 static void haswell_update_wm(struct drm_crtc *crtc)
2547 {
2548         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2549         struct drm_device *dev = crtc->dev;
2550         struct drm_i915_private *dev_priv = dev->dev_private;
2551         struct hsw_wm_maximums max;
2552         struct hsw_pipe_wm_parameters params = {};
2553         struct hsw_wm_values results = {};
2554         enum intel_ddb_partitioning partitioning;
2555         struct intel_pipe_wm pipe_wm = {};
2556         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2557         struct intel_wm_config config = {};
2558
2559         hsw_compute_wm_parameters(crtc, &params, &config);
2560
2561         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2562
2563         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2564                 return;
2565
2566         intel_crtc->wm.active = pipe_wm;
2567
2568         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2569         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2570
2571         /* 5/6 split only in single pipe config on IVB+ */
2572         if (INTEL_INFO(dev)->gen >= 7 &&
2573             config.num_pipes_active == 1 && config.sprites_enabled) {
2574                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2575                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2576
2577                 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2578         } else {
2579                 best_lp_wm = &lp_wm_1_2;
2580         }
2581
2582         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2583                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2584
2585         hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2586
2587         hsw_write_wm_values(dev_priv, &results);
2588 }
2589
2590 static void haswell_update_sprite_wm(struct drm_plane *plane,
2591                                      struct drm_crtc *crtc,
2592                                      uint32_t sprite_width, int pixel_size,
2593                                      bool enabled, bool scaled)
2594 {
2595         struct drm_device *dev = plane->dev;
2596         struct intel_plane *intel_plane = to_intel_plane(plane);
2597
2598         intel_plane->wm.enabled = enabled;
2599         intel_plane->wm.scaled = scaled;
2600         intel_plane->wm.horiz_pixels = sprite_width;
2601         intel_plane->wm.bytes_per_pixel = pixel_size;
2602
2603         /*
2604          * IVB workaround: must disable low power watermarks for at least
2605          * one frame before enabling scaling.  LP watermarks can be re-enabled
2606          * when scaling is disabled.
2607          *
2608          * WaCxSRDisabledForSpriteScaling:ivb
2609          */
2610         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2611                 intel_wait_for_vblank(dev, intel_plane->pipe);
2612
2613         haswell_update_wm(crtc);
2614 }
2615
2616 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2617 {
2618         struct drm_device *dev = crtc->dev;
2619         struct drm_i915_private *dev_priv = dev->dev_private;
2620         struct hsw_wm_values *hw = &dev_priv->wm.hw;
2621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2622         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2623         enum pipe pipe = intel_crtc->pipe;
2624         static const unsigned int wm0_pipe_reg[] = {
2625                 [PIPE_A] = WM0_PIPEA_ILK,
2626                 [PIPE_B] = WM0_PIPEB_ILK,
2627                 [PIPE_C] = WM0_PIPEC_IVB,
2628         };
2629
2630         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2631         if (IS_HASWELL(dev))
2632                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2633
2634         if (intel_crtc_active(crtc)) {
2635                 u32 tmp = hw->wm_pipe[pipe];
2636
2637                 /*
2638                  * For active pipes LP0 watermark is marked as
2639                  * enabled, and LP1+ watermaks as disabled since
2640                  * we can't really reverse compute them in case
2641                  * multiple pipes are active.
2642                  */
2643                 active->wm[0].enable = true;
2644                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2645                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2646                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2647                 active->linetime = hw->wm_linetime[pipe];
2648         } else {
2649                 int level, max_level = ilk_wm_max_level(dev);
2650
2651                 /*
2652                  * For inactive pipes, all watermark levels
2653                  * should be marked as enabled but zeroed,
2654                  * which is what we'd compute them to.
2655                  */
2656                 for (level = 0; level <= max_level; level++)
2657                         active->wm[level].enable = true;
2658         }
2659 }
2660
2661 void ilk_wm_get_hw_state(struct drm_device *dev)
2662 {
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         struct hsw_wm_values *hw = &dev_priv->wm.hw;
2665         struct drm_crtc *crtc;
2666
2667         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2668                 ilk_pipe_wm_get_hw_state(crtc);
2669
2670         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2671         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2672         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2673
2674         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2675         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2676         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2677
2678         if (IS_HASWELL(dev))
2679                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2680                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2681         else if (IS_IVYBRIDGE(dev))
2682                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2683                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2684
2685         hw->enable_fbc_wm =
2686                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2687 }
2688
2689 /**
2690  * intel_update_watermarks - update FIFO watermark values based on current modes
2691  *
2692  * Calculate watermark values for the various WM regs based on current mode
2693  * and plane configuration.
2694  *
2695  * There are several cases to deal with here:
2696  *   - normal (i.e. non-self-refresh)
2697  *   - self-refresh (SR) mode
2698  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2699  *   - lines are small relative to FIFO size (buffer can hold more than 2
2700  *     lines), so need to account for TLB latency
2701  *
2702  *   The normal calculation is:
2703  *     watermark = dotclock * bytes per pixel * latency
2704  *   where latency is platform & configuration dependent (we assume pessimal
2705  *   values here).
2706  *
2707  *   The SR calculation is:
2708  *     watermark = (trunc(latency/line time)+1) * surface width *
2709  *       bytes per pixel
2710  *   where
2711  *     line time = htotal / dotclock
2712  *     surface width = hdisplay for normal plane and 64 for cursor
2713  *   and latency is assumed to be high, as above.
2714  *
2715  * The final value programmed to the register should always be rounded up,
2716  * and include an extra 2 entries to account for clock crossings.
2717  *
2718  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2719  * to set the non-SR watermarks to 8.
2720  */
2721 void intel_update_watermarks(struct drm_crtc *crtc)
2722 {
2723         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2724
2725         if (dev_priv->display.update_wm)
2726                 dev_priv->display.update_wm(crtc);
2727 }
2728
2729 void intel_update_sprite_watermarks(struct drm_plane *plane,
2730                                     struct drm_crtc *crtc,
2731                                     uint32_t sprite_width, int pixel_size,
2732                                     bool enabled, bool scaled)
2733 {
2734         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2735
2736         if (dev_priv->display.update_sprite_wm)
2737                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2738                                                    pixel_size, enabled, scaled);
2739 }
2740
2741 static struct drm_i915_gem_object *
2742 intel_alloc_context_page(struct drm_device *dev)
2743 {
2744         struct drm_i915_gem_object *ctx;
2745         int ret;
2746
2747         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2748
2749         ctx = i915_gem_alloc_object(dev, 4096);
2750         if (!ctx) {
2751                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2752                 return NULL;
2753         }
2754
2755         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2756         if (ret) {
2757                 DRM_ERROR("failed to pin power context: %d\n", ret);
2758                 goto err_unref;
2759         }
2760
2761         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2762         if (ret) {
2763                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2764                 goto err_unpin;
2765         }
2766
2767         return ctx;
2768
2769 err_unpin:
2770         i915_gem_object_unpin(ctx);
2771 err_unref:
2772         drm_gem_object_unreference(&ctx->base);
2773         return NULL;
2774 }
2775
2776 /**
2777  * Lock protecting IPS related data structures
2778  */
2779 DEFINE_SPINLOCK(mchdev_lock);
2780
2781 /* Global for IPS driver to get at the current i915 device. Protected by
2782  * mchdev_lock. */
2783 static struct drm_i915_private *i915_mch_dev;
2784
2785 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2786 {
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         u16 rgvswctl;
2789
2790         assert_spin_locked(&mchdev_lock);
2791
2792         rgvswctl = I915_READ16(MEMSWCTL);
2793         if (rgvswctl & MEMCTL_CMD_STS) {
2794                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2795                 return false; /* still busy with another command */
2796         }
2797
2798         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2799                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2800         I915_WRITE16(MEMSWCTL, rgvswctl);
2801         POSTING_READ16(MEMSWCTL);
2802
2803         rgvswctl |= MEMCTL_CMD_STS;
2804         I915_WRITE16(MEMSWCTL, rgvswctl);
2805
2806         return true;
2807 }
2808
2809 static void ironlake_enable_drps(struct drm_device *dev)
2810 {
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         u32 rgvmodectl = I915_READ(MEMMODECTL);
2813         u8 fmax, fmin, fstart, vstart;
2814
2815         spin_lock_irq(&mchdev_lock);
2816
2817         /* Enable temp reporting */
2818         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2819         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2820
2821         /* 100ms RC evaluation intervals */
2822         I915_WRITE(RCUPEI, 100000);
2823         I915_WRITE(RCDNEI, 100000);
2824
2825         /* Set max/min thresholds to 90ms and 80ms respectively */
2826         I915_WRITE(RCBMAXAVG, 90000);
2827         I915_WRITE(RCBMINAVG, 80000);
2828
2829         I915_WRITE(MEMIHYST, 1);
2830
2831         /* Set up min, max, and cur for interrupt handling */
2832         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2833         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2834         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2835                 MEMMODE_FSTART_SHIFT;
2836
2837         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2838                 PXVFREQ_PX_SHIFT;
2839
2840         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2841         dev_priv->ips.fstart = fstart;
2842
2843         dev_priv->ips.max_delay = fstart;
2844         dev_priv->ips.min_delay = fmin;
2845         dev_priv->ips.cur_delay = fstart;
2846
2847         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2848                          fmax, fmin, fstart);
2849
2850         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2851
2852         /*
2853          * Interrupts will be enabled in ironlake_irq_postinstall
2854          */
2855
2856         I915_WRITE(VIDSTART, vstart);
2857         POSTING_READ(VIDSTART);
2858
2859         rgvmodectl |= MEMMODE_SWMODE_EN;
2860         I915_WRITE(MEMMODECTL, rgvmodectl);
2861
2862         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2863                 DRM_ERROR("stuck trying to change perf mode\n");
2864         mdelay(1);
2865
2866         ironlake_set_drps(dev, fstart);
2867
2868         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2869                 I915_READ(0x112e0);
2870         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2871         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2872         getrawmonotonic(&dev_priv->ips.last_time2);
2873
2874         spin_unlock_irq(&mchdev_lock);
2875 }
2876
2877 static void ironlake_disable_drps(struct drm_device *dev)
2878 {
2879         struct drm_i915_private *dev_priv = dev->dev_private;
2880         u16 rgvswctl;
2881
2882         spin_lock_irq(&mchdev_lock);
2883
2884         rgvswctl = I915_READ16(MEMSWCTL);
2885
2886         /* Ack interrupts, disable EFC interrupt */
2887         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2888         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2889         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2890         I915_WRITE(DEIIR, DE_PCU_EVENT);
2891         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2892
2893         /* Go back to the starting frequency */
2894         ironlake_set_drps(dev, dev_priv->ips.fstart);
2895         mdelay(1);
2896         rgvswctl |= MEMCTL_CMD_STS;
2897         I915_WRITE(MEMSWCTL, rgvswctl);
2898         mdelay(1);
2899
2900         spin_unlock_irq(&mchdev_lock);
2901 }
2902
2903 /* There's a funny hw issue where the hw returns all 0 when reading from
2904  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2905  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2906  * all limits and the gpu stuck at whatever frequency it is at atm).
2907  */
2908 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2909 {
2910         u32 limits;
2911
2912         /* Only set the down limit when we've reached the lowest level to avoid
2913          * getting more interrupts, otherwise leave this clear. This prevents a
2914          * race in the hw when coming out of rc6: There's a tiny window where
2915          * the hw runs at the minimal clock before selecting the desired
2916          * frequency, if the down threshold expires in that window we will not
2917          * receive a down interrupt. */
2918         limits = dev_priv->rps.max_delay << 24;
2919         if (val <= dev_priv->rps.min_delay)
2920                 limits |= dev_priv->rps.min_delay << 16;
2921
2922         return limits;
2923 }
2924
2925 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2926 {
2927         int new_power;
2928
2929         new_power = dev_priv->rps.power;
2930         switch (dev_priv->rps.power) {
2931         case LOW_POWER:
2932                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2933                         new_power = BETWEEN;
2934                 break;
2935
2936         case BETWEEN:
2937                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2938                         new_power = LOW_POWER;
2939                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2940                         new_power = HIGH_POWER;
2941                 break;
2942
2943         case HIGH_POWER:
2944                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2945                         new_power = BETWEEN;
2946                 break;
2947         }
2948         /* Max/min bins are special */
2949         if (val == dev_priv->rps.min_delay)
2950                 new_power = LOW_POWER;
2951         if (val == dev_priv->rps.max_delay)
2952                 new_power = HIGH_POWER;
2953         if (new_power == dev_priv->rps.power)
2954                 return;
2955
2956         /* Note the units here are not exactly 1us, but 1280ns. */
2957         switch (new_power) {
2958         case LOW_POWER:
2959                 /* Upclock if more than 95% busy over 16ms */
2960                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2961                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2962
2963                 /* Downclock if less than 85% busy over 32ms */
2964                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2965                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2966
2967                 I915_WRITE(GEN6_RP_CONTROL,
2968                            GEN6_RP_MEDIA_TURBO |
2969                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2970                            GEN6_RP_MEDIA_IS_GFX |
2971                            GEN6_RP_ENABLE |
2972                            GEN6_RP_UP_BUSY_AVG |
2973                            GEN6_RP_DOWN_IDLE_AVG);
2974                 break;
2975
2976         case BETWEEN:
2977                 /* Upclock if more than 90% busy over 13ms */
2978                 I915_WRITE(GEN6_RP_UP_EI, 10250);
2979                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2980
2981                 /* Downclock if less than 75% busy over 32ms */
2982                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2983                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2984
2985                 I915_WRITE(GEN6_RP_CONTROL,
2986                            GEN6_RP_MEDIA_TURBO |
2987                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2988                            GEN6_RP_MEDIA_IS_GFX |
2989                            GEN6_RP_ENABLE |
2990                            GEN6_RP_UP_BUSY_AVG |
2991                            GEN6_RP_DOWN_IDLE_AVG);
2992                 break;
2993
2994         case HIGH_POWER:
2995                 /* Upclock if more than 85% busy over 10ms */
2996                 I915_WRITE(GEN6_RP_UP_EI, 8000);
2997                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2998
2999                 /* Downclock if less than 60% busy over 32ms */
3000                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3001                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3002
3003                 I915_WRITE(GEN6_RP_CONTROL,
3004                            GEN6_RP_MEDIA_TURBO |
3005                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3006                            GEN6_RP_MEDIA_IS_GFX |
3007                            GEN6_RP_ENABLE |
3008                            GEN6_RP_UP_BUSY_AVG |
3009                            GEN6_RP_DOWN_IDLE_AVG);
3010                 break;
3011         }
3012
3013         dev_priv->rps.power = new_power;
3014         dev_priv->rps.last_adj = 0;
3015 }
3016
3017 void gen6_set_rps(struct drm_device *dev, u8 val)
3018 {
3019         struct drm_i915_private *dev_priv = dev->dev_private;
3020
3021         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3022         WARN_ON(val > dev_priv->rps.max_delay);
3023         WARN_ON(val < dev_priv->rps.min_delay);
3024
3025         if (val == dev_priv->rps.cur_delay)
3026                 return;
3027
3028         gen6_set_rps_thresholds(dev_priv, val);
3029
3030         if (IS_HASWELL(dev))
3031                 I915_WRITE(GEN6_RPNSWREQ,
3032                            HSW_FREQUENCY(val));
3033         else
3034                 I915_WRITE(GEN6_RPNSWREQ,
3035                            GEN6_FREQUENCY(val) |
3036                            GEN6_OFFSET(0) |
3037                            GEN6_AGGRESSIVE_TURBO);
3038
3039         /* Make sure we continue to get interrupts
3040          * until we hit the minimum or maximum frequencies.
3041          */
3042         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3043                    gen6_rps_limits(dev_priv, val));
3044
3045         POSTING_READ(GEN6_RPNSWREQ);
3046
3047         dev_priv->rps.cur_delay = val;
3048
3049         trace_intel_gpu_freq_change(val * 50);
3050 }
3051
3052 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3053 {
3054         struct drm_device *dev = dev_priv->dev;
3055
3056         mutex_lock(&dev_priv->rps.hw_lock);
3057         if (dev_priv->rps.enabled) {
3058                 if (IS_VALLEYVIEW(dev))
3059                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3060                 else
3061                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3062                 dev_priv->rps.last_adj = 0;
3063         }
3064         mutex_unlock(&dev_priv->rps.hw_lock);
3065 }
3066
3067 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3068 {
3069         struct drm_device *dev = dev_priv->dev;
3070
3071         mutex_lock(&dev_priv->rps.hw_lock);
3072         if (dev_priv->rps.enabled) {
3073                 if (IS_VALLEYVIEW(dev))
3074                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3075                 else
3076                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3077                 dev_priv->rps.last_adj = 0;
3078         }
3079         mutex_unlock(&dev_priv->rps.hw_lock);
3080 }
3081
3082 void valleyview_set_rps(struct drm_device *dev, u8 val)
3083 {
3084         struct drm_i915_private *dev_priv = dev->dev_private;
3085
3086         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3087         WARN_ON(val > dev_priv->rps.max_delay);
3088         WARN_ON(val < dev_priv->rps.min_delay);
3089
3090         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3091                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3092                          dev_priv->rps.cur_delay,
3093                          vlv_gpu_freq(dev_priv, val), val);
3094
3095         if (val == dev_priv->rps.cur_delay)
3096                 return;
3097
3098         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3099
3100         dev_priv->rps.cur_delay = val;
3101
3102         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3103 }
3104
3105 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3106 {
3107         struct drm_i915_private *dev_priv = dev->dev_private;
3108
3109         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3110         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3111         /* Complete PM interrupt masking here doesn't race with the rps work
3112          * item again unmasking PM interrupts because that is using a different
3113          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3114          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3115
3116         spin_lock_irq(&dev_priv->irq_lock);
3117         dev_priv->rps.pm_iir = 0;
3118         spin_unlock_irq(&dev_priv->irq_lock);
3119
3120         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3121 }
3122
3123 static void gen6_disable_rps(struct drm_device *dev)
3124 {
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126
3127         I915_WRITE(GEN6_RC_CONTROL, 0);
3128         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3129
3130         gen6_disable_rps_interrupts(dev);
3131 }
3132
3133 static void valleyview_disable_rps(struct drm_device *dev)
3134 {
3135         struct drm_i915_private *dev_priv = dev->dev_private;
3136
3137         I915_WRITE(GEN6_RC_CONTROL, 0);
3138
3139         gen6_disable_rps_interrupts(dev);
3140
3141         if (dev_priv->vlv_pctx) {
3142                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3143                 dev_priv->vlv_pctx = NULL;
3144         }
3145 }
3146
3147 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3148 {
3149         if (IS_GEN6(dev))
3150                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3151
3152         if (IS_HASWELL(dev))
3153                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3154
3155         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3156                         (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3157                         (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3158                         (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3159 }
3160
3161 int intel_enable_rc6(const struct drm_device *dev)
3162 {
3163         /* No RC6 before Ironlake */
3164         if (INTEL_INFO(dev)->gen < 5)
3165                 return 0;
3166
3167         /* Respect the kernel parameter if it is set */
3168         if (i915_enable_rc6 >= 0)
3169                 return i915_enable_rc6;
3170
3171         /* Disable RC6 on Ironlake */
3172         if (INTEL_INFO(dev)->gen == 5)
3173                 return 0;
3174
3175         if (IS_HASWELL(dev))
3176                 return INTEL_RC6_ENABLE;
3177
3178         /* snb/ivb have more than one rc6 state. */
3179         if (INTEL_INFO(dev)->gen == 6)
3180                 return INTEL_RC6_ENABLE;
3181
3182         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3183 }
3184
3185 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3186 {
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         u32 enabled_intrs;
3189
3190         spin_lock_irq(&dev_priv->irq_lock);
3191         WARN_ON(dev_priv->rps.pm_iir);
3192         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3193         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3194         spin_unlock_irq(&dev_priv->irq_lock);
3195
3196         /* only unmask PM interrupts we need. Mask all others. */
3197         enabled_intrs = GEN6_PM_RPS_EVENTS;
3198
3199         /* IVB and SNB hard hangs on looping batchbuffer
3200          * if GEN6_PM_UP_EI_EXPIRED is masked.
3201          */
3202         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3203                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3204
3205         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3206 }
3207
3208 static void gen8_enable_rps(struct drm_device *dev)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         struct intel_ring_buffer *ring;
3212         uint32_t rc6_mask = 0, rp_state_cap;
3213         int unused;
3214
3215         /* 1a: Software RC state - RC0 */
3216         I915_WRITE(GEN6_RC_STATE, 0);
3217
3218         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3219          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3220         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3221
3222         /* 2a: Disable RC states. */
3223         I915_WRITE(GEN6_RC_CONTROL, 0);
3224
3225         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3226
3227         /* 2b: Program RC6 thresholds.*/
3228         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3229         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3230         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3231         for_each_ring(ring, dev_priv, unused)
3232                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3233         I915_WRITE(GEN6_RC_SLEEP, 0);
3234         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3235
3236         /* 3: Enable RC6 */
3237         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3238                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3239         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3240         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3241                         GEN6_RC_CTL_EI_MODE(1) |
3242                         rc6_mask);
3243
3244         /* 4 Program defaults and thresholds for RPS*/
3245         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3246         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3247         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3248         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3249
3250         /* Docs recommend 900MHz, and 300 MHz respectively */
3251         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3252                    dev_priv->rps.max_delay << 24 |
3253                    dev_priv->rps.min_delay << 16);
3254
3255         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3256         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3257         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3258         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3259
3260         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3261
3262         /* 5: Enable RPS */
3263         I915_WRITE(GEN6_RP_CONTROL,
3264                    GEN6_RP_MEDIA_TURBO |
3265                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3266                    GEN6_RP_MEDIA_IS_GFX |
3267                    GEN6_RP_ENABLE |
3268                    GEN6_RP_UP_BUSY_AVG |
3269                    GEN6_RP_DOWN_IDLE_AVG);
3270
3271         /* 6: Ring frequency + overclocking (our driver does this later */
3272
3273         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3274
3275         gen6_enable_rps_interrupts(dev);
3276
3277         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3278 }
3279
3280 static void gen6_enable_rps(struct drm_device *dev)
3281 {
3282         struct drm_i915_private *dev_priv = dev->dev_private;
3283         struct intel_ring_buffer *ring;
3284         u32 rp_state_cap;
3285         u32 gt_perf_status;
3286         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3287         u32 gtfifodbg;
3288         int rc6_mode;
3289         int i, ret;
3290
3291         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3292
3293         /* Here begins a magic sequence of register writes to enable
3294          * auto-downclocking.
3295          *
3296          * Perhaps there might be some value in exposing these to
3297          * userspace...
3298          */
3299         I915_WRITE(GEN6_RC_STATE, 0);
3300
3301         /* Clear the DBG now so we don't confuse earlier errors */
3302         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3303                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3304                 I915_WRITE(GTFIFODBG, gtfifodbg);
3305         }
3306
3307         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3308
3309         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3310         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3311
3312         /* In units of 50MHz */
3313         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3314         dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3315         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3316         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3317         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3318         dev_priv->rps.cur_delay = 0;
3319
3320         /* disable the counters and set deterministic thresholds */
3321         I915_WRITE(GEN6_RC_CONTROL, 0);
3322
3323         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3324         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3325         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3326         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3327         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3328
3329         for_each_ring(ring, dev_priv, i)
3330                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3331
3332         I915_WRITE(GEN6_RC_SLEEP, 0);
3333         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3334         if (IS_IVYBRIDGE(dev))
3335                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3336         else
3337                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3338         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3339         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3340
3341         /* Check if we are enabling RC6 */
3342         rc6_mode = intel_enable_rc6(dev_priv->dev);
3343         if (rc6_mode & INTEL_RC6_ENABLE)
3344                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3345
3346         /* We don't use those on Haswell */
3347         if (!IS_HASWELL(dev)) {
3348                 if (rc6_mode & INTEL_RC6p_ENABLE)
3349                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3350
3351                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3352                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3353         }
3354
3355         intel_print_rc6_info(dev, rc6_mask);
3356
3357         I915_WRITE(GEN6_RC_CONTROL,
3358                    rc6_mask |
3359                    GEN6_RC_CTL_EI_MODE(1) |
3360                    GEN6_RC_CTL_HW_ENABLE);
3361
3362         /* Power down if completely idle for over 50ms */
3363         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3364         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3365
3366         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3367         if (!ret) {
3368                 pcu_mbox = 0;
3369                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3370                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3371                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3372                                          (dev_priv->rps.max_delay & 0xff) * 50,
3373                                          (pcu_mbox & 0xff) * 50);
3374                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3375                 }
3376         } else {
3377                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3378         }
3379
3380         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3381         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3382
3383         gen6_enable_rps_interrupts(dev);
3384
3385         rc6vids = 0;
3386         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3387         if (IS_GEN6(dev) && ret) {
3388                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3389         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3390                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3391                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3392                 rc6vids &= 0xffff00;
3393                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3394                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3395                 if (ret)
3396                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3397         }
3398
3399         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3400 }
3401
3402 void gen6_update_ring_freq(struct drm_device *dev)
3403 {
3404         struct drm_i915_private *dev_priv = dev->dev_private;
3405         int min_freq = 15;
3406         unsigned int gpu_freq;
3407         unsigned int max_ia_freq, min_ring_freq;
3408         int scaling_factor = 180;
3409         struct cpufreq_policy *policy;
3410
3411         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3412
3413         policy = cpufreq_cpu_get(0);
3414         if (policy) {
3415                 max_ia_freq = policy->cpuinfo.max_freq;
3416                 cpufreq_cpu_put(policy);
3417         } else {
3418                 /*
3419                  * Default to measured freq if none found, PCU will ensure we
3420                  * don't go over
3421                  */
3422                 max_ia_freq = tsc_khz;
3423         }
3424
3425         /* Convert from kHz to MHz */
3426         max_ia_freq /= 1000;
3427
3428         min_ring_freq = I915_READ(DCLK) & 0xf;
3429         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3430         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3431
3432         /*
3433          * For each potential GPU frequency, load a ring frequency we'd like
3434          * to use for memory access.  We do this by specifying the IA frequency
3435          * the PCU should use as a reference to determine the ring frequency.
3436          */
3437         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3438              gpu_freq--) {
3439                 int diff = dev_priv->rps.max_delay - gpu_freq;
3440                 unsigned int ia_freq = 0, ring_freq = 0;
3441
3442                 if (INTEL_INFO(dev)->gen >= 8) {
3443                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3444                         ring_freq = max(min_ring_freq, gpu_freq);
3445                 } else if (IS_HASWELL(dev)) {
3446                         ring_freq = mult_frac(gpu_freq, 5, 4);
3447                         ring_freq = max(min_ring_freq, ring_freq);
3448                         /* leave ia_freq as the default, chosen by cpufreq */
3449                 } else {
3450                         /* On older processors, there is no separate ring
3451                          * clock domain, so in order to boost the bandwidth
3452                          * of the ring, we need to upclock the CPU (ia_freq).
3453                          *
3454                          * For GPU frequencies less than 750MHz,
3455                          * just use the lowest ring freq.
3456                          */
3457                         if (gpu_freq < min_freq)
3458                                 ia_freq = 800;
3459                         else
3460                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3461                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3462                 }
3463
3464                 sandybridge_pcode_write(dev_priv,
3465                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3466                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3467                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3468                                         gpu_freq);
3469         }
3470 }
3471
3472 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3473 {
3474         u32 val, rp0;
3475
3476         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3477
3478         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3479         /* Clamp to max */
3480         rp0 = min_t(u32, rp0, 0xea);
3481
3482         return rp0;
3483 }
3484
3485 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3486 {
3487         u32 val, rpe;
3488
3489         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3490         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3491         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3492         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3493
3494         return rpe;
3495 }
3496
3497 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3498 {
3499         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3500 }
3501
3502 static void valleyview_setup_pctx(struct drm_device *dev)
3503 {
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         struct drm_i915_gem_object *pctx;
3506         unsigned long pctx_paddr;
3507         u32 pcbr;
3508         int pctx_size = 24*1024;
3509
3510         pcbr = I915_READ(VLV_PCBR);
3511         if (pcbr) {
3512                 /* BIOS set it up already, grab the pre-alloc'd space */
3513                 int pcbr_offset;
3514
3515                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3516                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3517                                                                       pcbr_offset,
3518                                                                       I915_GTT_OFFSET_NONE,
3519                                                                       pctx_size);
3520                 goto out;
3521         }
3522
3523         /*
3524          * From the Gunit register HAS:
3525          * The Gfx driver is expected to program this register and ensure
3526          * proper allocation within Gfx stolen memory.  For example, this
3527          * register should be programmed such than the PCBR range does not
3528          * overlap with other ranges, such as the frame buffer, protected
3529          * memory, or any other relevant ranges.
3530          */
3531         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3532         if (!pctx) {
3533                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3534                 return;
3535         }
3536
3537         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3538         I915_WRITE(VLV_PCBR, pctx_paddr);
3539
3540 out:
3541         dev_priv->vlv_pctx = pctx;
3542 }
3543
3544 static void valleyview_enable_rps(struct drm_device *dev)
3545 {
3546         struct drm_i915_private *dev_priv = dev->dev_private;
3547         struct intel_ring_buffer *ring;
3548         u32 gtfifodbg, val, rc6_mode = 0;
3549         int i;
3550
3551         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3552
3553         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3554                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3555                                  gtfifodbg);
3556                 I915_WRITE(GTFIFODBG, gtfifodbg);
3557         }
3558
3559         valleyview_setup_pctx(dev);
3560
3561         /* If VLV, Forcewake all wells, else re-direct to regular path */
3562         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3563
3564         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3565         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3566         I915_WRITE(GEN6_RP_UP_EI, 66000);
3567         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3568
3569         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3570
3571         I915_WRITE(GEN6_RP_CONTROL,
3572                    GEN6_RP_MEDIA_TURBO |
3573                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3574                    GEN6_RP_MEDIA_IS_GFX |
3575                    GEN6_RP_ENABLE |
3576                    GEN6_RP_UP_BUSY_AVG |
3577                    GEN6_RP_DOWN_IDLE_CONT);
3578
3579         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3580         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3581         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3582
3583         for_each_ring(ring, dev_priv, i)
3584                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3585
3586         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3587
3588         /* allows RC6 residency counter to work */
3589         I915_WRITE(VLV_COUNTER_CONTROL,
3590                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3591                                       VLV_MEDIA_RC6_COUNT_EN |
3592                                       VLV_RENDER_RC6_COUNT_EN));
3593         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3594                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3595
3596         intel_print_rc6_info(dev, rc6_mode);
3597
3598         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3599
3600         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3601
3602         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3603         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3604
3605         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3606         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3607                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3608                          dev_priv->rps.cur_delay);
3609
3610         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3611         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3612         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3613                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
3614                          dev_priv->rps.max_delay);
3615
3616         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3617         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3618                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3619                          dev_priv->rps.rpe_delay);
3620
3621         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3622         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3623                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
3624                          dev_priv->rps.min_delay);
3625
3626         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3627                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3628                          dev_priv->rps.rpe_delay);
3629
3630         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3631
3632         gen6_enable_rps_interrupts(dev);
3633
3634         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3635 }
3636
3637 void ironlake_teardown_rc6(struct drm_device *dev)
3638 {
3639         struct drm_i915_private *dev_priv = dev->dev_private;
3640
3641         if (dev_priv->ips.renderctx) {
3642                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3643                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3644                 dev_priv->ips.renderctx = NULL;
3645         }
3646
3647         if (dev_priv->ips.pwrctx) {
3648                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3649                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3650                 dev_priv->ips.pwrctx = NULL;
3651         }
3652 }
3653
3654 static void ironlake_disable_rc6(struct drm_device *dev)
3655 {
3656         struct drm_i915_private *dev_priv = dev->dev_private;
3657
3658         if (I915_READ(PWRCTXA)) {
3659                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3660                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3661                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3662                          50);
3663
3664                 I915_WRITE(PWRCTXA, 0);
3665                 POSTING_READ(PWRCTXA);
3666
3667                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3668                 POSTING_READ(RSTDBYCTL);
3669         }
3670 }
3671
3672 static int ironlake_setup_rc6(struct drm_device *dev)
3673 {
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675
3676         if (dev_priv->ips.renderctx == NULL)
3677                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3678         if (!dev_priv->ips.renderctx)
3679                 return -ENOMEM;
3680
3681         if (dev_priv->ips.pwrctx == NULL)
3682                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3683         if (!dev_priv->ips.pwrctx) {
3684                 ironlake_teardown_rc6(dev);
3685                 return -ENOMEM;
3686         }
3687
3688         return 0;
3689 }
3690
3691 static void ironlake_enable_rc6(struct drm_device *dev)
3692 {
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3695         bool was_interruptible;
3696         int ret;
3697
3698         /* rc6 disabled by default due to repeated reports of hanging during
3699          * boot and resume.
3700          */
3701         if (!intel_enable_rc6(dev))
3702                 return;
3703
3704         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3705
3706         ret = ironlake_setup_rc6(dev);
3707         if (ret)
3708                 return;
3709
3710         was_interruptible = dev_priv->mm.interruptible;
3711         dev_priv->mm.interruptible = false;
3712
3713         /*
3714          * GPU can automatically power down the render unit if given a page
3715          * to save state.
3716          */
3717         ret = intel_ring_begin(ring, 6);
3718         if (ret) {
3719                 ironlake_teardown_rc6(dev);
3720                 dev_priv->mm.interruptible = was_interruptible;
3721                 return;
3722         }
3723
3724         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3725         intel_ring_emit(ring, MI_SET_CONTEXT);
3726         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3727                         MI_MM_SPACE_GTT |
3728                         MI_SAVE_EXT_STATE_EN |
3729                         MI_RESTORE_EXT_STATE_EN |
3730                         MI_RESTORE_INHIBIT);
3731         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3732         intel_ring_emit(ring, MI_NOOP);
3733         intel_ring_emit(ring, MI_FLUSH);
3734         intel_ring_advance(ring);
3735
3736         /*
3737          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3738          * does an implicit flush, combined with MI_FLUSH above, it should be
3739          * safe to assume that renderctx is valid
3740          */
3741         ret = intel_ring_idle(ring);
3742         dev_priv->mm.interruptible = was_interruptible;
3743         if (ret) {
3744                 DRM_ERROR("failed to enable ironlake power savings\n");
3745                 ironlake_teardown_rc6(dev);
3746                 return;
3747         }
3748
3749         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3750         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3751
3752         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3753 }
3754
3755 static unsigned long intel_pxfreq(u32 vidfreq)
3756 {
3757         unsigned long freq;
3758         int div = (vidfreq & 0x3f0000) >> 16;
3759         int post = (vidfreq & 0x3000) >> 12;
3760         int pre = (vidfreq & 0x7);
3761
3762         if (!pre)
3763                 return 0;
3764
3765         freq = ((div * 133333) / ((1<<post) * pre));
3766
3767         return freq;
3768 }
3769
3770 static const struct cparams {
3771         u16 i;
3772         u16 t;
3773         u16 m;
3774         u16 c;
3775 } cparams[] = {
3776         { 1, 1333, 301, 28664 },
3777         { 1, 1066, 294, 24460 },
3778         { 1, 800, 294, 25192 },
3779         { 0, 1333, 276, 27605 },
3780         { 0, 1066, 276, 27605 },
3781         { 0, 800, 231, 23784 },
3782 };
3783
3784 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3785 {
3786         u64 total_count, diff, ret;
3787         u32 count1, count2, count3, m = 0, c = 0;
3788         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3789         int i;
3790
3791         assert_spin_locked(&mchdev_lock);
3792
3793         diff1 = now - dev_priv->ips.last_time1;
3794
3795         /* Prevent division-by-zero if we are asking too fast.
3796          * Also, we don't get interesting results if we are polling
3797          * faster than once in 10ms, so just return the saved value
3798          * in such cases.
3799          */
3800         if (diff1 <= 10)
3801                 return dev_priv->ips.chipset_power;
3802
3803         count1 = I915_READ(DMIEC);
3804         count2 = I915_READ(DDREC);
3805         count3 = I915_READ(CSIEC);
3806
3807         total_count = count1 + count2 + count3;
3808
3809         /* FIXME: handle per-counter overflow */
3810         if (total_count < dev_priv->ips.last_count1) {
3811                 diff = ~0UL - dev_priv->ips.last_count1;
3812                 diff += total_count;
3813         } else {
3814                 diff = total_count - dev_priv->ips.last_count1;
3815         }
3816
3817         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3818                 if (cparams[i].i == dev_priv->ips.c_m &&
3819                     cparams[i].t == dev_priv->ips.r_t) {
3820                         m = cparams[i].m;
3821                         c = cparams[i].c;
3822                         break;
3823                 }
3824         }
3825
3826         diff = div_u64(diff, diff1);
3827         ret = ((m * diff) + c);
3828         ret = div_u64(ret, 10);
3829
3830         dev_priv->ips.last_count1 = total_count;
3831         dev_priv->ips.last_time1 = now;
3832
3833         dev_priv->ips.chipset_power = ret;
3834
3835         return ret;
3836 }
3837
3838 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3839 {
3840         unsigned long val;
3841
3842         if (dev_priv->info->gen != 5)
3843                 return 0;
3844
3845         spin_lock_irq(&mchdev_lock);
3846
3847         val = __i915_chipset_val(dev_priv);
3848
3849         spin_unlock_irq(&mchdev_lock);
3850
3851         return val;
3852 }
3853
3854 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3855 {
3856         unsigned long m, x, b;
3857         u32 tsfs;
3858
3859         tsfs = I915_READ(TSFS);
3860
3861         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3862         x = I915_READ8(TR1);
3863
3864         b = tsfs & TSFS_INTR_MASK;
3865
3866         return ((m * x) / 127) - b;
3867 }
3868
3869 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3870 {
3871         static const struct v_table {
3872                 u16 vd; /* in .1 mil */
3873                 u16 vm; /* in .1 mil */
3874         } v_table[] = {
3875                 { 0, 0, },
3876                 { 375, 0, },
3877                 { 500, 0, },
3878                 { 625, 0, },
3879                 { 750, 0, },
3880                 { 875, 0, },
3881                 { 1000, 0, },
3882                 { 1125, 0, },
3883                 { 4125, 3000, },
3884                 { 4125, 3000, },
3885                 { 4125, 3000, },
3886                 { 4125, 3000, },
3887                 { 4125, 3000, },
3888                 { 4125, 3000, },
3889                 { 4125, 3000, },
3890                 { 4125, 3000, },
3891                 { 4125, 3000, },
3892                 { 4125, 3000, },
3893                 { 4125, 3000, },
3894                 { 4125, 3000, },
3895                 { 4125, 3000, },
3896                 { 4125, 3000, },
3897                 { 4125, 3000, },
3898                 { 4125, 3000, },
3899                 { 4125, 3000, },
3900                 { 4125, 3000, },
3901                 { 4125, 3000, },
3902                 { 4125, 3000, },
3903                 { 4125, 3000, },
3904                 { 4125, 3000, },
3905                 { 4125, 3000, },
3906                 { 4125, 3000, },
3907                 { 4250, 3125, },
3908                 { 4375, 3250, },
3909                 { 4500, 3375, },
3910                 { 4625, 3500, },
3911                 { 4750, 3625, },
3912                 { 4875, 3750, },
3913                 { 5000, 3875, },
3914                 { 5125, 4000, },
3915                 { 5250, 4125, },
3916                 { 5375, 4250, },
3917                 { 5500, 4375, },
3918                 { 5625, 4500, },
3919                 { 5750, 4625, },
3920                 { 5875, 4750, },
3921                 { 6000, 4875, },
3922                 { 6125, 5000, },
3923                 { 6250, 5125, },
3924                 { 6375, 5250, },
3925                 { 6500, 5375, },
3926                 { 6625, 5500, },
3927                 { 6750, 5625, },
3928                 { 6875, 5750, },
3929                 { 7000, 5875, },
3930                 { 7125, 6000, },
3931                 { 7250, 6125, },
3932                 { 7375, 6250, },
3933                 { 7500, 6375, },
3934                 { 7625, 6500, },
3935                 { 7750, 6625, },
3936                 { 7875, 6750, },
3937                 { 8000, 6875, },
3938                 { 8125, 7000, },
3939                 { 8250, 7125, },
3940                 { 8375, 7250, },
3941                 { 8500, 7375, },
3942                 { 8625, 7500, },
3943                 { 8750, 7625, },
3944                 { 8875, 7750, },
3945                 { 9000, 7875, },
3946                 { 9125, 8000, },
3947                 { 9250, 8125, },
3948                 { 9375, 8250, },
3949                 { 9500, 8375, },
3950                 { 9625, 8500, },
3951                 { 9750, 8625, },
3952                 { 9875, 8750, },
3953                 { 10000, 8875, },
3954                 { 10125, 9000, },
3955                 { 10250, 9125, },
3956                 { 10375, 9250, },
3957                 { 10500, 9375, },
3958                 { 10625, 9500, },
3959                 { 10750, 9625, },
3960                 { 10875, 9750, },
3961                 { 11000, 9875, },
3962                 { 11125, 10000, },
3963                 { 11250, 10125, },
3964                 { 11375, 10250, },
3965                 { 11500, 10375, },
3966                 { 11625, 10500, },
3967                 { 11750, 10625, },
3968                 { 11875, 10750, },
3969                 { 12000, 10875, },
3970                 { 12125, 11000, },
3971                 { 12250, 11125, },
3972                 { 12375, 11250, },
3973                 { 12500, 11375, },
3974                 { 12625, 11500, },
3975                 { 12750, 11625, },
3976                 { 12875, 11750, },
3977                 { 13000, 11875, },
3978                 { 13125, 12000, },
3979                 { 13250, 12125, },
3980                 { 13375, 12250, },
3981                 { 13500, 12375, },
3982                 { 13625, 12500, },
3983                 { 13750, 12625, },
3984                 { 13875, 12750, },
3985                 { 14000, 12875, },
3986                 { 14125, 13000, },
3987                 { 14250, 13125, },
3988                 { 14375, 13250, },
3989                 { 14500, 13375, },
3990                 { 14625, 13500, },
3991                 { 14750, 13625, },
3992                 { 14875, 13750, },
3993                 { 15000, 13875, },
3994                 { 15125, 14000, },
3995                 { 15250, 14125, },
3996                 { 15375, 14250, },
3997                 { 15500, 14375, },
3998                 { 15625, 14500, },
3999                 { 15750, 14625, },
4000                 { 15875, 14750, },
4001                 { 16000, 14875, },
4002                 { 16125, 15000, },
4003         };
4004         if (dev_priv->info->is_mobile)
4005                 return v_table[pxvid].vm;
4006         else
4007                 return v_table[pxvid].vd;
4008 }
4009
4010 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4011 {
4012         struct timespec now, diff1;
4013         u64 diff;
4014         unsigned long diffms;
4015         u32 count;
4016
4017         assert_spin_locked(&mchdev_lock);
4018
4019         getrawmonotonic(&now);
4020         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4021
4022         /* Don't divide by 0 */
4023         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4024         if (!diffms)
4025                 return;
4026
4027         count = I915_READ(GFXEC);
4028
4029         if (count < dev_priv->ips.last_count2) {
4030                 diff = ~0UL - dev_priv->ips.last_count2;
4031                 diff += count;
4032         } else {
4033                 diff = count - dev_priv->ips.last_count2;
4034         }
4035
4036         dev_priv->ips.last_count2 = count;
4037         dev_priv->ips.last_time2 = now;
4038
4039         /* More magic constants... */
4040         diff = diff * 1181;
4041         diff = div_u64(diff, diffms * 10);
4042         dev_priv->ips.gfx_power = diff;
4043 }
4044
4045 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4046 {
4047         if (dev_priv->info->gen != 5)
4048                 return;
4049
4050         spin_lock_irq(&mchdev_lock);
4051
4052         __i915_update_gfx_val(dev_priv);
4053
4054         spin_unlock_irq(&mchdev_lock);
4055 }
4056
4057 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4058 {
4059         unsigned long t, corr, state1, corr2, state2;
4060         u32 pxvid, ext_v;
4061
4062         assert_spin_locked(&mchdev_lock);
4063
4064         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4065         pxvid = (pxvid >> 24) & 0x7f;
4066         ext_v = pvid_to_extvid(dev_priv, pxvid);
4067
4068         state1 = ext_v;
4069
4070         t = i915_mch_val(dev_priv);
4071
4072         /* Revel in the empirically derived constants */
4073
4074         /* Correction factor in 1/100000 units */
4075         if (t > 80)
4076                 corr = ((t * 2349) + 135940);
4077         else if (t >= 50)
4078                 corr = ((t * 964) + 29317);
4079         else /* < 50 */
4080                 corr = ((t * 301) + 1004);
4081
4082         corr = corr * ((150142 * state1) / 10000 - 78642);
4083         corr /= 100000;
4084         corr2 = (corr * dev_priv->ips.corr);
4085
4086         state2 = (corr2 * state1) / 10000;
4087         state2 /= 100; /* convert to mW */
4088
4089         __i915_update_gfx_val(dev_priv);
4090
4091         return dev_priv->ips.gfx_power + state2;
4092 }
4093
4094 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4095 {
4096         unsigned long val;
4097
4098         if (dev_priv->info->gen != 5)
4099                 return 0;
4100
4101         spin_lock_irq(&mchdev_lock);
4102
4103         val = __i915_gfx_val(dev_priv);
4104
4105         spin_unlock_irq(&mchdev_lock);
4106
4107         return val;
4108 }
4109
4110 /**
4111  * i915_read_mch_val - return value for IPS use
4112  *
4113  * Calculate and return a value for the IPS driver to use when deciding whether
4114  * we have thermal and power headroom to increase CPU or GPU power budget.
4115  */
4116 unsigned long i915_read_mch_val(void)
4117 {
4118         struct drm_i915_private *dev_priv;
4119         unsigned long chipset_val, graphics_val, ret = 0;
4120
4121         spin_lock_irq(&mchdev_lock);
4122         if (!i915_mch_dev)
4123                 goto out_unlock;
4124         dev_priv = i915_mch_dev;
4125
4126         chipset_val = __i915_chipset_val(dev_priv);
4127         graphics_val = __i915_gfx_val(dev_priv);
4128
4129         ret = chipset_val + graphics_val;
4130
4131 out_unlock:
4132         spin_unlock_irq(&mchdev_lock);
4133
4134         return ret;
4135 }
4136 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4137
4138 /**
4139  * i915_gpu_raise - raise GPU frequency limit
4140  *
4141  * Raise the limit; IPS indicates we have thermal headroom.
4142  */
4143 bool i915_gpu_raise(void)
4144 {
4145         struct drm_i915_private *dev_priv;
4146         bool ret = true;
4147
4148         spin_lock_irq(&mchdev_lock);
4149         if (!i915_mch_dev) {
4150                 ret = false;
4151                 goto out_unlock;
4152         }
4153         dev_priv = i915_mch_dev;
4154
4155         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4156                 dev_priv->ips.max_delay--;
4157
4158 out_unlock:
4159         spin_unlock_irq(&mchdev_lock);
4160
4161         return ret;
4162 }
4163 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4164
4165 /**
4166  * i915_gpu_lower - lower GPU frequency limit
4167  *
4168  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4169  * frequency maximum.
4170  */
4171 bool i915_gpu_lower(void)
4172 {
4173         struct drm_i915_private *dev_priv;
4174         bool ret = true;
4175
4176         spin_lock_irq(&mchdev_lock);
4177         if (!i915_mch_dev) {
4178                 ret = false;
4179                 goto out_unlock;
4180         }
4181         dev_priv = i915_mch_dev;
4182
4183         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4184                 dev_priv->ips.max_delay++;
4185
4186 out_unlock:
4187         spin_unlock_irq(&mchdev_lock);
4188
4189         return ret;
4190 }
4191 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4192
4193 /**
4194  * i915_gpu_busy - indicate GPU business to IPS
4195  *
4196  * Tell the IPS driver whether or not the GPU is busy.
4197  */
4198 bool i915_gpu_busy(void)
4199 {
4200         struct drm_i915_private *dev_priv;
4201         struct intel_ring_buffer *ring;
4202         bool ret = false;
4203         int i;
4204
4205         spin_lock_irq(&mchdev_lock);
4206         if (!i915_mch_dev)
4207                 goto out_unlock;
4208         dev_priv = i915_mch_dev;
4209
4210         for_each_ring(ring, dev_priv, i)
4211                 ret |= !list_empty(&ring->request_list);
4212
4213 out_unlock:
4214         spin_unlock_irq(&mchdev_lock);
4215
4216         return ret;
4217 }
4218 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4219
4220 /**
4221  * i915_gpu_turbo_disable - disable graphics turbo
4222  *
4223  * Disable graphics turbo by resetting the max frequency and setting the
4224  * current frequency to the default.
4225  */
4226 bool i915_gpu_turbo_disable(void)
4227 {
4228         struct drm_i915_private *dev_priv;
4229         bool ret = true;
4230
4231         spin_lock_irq(&mchdev_lock);
4232         if (!i915_mch_dev) {
4233                 ret = false;
4234                 goto out_unlock;
4235         }
4236         dev_priv = i915_mch_dev;
4237
4238         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4239
4240         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4241                 ret = false;
4242
4243 out_unlock:
4244         spin_unlock_irq(&mchdev_lock);
4245
4246         return ret;
4247 }
4248 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4249
4250 /**
4251  * Tells the intel_ips driver that the i915 driver is now loaded, if
4252  * IPS got loaded first.
4253  *
4254  * This awkward dance is so that neither module has to depend on the
4255  * other in order for IPS to do the appropriate communication of
4256  * GPU turbo limits to i915.
4257  */
4258 static void
4259 ips_ping_for_i915_load(void)
4260 {
4261         void (*link)(void);
4262
4263         link = symbol_get(ips_link_to_i915_driver);
4264         if (link) {
4265                 link();
4266                 symbol_put(ips_link_to_i915_driver);
4267         }
4268 }
4269
4270 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4271 {
4272         /* We only register the i915 ips part with intel-ips once everything is
4273          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4274         spin_lock_irq(&mchdev_lock);
4275         i915_mch_dev = dev_priv;
4276         spin_unlock_irq(&mchdev_lock);
4277
4278         ips_ping_for_i915_load();
4279 }
4280
4281 void intel_gpu_ips_teardown(void)
4282 {
4283         spin_lock_irq(&mchdev_lock);
4284         i915_mch_dev = NULL;
4285         spin_unlock_irq(&mchdev_lock);
4286 }
4287 static void intel_init_emon(struct drm_device *dev)
4288 {
4289         struct drm_i915_private *dev_priv = dev->dev_private;
4290         u32 lcfuse;
4291         u8 pxw[16];
4292         int i;
4293
4294         /* Disable to program */
4295         I915_WRITE(ECR, 0);
4296         POSTING_READ(ECR);
4297
4298         /* Program energy weights for various events */
4299         I915_WRITE(SDEW, 0x15040d00);
4300         I915_WRITE(CSIEW0, 0x007f0000);
4301         I915_WRITE(CSIEW1, 0x1e220004);
4302         I915_WRITE(CSIEW2, 0x04000004);
4303
4304         for (i = 0; i < 5; i++)
4305                 I915_WRITE(PEW + (i * 4), 0);
4306         for (i = 0; i < 3; i++)
4307                 I915_WRITE(DEW + (i * 4), 0);
4308
4309         /* Program P-state weights to account for frequency power adjustment */
4310         for (i = 0; i < 16; i++) {
4311                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4312                 unsigned long freq = intel_pxfreq(pxvidfreq);
4313                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4314                         PXVFREQ_PX_SHIFT;
4315                 unsigned long val;
4316
4317                 val = vid * vid;
4318                 val *= (freq / 1000);
4319                 val *= 255;
4320                 val /= (127*127*900);
4321                 if (val > 0xff)
4322                         DRM_ERROR("bad pxval: %ld\n", val);
4323                 pxw[i] = val;
4324         }
4325         /* Render standby states get 0 weight */
4326         pxw[14] = 0;
4327         pxw[15] = 0;
4328
4329         for (i = 0; i < 4; i++) {
4330                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4331                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4332                 I915_WRITE(PXW + (i * 4), val);
4333         }
4334
4335         /* Adjust magic regs to magic values (more experimental results) */
4336         I915_WRITE(OGW0, 0);
4337         I915_WRITE(OGW1, 0);
4338         I915_WRITE(EG0, 0x00007f00);
4339         I915_WRITE(EG1, 0x0000000e);
4340         I915_WRITE(EG2, 0x000e0000);
4341         I915_WRITE(EG3, 0x68000300);
4342         I915_WRITE(EG4, 0x42000000);
4343         I915_WRITE(EG5, 0x00140031);
4344         I915_WRITE(EG6, 0);
4345         I915_WRITE(EG7, 0);
4346
4347         for (i = 0; i < 8; i++)
4348                 I915_WRITE(PXWL + (i * 4), 0);
4349
4350         /* Enable PMON + select events */
4351         I915_WRITE(ECR, 0x80000019);
4352
4353         lcfuse = I915_READ(LCFUSE02);
4354
4355         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4356 }
4357
4358 void intel_disable_gt_powersave(struct drm_device *dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361
4362         /* Interrupts should be disabled already to avoid re-arming. */
4363         WARN_ON(dev->irq_enabled);
4364
4365         if (IS_IRONLAKE_M(dev)) {
4366                 ironlake_disable_drps(dev);
4367                 ironlake_disable_rc6(dev);
4368         } else if (INTEL_INFO(dev)->gen >= 6) {
4369                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4370                 cancel_work_sync(&dev_priv->rps.work);
4371                 mutex_lock(&dev_priv->rps.hw_lock);
4372                 if (IS_VALLEYVIEW(dev))
4373                         valleyview_disable_rps(dev);
4374                 else
4375                         gen6_disable_rps(dev);
4376                 dev_priv->rps.enabled = false;
4377                 mutex_unlock(&dev_priv->rps.hw_lock);
4378         }
4379 }
4380
4381 static void intel_gen6_powersave_work(struct work_struct *work)
4382 {
4383         struct drm_i915_private *dev_priv =
4384                 container_of(work, struct drm_i915_private,
4385                              rps.delayed_resume_work.work);
4386         struct drm_device *dev = dev_priv->dev;
4387
4388         mutex_lock(&dev_priv->rps.hw_lock);
4389
4390         if (IS_VALLEYVIEW(dev)) {
4391                 valleyview_enable_rps(dev);
4392         } else if (IS_BROADWELL(dev)) {
4393                 gen8_enable_rps(dev);
4394                 gen6_update_ring_freq(dev);
4395         } else {
4396                 gen6_enable_rps(dev);
4397                 gen6_update_ring_freq(dev);
4398         }
4399         dev_priv->rps.enabled = true;
4400         mutex_unlock(&dev_priv->rps.hw_lock);
4401 }
4402
4403 void intel_enable_gt_powersave(struct drm_device *dev)
4404 {
4405         struct drm_i915_private *dev_priv = dev->dev_private;
4406
4407         if (IS_IRONLAKE_M(dev)) {
4408                 ironlake_enable_drps(dev);
4409                 ironlake_enable_rc6(dev);
4410                 intel_init_emon(dev);
4411         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4412                 /*
4413                  * PCU communication is slow and this doesn't need to be
4414                  * done at any specific time, so do this out of our fast path
4415                  * to make resume and init faster.
4416                  */
4417                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4418                                       round_jiffies_up_relative(HZ));
4419         }
4420 }
4421
4422 static void ibx_init_clock_gating(struct drm_device *dev)
4423 {
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425
4426         /*
4427          * On Ibex Peak and Cougar Point, we need to disable clock
4428          * gating for the panel power sequencer or it will fail to
4429          * start up when no ports are active.
4430          */
4431         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4432 }
4433
4434 static void g4x_disable_trickle_feed(struct drm_device *dev)
4435 {
4436         struct drm_i915_private *dev_priv = dev->dev_private;
4437         int pipe;
4438
4439         for_each_pipe(pipe) {
4440                 I915_WRITE(DSPCNTR(pipe),
4441                            I915_READ(DSPCNTR(pipe)) |
4442                            DISPPLANE_TRICKLE_FEED_DISABLE);
4443                 intel_flush_primary_plane(dev_priv, pipe);
4444         }
4445 }
4446
4447 static void ilk_init_lp_watermarks(struct drm_device *dev)
4448 {
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4452         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4453         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4454
4455         /*
4456          * Don't touch WM1S_LP_EN here.
4457          * Doing so could cause underruns.
4458          */
4459 }
4460
4461 static void ironlake_init_clock_gating(struct drm_device *dev)
4462 {
4463         struct drm_i915_private *dev_priv = dev->dev_private;
4464         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4465
4466         /*
4467          * Required for FBC
4468          * WaFbcDisableDpfcClockGating:ilk
4469          */
4470         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4471                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4472                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4473
4474         I915_WRITE(PCH_3DCGDIS0,
4475                    MARIUNIT_CLOCK_GATE_DISABLE |
4476                    SVSMUNIT_CLOCK_GATE_DISABLE);
4477         I915_WRITE(PCH_3DCGDIS1,
4478                    VFMUNIT_CLOCK_GATE_DISABLE);
4479
4480         /*
4481          * According to the spec the following bits should be set in
4482          * order to enable memory self-refresh
4483          * The bit 22/21 of 0x42004
4484          * The bit 5 of 0x42020
4485          * The bit 15 of 0x45000
4486          */
4487         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4488                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4489                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4490         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4491         I915_WRITE(DISP_ARB_CTL,
4492                    (I915_READ(DISP_ARB_CTL) |
4493                     DISP_FBC_WM_DIS));
4494
4495         ilk_init_lp_watermarks(dev);
4496
4497         /*
4498          * Based on the document from hardware guys the following bits
4499          * should be set unconditionally in order to enable FBC.
4500          * The bit 22 of 0x42000
4501          * The bit 22 of 0x42004
4502          * The bit 7,8,9 of 0x42020.
4503          */
4504         if (IS_IRONLAKE_M(dev)) {
4505                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4506                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4507                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4508                            ILK_FBCQ_DIS);
4509                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4510                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4511                            ILK_DPARB_GATE);
4512         }
4513
4514         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4515
4516         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4517                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4518                    ILK_ELPIN_409_SELECT);
4519         I915_WRITE(_3D_CHICKEN2,
4520                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4521                    _3D_CHICKEN2_WM_READ_PIPELINED);
4522
4523         /* WaDisableRenderCachePipelinedFlush:ilk */
4524         I915_WRITE(CACHE_MODE_0,
4525                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4526
4527         g4x_disable_trickle_feed(dev);
4528
4529         ibx_init_clock_gating(dev);
4530 }
4531
4532 static void cpt_init_clock_gating(struct drm_device *dev)
4533 {
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         int pipe;
4536         uint32_t val;
4537
4538         /*
4539          * On Ibex Peak and Cougar Point, we need to disable clock
4540          * gating for the panel power sequencer or it will fail to
4541          * start up when no ports are active.
4542          */
4543         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4544                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4545                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4546         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4547                    DPLS_EDP_PPS_FIX_DIS);
4548         /* The below fixes the weird display corruption, a few pixels shifted
4549          * downward, on (only) LVDS of some HP laptops with IVY.
4550          */
4551         for_each_pipe(pipe) {
4552                 val = I915_READ(TRANS_CHICKEN2(pipe));
4553                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4554                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4555                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4556                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4557                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4558                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4559                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4560                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4561         }
4562         /* WADP0ClockGatingDisable */
4563         for_each_pipe(pipe) {
4564                 I915_WRITE(TRANS_CHICKEN1(pipe),
4565                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4566         }
4567 }
4568
4569 static void gen6_check_mch_setup(struct drm_device *dev)
4570 {
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         uint32_t tmp;
4573
4574         tmp = I915_READ(MCH_SSKPD);
4575         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4576                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4577                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4578                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4579         }
4580 }
4581
4582 static void gen6_init_clock_gating(struct drm_device *dev)
4583 {
4584         struct drm_i915_private *dev_priv = dev->dev_private;
4585         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4586
4587         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4588
4589         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4590                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4591                    ILK_ELPIN_409_SELECT);
4592
4593         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4594         I915_WRITE(_3D_CHICKEN,
4595                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4596
4597         /* WaSetupGtModeTdRowDispatch:snb */
4598         if (IS_SNB_GT1(dev))
4599                 I915_WRITE(GEN6_GT_MODE,
4600                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4601
4602         ilk_init_lp_watermarks(dev);
4603
4604         I915_WRITE(CACHE_MODE_0,
4605                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4606
4607         I915_WRITE(GEN6_UCGCTL1,
4608                    I915_READ(GEN6_UCGCTL1) |
4609                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4610                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4611
4612         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4613          * gating disable must be set.  Failure to set it results in
4614          * flickering pixels due to Z write ordering failures after
4615          * some amount of runtime in the Mesa "fire" demo, and Unigine
4616          * Sanctuary and Tropics, and apparently anything else with
4617          * alpha test or pixel discard.
4618          *
4619          * According to the spec, bit 11 (RCCUNIT) must also be set,
4620          * but we didn't debug actual testcases to find it out.
4621          *
4622          * Also apply WaDisableVDSUnitClockGating:snb and
4623          * WaDisableRCPBUnitClockGating:snb.
4624          */
4625         I915_WRITE(GEN6_UCGCTL2,
4626                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4627                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4628                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4629
4630         /* Bspec says we need to always set all mask bits. */
4631         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4632                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4633
4634         /*
4635          * According to the spec the following bits should be
4636          * set in order to enable memory self-refresh and fbc:
4637          * The bit21 and bit22 of 0x42000
4638          * The bit21 and bit22 of 0x42004
4639          * The bit5 and bit7 of 0x42020
4640          * The bit14 of 0x70180
4641          * The bit14 of 0x71180
4642          *
4643          * WaFbcAsynchFlipDisableFbcQueue:snb
4644          */
4645         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4646                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4647                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4648         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4649                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4650                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4651         I915_WRITE(ILK_DSPCLK_GATE_D,
4652                    I915_READ(ILK_DSPCLK_GATE_D) |
4653                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4654                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4655
4656         g4x_disable_trickle_feed(dev);
4657
4658         /* The default value should be 0x200 according to docs, but the two
4659          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4660         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4661         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4662
4663         cpt_init_clock_gating(dev);
4664
4665         gen6_check_mch_setup(dev);
4666 }
4667
4668 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4669 {
4670         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4671
4672         reg &= ~GEN7_FF_SCHED_MASK;
4673         reg |= GEN7_FF_TS_SCHED_HW;
4674         reg |= GEN7_FF_VS_SCHED_HW;
4675         reg |= GEN7_FF_DS_SCHED_HW;
4676
4677         if (IS_HASWELL(dev_priv->dev))
4678                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4679
4680         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4681 }
4682
4683 static void lpt_init_clock_gating(struct drm_device *dev)
4684 {
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686
4687         /*
4688          * TODO: this bit should only be enabled when really needed, then
4689          * disabled when not needed anymore in order to save power.
4690          */
4691         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4692                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4693                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4694                            PCH_LP_PARTITION_LEVEL_DISABLE);
4695
4696         /* WADPOClockGatingDisable:hsw */
4697         I915_WRITE(_TRANSA_CHICKEN1,
4698                    I915_READ(_TRANSA_CHICKEN1) |
4699                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4700 }
4701
4702 static void lpt_suspend_hw(struct drm_device *dev)
4703 {
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705
4706         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4707                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4708
4709                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4710                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4711         }
4712 }
4713
4714 static void gen8_init_clock_gating(struct drm_device *dev)
4715 {
4716         struct drm_i915_private *dev_priv = dev->dev_private;
4717         enum pipe i;
4718
4719         I915_WRITE(WM3_LP_ILK, 0);
4720         I915_WRITE(WM2_LP_ILK, 0);
4721         I915_WRITE(WM1_LP_ILK, 0);
4722
4723         /* FIXME(BDW): Check all the w/a, some might only apply to
4724          * pre-production hw. */
4725
4726         WARN(!i915_preliminary_hw_support,
4727              "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
4728         I915_WRITE(HALF_SLICE_CHICKEN3,
4729                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4730         I915_WRITE(HALF_SLICE_CHICKEN3,
4731                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4732         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4733
4734         I915_WRITE(_3D_CHICKEN3,
4735                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4736
4737         I915_WRITE(COMMON_SLICE_CHICKEN2,
4738                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4739
4740         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4741                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4742
4743         /* WaSwitchSolVfFArbitrationPriority:bdw */
4744         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4745
4746         /* WaPsrDPAMaskVBlankInSRD:bdw */
4747         I915_WRITE(CHICKEN_PAR1_1,
4748                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4749
4750         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4751         for_each_pipe(i) {
4752                 I915_WRITE(CHICKEN_PIPESL_1(i),
4753                            I915_READ(CHICKEN_PIPESL_1(i) |
4754                                      DPRS_MASK_VBLANK_SRD));
4755         }
4756
4757         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4758          * workaround for for a possible hang in the unlikely event a TLB
4759          * invalidation occurs during a PSD flush.
4760          */
4761         I915_WRITE(HDC_CHICKEN0,
4762                    I915_READ(HDC_CHICKEN0) |
4763                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4764
4765         /* WaVSRefCountFullforceMissDisable:bdw */
4766         /* WaDSRefCountFullforceMissDisable:bdw */
4767         I915_WRITE(GEN7_FF_THREAD_MODE,
4768                    I915_READ(GEN7_FF_THREAD_MODE) &
4769                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4770 }
4771
4772 static void haswell_init_clock_gating(struct drm_device *dev)
4773 {
4774         struct drm_i915_private *dev_priv = dev->dev_private;
4775
4776         ilk_init_lp_watermarks(dev);
4777
4778         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4779          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4780          */
4781         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4782
4783         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4784         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4785                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4786
4787         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4788         I915_WRITE(GEN7_L3CNTLREG1,
4789                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4790         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4791                         GEN7_WA_L3_CHICKEN_MODE);
4792
4793         /* L3 caching of data atomics doesn't work -- disable it. */
4794         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4795         I915_WRITE(HSW_ROW_CHICKEN3,
4796                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4797
4798         /* This is required by WaCatErrorRejectionIssue:hsw */
4799         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4800                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4801                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4802
4803         /* WaVSRefCountFullforceMissDisable:hsw */
4804         gen7_setup_fixed_func_scheduler(dev_priv);
4805
4806         /* WaDisable4x2SubspanOptimization:hsw */
4807         I915_WRITE(CACHE_MODE_1,
4808                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4809
4810         /* WaSwitchSolVfFArbitrationPriority:hsw */
4811         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4812
4813         /* WaRsPkgCStateDisplayPMReq:hsw */
4814         I915_WRITE(CHICKEN_PAR1_1,
4815                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4816
4817         lpt_init_clock_gating(dev);
4818 }
4819
4820 static void ivybridge_init_clock_gating(struct drm_device *dev)
4821 {
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823         uint32_t snpcr;
4824
4825         ilk_init_lp_watermarks(dev);
4826
4827         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4828
4829         /* WaDisableEarlyCull:ivb */
4830         I915_WRITE(_3D_CHICKEN3,
4831                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4832
4833         /* WaDisableBackToBackFlipFix:ivb */
4834         I915_WRITE(IVB_CHICKEN3,
4835                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4836                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4837
4838         /* WaDisablePSDDualDispatchEnable:ivb */
4839         if (IS_IVB_GT1(dev))
4840                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4841                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4842         else
4843                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4844                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4845
4846         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4847         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4848                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4849
4850         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4851         I915_WRITE(GEN7_L3CNTLREG1,
4852                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4853         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4854                    GEN7_WA_L3_CHICKEN_MODE);
4855         if (IS_IVB_GT1(dev))
4856                 I915_WRITE(GEN7_ROW_CHICKEN2,
4857                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4858         else
4859                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4860                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4861
4862
4863         /* WaForceL3Serialization:ivb */
4864         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4865                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4866
4867         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4868          * gating disable must be set.  Failure to set it results in
4869          * flickering pixels due to Z write ordering failures after
4870          * some amount of runtime in the Mesa "fire" demo, and Unigine
4871          * Sanctuary and Tropics, and apparently anything else with
4872          * alpha test or pixel discard.
4873          *
4874          * According to the spec, bit 11 (RCCUNIT) must also be set,
4875          * but we didn't debug actual testcases to find it out.
4876          *
4877          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4878          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4879          */
4880         I915_WRITE(GEN6_UCGCTL2,
4881                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4882                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4883
4884         /* This is required by WaCatErrorRejectionIssue:ivb */
4885         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4886                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4887                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4888
4889         g4x_disable_trickle_feed(dev);
4890
4891         /* WaVSRefCountFullforceMissDisable:ivb */
4892         gen7_setup_fixed_func_scheduler(dev_priv);
4893
4894         /* WaDisable4x2SubspanOptimization:ivb */
4895         I915_WRITE(CACHE_MODE_1,
4896                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4897
4898         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4899         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4900         snpcr |= GEN6_MBC_SNPCR_MED;
4901         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4902
4903         if (!HAS_PCH_NOP(dev))
4904                 cpt_init_clock_gating(dev);
4905
4906         gen6_check_mch_setup(dev);
4907 }
4908
4909 static void valleyview_init_clock_gating(struct drm_device *dev)
4910 {
4911         struct drm_i915_private *dev_priv = dev->dev_private;
4912         u32 val;
4913
4914         mutex_lock(&dev_priv->rps.hw_lock);
4915         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4916         mutex_unlock(&dev_priv->rps.hw_lock);
4917         switch ((val >> 6) & 3) {
4918         case 0:
4919                 dev_priv->mem_freq = 800;
4920                 break;
4921         case 1:
4922                 dev_priv->mem_freq = 1066;
4923                 break;
4924         case 2:
4925                 dev_priv->mem_freq = 1333;
4926                 break;
4927         case 3:
4928                 dev_priv->mem_freq = 1333;
4929                 break;
4930         }
4931         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4932
4933         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4934
4935         /* WaDisableEarlyCull:vlv */
4936         I915_WRITE(_3D_CHICKEN3,
4937                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4938
4939         /* WaDisableBackToBackFlipFix:vlv */
4940         I915_WRITE(IVB_CHICKEN3,
4941                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4942                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4943
4944         /* WaDisablePSDDualDispatchEnable:vlv */
4945         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4946                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4947                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4948
4949         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4950         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4951                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4952
4953         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4954         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4955         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4956
4957         /* WaForceL3Serialization:vlv */
4958         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4959                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4960
4961         /* WaDisableDopClockGating:vlv */
4962         I915_WRITE(GEN7_ROW_CHICKEN2,
4963                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4964
4965         /* This is required by WaCatErrorRejectionIssue:vlv */
4966         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4967                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4968                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4969
4970         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4971          * gating disable must be set.  Failure to set it results in
4972          * flickering pixels due to Z write ordering failures after
4973          * some amount of runtime in the Mesa "fire" demo, and Unigine
4974          * Sanctuary and Tropics, and apparently anything else with
4975          * alpha test or pixel discard.
4976          *
4977          * According to the spec, bit 11 (RCCUNIT) must also be set,
4978          * but we didn't debug actual testcases to find it out.
4979          *
4980          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4981          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4982          *
4983          * Also apply WaDisableVDSUnitClockGating:vlv and
4984          * WaDisableRCPBUnitClockGating:vlv.
4985          */
4986         I915_WRITE(GEN6_UCGCTL2,
4987                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4988                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4989                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4990                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4991                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4992
4993         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4994
4995         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4996
4997         I915_WRITE(CACHE_MODE_1,
4998                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4999
5000         /*
5001          * WaDisableVLVClockGating_VBIIssue:vlv
5002          * Disable clock gating on th GCFG unit to prevent a delay
5003          * in the reporting of vblank events.
5004          */
5005         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5006
5007         /* Conservative clock gating settings for now */
5008         I915_WRITE(0x9400, 0xffffffff);
5009         I915_WRITE(0x9404, 0xffffffff);
5010         I915_WRITE(0x9408, 0xffffffff);
5011         I915_WRITE(0x940c, 0xffffffff);
5012         I915_WRITE(0x9410, 0xffffffff);
5013         I915_WRITE(0x9414, 0xffffffff);
5014         I915_WRITE(0x9418, 0xffffffff);
5015 }
5016
5017 static void g4x_init_clock_gating(struct drm_device *dev)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020         uint32_t dspclk_gate;
5021
5022         I915_WRITE(RENCLK_GATE_D1, 0);
5023         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5024                    GS_UNIT_CLOCK_GATE_DISABLE |
5025                    CL_UNIT_CLOCK_GATE_DISABLE);
5026         I915_WRITE(RAMCLK_GATE_D, 0);
5027         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5028                 OVRUNIT_CLOCK_GATE_DISABLE |
5029                 OVCUNIT_CLOCK_GATE_DISABLE;
5030         if (IS_GM45(dev))
5031                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5032         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5033
5034         /* WaDisableRenderCachePipelinedFlush */
5035         I915_WRITE(CACHE_MODE_0,
5036                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5037
5038         g4x_disable_trickle_feed(dev);
5039 }
5040
5041 static void crestline_init_clock_gating(struct drm_device *dev)
5042 {
5043         struct drm_i915_private *dev_priv = dev->dev_private;
5044
5045         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5046         I915_WRITE(RENCLK_GATE_D2, 0);
5047         I915_WRITE(DSPCLK_GATE_D, 0);
5048         I915_WRITE(RAMCLK_GATE_D, 0);
5049         I915_WRITE16(DEUC, 0);
5050         I915_WRITE(MI_ARB_STATE,
5051                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5052 }
5053
5054 static void broadwater_init_clock_gating(struct drm_device *dev)
5055 {
5056         struct drm_i915_private *dev_priv = dev->dev_private;
5057
5058         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5059                    I965_RCC_CLOCK_GATE_DISABLE |
5060                    I965_RCPB_CLOCK_GATE_DISABLE |
5061                    I965_ISC_CLOCK_GATE_DISABLE |
5062                    I965_FBC_CLOCK_GATE_DISABLE);
5063         I915_WRITE(RENCLK_GATE_D2, 0);
5064         I915_WRITE(MI_ARB_STATE,
5065                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5066 }
5067
5068 static void gen3_init_clock_gating(struct drm_device *dev)
5069 {
5070         struct drm_i915_private *dev_priv = dev->dev_private;
5071         u32 dstate = I915_READ(D_STATE);
5072
5073         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5074                 DSTATE_DOT_CLOCK_GATING;
5075         I915_WRITE(D_STATE, dstate);
5076
5077         if (IS_PINEVIEW(dev))
5078                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5079
5080         /* IIR "flip pending" means done if this bit is set */
5081         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5082 }
5083
5084 static void i85x_init_clock_gating(struct drm_device *dev)
5085 {
5086         struct drm_i915_private *dev_priv = dev->dev_private;
5087
5088         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5089 }
5090
5091 static void i830_init_clock_gating(struct drm_device *dev)
5092 {
5093         struct drm_i915_private *dev_priv = dev->dev_private;
5094
5095         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5096 }
5097
5098 void intel_init_clock_gating(struct drm_device *dev)
5099 {
5100         struct drm_i915_private *dev_priv = dev->dev_private;
5101
5102         dev_priv->display.init_clock_gating(dev);
5103 }
5104
5105 void intel_suspend_hw(struct drm_device *dev)
5106 {
5107         if (HAS_PCH_LPT(dev))
5108                 lpt_suspend_hw(dev);
5109 }
5110
5111 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5112         for (i = 0;                                                     \
5113              i < (power_domains)->power_well_count &&                   \
5114                  ((power_well) = &(power_domains)->power_wells[i]);     \
5115              i++)                                                       \
5116                 if ((power_well)->domains & (domain_mask))
5117
5118 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5119         for (i = (power_domains)->power_well_count - 1;                  \
5120              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5121              i--)                                                        \
5122                 if ((power_well)->domains & (domain_mask))
5123
5124 /**
5125  * We should only use the power well if we explicitly asked the hardware to
5126  * enable it, so check if it's enabled and also check if we've requested it to
5127  * be enabled.
5128  */
5129 static bool hsw_power_well_enabled(struct drm_device *dev,
5130                                    struct i915_power_well *power_well)
5131 {
5132         struct drm_i915_private *dev_priv = dev->dev_private;
5133
5134         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5135                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5136 }
5137
5138 bool intel_display_power_enabled_sw(struct drm_device *dev,
5139                                     enum intel_display_power_domain domain)
5140 {
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         struct i915_power_domains *power_domains;
5143
5144         power_domains = &dev_priv->power_domains;
5145
5146         return power_domains->domain_use_count[domain];
5147 }
5148
5149 bool intel_display_power_enabled(struct drm_device *dev,
5150                                  enum intel_display_power_domain domain)
5151 {
5152         struct drm_i915_private *dev_priv = dev->dev_private;
5153         struct i915_power_domains *power_domains;
5154         struct i915_power_well *power_well;
5155         bool is_enabled;
5156         int i;
5157
5158         power_domains = &dev_priv->power_domains;
5159
5160         is_enabled = true;
5161
5162         mutex_lock(&power_domains->lock);
5163         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5164                 if (power_well->always_on)
5165                         continue;
5166
5167                 if (!power_well->is_enabled(dev, power_well)) {
5168                         is_enabled = false;
5169                         break;
5170                 }
5171         }
5172         mutex_unlock(&power_domains->lock);
5173
5174         return is_enabled;
5175 }
5176
5177 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5178 {
5179         struct drm_device *dev = dev_priv->dev;
5180         unsigned long irqflags;
5181
5182         /*
5183          * After we re-enable the power well, if we touch VGA register 0x3d5
5184          * we'll get unclaimed register interrupts. This stops after we write
5185          * anything to the VGA MSR register. The vgacon module uses this
5186          * register all the time, so if we unbind our driver and, as a
5187          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5188          * console_unlock(). So make here we touch the VGA MSR register, making
5189          * sure vgacon can keep working normally without triggering interrupts
5190          * and error messages.
5191          */
5192         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5193         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5194         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5195
5196         if (IS_BROADWELL(dev)) {
5197                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5198                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5199                            dev_priv->de_irq_mask[PIPE_B]);
5200                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5201                            ~dev_priv->de_irq_mask[PIPE_B] |
5202                            GEN8_PIPE_VBLANK);
5203                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5204                            dev_priv->de_irq_mask[PIPE_C]);
5205                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5206                            ~dev_priv->de_irq_mask[PIPE_C] |
5207                            GEN8_PIPE_VBLANK);
5208                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5209                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5210         }
5211 }
5212
5213 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5214 {
5215         struct drm_device *dev = dev_priv->dev;
5216         enum pipe p;
5217         unsigned long irqflags;
5218
5219         /*
5220          * After this, the registers on the pipes that are part of the power
5221          * well will become zero, so we have to adjust our counters according to
5222          * that.
5223          *
5224          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5225          */
5226         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5227         for_each_pipe(p)
5228                 if (p != PIPE_A)
5229                         dev->vblank[p].last = 0;
5230         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5231 }
5232
5233 static void hsw_set_power_well(struct drm_device *dev,
5234                                struct i915_power_well *power_well, bool enable)
5235 {
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         bool is_enabled, enable_requested;
5238         uint32_t tmp;
5239
5240         WARN_ON(dev_priv->pc8.enabled);
5241
5242         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5243         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5244         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5245
5246         if (enable) {
5247                 if (!enable_requested)
5248                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5249                                    HSW_PWR_WELL_ENABLE_REQUEST);
5250
5251                 if (!is_enabled) {
5252                         DRM_DEBUG_KMS("Enabling power well\n");
5253                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5254                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5255                                 DRM_ERROR("Timeout enabling power well\n");
5256                 }
5257
5258                 hsw_power_well_post_enable(dev_priv);
5259         } else {
5260                 if (enable_requested) {
5261                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5262                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5263                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5264
5265                         hsw_power_well_post_disable(dev_priv);
5266                 }
5267         }
5268 }
5269
5270 static void __intel_power_well_get(struct drm_device *dev,
5271                                    struct i915_power_well *power_well)
5272 {
5273         struct drm_i915_private *dev_priv = dev->dev_private;
5274
5275         if (!power_well->count++ && power_well->set) {
5276                 hsw_disable_package_c8(dev_priv);
5277                 power_well->set(dev, power_well, true);
5278         }
5279 }
5280
5281 static void __intel_power_well_put(struct drm_device *dev,
5282                                    struct i915_power_well *power_well)
5283 {
5284         struct drm_i915_private *dev_priv = dev->dev_private;
5285
5286         WARN_ON(!power_well->count);
5287
5288         if (!--power_well->count && power_well->set &&
5289             i915_disable_power_well) {
5290                 power_well->set(dev, power_well, false);
5291                 hsw_enable_package_c8(dev_priv);
5292         }
5293 }
5294
5295 void intel_display_power_get(struct drm_device *dev,
5296                              enum intel_display_power_domain domain)
5297 {
5298         struct drm_i915_private *dev_priv = dev->dev_private;
5299         struct i915_power_domains *power_domains;
5300         struct i915_power_well *power_well;
5301         int i;
5302
5303         power_domains = &dev_priv->power_domains;
5304
5305         mutex_lock(&power_domains->lock);
5306
5307         for_each_power_well(i, power_well, BIT(domain), power_domains)
5308                 __intel_power_well_get(dev, power_well);
5309
5310         power_domains->domain_use_count[domain]++;
5311
5312         mutex_unlock(&power_domains->lock);
5313 }
5314
5315 void intel_display_power_put(struct drm_device *dev,
5316                              enum intel_display_power_domain domain)
5317 {
5318         struct drm_i915_private *dev_priv = dev->dev_private;
5319         struct i915_power_domains *power_domains;
5320         struct i915_power_well *power_well;
5321         int i;
5322
5323         power_domains = &dev_priv->power_domains;
5324
5325         mutex_lock(&power_domains->lock);
5326
5327         WARN_ON(!power_domains->domain_use_count[domain]);
5328         power_domains->domain_use_count[domain]--;
5329
5330         for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5331                 __intel_power_well_put(dev, power_well);
5332
5333         mutex_unlock(&power_domains->lock);
5334 }
5335
5336 static struct i915_power_domains *hsw_pwr;
5337
5338 /* Display audio driver power well request */
5339 void i915_request_power_well(void)
5340 {
5341         struct drm_i915_private *dev_priv;
5342
5343         if (WARN_ON(!hsw_pwr))
5344                 return;
5345
5346         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5347                                 power_domains);
5348         intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5349 }
5350 EXPORT_SYMBOL_GPL(i915_request_power_well);
5351
5352 /* Display audio driver power well release */
5353 void i915_release_power_well(void)
5354 {
5355         struct drm_i915_private *dev_priv;
5356
5357         if (WARN_ON(!hsw_pwr))
5358                 return;
5359
5360         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5361                                 power_domains);
5362         intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5363 }
5364 EXPORT_SYMBOL_GPL(i915_release_power_well);
5365
5366 static struct i915_power_well i9xx_always_on_power_well[] = {
5367         {
5368                 .name = "always-on",
5369                 .always_on = 1,
5370                 .domains = POWER_DOMAIN_MASK,
5371         },
5372 };
5373
5374 static struct i915_power_well hsw_power_wells[] = {
5375         {
5376                 .name = "always-on",
5377                 .always_on = 1,
5378                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5379         },
5380         {
5381                 .name = "display",
5382                 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5383                 .is_enabled = hsw_power_well_enabled,
5384                 .set = hsw_set_power_well,
5385         },
5386 };
5387
5388 static struct i915_power_well bdw_power_wells[] = {
5389         {
5390                 .name = "always-on",
5391                 .always_on = 1,
5392                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5393         },
5394         {
5395                 .name = "display",
5396                 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5397                 .is_enabled = hsw_power_well_enabled,
5398                 .set = hsw_set_power_well,
5399         },
5400 };
5401
5402 #define set_power_wells(power_domains, __power_wells) ({                \
5403         (power_domains)->power_wells = (__power_wells);                 \
5404         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5405 })
5406
5407 int intel_power_domains_init(struct drm_device *dev)
5408 {
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5411
5412         mutex_init(&power_domains->lock);
5413
5414         /*
5415          * The enabling order will be from lower to higher indexed wells,
5416          * the disabling order is reversed.
5417          */
5418         if (IS_HASWELL(dev)) {
5419                 set_power_wells(power_domains, hsw_power_wells);
5420                 hsw_pwr = power_domains;
5421         } else if (IS_BROADWELL(dev)) {
5422                 set_power_wells(power_domains, bdw_power_wells);
5423                 hsw_pwr = power_domains;
5424         } else {
5425                 set_power_wells(power_domains, i9xx_always_on_power_well);
5426         }
5427
5428         return 0;
5429 }
5430
5431 void intel_power_domains_remove(struct drm_device *dev)
5432 {
5433         hsw_pwr = NULL;
5434 }
5435
5436 static void intel_power_domains_resume(struct drm_device *dev)
5437 {
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5440         struct i915_power_well *power_well;
5441         int i;
5442
5443         mutex_lock(&power_domains->lock);
5444         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5445                 if (power_well->set)
5446                         power_well->set(dev, power_well, power_well->count > 0);
5447         }
5448         mutex_unlock(&power_domains->lock);
5449 }
5450
5451 /*
5452  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5453  * when not needed anymore. We have 4 registers that can request the power well
5454  * to be enabled, and it will only be disabled if none of the registers is
5455  * requesting it to be enabled.
5456  */
5457 void intel_power_domains_init_hw(struct drm_device *dev)
5458 {
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460
5461         /* For now, we need the power well to be always enabled. */
5462         intel_display_set_init_power(dev, true);
5463         intel_power_domains_resume(dev);
5464
5465         if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5466                 return;
5467
5468         /* We're taking over the BIOS, so clear any requests made by it since
5469          * the driver is in charge now. */
5470         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5471                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5472 }
5473
5474 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5475 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5476 {
5477         hsw_disable_package_c8(dev_priv);
5478 }
5479
5480 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5481 {
5482         hsw_enable_package_c8(dev_priv);
5483 }
5484
5485 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5486 {
5487         struct drm_device *dev = dev_priv->dev;
5488         struct device *device = &dev->pdev->dev;
5489
5490         if (!HAS_RUNTIME_PM(dev))
5491                 return;
5492
5493         pm_runtime_get_sync(device);
5494         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5495 }
5496
5497 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5498 {
5499         struct drm_device *dev = dev_priv->dev;
5500         struct device *device = &dev->pdev->dev;
5501
5502         if (!HAS_RUNTIME_PM(dev))
5503                 return;
5504
5505         pm_runtime_mark_last_busy(device);
5506         pm_runtime_put_autosuspend(device);
5507 }
5508
5509 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5510 {
5511         struct drm_device *dev = dev_priv->dev;
5512         struct device *device = &dev->pdev->dev;
5513
5514         dev_priv->pm.suspended = false;
5515
5516         if (!HAS_RUNTIME_PM(dev))
5517                 return;
5518
5519         pm_runtime_set_active(device);
5520
5521         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5522         pm_runtime_mark_last_busy(device);
5523         pm_runtime_use_autosuspend(device);
5524 }
5525
5526 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5527 {
5528         struct drm_device *dev = dev_priv->dev;
5529         struct device *device = &dev->pdev->dev;
5530
5531         if (!HAS_RUNTIME_PM(dev))
5532                 return;
5533
5534         /* Make sure we're not suspended first. */
5535         pm_runtime_get_sync(device);
5536         pm_runtime_disable(device);
5537 }
5538
5539 /* Set up chip specific power management-related functions */
5540 void intel_init_pm(struct drm_device *dev)
5541 {
5542         struct drm_i915_private *dev_priv = dev->dev_private;
5543
5544         if (I915_HAS_FBC(dev)) {
5545                 if (INTEL_INFO(dev)->gen >= 7) {
5546                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5547                         dev_priv->display.enable_fbc = gen7_enable_fbc;
5548                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5549                 } else if (INTEL_INFO(dev)->gen >= 5) {
5550                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5551                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5552                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5553                 } else if (IS_GM45(dev)) {
5554                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5555                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5556                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5557                 } else {
5558                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5559                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5560                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5561
5562                         /* This value was pulled out of someone's hat */
5563                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
5564                 }
5565         }
5566
5567         /* For cxsr */
5568         if (IS_PINEVIEW(dev))
5569                 i915_pineview_get_mem_freq(dev);
5570         else if (IS_GEN5(dev))
5571                 i915_ironlake_get_mem_freq(dev);
5572
5573         /* For FIFO watermark updates */
5574         if (HAS_PCH_SPLIT(dev)) {
5575                 intel_setup_wm_latency(dev);
5576
5577                 if (IS_GEN5(dev)) {
5578                         if (dev_priv->wm.pri_latency[1] &&
5579                             dev_priv->wm.spr_latency[1] &&
5580                             dev_priv->wm.cur_latency[1]) {
5581                                 dev_priv->display.update_wm = haswell_update_wm;
5582                                 dev_priv->display.update_sprite_wm =
5583                                         haswell_update_sprite_wm;
5584                         } else {
5585                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5586                                               "Disable CxSR\n");
5587                                 dev_priv->display.update_wm = NULL;
5588                         }
5589                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5590                 } else if (IS_GEN6(dev)) {
5591                         if (dev_priv->wm.pri_latency[0] &&
5592                             dev_priv->wm.spr_latency[0] &&
5593                             dev_priv->wm.cur_latency[0]) {
5594                                 dev_priv->display.update_wm = haswell_update_wm;
5595                                 dev_priv->display.update_sprite_wm =
5596                                         haswell_update_sprite_wm;
5597                         } else {
5598                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5599                                               "Disable CxSR\n");
5600                                 dev_priv->display.update_wm = NULL;
5601                         }
5602                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5603                 } else if (IS_IVYBRIDGE(dev)) {
5604                         if (dev_priv->wm.pri_latency[0] &&
5605                             dev_priv->wm.spr_latency[0] &&
5606                             dev_priv->wm.cur_latency[0]) {
5607                                 dev_priv->display.update_wm = haswell_update_wm;
5608                                 dev_priv->display.update_sprite_wm =
5609                                         haswell_update_sprite_wm;
5610                         } else {
5611                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5612                                               "Disable CxSR\n");
5613                                 dev_priv->display.update_wm = NULL;
5614                         }
5615                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5616                 } else if (IS_HASWELL(dev)) {
5617                         if (dev_priv->wm.pri_latency[0] &&
5618                             dev_priv->wm.spr_latency[0] &&
5619                             dev_priv->wm.cur_latency[0]) {
5620                                 dev_priv->display.update_wm = haswell_update_wm;
5621                                 dev_priv->display.update_sprite_wm =
5622                                         haswell_update_sprite_wm;
5623                         } else {
5624                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5625                                               "Disable CxSR\n");
5626                                 dev_priv->display.update_wm = NULL;
5627                         }
5628                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5629                 } else if (INTEL_INFO(dev)->gen == 8) {
5630                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
5631                 } else
5632                         dev_priv->display.update_wm = NULL;
5633         } else if (IS_VALLEYVIEW(dev)) {
5634                 dev_priv->display.update_wm = valleyview_update_wm;
5635                 dev_priv->display.init_clock_gating =
5636                         valleyview_init_clock_gating;
5637         } else if (IS_PINEVIEW(dev)) {
5638                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5639                                             dev_priv->is_ddr3,
5640                                             dev_priv->fsb_freq,
5641                                             dev_priv->mem_freq)) {
5642                         DRM_INFO("failed to find known CxSR latency "
5643                                  "(found ddr%s fsb freq %d, mem freq %d), "
5644                                  "disabling CxSR\n",
5645                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5646                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5647                         /* Disable CxSR and never update its watermark again */
5648                         pineview_disable_cxsr(dev);
5649                         dev_priv->display.update_wm = NULL;
5650                 } else
5651                         dev_priv->display.update_wm = pineview_update_wm;
5652                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5653         } else if (IS_G4X(dev)) {
5654                 dev_priv->display.update_wm = g4x_update_wm;
5655                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5656         } else if (IS_GEN4(dev)) {
5657                 dev_priv->display.update_wm = i965_update_wm;
5658                 if (IS_CRESTLINE(dev))
5659                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5660                 else if (IS_BROADWATER(dev))
5661                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5662         } else if (IS_GEN3(dev)) {
5663                 dev_priv->display.update_wm = i9xx_update_wm;
5664                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5665                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5666         } else if (IS_I865G(dev)) {
5667                 dev_priv->display.update_wm = i830_update_wm;
5668                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5669                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5670         } else if (IS_I85X(dev)) {
5671                 dev_priv->display.update_wm = i9xx_update_wm;
5672                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5673                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5674         } else {
5675                 dev_priv->display.update_wm = i830_update_wm;
5676                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5677                 if (IS_845G(dev))
5678                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5679                 else
5680                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5681         }
5682 }
5683
5684 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5685 {
5686         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5687
5688         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5689                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5690                 return -EAGAIN;
5691         }
5692
5693         I915_WRITE(GEN6_PCODE_DATA, *val);
5694         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5695
5696         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5697                      500)) {
5698                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5699                 return -ETIMEDOUT;
5700         }
5701
5702         *val = I915_READ(GEN6_PCODE_DATA);
5703         I915_WRITE(GEN6_PCODE_DATA, 0);
5704
5705         return 0;
5706 }
5707
5708 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5709 {
5710         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5711
5712         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5713                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5714                 return -EAGAIN;
5715         }
5716
5717         I915_WRITE(GEN6_PCODE_DATA, val);
5718         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5719
5720         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5721                      500)) {
5722                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5723                 return -ETIMEDOUT;
5724         }
5725
5726         I915_WRITE(GEN6_PCODE_DATA, 0);
5727
5728         return 0;
5729 }
5730
5731 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
5732 {
5733         int div;
5734
5735         /* 4 x czclk */
5736         switch (dev_priv->mem_freq) {
5737         case 800:
5738                 div = 10;
5739                 break;
5740         case 1066:
5741                 div = 12;
5742                 break;
5743         case 1333:
5744                 div = 16;
5745                 break;
5746         default:
5747                 return -1;
5748         }
5749
5750         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
5751 }
5752
5753 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
5754 {
5755         int mul;
5756
5757         /* 4 x czclk */
5758         switch (dev_priv->mem_freq) {
5759         case 800:
5760                 mul = 10;
5761                 break;
5762         case 1066:
5763                 mul = 12;
5764                 break;
5765         case 1333:
5766                 mul = 16;
5767                 break;
5768         default:
5769                 return -1;
5770         }
5771
5772         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
5773 }
5774
5775 void intel_pm_init(struct drm_device *dev)
5776 {
5777         struct drm_i915_private *dev_priv = dev->dev_private;
5778
5779         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5780                           intel_gen6_powersave_work);
5781 }