]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaDisableSDEUnitClockGating:bxt */
60         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63         /*
64          * FIXME:
65          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66          */
67         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69
70         /*
71          * Wa: Backlight PWM may stop in the asserted state, causing backlight
72          * to stay fully on.
73          */
74         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
75                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
76                            PWM1_GATING_DIS | PWM2_GATING_DIS);
77 }
78
79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81         struct drm_i915_private *dev_priv = dev->dev_private;
82         u32 tmp;
83
84         tmp = I915_READ(CLKCFG);
85
86         switch (tmp & CLKCFG_FSB_MASK) {
87         case CLKCFG_FSB_533:
88                 dev_priv->fsb_freq = 533; /* 133*4 */
89                 break;
90         case CLKCFG_FSB_800:
91                 dev_priv->fsb_freq = 800; /* 200*4 */
92                 break;
93         case CLKCFG_FSB_667:
94                 dev_priv->fsb_freq =  667; /* 167*4 */
95                 break;
96         case CLKCFG_FSB_400:
97                 dev_priv->fsb_freq = 400; /* 100*4 */
98                 break;
99         }
100
101         switch (tmp & CLKCFG_MEM_MASK) {
102         case CLKCFG_MEM_533:
103                 dev_priv->mem_freq = 533;
104                 break;
105         case CLKCFG_MEM_667:
106                 dev_priv->mem_freq = 667;
107                 break;
108         case CLKCFG_MEM_800:
109                 dev_priv->mem_freq = 800;
110                 break;
111         }
112
113         /* detect pineview DDR3 setting */
114         tmp = I915_READ(CSHRDDR3CTL);
115         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         u16 ddrpll, csipll;
122
123         ddrpll = I915_READ16(DDRMPLL1);
124         csipll = I915_READ16(CSIPLL0);
125
126         switch (ddrpll & 0xff) {
127         case 0xc:
128                 dev_priv->mem_freq = 800;
129                 break;
130         case 0x10:
131                 dev_priv->mem_freq = 1066;
132                 break;
133         case 0x14:
134                 dev_priv->mem_freq = 1333;
135                 break;
136         case 0x18:
137                 dev_priv->mem_freq = 1600;
138                 break;
139         default:
140                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141                                  ddrpll & 0xff);
142                 dev_priv->mem_freq = 0;
143                 break;
144         }
145
146         dev_priv->ips.r_t = dev_priv->mem_freq;
147
148         switch (csipll & 0x3ff) {
149         case 0x00c:
150                 dev_priv->fsb_freq = 3200;
151                 break;
152         case 0x00e:
153                 dev_priv->fsb_freq = 3733;
154                 break;
155         case 0x010:
156                 dev_priv->fsb_freq = 4266;
157                 break;
158         case 0x012:
159                 dev_priv->fsb_freq = 4800;
160                 break;
161         case 0x014:
162                 dev_priv->fsb_freq = 5333;
163                 break;
164         case 0x016:
165                 dev_priv->fsb_freq = 5866;
166                 break;
167         case 0x018:
168                 dev_priv->fsb_freq = 6400;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172                                  csipll & 0x3ff);
173                 dev_priv->fsb_freq = 0;
174                 break;
175         }
176
177         if (dev_priv->fsb_freq == 3200) {
178                 dev_priv->ips.c_m = 0;
179         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180                 dev_priv->ips.c_m = 1;
181         } else {
182                 dev_priv->ips.c_m = 2;
183         }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
188         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
189         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
190         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
191         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
192
193         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
194         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
195         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
196         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
197         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
198
199         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
200         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
201         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
202         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
203         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
204
205         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
206         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
207         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
208         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
209         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
210
211         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
212         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
213         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
214         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
215         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
216
217         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
218         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
219         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
220         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
221         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
222 };
223
224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225                                                          int is_ddr3,
226                                                          int fsb,
227                                                          int mem)
228 {
229         const struct cxsr_latency *latency;
230         int i;
231
232         if (fsb == 0 || mem == 0)
233                 return NULL;
234
235         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236                 latency = &cxsr_latency_table[i];
237                 if (is_desktop == latency->is_desktop &&
238                     is_ddr3 == latency->is_ddr3 &&
239                     fsb == latency->fsb_freq && mem == latency->mem_freq)
240                         return latency;
241         }
242
243         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245         return NULL;
246 }
247
248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250         u32 val;
251
252         mutex_lock(&dev_priv->rps.hw_lock);
253
254         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255         if (enable)
256                 val &= ~FORCE_DDR_HIGH_FREQ;
257         else
258                 val |= FORCE_DDR_HIGH_FREQ;
259         val &= ~FORCE_DDR_LOW_FREQ;
260         val |= FORCE_DDR_FREQ_REQ_ACK;
261         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262
263         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266
267         mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269
270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272         u32 val;
273
274         mutex_lock(&dev_priv->rps.hw_lock);
275
276         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277         if (enable)
278                 val |= DSP_MAXFIFO_PM5_ENABLE;
279         else
280                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
281         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282
283         mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 #define FW_WM(value, plane) \
287         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288
289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291         struct drm_device *dev = dev_priv->dev;
292         u32 val;
293
294         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296                 POSTING_READ(FW_BLC_SELF_VLV);
297                 dev_priv->wm.vlv.cxsr = enable;
298         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300                 POSTING_READ(FW_BLC_SELF);
301         } else if (IS_PINEVIEW(dev)) {
302                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304                 I915_WRITE(DSPFW3, val);
305                 POSTING_READ(DSPFW3);
306         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
307                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309                 I915_WRITE(FW_BLC_SELF, val);
310                 POSTING_READ(FW_BLC_SELF);
311         } else if (IS_I915GM(dev)) {
312                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314                 I915_WRITE(INSTPM, val);
315                 POSTING_READ(INSTPM);
316         } else {
317                 return;
318         }
319
320         DRM_DEBUG_KMS("memory self-refresh is %s\n",
321                       enable ? "enabled" : "disabled");
322 }
323
324
325 /*
326  * Latency for FIFO fetches is dependent on several factors:
327  *   - memory configuration (speed, channels)
328  *   - chipset
329  *   - current MCH state
330  * It can be fairly high in some situations, so here we assume a fairly
331  * pessimal value.  It's a tradeoff between extra memory fetches (if we
332  * set this value too high, the FIFO will fetch frequently to stay full)
333  * and power consumption (set it too low to save power and we might see
334  * FIFO underruns and display "flicker").
335  *
336  * A value of 5us seems to be a good balance; safe for very low end
337  * platforms but not overly aggressive on lower latency configs.
338  */
339 static const int pessimal_latency_ns = 5000;
340
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343
344 static int vlv_get_fifo_size(struct drm_device *dev,
345                               enum pipe pipe, int plane)
346 {
347         struct drm_i915_private *dev_priv = dev->dev_private;
348         int sprite0_start, sprite1_start, size;
349
350         switch (pipe) {
351                 uint32_t dsparb, dsparb2, dsparb3;
352         case PIPE_A:
353                 dsparb = I915_READ(DSPARB);
354                 dsparb2 = I915_READ(DSPARB2);
355                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357                 break;
358         case PIPE_B:
359                 dsparb = I915_READ(DSPARB);
360                 dsparb2 = I915_READ(DSPARB2);
361                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363                 break;
364         case PIPE_C:
365                 dsparb2 = I915_READ(DSPARB2);
366                 dsparb3 = I915_READ(DSPARB3);
367                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369                 break;
370         default:
371                 return 0;
372         }
373
374         switch (plane) {
375         case 0:
376                 size = sprite0_start;
377                 break;
378         case 1:
379                 size = sprite1_start - sprite0_start;
380                 break;
381         case 2:
382                 size = 512 - 1 - sprite1_start;
383                 break;
384         default:
385                 return 0;
386         }
387
388         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391                       size);
392
393         return size;
394 }
395
396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398         struct drm_i915_private *dev_priv = dev->dev_private;
399         uint32_t dsparb = I915_READ(DSPARB);
400         int size;
401
402         size = dsparb & 0x7f;
403         if (plane)
404                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405
406         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407                       plane ? "B" : "A", size);
408
409         return size;
410 }
411
412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414         struct drm_i915_private *dev_priv = dev->dev_private;
415         uint32_t dsparb = I915_READ(DSPARB);
416         int size;
417
418         size = dsparb & 0x1ff;
419         if (plane)
420                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421         size >>= 1; /* Convert to cachelines */
422
423         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424                       plane ? "B" : "A", size);
425
426         return size;
427 }
428
429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431         struct drm_i915_private *dev_priv = dev->dev_private;
432         uint32_t dsparb = I915_READ(DSPARB);
433         int size;
434
435         size = dsparb & 0x7f;
436         size >>= 2; /* Convert to cachelines */
437
438         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439                       plane ? "B" : "A",
440                       size);
441
442         return size;
443 }
444
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447         .fifo_size = PINEVIEW_DISPLAY_FIFO,
448         .max_wm = PINEVIEW_MAX_WM,
449         .default_wm = PINEVIEW_DFT_WM,
450         .guard_size = PINEVIEW_GUARD_WM,
451         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454         .fifo_size = PINEVIEW_DISPLAY_FIFO,
455         .max_wm = PINEVIEW_MAX_WM,
456         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457         .guard_size = PINEVIEW_GUARD_WM,
458         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461         .fifo_size = PINEVIEW_CURSOR_FIFO,
462         .max_wm = PINEVIEW_CURSOR_MAX_WM,
463         .default_wm = PINEVIEW_CURSOR_DFT_WM,
464         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
465         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468         .fifo_size = PINEVIEW_CURSOR_FIFO,
469         .max_wm = PINEVIEW_CURSOR_MAX_WM,
470         .default_wm = PINEVIEW_CURSOR_DFT_WM,
471         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475         .fifo_size = G4X_FIFO_SIZE,
476         .max_wm = G4X_MAX_WM,
477         .default_wm = G4X_MAX_WM,
478         .guard_size = 2,
479         .cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482         .fifo_size = I965_CURSOR_FIFO,
483         .max_wm = I965_CURSOR_MAX_WM,
484         .default_wm = I965_CURSOR_DFT_WM,
485         .guard_size = 2,
486         .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489         .fifo_size = VALLEYVIEW_FIFO_SIZE,
490         .max_wm = VALLEYVIEW_MAX_WM,
491         .default_wm = VALLEYVIEW_MAX_WM,
492         .guard_size = 2,
493         .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496         .fifo_size = I965_CURSOR_FIFO,
497         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498         .default_wm = I965_CURSOR_DFT_WM,
499         .guard_size = 2,
500         .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503         .fifo_size = I965_CURSOR_FIFO,
504         .max_wm = I965_CURSOR_MAX_WM,
505         .default_wm = I965_CURSOR_DFT_WM,
506         .guard_size = 2,
507         .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510         .fifo_size = I945_FIFO_SIZE,
511         .max_wm = I915_MAX_WM,
512         .default_wm = 1,
513         .guard_size = 2,
514         .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517         .fifo_size = I915_FIFO_SIZE,
518         .max_wm = I915_MAX_WM,
519         .default_wm = 1,
520         .guard_size = 2,
521         .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524         .fifo_size = I855GM_FIFO_SIZE,
525         .max_wm = I915_MAX_WM,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531         .fifo_size = I855GM_FIFO_SIZE,
532         .max_wm = I915_MAX_WM/2,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538         .fifo_size = I830_FIFO_SIZE,
539         .max_wm = I915_MAX_WM,
540         .default_wm = 1,
541         .guard_size = 2,
542         .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544
545 /**
546  * intel_calculate_wm - calculate watermark level
547  * @clock_in_khz: pixel clock
548  * @wm: chip FIFO params
549  * @pixel_size: display pixel size
550  * @latency_ns: memory latency for the platform
551  *
552  * Calculate the watermark level (the level at which the display plane will
553  * start fetching from memory again).  Each chip has a different display
554  * FIFO size and allocation, so the caller needs to figure that out and pass
555  * in the correct intel_watermark_params structure.
556  *
557  * As the pixel clock runs, the FIFO will be drained at a rate that depends
558  * on the pixel size.  When it reaches the watermark level, it'll start
559  * fetching FIFO line sized based chunks from memory until the FIFO fills
560  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
561  * will occur, and a display engine hang could result.
562  */
563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564                                         const struct intel_watermark_params *wm,
565                                         int fifo_size,
566                                         int pixel_size,
567                                         unsigned long latency_ns)
568 {
569         long entries_required, wm_size;
570
571         /*
572          * Note: we need to make sure we don't overflow for various clock &
573          * latency values.
574          * clocks go from a few thousand to several hundred thousand.
575          * latency is usually a few thousand
576          */
577         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578                 1000;
579         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580
581         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582
583         wm_size = fifo_size - (entries_required + wm->guard_size);
584
585         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586
587         /* Don't promote wm_size to unsigned... */
588         if (wm_size > (long)wm->max_wm)
589                 wm_size = wm->max_wm;
590         if (wm_size <= 0)
591                 wm_size = wm->default_wm;
592
593         /*
594          * Bspec seems to indicate that the value shouldn't be lower than
595          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596          * Lets go for 8 which is the burst size since certain platforms
597          * already use a hardcoded 8 (which is what the spec says should be
598          * done).
599          */
600         if (wm_size <= 8)
601                 wm_size = 8;
602
603         return wm_size;
604 }
605
606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608         struct drm_crtc *crtc, *enabled = NULL;
609
610         for_each_crtc(dev, crtc) {
611                 if (intel_crtc_active(crtc)) {
612                         if (enabled)
613                                 return NULL;
614                         enabled = crtc;
615                 }
616         }
617
618         return enabled;
619 }
620
621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623         struct drm_device *dev = unused_crtc->dev;
624         struct drm_i915_private *dev_priv = dev->dev_private;
625         struct drm_crtc *crtc;
626         const struct cxsr_latency *latency;
627         u32 reg;
628         unsigned long wm;
629
630         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631                                          dev_priv->fsb_freq, dev_priv->mem_freq);
632         if (!latency) {
633                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634                 intel_set_memory_cxsr(dev_priv, false);
635                 return;
636         }
637
638         crtc = single_enabled_crtc(dev);
639         if (crtc) {
640                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642                 int clock = adjusted_mode->crtc_clock;
643
644                 /* Display SR */
645                 wm = intel_calculate_wm(clock, &pineview_display_wm,
646                                         pineview_display_wm.fifo_size,
647                                         pixel_size, latency->display_sr);
648                 reg = I915_READ(DSPFW1);
649                 reg &= ~DSPFW_SR_MASK;
650                 reg |= FW_WM(wm, SR);
651                 I915_WRITE(DSPFW1, reg);
652                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653
654                 /* cursor SR */
655                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656                                         pineview_display_wm.fifo_size,
657                                         pixel_size, latency->cursor_sr);
658                 reg = I915_READ(DSPFW3);
659                 reg &= ~DSPFW_CURSOR_SR_MASK;
660                 reg |= FW_WM(wm, CURSOR_SR);
661                 I915_WRITE(DSPFW3, reg);
662
663                 /* Display HPLL off SR */
664                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665                                         pineview_display_hplloff_wm.fifo_size,
666                                         pixel_size, latency->display_hpll_disable);
667                 reg = I915_READ(DSPFW3);
668                 reg &= ~DSPFW_HPLL_SR_MASK;
669                 reg |= FW_WM(wm, HPLL_SR);
670                 I915_WRITE(DSPFW3, reg);
671
672                 /* cursor HPLL off SR */
673                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674                                         pineview_display_hplloff_wm.fifo_size,
675                                         pixel_size, latency->cursor_hpll_disable);
676                 reg = I915_READ(DSPFW3);
677                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
678                 reg |= FW_WM(wm, HPLL_CURSOR);
679                 I915_WRITE(DSPFW3, reg);
680                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681
682                 intel_set_memory_cxsr(dev_priv, true);
683         } else {
684                 intel_set_memory_cxsr(dev_priv, false);
685         }
686 }
687
688 static bool g4x_compute_wm0(struct drm_device *dev,
689                             int plane,
690                             const struct intel_watermark_params *display,
691                             int display_latency_ns,
692                             const struct intel_watermark_params *cursor,
693                             int cursor_latency_ns,
694                             int *plane_wm,
695                             int *cursor_wm)
696 {
697         struct drm_crtc *crtc;
698         const struct drm_display_mode *adjusted_mode;
699         int htotal, hdisplay, clock, pixel_size;
700         int line_time_us, line_count;
701         int entries, tlb_miss;
702
703         crtc = intel_get_crtc_for_plane(dev, plane);
704         if (!intel_crtc_active(crtc)) {
705                 *cursor_wm = cursor->guard_size;
706                 *plane_wm = display->guard_size;
707                 return false;
708         }
709
710         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711         clock = adjusted_mode->crtc_clock;
712         htotal = adjusted_mode->crtc_htotal;
713         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715
716         /* Use the small buffer method to calculate plane watermark */
717         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719         if (tlb_miss > 0)
720                 entries += tlb_miss;
721         entries = DIV_ROUND_UP(entries, display->cacheline_size);
722         *plane_wm = entries + display->guard_size;
723         if (*plane_wm > (int)display->max_wm)
724                 *plane_wm = display->max_wm;
725
726         /* Use the large buffer method to calculate cursor watermark */
727         line_time_us = max(htotal * 1000 / clock, 1);
728         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731         if (tlb_miss > 0)
732                 entries += tlb_miss;
733         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734         *cursor_wm = entries + cursor->guard_size;
735         if (*cursor_wm > (int)cursor->max_wm)
736                 *cursor_wm = (int)cursor->max_wm;
737
738         return true;
739 }
740
741 /*
742  * Check the wm result.
743  *
744  * If any calculated watermark values is larger than the maximum value that
745  * can be programmed into the associated watermark register, that watermark
746  * must be disabled.
747  */
748 static bool g4x_check_srwm(struct drm_device *dev,
749                            int display_wm, int cursor_wm,
750                            const struct intel_watermark_params *display,
751                            const struct intel_watermark_params *cursor)
752 {
753         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754                       display_wm, cursor_wm);
755
756         if (display_wm > display->max_wm) {
757                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758                               display_wm, display->max_wm);
759                 return false;
760         }
761
762         if (cursor_wm > cursor->max_wm) {
763                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764                               cursor_wm, cursor->max_wm);
765                 return false;
766         }
767
768         if (!(display_wm || cursor_wm)) {
769                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770                 return false;
771         }
772
773         return true;
774 }
775
776 static bool g4x_compute_srwm(struct drm_device *dev,
777                              int plane,
778                              int latency_ns,
779                              const struct intel_watermark_params *display,
780                              const struct intel_watermark_params *cursor,
781                              int *display_wm, int *cursor_wm)
782 {
783         struct drm_crtc *crtc;
784         const struct drm_display_mode *adjusted_mode;
785         int hdisplay, htotal, pixel_size, clock;
786         unsigned long line_time_us;
787         int line_count, line_size;
788         int small, large;
789         int entries;
790
791         if (!latency_ns) {
792                 *display_wm = *cursor_wm = 0;
793                 return false;
794         }
795
796         crtc = intel_get_crtc_for_plane(dev, plane);
797         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798         clock = adjusted_mode->crtc_clock;
799         htotal = adjusted_mode->crtc_htotal;
800         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802
803         line_time_us = max(htotal * 1000 / clock, 1);
804         line_count = (latency_ns / line_time_us + 1000) / 1000;
805         line_size = hdisplay * pixel_size;
806
807         /* Use the minimum of the small and large buffer method for primary */
808         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809         large = line_count * line_size;
810
811         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812         *display_wm = entries + display->guard_size;
813
814         /* calculate the self-refresh watermark for display cursor */
815         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817         *cursor_wm = entries + cursor->guard_size;
818
819         return g4x_check_srwm(dev,
820                               *display_wm, *cursor_wm,
821                               display, cursor);
822 }
823
824 #define FW_WM_VLV(value, plane) \
825         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826
827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828                                 const struct vlv_wm_values *wm)
829 {
830         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831         enum pipe pipe = crtc->pipe;
832
833         I915_WRITE(VLV_DDL(pipe),
834                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838
839         I915_WRITE(DSPFW1,
840                    FW_WM(wm->sr.plane, SR) |
841                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844         I915_WRITE(DSPFW2,
845                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848         I915_WRITE(DSPFW3,
849                    FW_WM(wm->sr.cursor, CURSOR_SR));
850
851         if (IS_CHERRYVIEW(dev_priv)) {
852                 I915_WRITE(DSPFW7_CHV,
853                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855                 I915_WRITE(DSPFW8_CHV,
856                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858                 I915_WRITE(DSPFW9_CHV,
859                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861                 I915_WRITE(DSPHOWM,
862                            FW_WM(wm->sr.plane >> 9, SR_HI) |
863                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872         } else {
873                 I915_WRITE(DSPFW7,
874                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876                 I915_WRITE(DSPHOWM,
877                            FW_WM(wm->sr.plane >> 9, SR_HI) |
878                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884         }
885
886         /* zero (unused) WM1 watermarks */
887         I915_WRITE(DSPFW4, 0);
888         I915_WRITE(DSPFW5, 0);
889         I915_WRITE(DSPFW6, 0);
890         I915_WRITE(DSPHOWM1, 0);
891
892         POSTING_READ(DSPFW1);
893 }
894
895 #undef FW_WM_VLV
896
897 enum vlv_wm_level {
898         VLV_WM_LEVEL_PM2,
899         VLV_WM_LEVEL_PM5,
900         VLV_WM_LEVEL_DDR_DVFS,
901 };
902
903 /* latency must be in 0.1us units. */
904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905                                    unsigned int pipe_htotal,
906                                    unsigned int horiz_pixels,
907                                    unsigned int bytes_per_pixel,
908                                    unsigned int latency)
909 {
910         unsigned int ret;
911
912         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914         ret = DIV_ROUND_UP(ret, 64);
915
916         return ret;
917 }
918
919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921         struct drm_i915_private *dev_priv = dev->dev_private;
922
923         /* all latencies in usec */
924         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925
926         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927
928         if (IS_CHERRYVIEW(dev_priv)) {
929                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931
932                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933         }
934 }
935
936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937                                      struct intel_crtc *crtc,
938                                      const struct intel_plane_state *state,
939                                      int level)
940 {
941         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942         int clock, htotal, pixel_size, width, wm;
943
944         if (dev_priv->wm.pri_latency[level] == 0)
945                 return USHRT_MAX;
946
947         if (!state->visible)
948                 return 0;
949
950         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951         clock = crtc->config->base.adjusted_mode.crtc_clock;
952         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953         width = crtc->config->pipe_src_w;
954         if (WARN_ON(htotal == 0))
955                 htotal = 1;
956
957         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958                 /*
959                  * FIXME the formula gives values that are
960                  * too big for the cursor FIFO, and hence we
961                  * would never be able to use cursors. For
962                  * now just hardcode the watermark.
963                  */
964                 wm = 63;
965         } else {
966                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967                                     dev_priv->wm.pri_latency[level] * 10);
968         }
969
970         return min_t(int, wm, USHRT_MAX);
971 }
972
973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975         struct drm_device *dev = crtc->base.dev;
976         struct vlv_wm_state *wm_state = &crtc->wm_state;
977         struct intel_plane *plane;
978         unsigned int total_rate = 0;
979         const int fifo_size = 512 - 1;
980         int fifo_extra, fifo_left = fifo_size;
981
982         for_each_intel_plane_on_crtc(dev, crtc, plane) {
983                 struct intel_plane_state *state =
984                         to_intel_plane_state(plane->base.state);
985
986                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987                         continue;
988
989                 if (state->visible) {
990                         wm_state->num_active_planes++;
991                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992                 }
993         }
994
995         for_each_intel_plane_on_crtc(dev, crtc, plane) {
996                 struct intel_plane_state *state =
997                         to_intel_plane_state(plane->base.state);
998                 unsigned int rate;
999
1000                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001                         plane->wm.fifo_size = 63;
1002                         continue;
1003                 }
1004
1005                 if (!state->visible) {
1006                         plane->wm.fifo_size = 0;
1007                         continue;
1008                 }
1009
1010                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1012                 fifo_left -= plane->wm.fifo_size;
1013         }
1014
1015         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016
1017         /* spread the remainder evenly */
1018         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019                 int plane_extra;
1020
1021                 if (fifo_left == 0)
1022                         break;
1023
1024                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025                         continue;
1026
1027                 /* give it all to the first plane if none are active */
1028                 if (plane->wm.fifo_size == 0 &&
1029                     wm_state->num_active_planes)
1030                         continue;
1031
1032                 plane_extra = min(fifo_extra, fifo_left);
1033                 plane->wm.fifo_size += plane_extra;
1034                 fifo_left -= plane_extra;
1035         }
1036
1037         WARN_ON(fifo_left != 0);
1038 }
1039
1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042         struct vlv_wm_state *wm_state = &crtc->wm_state;
1043         int level;
1044
1045         for (level = 0; level < wm_state->num_levels; level++) {
1046                 struct drm_device *dev = crtc->base.dev;
1047                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048                 struct intel_plane *plane;
1049
1050                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052
1053                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054                         switch (plane->base.type) {
1055                                 int sprite;
1056                         case DRM_PLANE_TYPE_CURSOR:
1057                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1058                                         wm_state->wm[level].cursor;
1059                                 break;
1060                         case DRM_PLANE_TYPE_PRIMARY:
1061                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1062                                         wm_state->wm[level].primary;
1063                                 break;
1064                         case DRM_PLANE_TYPE_OVERLAY:
1065                                 sprite = plane->plane;
1066                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067                                         wm_state->wm[level].sprite[sprite];
1068                                 break;
1069                         }
1070                 }
1071         }
1072 }
1073
1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076         struct drm_device *dev = crtc->base.dev;
1077         struct vlv_wm_state *wm_state = &crtc->wm_state;
1078         struct intel_plane *plane;
1079         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080         int level;
1081
1082         memset(wm_state, 0, sizeof(*wm_state));
1083
1084         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086
1087         wm_state->num_active_planes = 0;
1088
1089         vlv_compute_fifo(crtc);
1090
1091         if (wm_state->num_active_planes != 1)
1092                 wm_state->cxsr = false;
1093
1094         if (wm_state->cxsr) {
1095                 for (level = 0; level < wm_state->num_levels; level++) {
1096                         wm_state->sr[level].plane = sr_fifo_size;
1097                         wm_state->sr[level].cursor = 63;
1098                 }
1099         }
1100
1101         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102                 struct intel_plane_state *state =
1103                         to_intel_plane_state(plane->base.state);
1104
1105                 if (!state->visible)
1106                         continue;
1107
1108                 /* normal watermarks */
1109                 for (level = 0; level < wm_state->num_levels; level++) {
1110                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112
1113                         /* hack */
1114                         if (WARN_ON(level == 0 && wm > max_wm))
1115                                 wm = max_wm;
1116
1117                         if (wm > plane->wm.fifo_size)
1118                                 break;
1119
1120                         switch (plane->base.type) {
1121                                 int sprite;
1122                         case DRM_PLANE_TYPE_CURSOR:
1123                                 wm_state->wm[level].cursor = wm;
1124                                 break;
1125                         case DRM_PLANE_TYPE_PRIMARY:
1126                                 wm_state->wm[level].primary = wm;
1127                                 break;
1128                         case DRM_PLANE_TYPE_OVERLAY:
1129                                 sprite = plane->plane;
1130                                 wm_state->wm[level].sprite[sprite] = wm;
1131                                 break;
1132                         }
1133                 }
1134
1135                 wm_state->num_levels = level;
1136
1137                 if (!wm_state->cxsr)
1138                         continue;
1139
1140                 /* maxfifo watermarks */
1141                 switch (plane->base.type) {
1142                         int sprite, level;
1143                 case DRM_PLANE_TYPE_CURSOR:
1144                         for (level = 0; level < wm_state->num_levels; level++)
1145                                 wm_state->sr[level].cursor =
1146                                         wm_state->wm[level].cursor;
1147                         break;
1148                 case DRM_PLANE_TYPE_PRIMARY:
1149                         for (level = 0; level < wm_state->num_levels; level++)
1150                                 wm_state->sr[level].plane =
1151                                         min(wm_state->sr[level].plane,
1152                                             wm_state->wm[level].primary);
1153                         break;
1154                 case DRM_PLANE_TYPE_OVERLAY:
1155                         sprite = plane->plane;
1156                         for (level = 0; level < wm_state->num_levels; level++)
1157                                 wm_state->sr[level].plane =
1158                                         min(wm_state->sr[level].plane,
1159                                             wm_state->wm[level].sprite[sprite]);
1160                         break;
1161                 }
1162         }
1163
1164         /* clear any (partially) filled invalid levels */
1165         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168         }
1169
1170         vlv_invert_wms(crtc);
1171 }
1172
1173 #define VLV_FIFO(plane, value) \
1174         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175
1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178         struct drm_device *dev = crtc->base.dev;
1179         struct drm_i915_private *dev_priv = to_i915(dev);
1180         struct intel_plane *plane;
1181         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182
1183         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185                         WARN_ON(plane->wm.fifo_size != 63);
1186                         continue;
1187                 }
1188
1189                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190                         sprite0_start = plane->wm.fifo_size;
1191                 else if (plane->plane == 0)
1192                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1193                 else
1194                         fifo_size = sprite1_start + plane->wm.fifo_size;
1195         }
1196
1197         WARN_ON(fifo_size != 512 - 1);
1198
1199         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200                       pipe_name(crtc->pipe), sprite0_start,
1201                       sprite1_start, fifo_size);
1202
1203         switch (crtc->pipe) {
1204                 uint32_t dsparb, dsparb2, dsparb3;
1205         case PIPE_A:
1206                 dsparb = I915_READ(DSPARB);
1207                 dsparb2 = I915_READ(DSPARB2);
1208
1209                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210                             VLV_FIFO(SPRITEB, 0xff));
1211                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212                            VLV_FIFO(SPRITEB, sprite1_start));
1213
1214                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215                              VLV_FIFO(SPRITEB_HI, 0x1));
1216                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218
1219                 I915_WRITE(DSPARB, dsparb);
1220                 I915_WRITE(DSPARB2, dsparb2);
1221                 break;
1222         case PIPE_B:
1223                 dsparb = I915_READ(DSPARB);
1224                 dsparb2 = I915_READ(DSPARB2);
1225
1226                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227                             VLV_FIFO(SPRITED, 0xff));
1228                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229                            VLV_FIFO(SPRITED, sprite1_start));
1230
1231                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232                              VLV_FIFO(SPRITED_HI, 0xff));
1233                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235
1236                 I915_WRITE(DSPARB, dsparb);
1237                 I915_WRITE(DSPARB2, dsparb2);
1238                 break;
1239         case PIPE_C:
1240                 dsparb3 = I915_READ(DSPARB3);
1241                 dsparb2 = I915_READ(DSPARB2);
1242
1243                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244                              VLV_FIFO(SPRITEF, 0xff));
1245                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246                             VLV_FIFO(SPRITEF, sprite1_start));
1247
1248                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249                              VLV_FIFO(SPRITEF_HI, 0xff));
1250                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252
1253                 I915_WRITE(DSPARB3, dsparb3);
1254                 I915_WRITE(DSPARB2, dsparb2);
1255                 break;
1256         default:
1257                 break;
1258         }
1259 }
1260
1261 #undef VLV_FIFO
1262
1263 static void vlv_merge_wm(struct drm_device *dev,
1264                          struct vlv_wm_values *wm)
1265 {
1266         struct intel_crtc *crtc;
1267         int num_active_crtcs = 0;
1268
1269         wm->level = to_i915(dev)->wm.max_level;
1270         wm->cxsr = true;
1271
1272         for_each_intel_crtc(dev, crtc) {
1273                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274
1275                 if (!crtc->active)
1276                         continue;
1277
1278                 if (!wm_state->cxsr)
1279                         wm->cxsr = false;
1280
1281                 num_active_crtcs++;
1282                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283         }
1284
1285         if (num_active_crtcs != 1)
1286                 wm->cxsr = false;
1287
1288         if (num_active_crtcs > 1)
1289                 wm->level = VLV_WM_LEVEL_PM2;
1290
1291         for_each_intel_crtc(dev, crtc) {
1292                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1293                 enum pipe pipe = crtc->pipe;
1294
1295                 if (!crtc->active)
1296                         continue;
1297
1298                 wm->pipe[pipe] = wm_state->wm[wm->level];
1299                 if (wm->cxsr)
1300                         wm->sr = wm_state->sr[wm->level];
1301
1302                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306         }
1307 }
1308
1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311         struct drm_device *dev = crtc->dev;
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314         enum pipe pipe = intel_crtc->pipe;
1315         struct vlv_wm_values wm = {};
1316
1317         vlv_compute_wm(intel_crtc);
1318         vlv_merge_wm(dev, &wm);
1319
1320         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321                 /* FIXME should be part of crtc atomic commit */
1322                 vlv_pipe_set_fifo_size(intel_crtc);
1323                 return;
1324         }
1325
1326         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328                 chv_set_memory_dvfs(dev_priv, false);
1329
1330         if (wm.level < VLV_WM_LEVEL_PM5 &&
1331             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332                 chv_set_memory_pm5(dev_priv, false);
1333
1334         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335                 intel_set_memory_cxsr(dev_priv, false);
1336
1337         /* FIXME should be part of crtc atomic commit */
1338         vlv_pipe_set_fifo_size(intel_crtc);
1339
1340         vlv_write_wm_values(intel_crtc, &wm);
1341
1342         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347
1348         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349                 intel_set_memory_cxsr(dev_priv, true);
1350
1351         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353                 chv_set_memory_pm5(dev_priv, true);
1354
1355         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357                 chv_set_memory_dvfs(dev_priv, true);
1358
1359         dev_priv->wm.vlv = wm;
1360 }
1361
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363
1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->dev;
1367         static const int sr_latency_ns = 12000;
1368         struct drm_i915_private *dev_priv = dev->dev_private;
1369         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370         int plane_sr, cursor_sr;
1371         unsigned int enabled = 0;
1372         bool cxsr_enabled;
1373
1374         if (g4x_compute_wm0(dev, PIPE_A,
1375                             &g4x_wm_info, pessimal_latency_ns,
1376                             &g4x_cursor_wm_info, pessimal_latency_ns,
1377                             &planea_wm, &cursora_wm))
1378                 enabled |= 1 << PIPE_A;
1379
1380         if (g4x_compute_wm0(dev, PIPE_B,
1381                             &g4x_wm_info, pessimal_latency_ns,
1382                             &g4x_cursor_wm_info, pessimal_latency_ns,
1383                             &planeb_wm, &cursorb_wm))
1384                 enabled |= 1 << PIPE_B;
1385
1386         if (single_plane_enabled(enabled) &&
1387             g4x_compute_srwm(dev, ffs(enabled) - 1,
1388                              sr_latency_ns,
1389                              &g4x_wm_info,
1390                              &g4x_cursor_wm_info,
1391                              &plane_sr, &cursor_sr)) {
1392                 cxsr_enabled = true;
1393         } else {
1394                 cxsr_enabled = false;
1395                 intel_set_memory_cxsr(dev_priv, false);
1396                 plane_sr = cursor_sr = 0;
1397         }
1398
1399         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401                       planea_wm, cursora_wm,
1402                       planeb_wm, cursorb_wm,
1403                       plane_sr, cursor_sr);
1404
1405         I915_WRITE(DSPFW1,
1406                    FW_WM(plane_sr, SR) |
1407                    FW_WM(cursorb_wm, CURSORB) |
1408                    FW_WM(planeb_wm, PLANEB) |
1409                    FW_WM(planea_wm, PLANEA));
1410         I915_WRITE(DSPFW2,
1411                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412                    FW_WM(cursora_wm, CURSORA));
1413         /* HPLL off in SR has some issues on G4x... disable it */
1414         I915_WRITE(DSPFW3,
1415                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416                    FW_WM(cursor_sr, CURSOR_SR));
1417
1418         if (cxsr_enabled)
1419                 intel_set_memory_cxsr(dev_priv, true);
1420 }
1421
1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424         struct drm_device *dev = unused_crtc->dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         struct drm_crtc *crtc;
1427         int srwm = 1;
1428         int cursor_sr = 16;
1429         bool cxsr_enabled;
1430
1431         /* Calc sr entries for one plane configs */
1432         crtc = single_enabled_crtc(dev);
1433         if (crtc) {
1434                 /* self-refresh has much higher latency */
1435                 static const int sr_latency_ns = 12000;
1436                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437                 int clock = adjusted_mode->crtc_clock;
1438                 int htotal = adjusted_mode->crtc_htotal;
1439                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441                 unsigned long line_time_us;
1442                 int entries;
1443
1444                 line_time_us = max(htotal * 1000 / clock, 1);
1445
1446                 /* Use ns/us then divide to preserve precision */
1447                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448                         pixel_size * hdisplay;
1449                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450                 srwm = I965_FIFO_SIZE - entries;
1451                 if (srwm < 0)
1452                         srwm = 1;
1453                 srwm &= 0x1ff;
1454                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455                               entries, srwm);
1456
1457                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458                         pixel_size * crtc->cursor->state->crtc_w;
1459                 entries = DIV_ROUND_UP(entries,
1460                                           i965_cursor_wm_info.cacheline_size);
1461                 cursor_sr = i965_cursor_wm_info.fifo_size -
1462                         (entries + i965_cursor_wm_info.guard_size);
1463
1464                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1465                         cursor_sr = i965_cursor_wm_info.max_wm;
1466
1467                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468                               "cursor %d\n", srwm, cursor_sr);
1469
1470                 cxsr_enabled = true;
1471         } else {
1472                 cxsr_enabled = false;
1473                 /* Turn off self refresh if both pipes are enabled */
1474                 intel_set_memory_cxsr(dev_priv, false);
1475         }
1476
1477         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478                       srwm);
1479
1480         /* 965 has limitations... */
1481         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482                    FW_WM(8, CURSORB) |
1483                    FW_WM(8, PLANEB) |
1484                    FW_WM(8, PLANEA));
1485         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486                    FW_WM(8, PLANEC_OLD));
1487         /* update cursor SR watermark */
1488         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489
1490         if (cxsr_enabled)
1491                 intel_set_memory_cxsr(dev_priv, true);
1492 }
1493
1494 #undef FW_WM
1495
1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498         struct drm_device *dev = unused_crtc->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         const struct intel_watermark_params *wm_info;
1501         uint32_t fwater_lo;
1502         uint32_t fwater_hi;
1503         int cwm, srwm = 1;
1504         int fifo_size;
1505         int planea_wm, planeb_wm;
1506         struct drm_crtc *crtc, *enabled = NULL;
1507
1508         if (IS_I945GM(dev))
1509                 wm_info = &i945_wm_info;
1510         else if (!IS_GEN2(dev))
1511                 wm_info = &i915_wm_info;
1512         else
1513                 wm_info = &i830_a_wm_info;
1514
1515         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516         crtc = intel_get_crtc_for_plane(dev, 0);
1517         if (intel_crtc_active(crtc)) {
1518                 const struct drm_display_mode *adjusted_mode;
1519                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520                 if (IS_GEN2(dev))
1521                         cpp = 4;
1522
1523                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525                                                wm_info, fifo_size, cpp,
1526                                                pessimal_latency_ns);
1527                 enabled = crtc;
1528         } else {
1529                 planea_wm = fifo_size - wm_info->guard_size;
1530                 if (planea_wm > (long)wm_info->max_wm)
1531                         planea_wm = wm_info->max_wm;
1532         }
1533
1534         if (IS_GEN2(dev))
1535                 wm_info = &i830_bc_wm_info;
1536
1537         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538         crtc = intel_get_crtc_for_plane(dev, 1);
1539         if (intel_crtc_active(crtc)) {
1540                 const struct drm_display_mode *adjusted_mode;
1541                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542                 if (IS_GEN2(dev))
1543                         cpp = 4;
1544
1545                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547                                                wm_info, fifo_size, cpp,
1548                                                pessimal_latency_ns);
1549                 if (enabled == NULL)
1550                         enabled = crtc;
1551                 else
1552                         enabled = NULL;
1553         } else {
1554                 planeb_wm = fifo_size - wm_info->guard_size;
1555                 if (planeb_wm > (long)wm_info->max_wm)
1556                         planeb_wm = wm_info->max_wm;
1557         }
1558
1559         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560
1561         if (IS_I915GM(dev) && enabled) {
1562                 struct drm_i915_gem_object *obj;
1563
1564                 obj = intel_fb_obj(enabled->primary->state->fb);
1565
1566                 /* self-refresh seems busted with untiled */
1567                 if (obj->tiling_mode == I915_TILING_NONE)
1568                         enabled = NULL;
1569         }
1570
1571         /*
1572          * Overlay gets an aggressive default since video jitter is bad.
1573          */
1574         cwm = 2;
1575
1576         /* Play safe and disable self-refresh before adjusting watermarks. */
1577         intel_set_memory_cxsr(dev_priv, false);
1578
1579         /* Calc sr entries for one plane configs */
1580         if (HAS_FW_BLC(dev) && enabled) {
1581                 /* self-refresh has much higher latency */
1582                 static const int sr_latency_ns = 6000;
1583                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584                 int clock = adjusted_mode->crtc_clock;
1585                 int htotal = adjusted_mode->crtc_htotal;
1586                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588                 unsigned long line_time_us;
1589                 int entries;
1590
1591                 line_time_us = max(htotal * 1000 / clock, 1);
1592
1593                 /* Use ns/us then divide to preserve precision */
1594                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595                         pixel_size * hdisplay;
1596                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598                 srwm = wm_info->fifo_size - entries;
1599                 if (srwm < 0)
1600                         srwm = 1;
1601
1602                 if (IS_I945G(dev) || IS_I945GM(dev))
1603                         I915_WRITE(FW_BLC_SELF,
1604                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605                 else if (IS_I915GM(dev))
1606                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607         }
1608
1609         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610                       planea_wm, planeb_wm, cwm, srwm);
1611
1612         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613         fwater_hi = (cwm & 0x1f);
1614
1615         /* Set request length to 8 cachelines per fetch */
1616         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617         fwater_hi = fwater_hi | (1 << 8);
1618
1619         I915_WRITE(FW_BLC, fwater_lo);
1620         I915_WRITE(FW_BLC2, fwater_hi);
1621
1622         if (enabled)
1623                 intel_set_memory_cxsr(dev_priv, true);
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, pessimal_latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654         uint32_t pixel_rate;
1655
1656         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657
1658         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659          * adjust the pixel_rate here. */
1660
1661         if (pipe_config->pch_pfit.enabled) {
1662                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1664
1665                 pipe_w = pipe_config->pipe_src_w;
1666                 pipe_h = pipe_config->pipe_src_h;
1667
1668                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669                 pfit_h = pfit_size & 0xFFFF;
1670                 if (pipe_w < pfit_w)
1671                         pipe_w = pfit_w;
1672                 if (pipe_h < pfit_h)
1673                         pipe_h = pfit_h;
1674
1675                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676                                      pfit_w * pfit_h);
1677         }
1678
1679         return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684                                uint32_t latency)
1685 {
1686         uint64_t ret;
1687
1688         if (WARN(latency == 0, "Latency value missing\n"))
1689                 return UINT_MAX;
1690
1691         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694         return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700                                uint32_t latency)
1701 {
1702         uint32_t ret;
1703
1704         if (WARN(latency == 0, "Latency value missing\n"))
1705                 return UINT_MAX;
1706
1707         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709         ret = DIV_ROUND_UP(ret, 64) + 2;
1710         return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714                            uint8_t bytes_per_pixel)
1715 {
1716         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct ilk_wm_maximums {
1720         uint16_t pri;
1721         uint16_t spr;
1722         uint16_t cur;
1723         uint16_t fbc;
1724 };
1725
1726 /*
1727  * For both WM_PIPE and WM_LP.
1728  * mem_value must be in 0.1us units.
1729  */
1730 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731                                    const struct intel_plane_state *pstate,
1732                                    uint32_t mem_value,
1733                                    bool is_lp)
1734 {
1735         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736         uint32_t method1, method2;
1737
1738         if (!cstate->base.active || !pstate->visible)
1739                 return 0;
1740
1741         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742
1743         if (!is_lp)
1744                 return method1;
1745
1746         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1747                                  cstate->base.adjusted_mode.crtc_htotal,
1748                                  drm_rect_width(&pstate->dst),
1749                                  bpp,
1750                                  mem_value);
1751
1752         return min(method1, method2);
1753 }
1754
1755 /*
1756  * For both WM_PIPE and WM_LP.
1757  * mem_value must be in 0.1us units.
1758  */
1759 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760                                    const struct intel_plane_state *pstate,
1761                                    uint32_t mem_value)
1762 {
1763         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764         uint32_t method1, method2;
1765
1766         if (!cstate->base.active || !pstate->visible)
1767                 return 0;
1768
1769         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1770         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1771                                  cstate->base.adjusted_mode.crtc_htotal,
1772                                  drm_rect_width(&pstate->dst),
1773                                  bpp,
1774                                  mem_value);
1775         return min(method1, method2);
1776 }
1777
1778 /*
1779  * For both WM_PIPE and WM_LP.
1780  * mem_value must be in 0.1us units.
1781  */
1782 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783                                    const struct intel_plane_state *pstate,
1784                                    uint32_t mem_value)
1785 {
1786         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1787
1788         if (!cstate->base.active || !pstate->visible)
1789                 return 0;
1790
1791         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1792                               cstate->base.adjusted_mode.crtc_htotal,
1793                               drm_rect_width(&pstate->dst),
1794                               bpp,
1795                               mem_value);
1796 }
1797
1798 /* Only for WM_LP. */
1799 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1800                                    const struct intel_plane_state *pstate,
1801                                    uint32_t pri_val)
1802 {
1803         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1804
1805         if (!cstate->base.active || !pstate->visible)
1806                 return 0;
1807
1808         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1809 }
1810
1811 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1812 {
1813         if (INTEL_INFO(dev)->gen >= 8)
1814                 return 3072;
1815         else if (INTEL_INFO(dev)->gen >= 7)
1816                 return 768;
1817         else
1818                 return 512;
1819 }
1820
1821 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1822                                          int level, bool is_sprite)
1823 {
1824         if (INTEL_INFO(dev)->gen >= 8)
1825                 /* BDW primary/sprite plane watermarks */
1826                 return level == 0 ? 255 : 2047;
1827         else if (INTEL_INFO(dev)->gen >= 7)
1828                 /* IVB/HSW primary/sprite plane watermarks */
1829                 return level == 0 ? 127 : 1023;
1830         else if (!is_sprite)
1831                 /* ILK/SNB primary plane watermarks */
1832                 return level == 0 ? 127 : 511;
1833         else
1834                 /* ILK/SNB sprite plane watermarks */
1835                 return level == 0 ? 63 : 255;
1836 }
1837
1838 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1839                                           int level)
1840 {
1841         if (INTEL_INFO(dev)->gen >= 7)
1842                 return level == 0 ? 63 : 255;
1843         else
1844                 return level == 0 ? 31 : 63;
1845 }
1846
1847 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1848 {
1849         if (INTEL_INFO(dev)->gen >= 8)
1850                 return 31;
1851         else
1852                 return 15;
1853 }
1854
1855 /* Calculate the maximum primary/sprite plane watermark */
1856 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1857                                      int level,
1858                                      const struct intel_wm_config *config,
1859                                      enum intel_ddb_partitioning ddb_partitioning,
1860                                      bool is_sprite)
1861 {
1862         unsigned int fifo_size = ilk_display_fifo_size(dev);
1863
1864         /* if sprites aren't enabled, sprites get nothing */
1865         if (is_sprite && !config->sprites_enabled)
1866                 return 0;
1867
1868         /* HSW allows LP1+ watermarks even with multiple pipes */
1869         if (level == 0 || config->num_pipes_active > 1) {
1870                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1871
1872                 /*
1873                  * For some reason the non self refresh
1874                  * FIFO size is only half of the self
1875                  * refresh FIFO size on ILK/SNB.
1876                  */
1877                 if (INTEL_INFO(dev)->gen <= 6)
1878                         fifo_size /= 2;
1879         }
1880
1881         if (config->sprites_enabled) {
1882                 /* level 0 is always calculated with 1:1 split */
1883                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1884                         if (is_sprite)
1885                                 fifo_size *= 5;
1886                         fifo_size /= 6;
1887                 } else {
1888                         fifo_size /= 2;
1889                 }
1890         }
1891
1892         /* clamp to max that the registers can hold */
1893         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1894 }
1895
1896 /* Calculate the maximum cursor plane watermark */
1897 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1898                                       int level,
1899                                       const struct intel_wm_config *config)
1900 {
1901         /* HSW LP1+ watermarks w/ multiple pipes */
1902         if (level > 0 && config->num_pipes_active > 1)
1903                 return 64;
1904
1905         /* otherwise just report max that registers can hold */
1906         return ilk_cursor_wm_reg_max(dev, level);
1907 }
1908
1909 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1910                                     int level,
1911                                     const struct intel_wm_config *config,
1912                                     enum intel_ddb_partitioning ddb_partitioning,
1913                                     struct ilk_wm_maximums *max)
1914 {
1915         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1916         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1917         max->cur = ilk_cursor_wm_max(dev, level, config);
1918         max->fbc = ilk_fbc_wm_reg_max(dev);
1919 }
1920
1921 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1922                                         int level,
1923                                         struct ilk_wm_maximums *max)
1924 {
1925         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1926         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1927         max->cur = ilk_cursor_wm_reg_max(dev, level);
1928         max->fbc = ilk_fbc_wm_reg_max(dev);
1929 }
1930
1931 static bool ilk_validate_wm_level(int level,
1932                                   const struct ilk_wm_maximums *max,
1933                                   struct intel_wm_level *result)
1934 {
1935         bool ret;
1936
1937         /* already determined to be invalid? */
1938         if (!result->enable)
1939                 return false;
1940
1941         result->enable = result->pri_val <= max->pri &&
1942                          result->spr_val <= max->spr &&
1943                          result->cur_val <= max->cur;
1944
1945         ret = result->enable;
1946
1947         /*
1948          * HACK until we can pre-compute everything,
1949          * and thus fail gracefully if LP0 watermarks
1950          * are exceeded...
1951          */
1952         if (level == 0 && !result->enable) {
1953                 if (result->pri_val > max->pri)
1954                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1955                                       level, result->pri_val, max->pri);
1956                 if (result->spr_val > max->spr)
1957                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1958                                       level, result->spr_val, max->spr);
1959                 if (result->cur_val > max->cur)
1960                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1961                                       level, result->cur_val, max->cur);
1962
1963                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1964                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1965                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1966                 result->enable = true;
1967         }
1968
1969         return ret;
1970 }
1971
1972 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1973                                  const struct intel_crtc *intel_crtc,
1974                                  int level,
1975                                  struct intel_crtc_state *cstate,
1976                                  struct intel_plane_state *pristate,
1977                                  struct intel_plane_state *sprstate,
1978                                  struct intel_plane_state *curstate,
1979                                  struct intel_wm_level *result)
1980 {
1981         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1982         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1983         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1984
1985         /* WM1+ latency values stored in 0.5us units */
1986         if (level > 0) {
1987                 pri_latency *= 5;
1988                 spr_latency *= 5;
1989                 cur_latency *= 5;
1990         }
1991
1992         result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1993                                              pri_latency, level);
1994         result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1995         result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
1996         result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1997         result->enable = true;
1998 }
1999
2000 static uint32_t
2001 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2002 {
2003         struct drm_i915_private *dev_priv = dev->dev_private;
2004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2006         u32 linetime, ips_linetime;
2007
2008         if (!intel_crtc->active)
2009                 return 0;
2010
2011         /* The WM are computed with base on how long it takes to fill a single
2012          * row at the given clock rate, multiplied by 8.
2013          * */
2014         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2015                                      adjusted_mode->crtc_clock);
2016         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2017                                          dev_priv->cdclk_freq);
2018
2019         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2020                PIPE_WM_LINETIME_TIME(linetime);
2021 }
2022
2023 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2024 {
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026
2027         if (IS_GEN9(dev)) {
2028                 uint32_t val;
2029                 int ret, i;
2030                 int level, max_level = ilk_wm_max_level(dev);
2031
2032                 /* read the first set of memory latencies[0:3] */
2033                 val = 0; /* data0 to be programmed to 0 for first set */
2034                 mutex_lock(&dev_priv->rps.hw_lock);
2035                 ret = sandybridge_pcode_read(dev_priv,
2036                                              GEN9_PCODE_READ_MEM_LATENCY,
2037                                              &val);
2038                 mutex_unlock(&dev_priv->rps.hw_lock);
2039
2040                 if (ret) {
2041                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2042                         return;
2043                 }
2044
2045                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2046                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2047                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2048                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2049                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2050                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2051                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2052
2053                 /* read the second set of memory latencies[4:7] */
2054                 val = 1; /* data0 to be programmed to 1 for second set */
2055                 mutex_lock(&dev_priv->rps.hw_lock);
2056                 ret = sandybridge_pcode_read(dev_priv,
2057                                              GEN9_PCODE_READ_MEM_LATENCY,
2058                                              &val);
2059                 mutex_unlock(&dev_priv->rps.hw_lock);
2060                 if (ret) {
2061                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2062                         return;
2063                 }
2064
2065                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2066                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2067                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2068                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2069                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2070                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2071                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2072
2073                 /*
2074                  * WaWmMemoryReadLatency:skl
2075                  *
2076                  * punit doesn't take into account the read latency so we need
2077                  * to add 2us to the various latency levels we retrieve from
2078                  * the punit.
2079                  *   - W0 is a bit special in that it's the only level that
2080                  *   can't be disabled if we want to have display working, so
2081                  *   we always add 2us there.
2082                  *   - For levels >=1, punit returns 0us latency when they are
2083                  *   disabled, so we respect that and don't add 2us then
2084                  *
2085                  * Additionally, if a level n (n > 1) has a 0us latency, all
2086                  * levels m (m >= n) need to be disabled. We make sure to
2087                  * sanitize the values out of the punit to satisfy this
2088                  * requirement.
2089                  */
2090                 wm[0] += 2;
2091                 for (level = 1; level <= max_level; level++)
2092                         if (wm[level] != 0)
2093                                 wm[level] += 2;
2094                         else {
2095                                 for (i = level + 1; i <= max_level; i++)
2096                                         wm[i] = 0;
2097
2098                                 break;
2099                         }
2100         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2101                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2102
2103                 wm[0] = (sskpd >> 56) & 0xFF;
2104                 if (wm[0] == 0)
2105                         wm[0] = sskpd & 0xF;
2106                 wm[1] = (sskpd >> 4) & 0xFF;
2107                 wm[2] = (sskpd >> 12) & 0xFF;
2108                 wm[3] = (sskpd >> 20) & 0x1FF;
2109                 wm[4] = (sskpd >> 32) & 0x1FF;
2110         } else if (INTEL_INFO(dev)->gen >= 6) {
2111                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2112
2113                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2114                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2115                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2116                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2117         } else if (INTEL_INFO(dev)->gen >= 5) {
2118                 uint32_t mltr = I915_READ(MLTR_ILK);
2119
2120                 /* ILK primary LP0 latency is 700 ns */
2121                 wm[0] = 7;
2122                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2123                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2124         }
2125 }
2126
2127 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2128 {
2129         /* ILK sprite LP0 latency is 1300 ns */
2130         if (INTEL_INFO(dev)->gen == 5)
2131                 wm[0] = 13;
2132 }
2133
2134 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2135 {
2136         /* ILK cursor LP0 latency is 1300 ns */
2137         if (INTEL_INFO(dev)->gen == 5)
2138                 wm[0] = 13;
2139
2140         /* WaDoubleCursorLP3Latency:ivb */
2141         if (IS_IVYBRIDGE(dev))
2142                 wm[3] *= 2;
2143 }
2144
2145 int ilk_wm_max_level(const struct drm_device *dev)
2146 {
2147         /* how many WM levels are we expecting */
2148         if (INTEL_INFO(dev)->gen >= 9)
2149                 return 7;
2150         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2151                 return 4;
2152         else if (INTEL_INFO(dev)->gen >= 6)
2153                 return 3;
2154         else
2155                 return 2;
2156 }
2157
2158 static void intel_print_wm_latency(struct drm_device *dev,
2159                                    const char *name,
2160                                    const uint16_t wm[8])
2161 {
2162         int level, max_level = ilk_wm_max_level(dev);
2163
2164         for (level = 0; level <= max_level; level++) {
2165                 unsigned int latency = wm[level];
2166
2167                 if (latency == 0) {
2168                         DRM_ERROR("%s WM%d latency not provided\n",
2169                                   name, level);
2170                         continue;
2171                 }
2172
2173                 /*
2174                  * - latencies are in us on gen9.
2175                  * - before then, WM1+ latency values are in 0.5us units
2176                  */
2177                 if (IS_GEN9(dev))
2178                         latency *= 10;
2179                 else if (level > 0)
2180                         latency *= 5;
2181
2182                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2183                               name, level, wm[level],
2184                               latency / 10, latency % 10);
2185         }
2186 }
2187
2188 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2189                                     uint16_t wm[5], uint16_t min)
2190 {
2191         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2192
2193         if (wm[0] >= min)
2194                 return false;
2195
2196         wm[0] = max(wm[0], min);
2197         for (level = 1; level <= max_level; level++)
2198                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2199
2200         return true;
2201 }
2202
2203 static void snb_wm_latency_quirk(struct drm_device *dev)
2204 {
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         bool changed;
2207
2208         /*
2209          * The BIOS provided WM memory latency values are often
2210          * inadequate for high resolution displays. Adjust them.
2211          */
2212         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2213                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2214                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2215
2216         if (!changed)
2217                 return;
2218
2219         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2220         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2221         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2222         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2223 }
2224
2225 static void ilk_setup_wm_latency(struct drm_device *dev)
2226 {
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2230
2231         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2232                sizeof(dev_priv->wm.pri_latency));
2233         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2234                sizeof(dev_priv->wm.pri_latency));
2235
2236         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2237         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2238
2239         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2240         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2241         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2242
2243         if (IS_GEN6(dev))
2244                 snb_wm_latency_quirk(dev);
2245 }
2246
2247 static void skl_setup_wm_latency(struct drm_device *dev)
2248 {
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250
2251         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2252         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2253 }
2254
2255 /* Compute new watermarks for the pipe */
2256 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2257                                struct drm_atomic_state *state)
2258 {
2259         struct intel_pipe_wm *pipe_wm;
2260         struct drm_device *dev = intel_crtc->base.dev;
2261         const struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc_state *cstate = NULL;
2263         struct intel_plane *intel_plane;
2264         struct drm_plane_state *ps;
2265         struct intel_plane_state *pristate = NULL;
2266         struct intel_plane_state *sprstate = NULL;
2267         struct intel_plane_state *curstate = NULL;
2268         int level, max_level = ilk_wm_max_level(dev);
2269         /* LP0 watermark maximums depend on this pipe alone */
2270         struct intel_wm_config config = {
2271                 .num_pipes_active = 1,
2272         };
2273         struct ilk_wm_maximums max;
2274
2275         cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2276         if (IS_ERR(cstate))
2277                 return PTR_ERR(cstate);
2278
2279         pipe_wm = &cstate->wm.optimal.ilk;
2280
2281         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2282                 ps = drm_atomic_get_plane_state(state,
2283                                                 &intel_plane->base);
2284                 if (IS_ERR(ps))
2285                         return PTR_ERR(ps);
2286
2287                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2288                         pristate = to_intel_plane_state(ps);
2289                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2290                         sprstate = to_intel_plane_state(ps);
2291                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2292                         curstate = to_intel_plane_state(ps);
2293         }
2294
2295         config.sprites_enabled = sprstate->visible;
2296         config.sprites_scaled = sprstate->visible &&
2297                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2298                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2299
2300         pipe_wm->pipe_enabled = cstate->base.active;
2301         pipe_wm->sprites_enabled = config.sprites_enabled;
2302         pipe_wm->sprites_scaled = config.sprites_scaled;
2303
2304         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2305         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2306                 max_level = 1;
2307
2308         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2309         if (config.sprites_scaled)
2310                 max_level = 0;
2311
2312         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2313                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
2314
2315         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2316                 pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2317                                                             &intel_crtc->base);
2318
2319         /* LP0 watermarks always use 1/2 DDB partitioning */
2320         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2321
2322         /* At least LP0 must be valid */
2323         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2324                 return -EINVAL;
2325
2326         ilk_compute_wm_reg_maximums(dev, 1, &max);
2327
2328         for (level = 1; level <= max_level; level++) {
2329                 struct intel_wm_level wm = {};
2330
2331                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2332                                      pristate, sprstate, curstate, &wm);
2333
2334                 /*
2335                  * Disable any watermark level that exceeds the
2336                  * register maximums since such watermarks are
2337                  * always invalid.
2338                  */
2339                 if (!ilk_validate_wm_level(level, &max, &wm))
2340                         break;
2341
2342                 pipe_wm->wm[level] = wm;
2343         }
2344
2345         return 0;
2346 }
2347
2348 /*
2349  * Merge the watermarks from all active pipes for a specific level.
2350  */
2351 static void ilk_merge_wm_level(struct drm_device *dev,
2352                                int level,
2353                                struct intel_wm_level *ret_wm)
2354 {
2355         const struct intel_crtc *intel_crtc;
2356
2357         ret_wm->enable = true;
2358
2359         for_each_intel_crtc(dev, intel_crtc) {
2360                 const struct intel_crtc_state *cstate =
2361                         to_intel_crtc_state(intel_crtc->base.state);
2362                 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2363                 const struct intel_wm_level *wm = &active->wm[level];
2364
2365                 if (!active->pipe_enabled)
2366                         continue;
2367
2368                 /*
2369                  * The watermark values may have been used in the past,
2370                  * so we must maintain them in the registers for some
2371                  * time even if the level is now disabled.
2372                  */
2373                 if (!wm->enable)
2374                         ret_wm->enable = false;
2375
2376                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2377                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2378                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2379                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2380         }
2381 }
2382
2383 /*
2384  * Merge all low power watermarks for all active pipes.
2385  */
2386 static void ilk_wm_merge(struct drm_device *dev,
2387                          const struct intel_wm_config *config,
2388                          const struct ilk_wm_maximums *max,
2389                          struct intel_pipe_wm *merged)
2390 {
2391         struct drm_i915_private *dev_priv = dev->dev_private;
2392         int level, max_level = ilk_wm_max_level(dev);
2393         int last_enabled_level = max_level;
2394
2395         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2396         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2397             config->num_pipes_active > 1)
2398                 return;
2399
2400         /* ILK: FBC WM must be disabled always */
2401         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2402
2403         /* merge each WM1+ level */
2404         for (level = 1; level <= max_level; level++) {
2405                 struct intel_wm_level *wm = &merged->wm[level];
2406
2407                 ilk_merge_wm_level(dev, level, wm);
2408
2409                 if (level > last_enabled_level)
2410                         wm->enable = false;
2411                 else if (!ilk_validate_wm_level(level, max, wm))
2412                         /* make sure all following levels get disabled */
2413                         last_enabled_level = level - 1;
2414
2415                 /*
2416                  * The spec says it is preferred to disable
2417                  * FBC WMs instead of disabling a WM level.
2418                  */
2419                 if (wm->fbc_val > max->fbc) {
2420                         if (wm->enable)
2421                                 merged->fbc_wm_enabled = false;
2422                         wm->fbc_val = 0;
2423                 }
2424         }
2425
2426         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2427         /*
2428          * FIXME this is racy. FBC might get enabled later.
2429          * What we should check here is whether FBC can be
2430          * enabled sometime later.
2431          */
2432         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2433             intel_fbc_is_active(dev_priv)) {
2434                 for (level = 2; level <= max_level; level++) {
2435                         struct intel_wm_level *wm = &merged->wm[level];
2436
2437                         wm->enable = false;
2438                 }
2439         }
2440 }
2441
2442 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2443 {
2444         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2445         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2446 }
2447
2448 /* The value we need to program into the WM_LPx latency field */
2449 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2450 {
2451         struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2454                 return 2 * level;
2455         else
2456                 return dev_priv->wm.pri_latency[level];
2457 }
2458
2459 static void ilk_compute_wm_results(struct drm_device *dev,
2460                                    const struct intel_pipe_wm *merged,
2461                                    enum intel_ddb_partitioning partitioning,
2462                                    struct ilk_wm_values *results)
2463 {
2464         struct intel_crtc *intel_crtc;
2465         int level, wm_lp;
2466
2467         results->enable_fbc_wm = merged->fbc_wm_enabled;
2468         results->partitioning = partitioning;
2469
2470         /* LP1+ register values */
2471         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2472                 const struct intel_wm_level *r;
2473
2474                 level = ilk_wm_lp_to_level(wm_lp, merged);
2475
2476                 r = &merged->wm[level];
2477
2478                 /*
2479                  * Maintain the watermark values even if the level is
2480                  * disabled. Doing otherwise could cause underruns.
2481                  */
2482                 results->wm_lp[wm_lp - 1] =
2483                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2484                         (r->pri_val << WM1_LP_SR_SHIFT) |
2485                         r->cur_val;
2486
2487                 if (r->enable)
2488                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2489
2490                 if (INTEL_INFO(dev)->gen >= 8)
2491                         results->wm_lp[wm_lp - 1] |=
2492                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2493                 else
2494                         results->wm_lp[wm_lp - 1] |=
2495                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2496
2497                 /*
2498                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2499                  * level is disabled. Doing otherwise could cause underruns.
2500                  */
2501                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2502                         WARN_ON(wm_lp != 1);
2503                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2504                 } else
2505                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2506         }
2507
2508         /* LP0 register values */
2509         for_each_intel_crtc(dev, intel_crtc) {
2510                 const struct intel_crtc_state *cstate =
2511                         to_intel_crtc_state(intel_crtc->base.state);
2512                 enum pipe pipe = intel_crtc->pipe;
2513                 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2514
2515                 if (WARN_ON(!r->enable))
2516                         continue;
2517
2518                 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2519
2520                 results->wm_pipe[pipe] =
2521                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2522                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2523                         r->cur_val;
2524         }
2525 }
2526
2527 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2528  * case both are at the same level. Prefer r1 in case they're the same. */
2529 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2530                                                   struct intel_pipe_wm *r1,
2531                                                   struct intel_pipe_wm *r2)
2532 {
2533         int level, max_level = ilk_wm_max_level(dev);
2534         int level1 = 0, level2 = 0;
2535
2536         for (level = 1; level <= max_level; level++) {
2537                 if (r1->wm[level].enable)
2538                         level1 = level;
2539                 if (r2->wm[level].enable)
2540                         level2 = level;
2541         }
2542
2543         if (level1 == level2) {
2544                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2545                         return r2;
2546                 else
2547                         return r1;
2548         } else if (level1 > level2) {
2549                 return r1;
2550         } else {
2551                 return r2;
2552         }
2553 }
2554
2555 /* dirty bits used to track which watermarks need changes */
2556 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2557 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2558 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2559 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2560 #define WM_DIRTY_FBC (1 << 24)
2561 #define WM_DIRTY_DDB (1 << 25)
2562
2563 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2564                                          const struct ilk_wm_values *old,
2565                                          const struct ilk_wm_values *new)
2566 {
2567         unsigned int dirty = 0;
2568         enum pipe pipe;
2569         int wm_lp;
2570
2571         for_each_pipe(dev_priv, pipe) {
2572                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2573                         dirty |= WM_DIRTY_LINETIME(pipe);
2574                         /* Must disable LP1+ watermarks too */
2575                         dirty |= WM_DIRTY_LP_ALL;
2576                 }
2577
2578                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2579                         dirty |= WM_DIRTY_PIPE(pipe);
2580                         /* Must disable LP1+ watermarks too */
2581                         dirty |= WM_DIRTY_LP_ALL;
2582                 }
2583         }
2584
2585         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2586                 dirty |= WM_DIRTY_FBC;
2587                 /* Must disable LP1+ watermarks too */
2588                 dirty |= WM_DIRTY_LP_ALL;
2589         }
2590
2591         if (old->partitioning != new->partitioning) {
2592                 dirty |= WM_DIRTY_DDB;
2593                 /* Must disable LP1+ watermarks too */
2594                 dirty |= WM_DIRTY_LP_ALL;
2595         }
2596
2597         /* LP1+ watermarks already deemed dirty, no need to continue */
2598         if (dirty & WM_DIRTY_LP_ALL)
2599                 return dirty;
2600
2601         /* Find the lowest numbered LP1+ watermark in need of an update... */
2602         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2603                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2604                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2605                         break;
2606         }
2607
2608         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2609         for (; wm_lp <= 3; wm_lp++)
2610                 dirty |= WM_DIRTY_LP(wm_lp);
2611
2612         return dirty;
2613 }
2614
2615 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2616                                unsigned int dirty)
2617 {
2618         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2619         bool changed = false;
2620
2621         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2622                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2623                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2624                 changed = true;
2625         }
2626         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2627                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2628                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2629                 changed = true;
2630         }
2631         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2632                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2633                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2634                 changed = true;
2635         }
2636
2637         /*
2638          * Don't touch WM1S_LP_EN here.
2639          * Doing so could cause underruns.
2640          */
2641
2642         return changed;
2643 }
2644
2645 /*
2646  * The spec says we shouldn't write when we don't need, because every write
2647  * causes WMs to be re-evaluated, expending some power.
2648  */
2649 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2650                                 struct ilk_wm_values *results)
2651 {
2652         struct drm_device *dev = dev_priv->dev;
2653         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2654         unsigned int dirty;
2655         uint32_t val;
2656
2657         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2658         if (!dirty)
2659                 return;
2660
2661         _ilk_disable_lp_wm(dev_priv, dirty);
2662
2663         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2664                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2665         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2666                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2667         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2668                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2669
2670         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2671                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2672         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2673                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2674         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2675                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2676
2677         if (dirty & WM_DIRTY_DDB) {
2678                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2679                         val = I915_READ(WM_MISC);
2680                         if (results->partitioning == INTEL_DDB_PART_1_2)
2681                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2682                         else
2683                                 val |= WM_MISC_DATA_PARTITION_5_6;
2684                         I915_WRITE(WM_MISC, val);
2685                 } else {
2686                         val = I915_READ(DISP_ARB_CTL2);
2687                         if (results->partitioning == INTEL_DDB_PART_1_2)
2688                                 val &= ~DISP_DATA_PARTITION_5_6;
2689                         else
2690                                 val |= DISP_DATA_PARTITION_5_6;
2691                         I915_WRITE(DISP_ARB_CTL2, val);
2692                 }
2693         }
2694
2695         if (dirty & WM_DIRTY_FBC) {
2696                 val = I915_READ(DISP_ARB_CTL);
2697                 if (results->enable_fbc_wm)
2698                         val &= ~DISP_FBC_WM_DIS;
2699                 else
2700                         val |= DISP_FBC_WM_DIS;
2701                 I915_WRITE(DISP_ARB_CTL, val);
2702         }
2703
2704         if (dirty & WM_DIRTY_LP(1) &&
2705             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2706                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2707
2708         if (INTEL_INFO(dev)->gen >= 7) {
2709                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2710                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2711                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2712                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2713         }
2714
2715         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2716                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2717         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2718                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2719         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2720                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2721
2722         dev_priv->wm.hw = *results;
2723 }
2724
2725 static bool ilk_disable_lp_wm(struct drm_device *dev)
2726 {
2727         struct drm_i915_private *dev_priv = dev->dev_private;
2728
2729         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2730 }
2731
2732 /*
2733  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2734  * different active planes.
2735  */
2736
2737 #define SKL_DDB_SIZE            896     /* in blocks */
2738 #define BXT_DDB_SIZE            512
2739
2740 /*
2741  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2742  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2743  * other universal planes are in indices 1..n.  Note that this may leave unused
2744  * indices between the top "sprite" plane and the cursor.
2745  */
2746 static int
2747 skl_wm_plane_id(const struct intel_plane *plane)
2748 {
2749         switch (plane->base.type) {
2750         case DRM_PLANE_TYPE_PRIMARY:
2751                 return 0;
2752         case DRM_PLANE_TYPE_CURSOR:
2753                 return PLANE_CURSOR;
2754         case DRM_PLANE_TYPE_OVERLAY:
2755                 return plane->plane + 1;
2756         default:
2757                 MISSING_CASE(plane->base.type);
2758                 return plane->plane;
2759         }
2760 }
2761
2762 static void
2763 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2764                                    const struct intel_crtc_state *cstate,
2765                                    const struct intel_wm_config *config,
2766                                    struct skl_ddb_entry *alloc /* out */)
2767 {
2768         struct drm_crtc *for_crtc = cstate->base.crtc;
2769         struct drm_crtc *crtc;
2770         unsigned int pipe_size, ddb_size;
2771         int nth_active_pipe;
2772
2773         if (!cstate->base.active) {
2774                 alloc->start = 0;
2775                 alloc->end = 0;
2776                 return;
2777         }
2778
2779         if (IS_BROXTON(dev))
2780                 ddb_size = BXT_DDB_SIZE;
2781         else
2782                 ddb_size = SKL_DDB_SIZE;
2783
2784         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2785
2786         nth_active_pipe = 0;
2787         for_each_crtc(dev, crtc) {
2788                 if (!to_intel_crtc(crtc)->active)
2789                         continue;
2790
2791                 if (crtc == for_crtc)
2792                         break;
2793
2794                 nth_active_pipe++;
2795         }
2796
2797         pipe_size = ddb_size / config->num_pipes_active;
2798         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2799         alloc->end = alloc->start + pipe_size;
2800 }
2801
2802 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2803 {
2804         if (config->num_pipes_active == 1)
2805                 return 32;
2806
2807         return 8;
2808 }
2809
2810 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2811 {
2812         entry->start = reg & 0x3ff;
2813         entry->end = (reg >> 16) & 0x3ff;
2814         if (entry->end)
2815                 entry->end += 1;
2816 }
2817
2818 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2819                           struct skl_ddb_allocation *ddb /* out */)
2820 {
2821         enum pipe pipe;
2822         int plane;
2823         u32 val;
2824
2825         memset(ddb, 0, sizeof(*ddb));
2826
2827         for_each_pipe(dev_priv, pipe) {
2828                 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2829                         continue;
2830
2831                 for_each_plane(dev_priv, pipe, plane) {
2832                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2833                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2834                                                    val);
2835                 }
2836
2837                 val = I915_READ(CUR_BUF_CFG(pipe));
2838                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2839                                            val);
2840         }
2841 }
2842
2843 static unsigned int
2844 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2845                              const struct drm_plane_state *pstate,
2846                              int y)
2847 {
2848         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2849         struct drm_framebuffer *fb = pstate->fb;
2850
2851         /* for planar format */
2852         if (fb->pixel_format == DRM_FORMAT_NV12) {
2853                 if (y)  /* y-plane data rate */
2854                         return intel_crtc->config->pipe_src_w *
2855                                 intel_crtc->config->pipe_src_h *
2856                                 drm_format_plane_cpp(fb->pixel_format, 0);
2857                 else    /* uv-plane data rate */
2858                         return (intel_crtc->config->pipe_src_w/2) *
2859                                 (intel_crtc->config->pipe_src_h/2) *
2860                                 drm_format_plane_cpp(fb->pixel_format, 1);
2861         }
2862
2863         /* for packed formats */
2864         return intel_crtc->config->pipe_src_w *
2865                 intel_crtc->config->pipe_src_h *
2866                 drm_format_plane_cpp(fb->pixel_format, 0);
2867 }
2868
2869 /*
2870  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2871  * a 8192x4096@32bpp framebuffer:
2872  *   3 * 4096 * 8192  * 4 < 2^32
2873  */
2874 static unsigned int
2875 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2876 {
2877         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2878         struct drm_device *dev = intel_crtc->base.dev;
2879         const struct intel_plane *intel_plane;
2880         unsigned int total_data_rate = 0;
2881
2882         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2883                 const struct drm_plane_state *pstate = intel_plane->base.state;
2884
2885                 if (pstate->fb == NULL)
2886                         continue;
2887
2888                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2889                         continue;
2890
2891                 /* packed/uv */
2892                 total_data_rate += skl_plane_relative_data_rate(cstate,
2893                                                                 pstate,
2894                                                                 0);
2895
2896                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2897                         /* y-plane */
2898                         total_data_rate += skl_plane_relative_data_rate(cstate,
2899                                                                         pstate,
2900                                                                         1);
2901         }
2902
2903         return total_data_rate;
2904 }
2905
2906 static void
2907 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2908                       struct skl_ddb_allocation *ddb /* out */)
2909 {
2910         struct drm_crtc *crtc = cstate->base.crtc;
2911         struct drm_device *dev = crtc->dev;
2912         struct drm_i915_private *dev_priv = to_i915(dev);
2913         struct intel_wm_config *config = &dev_priv->wm.config;
2914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915         struct intel_plane *intel_plane;
2916         enum pipe pipe = intel_crtc->pipe;
2917         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2918         uint16_t alloc_size, start, cursor_blocks;
2919         uint16_t minimum[I915_MAX_PLANES];
2920         uint16_t y_minimum[I915_MAX_PLANES];
2921         unsigned int total_data_rate;
2922
2923         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2924         alloc_size = skl_ddb_entry_size(alloc);
2925         if (alloc_size == 0) {
2926                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2927                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2928                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2929                 return;
2930         }
2931
2932         cursor_blocks = skl_cursor_allocation(config);
2933         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2934         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2935
2936         alloc_size -= cursor_blocks;
2937         alloc->end -= cursor_blocks;
2938
2939         /* 1. Allocate the mininum required blocks for each active plane */
2940         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2941                 struct drm_plane *plane = &intel_plane->base;
2942                 struct drm_framebuffer *fb = plane->state->fb;
2943                 int id = skl_wm_plane_id(intel_plane);
2944
2945                 if (fb == NULL)
2946                         continue;
2947                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2948                         continue;
2949
2950                 minimum[id] = 8;
2951                 alloc_size -= minimum[id];
2952                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2953                 alloc_size -= y_minimum[id];
2954         }
2955
2956         /*
2957          * 2. Distribute the remaining space in proportion to the amount of
2958          * data each plane needs to fetch from memory.
2959          *
2960          * FIXME: we may not allocate every single block here.
2961          */
2962         total_data_rate = skl_get_total_relative_data_rate(cstate);
2963
2964         start = alloc->start;
2965         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2966                 struct drm_plane *plane = &intel_plane->base;
2967                 struct drm_plane_state *pstate = intel_plane->base.state;
2968                 unsigned int data_rate, y_data_rate;
2969                 uint16_t plane_blocks, y_plane_blocks = 0;
2970                 int id = skl_wm_plane_id(intel_plane);
2971
2972                 if (pstate->fb == NULL)
2973                         continue;
2974                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2975                         continue;
2976
2977                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2978
2979                 /*
2980                  * allocation for (packed formats) or (uv-plane part of planar format):
2981                  * promote the expression to 64 bits to avoid overflowing, the
2982                  * result is < available as data_rate / total_data_rate < 1
2983                  */
2984                 plane_blocks = minimum[id];
2985                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2986                                         total_data_rate);
2987
2988                 ddb->plane[pipe][id].start = start;
2989                 ddb->plane[pipe][id].end = start + plane_blocks;
2990
2991                 start += plane_blocks;
2992
2993                 /*
2994                  * allocation for y_plane part of planar format:
2995                  */
2996                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
2997                         y_data_rate = skl_plane_relative_data_rate(cstate,
2998                                                                    pstate,
2999                                                                    1);
3000                         y_plane_blocks = y_minimum[id];
3001                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3002                                                 total_data_rate);
3003
3004                         ddb->y_plane[pipe][id].start = start;
3005                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3006
3007                         start += y_plane_blocks;
3008                 }
3009
3010         }
3011
3012 }
3013
3014 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3015 {
3016         /* TODO: Take into account the scalers once we support them */
3017         return config->base.adjusted_mode.crtc_clock;
3018 }
3019
3020 /*
3021  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3022  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3023  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3024  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3025 */
3026 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3027                                uint32_t latency)
3028 {
3029         uint32_t wm_intermediate_val, ret;
3030
3031         if (latency == 0)
3032                 return UINT_MAX;
3033
3034         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3035         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3036
3037         return ret;
3038 }
3039
3040 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3041                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3042                                uint64_t tiling, uint32_t latency)
3043 {
3044         uint32_t ret;
3045         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3046         uint32_t wm_intermediate_val;
3047
3048         if (latency == 0)
3049                 return UINT_MAX;
3050
3051         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3052
3053         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3054             tiling == I915_FORMAT_MOD_Yf_TILED) {
3055                 plane_bytes_per_line *= 4;
3056                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3057                 plane_blocks_per_line /= 4;
3058         } else {
3059                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3060         }
3061
3062         wm_intermediate_val = latency * pixel_rate;
3063         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3064                                 plane_blocks_per_line;
3065
3066         return ret;
3067 }
3068
3069 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3070                                        const struct intel_crtc *intel_crtc)
3071 {
3072         struct drm_device *dev = intel_crtc->base.dev;
3073         struct drm_i915_private *dev_priv = dev->dev_private;
3074         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3075
3076         /*
3077          * If ddb allocation of pipes changed, it may require recalculation of
3078          * watermarks
3079          */
3080         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3081                 return true;
3082
3083         return false;
3084 }
3085
3086 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3087                                  struct intel_crtc_state *cstate,
3088                                  struct intel_plane *intel_plane,
3089                                  uint16_t ddb_allocation,
3090                                  int level,
3091                                  uint16_t *out_blocks, /* out */
3092                                  uint8_t *out_lines /* out */)
3093 {
3094         struct drm_plane *plane = &intel_plane->base;
3095         struct drm_framebuffer *fb = plane->state->fb;
3096         uint32_t latency = dev_priv->wm.skl_latency[level];
3097         uint32_t method1, method2;
3098         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3099         uint32_t res_blocks, res_lines;
3100         uint32_t selected_result;
3101         uint8_t bytes_per_pixel;
3102
3103         if (latency == 0 || !cstate->base.active || !fb)
3104                 return false;
3105
3106         bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3107         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3108                                  bytes_per_pixel,
3109                                  latency);
3110         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3111                                  cstate->base.adjusted_mode.crtc_htotal,
3112                                  cstate->pipe_src_w,
3113                                  bytes_per_pixel,
3114                                  fb->modifier[0],
3115                                  latency);
3116
3117         plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3118         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3119
3120         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3121             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3122                 uint32_t min_scanlines = 4;
3123                 uint32_t y_tile_minimum;
3124                 if (intel_rotation_90_or_270(plane->state->rotation)) {
3125                         int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3126                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3127                                 drm_format_plane_cpp(fb->pixel_format, 0);
3128
3129                         switch (bpp) {
3130                         case 1:
3131                                 min_scanlines = 16;
3132                                 break;
3133                         case 2:
3134                                 min_scanlines = 8;
3135                                 break;
3136                         case 8:
3137                                 WARN(1, "Unsupported pixel depth for rotation");
3138                         }
3139                 }
3140                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3141                 selected_result = max(method2, y_tile_minimum);
3142         } else {
3143                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3144                         selected_result = min(method1, method2);
3145                 else
3146                         selected_result = method1;
3147         }
3148
3149         res_blocks = selected_result + 1;
3150         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3151
3152         if (level >= 1 && level <= 7) {
3153                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3154                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3155                         res_lines += 4;
3156                 else
3157                         res_blocks++;
3158         }
3159
3160         if (res_blocks >= ddb_allocation || res_lines > 31)
3161                 return false;
3162
3163         *out_blocks = res_blocks;
3164         *out_lines = res_lines;
3165
3166         return true;
3167 }
3168
3169 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3170                                  struct skl_ddb_allocation *ddb,
3171                                  struct intel_crtc_state *cstate,
3172                                  int level,
3173                                  struct skl_wm_level *result)
3174 {
3175         struct drm_device *dev = dev_priv->dev;
3176         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3177         struct intel_plane *intel_plane;
3178         uint16_t ddb_blocks;
3179         enum pipe pipe = intel_crtc->pipe;
3180
3181         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3182                 int i = skl_wm_plane_id(intel_plane);
3183
3184                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3185
3186                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3187                                                 cstate,
3188                                                 intel_plane,
3189                                                 ddb_blocks,
3190                                                 level,
3191                                                 &result->plane_res_b[i],
3192                                                 &result->plane_res_l[i]);
3193         }
3194 }
3195
3196 static uint32_t
3197 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3198 {
3199         if (!cstate->base.active)
3200                 return 0;
3201
3202         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3203                 return 0;
3204
3205         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3206                             skl_pipe_pixel_rate(cstate));
3207 }
3208
3209 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3210                                       struct skl_wm_level *trans_wm /* out */)
3211 {
3212         struct drm_crtc *crtc = cstate->base.crtc;
3213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214         struct intel_plane *intel_plane;
3215
3216         if (!cstate->base.active)
3217                 return;
3218
3219         /* Until we know more, just disable transition WMs */
3220         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3221                 int i = skl_wm_plane_id(intel_plane);
3222
3223                 trans_wm->plane_en[i] = false;
3224         }
3225 }
3226
3227 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3228                                 struct skl_ddb_allocation *ddb,
3229                                 struct skl_pipe_wm *pipe_wm)
3230 {
3231         struct drm_device *dev = cstate->base.crtc->dev;
3232         const struct drm_i915_private *dev_priv = dev->dev_private;
3233         int level, max_level = ilk_wm_max_level(dev);
3234
3235         for (level = 0; level <= max_level; level++) {
3236                 skl_compute_wm_level(dev_priv, ddb, cstate,
3237                                      level, &pipe_wm->wm[level]);
3238         }
3239         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3240
3241         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3242 }
3243
3244 static void skl_compute_wm_results(struct drm_device *dev,
3245                                    struct skl_pipe_wm *p_wm,
3246                                    struct skl_wm_values *r,
3247                                    struct intel_crtc *intel_crtc)
3248 {
3249         int level, max_level = ilk_wm_max_level(dev);
3250         enum pipe pipe = intel_crtc->pipe;
3251         uint32_t temp;
3252         int i;
3253
3254         for (level = 0; level <= max_level; level++) {
3255                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3256                         temp = 0;
3257
3258                         temp |= p_wm->wm[level].plane_res_l[i] <<
3259                                         PLANE_WM_LINES_SHIFT;
3260                         temp |= p_wm->wm[level].plane_res_b[i];
3261                         if (p_wm->wm[level].plane_en[i])
3262                                 temp |= PLANE_WM_EN;
3263
3264                         r->plane[pipe][i][level] = temp;
3265                 }
3266
3267                 temp = 0;
3268
3269                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3270                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3271
3272                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3273                         temp |= PLANE_WM_EN;
3274
3275                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3276
3277         }
3278
3279         /* transition WMs */
3280         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3281                 temp = 0;
3282                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3283                 temp |= p_wm->trans_wm.plane_res_b[i];
3284                 if (p_wm->trans_wm.plane_en[i])
3285                         temp |= PLANE_WM_EN;
3286
3287                 r->plane_trans[pipe][i] = temp;
3288         }
3289
3290         temp = 0;
3291         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3292         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3293         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3294                 temp |= PLANE_WM_EN;
3295
3296         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3297
3298         r->wm_linetime[pipe] = p_wm->linetime;
3299 }
3300
3301 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3302                                 i915_reg_t reg,
3303                                 const struct skl_ddb_entry *entry)
3304 {
3305         if (entry->end)
3306                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3307         else
3308                 I915_WRITE(reg, 0);
3309 }
3310
3311 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3312                                 const struct skl_wm_values *new)
3313 {
3314         struct drm_device *dev = dev_priv->dev;
3315         struct intel_crtc *crtc;
3316
3317         for_each_intel_crtc(dev, crtc) {
3318                 int i, level, max_level = ilk_wm_max_level(dev);
3319                 enum pipe pipe = crtc->pipe;
3320
3321                 if (!new->dirty[pipe])
3322                         continue;
3323
3324                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3325
3326                 for (level = 0; level <= max_level; level++) {
3327                         for (i = 0; i < intel_num_planes(crtc); i++)
3328                                 I915_WRITE(PLANE_WM(pipe, i, level),
3329                                            new->plane[pipe][i][level]);
3330                         I915_WRITE(CUR_WM(pipe, level),
3331                                    new->plane[pipe][PLANE_CURSOR][level]);
3332                 }
3333                 for (i = 0; i < intel_num_planes(crtc); i++)
3334                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3335                                    new->plane_trans[pipe][i]);
3336                 I915_WRITE(CUR_WM_TRANS(pipe),
3337                            new->plane_trans[pipe][PLANE_CURSOR]);
3338
3339                 for (i = 0; i < intel_num_planes(crtc); i++) {
3340                         skl_ddb_entry_write(dev_priv,
3341                                             PLANE_BUF_CFG(pipe, i),
3342                                             &new->ddb.plane[pipe][i]);
3343                         skl_ddb_entry_write(dev_priv,
3344                                             PLANE_NV12_BUF_CFG(pipe, i),
3345                                             &new->ddb.y_plane[pipe][i]);
3346                 }
3347
3348                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3349                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3350         }
3351 }
3352
3353 /*
3354  * When setting up a new DDB allocation arrangement, we need to correctly
3355  * sequence the times at which the new allocations for the pipes are taken into
3356  * account or we'll have pipes fetching from space previously allocated to
3357  * another pipe.
3358  *
3359  * Roughly the sequence looks like:
3360  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3361  *     overlapping with a previous light-up pipe (another way to put it is:
3362  *     pipes with their new allocation strickly included into their old ones).
3363  *  2. re-allocate the other pipes that get their allocation reduced
3364  *  3. allocate the pipes having their allocation increased
3365  *
3366  * Steps 1. and 2. are here to take care of the following case:
3367  * - Initially DDB looks like this:
3368  *     |   B    |   C    |
3369  * - enable pipe A.
3370  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3371  *   allocation
3372  *     |  A  |  B  |  C  |
3373  *
3374  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3375  */
3376
3377 static void
3378 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3379 {
3380         int plane;
3381
3382         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3383
3384         for_each_plane(dev_priv, pipe, plane) {
3385                 I915_WRITE(PLANE_SURF(pipe, plane),
3386                            I915_READ(PLANE_SURF(pipe, plane)));
3387         }
3388         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3389 }
3390
3391 static bool
3392 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3393                             const struct skl_ddb_allocation *new,
3394                             enum pipe pipe)
3395 {
3396         uint16_t old_size, new_size;
3397
3398         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3399         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3400
3401         return old_size != new_size &&
3402                new->pipe[pipe].start >= old->pipe[pipe].start &&
3403                new->pipe[pipe].end <= old->pipe[pipe].end;
3404 }
3405
3406 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3407                                 struct skl_wm_values *new_values)
3408 {
3409         struct drm_device *dev = dev_priv->dev;
3410         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3411         bool reallocated[I915_MAX_PIPES] = {};
3412         struct intel_crtc *crtc;
3413         enum pipe pipe;
3414
3415         new_ddb = &new_values->ddb;
3416         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3417
3418         /*
3419          * First pass: flush the pipes with the new allocation contained into
3420          * the old space.
3421          *
3422          * We'll wait for the vblank on those pipes to ensure we can safely
3423          * re-allocate the freed space without this pipe fetching from it.
3424          */
3425         for_each_intel_crtc(dev, crtc) {
3426                 if (!crtc->active)
3427                         continue;
3428
3429                 pipe = crtc->pipe;
3430
3431                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3432                         continue;
3433
3434                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3435                 intel_wait_for_vblank(dev, pipe);
3436
3437                 reallocated[pipe] = true;
3438         }
3439
3440
3441         /*
3442          * Second pass: flush the pipes that are having their allocation
3443          * reduced, but overlapping with a previous allocation.
3444          *
3445          * Here as well we need to wait for the vblank to make sure the freed
3446          * space is not used anymore.
3447          */
3448         for_each_intel_crtc(dev, crtc) {
3449                 if (!crtc->active)
3450                         continue;
3451
3452                 pipe = crtc->pipe;
3453
3454                 if (reallocated[pipe])
3455                         continue;
3456
3457                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3458                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3459                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3460                         intel_wait_for_vblank(dev, pipe);
3461                         reallocated[pipe] = true;
3462                 }
3463         }
3464
3465         /*
3466          * Third pass: flush the pipes that got more space allocated.
3467          *
3468          * We don't need to actively wait for the update here, next vblank
3469          * will just get more DDB space with the correct WM values.
3470          */
3471         for_each_intel_crtc(dev, crtc) {
3472                 if (!crtc->active)
3473                         continue;
3474
3475                 pipe = crtc->pipe;
3476
3477                 /*
3478                  * At this point, only the pipes more space than before are
3479                  * left to re-allocate.
3480                  */
3481                 if (reallocated[pipe])
3482                         continue;
3483
3484                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3485         }
3486 }
3487
3488 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3489                                struct skl_ddb_allocation *ddb, /* out */
3490                                struct skl_pipe_wm *pipe_wm /* out */)
3491 {
3492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3494
3495         skl_allocate_pipe_ddb(cstate, ddb);
3496         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3497
3498         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3499                 return false;
3500
3501         intel_crtc->wm.active.skl = *pipe_wm;
3502
3503         return true;
3504 }
3505
3506 static void skl_update_other_pipe_wm(struct drm_device *dev,
3507                                      struct drm_crtc *crtc,
3508                                      struct skl_wm_values *r)
3509 {
3510         struct intel_crtc *intel_crtc;
3511         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3512
3513         /*
3514          * If the WM update hasn't changed the allocation for this_crtc (the
3515          * crtc we are currently computing the new WM values for), other
3516          * enabled crtcs will keep the same allocation and we don't need to
3517          * recompute anything for them.
3518          */
3519         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3520                 return;
3521
3522         /*
3523          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3524          * other active pipes need new DDB allocation and WM values.
3525          */
3526         for_each_intel_crtc(dev, intel_crtc) {
3527                 struct skl_pipe_wm pipe_wm = {};
3528                 bool wm_changed;
3529
3530                 if (this_crtc->pipe == intel_crtc->pipe)
3531                         continue;
3532
3533                 if (!intel_crtc->active)
3534                         continue;
3535
3536                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3537                                                 &r->ddb, &pipe_wm);
3538
3539                 /*
3540                  * If we end up re-computing the other pipe WM values, it's
3541                  * because it was really needed, so we expect the WM values to
3542                  * be different.
3543                  */
3544                 WARN_ON(!wm_changed);
3545
3546                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3547                 r->dirty[intel_crtc->pipe] = true;
3548         }
3549 }
3550
3551 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3552 {
3553         watermarks->wm_linetime[pipe] = 0;
3554         memset(watermarks->plane[pipe], 0,
3555                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3556         memset(watermarks->plane_trans[pipe],
3557                0, sizeof(uint32_t) * I915_MAX_PLANES);
3558         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3559
3560         /* Clear ddb entries for pipe */
3561         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3562         memset(&watermarks->ddb.plane[pipe], 0,
3563                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3564         memset(&watermarks->ddb.y_plane[pipe], 0,
3565                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3566         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3567                sizeof(struct skl_ddb_entry));
3568
3569 }
3570
3571 static void skl_update_wm(struct drm_crtc *crtc)
3572 {
3573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3574         struct drm_device *dev = crtc->dev;
3575         struct drm_i915_private *dev_priv = dev->dev_private;
3576         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3577         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3578         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3579
3580
3581         /* Clear all dirty flags */
3582         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3583
3584         skl_clear_wm(results, intel_crtc->pipe);
3585
3586         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3587                 return;
3588
3589         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3590         results->dirty[intel_crtc->pipe] = true;
3591
3592         skl_update_other_pipe_wm(dev, crtc, results);
3593         skl_write_wm_values(dev_priv, results);
3594         skl_flush_wm_values(dev_priv, results);
3595
3596         /* store the new configuration */
3597         dev_priv->wm.skl_hw = *results;
3598 }
3599
3600 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3601 {
3602         struct drm_device *dev = dev_priv->dev;
3603         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3604         struct ilk_wm_maximums max;
3605         struct intel_wm_config *config = &dev_priv->wm.config;
3606         struct ilk_wm_values results = {};
3607         enum intel_ddb_partitioning partitioning;
3608
3609         ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3610         ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3611
3612         /* 5/6 split only in single pipe config on IVB+ */
3613         if (INTEL_INFO(dev)->gen >= 7 &&
3614             config->num_pipes_active == 1 && config->sprites_enabled) {
3615                 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3616                 ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3617
3618                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3619         } else {
3620                 best_lp_wm = &lp_wm_1_2;
3621         }
3622
3623         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3624                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3625
3626         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3627
3628         ilk_write_wm_values(dev_priv, &results);
3629 }
3630
3631 static void ilk_update_wm(struct drm_crtc *crtc)
3632 {
3633         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3636
3637         WARN_ON(cstate->base.active != intel_crtc->active);
3638
3639         /*
3640          * IVB workaround: must disable low power watermarks for at least
3641          * one frame before enabling scaling.  LP watermarks can be re-enabled
3642          * when scaling is disabled.
3643          *
3644          * WaCxSRDisabledForSpriteScaling:ivb
3645          */
3646         if (cstate->disable_lp_wm) {
3647                 ilk_disable_lp_wm(crtc->dev);
3648                 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3649         }
3650
3651         intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3652
3653         ilk_program_watermarks(dev_priv);
3654 }
3655
3656 static void skl_pipe_wm_active_state(uint32_t val,
3657                                      struct skl_pipe_wm *active,
3658                                      bool is_transwm,
3659                                      bool is_cursor,
3660                                      int i,
3661                                      int level)
3662 {
3663         bool is_enabled = (val & PLANE_WM_EN) != 0;
3664
3665         if (!is_transwm) {
3666                 if (!is_cursor) {
3667                         active->wm[level].plane_en[i] = is_enabled;
3668                         active->wm[level].plane_res_b[i] =
3669                                         val & PLANE_WM_BLOCKS_MASK;
3670                         active->wm[level].plane_res_l[i] =
3671                                         (val >> PLANE_WM_LINES_SHIFT) &
3672                                                 PLANE_WM_LINES_MASK;
3673                 } else {
3674                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3675                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3676                                         val & PLANE_WM_BLOCKS_MASK;
3677                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3678                                         (val >> PLANE_WM_LINES_SHIFT) &
3679                                                 PLANE_WM_LINES_MASK;
3680                 }
3681         } else {
3682                 if (!is_cursor) {
3683                         active->trans_wm.plane_en[i] = is_enabled;
3684                         active->trans_wm.plane_res_b[i] =
3685                                         val & PLANE_WM_BLOCKS_MASK;
3686                         active->trans_wm.plane_res_l[i] =
3687                                         (val >> PLANE_WM_LINES_SHIFT) &
3688                                                 PLANE_WM_LINES_MASK;
3689                 } else {
3690                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3691                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3692                                         val & PLANE_WM_BLOCKS_MASK;
3693                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3694                                         (val >> PLANE_WM_LINES_SHIFT) &
3695                                                 PLANE_WM_LINES_MASK;
3696                 }
3697         }
3698 }
3699
3700 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3701 {
3702         struct drm_device *dev = crtc->dev;
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3706         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3707         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3708         enum pipe pipe = intel_crtc->pipe;
3709         int level, i, max_level;
3710         uint32_t temp;
3711
3712         max_level = ilk_wm_max_level(dev);
3713
3714         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3715
3716         for (level = 0; level <= max_level; level++) {
3717                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3718                         hw->plane[pipe][i][level] =
3719                                         I915_READ(PLANE_WM(pipe, i, level));
3720                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3721         }
3722
3723         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3724                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3725         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3726
3727         if (!intel_crtc->active)
3728                 return;
3729
3730         hw->dirty[pipe] = true;
3731
3732         active->linetime = hw->wm_linetime[pipe];
3733
3734         for (level = 0; level <= max_level; level++) {
3735                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3736                         temp = hw->plane[pipe][i][level];
3737                         skl_pipe_wm_active_state(temp, active, false,
3738                                                 false, i, level);
3739                 }
3740                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3741                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3742         }
3743
3744         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3745                 temp = hw->plane_trans[pipe][i];
3746                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3747         }
3748
3749         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3750         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3751
3752         intel_crtc->wm.active.skl = *active;
3753 }
3754
3755 void skl_wm_get_hw_state(struct drm_device *dev)
3756 {
3757         struct drm_i915_private *dev_priv = dev->dev_private;
3758         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3759         struct drm_crtc *crtc;
3760
3761         skl_ddb_get_hw_state(dev_priv, ddb);
3762         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3763                 skl_pipe_wm_get_hw_state(crtc);
3764 }
3765
3766 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3767 {
3768         struct drm_device *dev = crtc->dev;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3773         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3774         enum pipe pipe = intel_crtc->pipe;
3775         static const i915_reg_t wm0_pipe_reg[] = {
3776                 [PIPE_A] = WM0_PIPEA_ILK,
3777                 [PIPE_B] = WM0_PIPEB_ILK,
3778                 [PIPE_C] = WM0_PIPEC_IVB,
3779         };
3780
3781         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3782         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3783                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3784
3785         active->pipe_enabled = intel_crtc->active;
3786
3787         if (active->pipe_enabled) {
3788                 u32 tmp = hw->wm_pipe[pipe];
3789
3790                 /*
3791                  * For active pipes LP0 watermark is marked as
3792                  * enabled, and LP1+ watermaks as disabled since
3793                  * we can't really reverse compute them in case
3794                  * multiple pipes are active.
3795                  */
3796                 active->wm[0].enable = true;
3797                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3798                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3799                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3800                 active->linetime = hw->wm_linetime[pipe];
3801         } else {
3802                 int level, max_level = ilk_wm_max_level(dev);
3803
3804                 /*
3805                  * For inactive pipes, all watermark levels
3806                  * should be marked as enabled but zeroed,
3807                  * which is what we'd compute them to.
3808                  */
3809                 for (level = 0; level <= max_level; level++)
3810                         active->wm[level].enable = true;
3811         }
3812
3813         intel_crtc->wm.active.ilk = *active;
3814 }
3815
3816 #define _FW_WM(value, plane) \
3817         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3818 #define _FW_WM_VLV(value, plane) \
3819         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3820
3821 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3822                                struct vlv_wm_values *wm)
3823 {
3824         enum pipe pipe;
3825         uint32_t tmp;
3826
3827         for_each_pipe(dev_priv, pipe) {
3828                 tmp = I915_READ(VLV_DDL(pipe));
3829
3830                 wm->ddl[pipe].primary =
3831                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3832                 wm->ddl[pipe].cursor =
3833                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3834                 wm->ddl[pipe].sprite[0] =
3835                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3836                 wm->ddl[pipe].sprite[1] =
3837                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3838         }
3839
3840         tmp = I915_READ(DSPFW1);
3841         wm->sr.plane = _FW_WM(tmp, SR);
3842         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3843         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3844         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3845
3846         tmp = I915_READ(DSPFW2);
3847         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3848         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3849         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3850
3851         tmp = I915_READ(DSPFW3);
3852         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3853
3854         if (IS_CHERRYVIEW(dev_priv)) {
3855                 tmp = I915_READ(DSPFW7_CHV);
3856                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3857                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3858
3859                 tmp = I915_READ(DSPFW8_CHV);
3860                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3861                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3862
3863                 tmp = I915_READ(DSPFW9_CHV);
3864                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3865                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3866
3867                 tmp = I915_READ(DSPHOWM);
3868                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3869                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3870                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3871                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3872                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3873                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3874                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3875                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3876                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3877                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3878         } else {
3879                 tmp = I915_READ(DSPFW7);
3880                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3881                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3882
3883                 tmp = I915_READ(DSPHOWM);
3884                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3885                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3886                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3887                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3888                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3889                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3890                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3891         }
3892 }
3893
3894 #undef _FW_WM
3895 #undef _FW_WM_VLV
3896
3897 void vlv_wm_get_hw_state(struct drm_device *dev)
3898 {
3899         struct drm_i915_private *dev_priv = to_i915(dev);
3900         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3901         struct intel_plane *plane;
3902         enum pipe pipe;
3903         u32 val;
3904
3905         vlv_read_wm_values(dev_priv, wm);
3906
3907         for_each_intel_plane(dev, plane) {
3908                 switch (plane->base.type) {
3909                         int sprite;
3910                 case DRM_PLANE_TYPE_CURSOR:
3911                         plane->wm.fifo_size = 63;
3912                         break;
3913                 case DRM_PLANE_TYPE_PRIMARY:
3914                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3915                         break;
3916                 case DRM_PLANE_TYPE_OVERLAY:
3917                         sprite = plane->plane;
3918                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3919                         break;
3920                 }
3921         }
3922
3923         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3924         wm->level = VLV_WM_LEVEL_PM2;
3925
3926         if (IS_CHERRYVIEW(dev_priv)) {
3927                 mutex_lock(&dev_priv->rps.hw_lock);
3928
3929                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3930                 if (val & DSP_MAXFIFO_PM5_ENABLE)
3931                         wm->level = VLV_WM_LEVEL_PM5;
3932
3933                 /*
3934                  * If DDR DVFS is disabled in the BIOS, Punit
3935                  * will never ack the request. So if that happens
3936                  * assume we don't have to enable/disable DDR DVFS
3937                  * dynamically. To test that just set the REQ_ACK
3938                  * bit to poke the Punit, but don't change the
3939                  * HIGH/LOW bits so that we don't actually change
3940                  * the current state.
3941                  */
3942                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3943                 val |= FORCE_DDR_FREQ_REQ_ACK;
3944                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3945
3946                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3947                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3948                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3949                                       "assuming DDR DVFS is disabled\n");
3950                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3951                 } else {
3952                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3953                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3954                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3955                 }
3956
3957                 mutex_unlock(&dev_priv->rps.hw_lock);
3958         }
3959
3960         for_each_pipe(dev_priv, pipe)
3961                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3962                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3963                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3964
3965         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3966                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3967 }
3968
3969 void ilk_wm_get_hw_state(struct drm_device *dev)
3970 {
3971         struct drm_i915_private *dev_priv = dev->dev_private;
3972         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3973         struct drm_crtc *crtc;
3974
3975         for_each_crtc(dev, crtc)
3976                 ilk_pipe_wm_get_hw_state(crtc);
3977
3978         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3979         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3980         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3981
3982         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3983         if (INTEL_INFO(dev)->gen >= 7) {
3984                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3985                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3986         }
3987
3988         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3989                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3990                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3991         else if (IS_IVYBRIDGE(dev))
3992                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3993                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3994
3995         hw->enable_fbc_wm =
3996                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3997 }
3998
3999 /**
4000  * intel_update_watermarks - update FIFO watermark values based on current modes
4001  *
4002  * Calculate watermark values for the various WM regs based on current mode
4003  * and plane configuration.
4004  *
4005  * There are several cases to deal with here:
4006  *   - normal (i.e. non-self-refresh)
4007  *   - self-refresh (SR) mode
4008  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4009  *   - lines are small relative to FIFO size (buffer can hold more than 2
4010  *     lines), so need to account for TLB latency
4011  *
4012  *   The normal calculation is:
4013  *     watermark = dotclock * bytes per pixel * latency
4014  *   where latency is platform & configuration dependent (we assume pessimal
4015  *   values here).
4016  *
4017  *   The SR calculation is:
4018  *     watermark = (trunc(latency/line time)+1) * surface width *
4019  *       bytes per pixel
4020  *   where
4021  *     line time = htotal / dotclock
4022  *     surface width = hdisplay for normal plane and 64 for cursor
4023  *   and latency is assumed to be high, as above.
4024  *
4025  * The final value programmed to the register should always be rounded up,
4026  * and include an extra 2 entries to account for clock crossings.
4027  *
4028  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4029  * to set the non-SR watermarks to 8.
4030  */
4031 void intel_update_watermarks(struct drm_crtc *crtc)
4032 {
4033         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4034
4035         if (dev_priv->display.update_wm)
4036                 dev_priv->display.update_wm(crtc);
4037 }
4038
4039 /**
4040  * Lock protecting IPS related data structures
4041  */
4042 DEFINE_SPINLOCK(mchdev_lock);
4043
4044 /* Global for IPS driver to get at the current i915 device. Protected by
4045  * mchdev_lock. */
4046 static struct drm_i915_private *i915_mch_dev;
4047
4048 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4049 {
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         u16 rgvswctl;
4052
4053         assert_spin_locked(&mchdev_lock);
4054
4055         rgvswctl = I915_READ16(MEMSWCTL);
4056         if (rgvswctl & MEMCTL_CMD_STS) {
4057                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4058                 return false; /* still busy with another command */
4059         }
4060
4061         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4062                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4063         I915_WRITE16(MEMSWCTL, rgvswctl);
4064         POSTING_READ16(MEMSWCTL);
4065
4066         rgvswctl |= MEMCTL_CMD_STS;
4067         I915_WRITE16(MEMSWCTL, rgvswctl);
4068
4069         return true;
4070 }
4071
4072 static void ironlake_enable_drps(struct drm_device *dev)
4073 {
4074         struct drm_i915_private *dev_priv = dev->dev_private;
4075         u32 rgvmodectl = I915_READ(MEMMODECTL);
4076         u8 fmax, fmin, fstart, vstart;
4077
4078         spin_lock_irq(&mchdev_lock);
4079
4080         /* Enable temp reporting */
4081         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4082         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4083
4084         /* 100ms RC evaluation intervals */
4085         I915_WRITE(RCUPEI, 100000);
4086         I915_WRITE(RCDNEI, 100000);
4087
4088         /* Set max/min thresholds to 90ms and 80ms respectively */
4089         I915_WRITE(RCBMAXAVG, 90000);
4090         I915_WRITE(RCBMINAVG, 80000);
4091
4092         I915_WRITE(MEMIHYST, 1);
4093
4094         /* Set up min, max, and cur for interrupt handling */
4095         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4096         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4097         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4098                 MEMMODE_FSTART_SHIFT;
4099
4100         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4101                 PXVFREQ_PX_SHIFT;
4102
4103         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4104         dev_priv->ips.fstart = fstart;
4105
4106         dev_priv->ips.max_delay = fstart;
4107         dev_priv->ips.min_delay = fmin;
4108         dev_priv->ips.cur_delay = fstart;
4109
4110         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4111                          fmax, fmin, fstart);
4112
4113         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4114
4115         /*
4116          * Interrupts will be enabled in ironlake_irq_postinstall
4117          */
4118
4119         I915_WRITE(VIDSTART, vstart);
4120         POSTING_READ(VIDSTART);
4121
4122         rgvmodectl |= MEMMODE_SWMODE_EN;
4123         I915_WRITE(MEMMODECTL, rgvmodectl);
4124
4125         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4126                 DRM_ERROR("stuck trying to change perf mode\n");
4127         mdelay(1);
4128
4129         ironlake_set_drps(dev, fstart);
4130
4131         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4132                 I915_READ(DDREC) + I915_READ(CSIEC);
4133         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4134         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4135         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4136
4137         spin_unlock_irq(&mchdev_lock);
4138 }
4139
4140 static void ironlake_disable_drps(struct drm_device *dev)
4141 {
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         u16 rgvswctl;
4144
4145         spin_lock_irq(&mchdev_lock);
4146
4147         rgvswctl = I915_READ16(MEMSWCTL);
4148
4149         /* Ack interrupts, disable EFC interrupt */
4150         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4151         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4152         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4153         I915_WRITE(DEIIR, DE_PCU_EVENT);
4154         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4155
4156         /* Go back to the starting frequency */
4157         ironlake_set_drps(dev, dev_priv->ips.fstart);
4158         mdelay(1);
4159         rgvswctl |= MEMCTL_CMD_STS;
4160         I915_WRITE(MEMSWCTL, rgvswctl);
4161         mdelay(1);
4162
4163         spin_unlock_irq(&mchdev_lock);
4164 }
4165
4166 /* There's a funny hw issue where the hw returns all 0 when reading from
4167  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4168  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4169  * all limits and the gpu stuck at whatever frequency it is at atm).
4170  */
4171 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4172 {
4173         u32 limits;
4174
4175         /* Only set the down limit when we've reached the lowest level to avoid
4176          * getting more interrupts, otherwise leave this clear. This prevents a
4177          * race in the hw when coming out of rc6: There's a tiny window where
4178          * the hw runs at the minimal clock before selecting the desired
4179          * frequency, if the down threshold expires in that window we will not
4180          * receive a down interrupt. */
4181         if (IS_GEN9(dev_priv->dev)) {
4182                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4183                 if (val <= dev_priv->rps.min_freq_softlimit)
4184                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4185         } else {
4186                 limits = dev_priv->rps.max_freq_softlimit << 24;
4187                 if (val <= dev_priv->rps.min_freq_softlimit)
4188                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4189         }
4190
4191         return limits;
4192 }
4193
4194 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4195 {
4196         int new_power;
4197         u32 threshold_up = 0, threshold_down = 0; /* in % */
4198         u32 ei_up = 0, ei_down = 0;
4199
4200         new_power = dev_priv->rps.power;
4201         switch (dev_priv->rps.power) {
4202         case LOW_POWER:
4203                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4204                         new_power = BETWEEN;
4205                 break;
4206
4207         case BETWEEN:
4208                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4209                         new_power = LOW_POWER;
4210                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4211                         new_power = HIGH_POWER;
4212                 break;
4213
4214         case HIGH_POWER:
4215                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4216                         new_power = BETWEEN;
4217                 break;
4218         }
4219         /* Max/min bins are special */
4220         if (val <= dev_priv->rps.min_freq_softlimit)
4221                 new_power = LOW_POWER;
4222         if (val >= dev_priv->rps.max_freq_softlimit)
4223                 new_power = HIGH_POWER;
4224         if (new_power == dev_priv->rps.power)
4225                 return;
4226
4227         /* Note the units here are not exactly 1us, but 1280ns. */
4228         switch (new_power) {
4229         case LOW_POWER:
4230                 /* Upclock if more than 95% busy over 16ms */
4231                 ei_up = 16000;
4232                 threshold_up = 95;
4233
4234                 /* Downclock if less than 85% busy over 32ms */
4235                 ei_down = 32000;
4236                 threshold_down = 85;
4237                 break;
4238
4239         case BETWEEN:
4240                 /* Upclock if more than 90% busy over 13ms */
4241                 ei_up = 13000;
4242                 threshold_up = 90;
4243
4244                 /* Downclock if less than 75% busy over 32ms */
4245                 ei_down = 32000;
4246                 threshold_down = 75;
4247                 break;
4248
4249         case HIGH_POWER:
4250                 /* Upclock if more than 85% busy over 10ms */
4251                 ei_up = 10000;
4252                 threshold_up = 85;
4253
4254                 /* Downclock if less than 60% busy over 32ms */
4255                 ei_down = 32000;
4256                 threshold_down = 60;
4257                 break;
4258         }
4259
4260         I915_WRITE(GEN6_RP_UP_EI,
4261                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4262         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4263                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4264
4265         I915_WRITE(GEN6_RP_DOWN_EI,
4266                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4267         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4268                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4269
4270          I915_WRITE(GEN6_RP_CONTROL,
4271                     GEN6_RP_MEDIA_TURBO |
4272                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4273                     GEN6_RP_MEDIA_IS_GFX |
4274                     GEN6_RP_ENABLE |
4275                     GEN6_RP_UP_BUSY_AVG |
4276                     GEN6_RP_DOWN_IDLE_AVG);
4277
4278         dev_priv->rps.power = new_power;
4279         dev_priv->rps.up_threshold = threshold_up;
4280         dev_priv->rps.down_threshold = threshold_down;
4281         dev_priv->rps.last_adj = 0;
4282 }
4283
4284 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4285 {
4286         u32 mask = 0;
4287
4288         if (val > dev_priv->rps.min_freq_softlimit)
4289                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4290         if (val < dev_priv->rps.max_freq_softlimit)
4291                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4292
4293         mask &= dev_priv->pm_rps_events;
4294
4295         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4296 }
4297
4298 /* gen6_set_rps is called to update the frequency request, but should also be
4299  * called when the range (min_delay and max_delay) is modified so that we can
4300  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4301 static void gen6_set_rps(struct drm_device *dev, u8 val)
4302 {
4303         struct drm_i915_private *dev_priv = dev->dev_private;
4304
4305         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4306         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4307                 return;
4308
4309         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4310         WARN_ON(val > dev_priv->rps.max_freq);
4311         WARN_ON(val < dev_priv->rps.min_freq);
4312
4313         /* min/max delay may still have been modified so be sure to
4314          * write the limits value.
4315          */
4316         if (val != dev_priv->rps.cur_freq) {
4317                 gen6_set_rps_thresholds(dev_priv, val);
4318
4319                 if (IS_GEN9(dev))
4320                         I915_WRITE(GEN6_RPNSWREQ,
4321                                    GEN9_FREQUENCY(val));
4322                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4323                         I915_WRITE(GEN6_RPNSWREQ,
4324                                    HSW_FREQUENCY(val));
4325                 else
4326                         I915_WRITE(GEN6_RPNSWREQ,
4327                                    GEN6_FREQUENCY(val) |
4328                                    GEN6_OFFSET(0) |
4329                                    GEN6_AGGRESSIVE_TURBO);
4330         }
4331
4332         /* Make sure we continue to get interrupts
4333          * until we hit the minimum or maximum frequencies.
4334          */
4335         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4336         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4337
4338         POSTING_READ(GEN6_RPNSWREQ);
4339
4340         dev_priv->rps.cur_freq = val;
4341         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4342 }
4343
4344 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4345 {
4346         struct drm_i915_private *dev_priv = dev->dev_private;
4347
4348         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4349         WARN_ON(val > dev_priv->rps.max_freq);
4350         WARN_ON(val < dev_priv->rps.min_freq);
4351
4352         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4353                       "Odd GPU freq value\n"))
4354                 val &= ~1;
4355
4356         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4357
4358         if (val != dev_priv->rps.cur_freq) {
4359                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4360                 if (!IS_CHERRYVIEW(dev_priv))
4361                         gen6_set_rps_thresholds(dev_priv, val);
4362         }
4363
4364         dev_priv->rps.cur_freq = val;
4365         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4366 }
4367
4368 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4369  *
4370  * * If Gfx is Idle, then
4371  * 1. Forcewake Media well.
4372  * 2. Request idle freq.
4373  * 3. Release Forcewake of Media well.
4374 */
4375 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4376 {
4377         u32 val = dev_priv->rps.idle_freq;
4378
4379         if (dev_priv->rps.cur_freq <= val)
4380                 return;
4381
4382         /* Wake up the media well, as that takes a lot less
4383          * power than the Render well. */
4384         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4385         valleyview_set_rps(dev_priv->dev, val);
4386         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4387 }
4388
4389 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4390 {
4391         mutex_lock(&dev_priv->rps.hw_lock);
4392         if (dev_priv->rps.enabled) {
4393                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4394                         gen6_rps_reset_ei(dev_priv);
4395                 I915_WRITE(GEN6_PMINTRMSK,
4396                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4397         }
4398         mutex_unlock(&dev_priv->rps.hw_lock);
4399 }
4400
4401 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4402 {
4403         struct drm_device *dev = dev_priv->dev;
4404
4405         mutex_lock(&dev_priv->rps.hw_lock);
4406         if (dev_priv->rps.enabled) {
4407                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4408                         vlv_set_rps_idle(dev_priv);
4409                 else
4410                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4411                 dev_priv->rps.last_adj = 0;
4412                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4413         }
4414         mutex_unlock(&dev_priv->rps.hw_lock);
4415
4416         spin_lock(&dev_priv->rps.client_lock);
4417         while (!list_empty(&dev_priv->rps.clients))
4418                 list_del_init(dev_priv->rps.clients.next);
4419         spin_unlock(&dev_priv->rps.client_lock);
4420 }
4421
4422 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4423                     struct intel_rps_client *rps,
4424                     unsigned long submitted)
4425 {
4426         /* This is intentionally racy! We peek at the state here, then
4427          * validate inside the RPS worker.
4428          */
4429         if (!(dev_priv->mm.busy &&
4430               dev_priv->rps.enabled &&
4431               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4432                 return;
4433
4434         /* Force a RPS boost (and don't count it against the client) if
4435          * the GPU is severely congested.
4436          */
4437         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4438                 rps = NULL;
4439
4440         spin_lock(&dev_priv->rps.client_lock);
4441         if (rps == NULL || list_empty(&rps->link)) {
4442                 spin_lock_irq(&dev_priv->irq_lock);
4443                 if (dev_priv->rps.interrupts_enabled) {
4444                         dev_priv->rps.client_boost = true;
4445                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4446                 }
4447                 spin_unlock_irq(&dev_priv->irq_lock);
4448
4449                 if (rps != NULL) {
4450                         list_add(&rps->link, &dev_priv->rps.clients);
4451                         rps->boosts++;
4452                 } else
4453                         dev_priv->rps.boosts++;
4454         }
4455         spin_unlock(&dev_priv->rps.client_lock);
4456 }
4457
4458 void intel_set_rps(struct drm_device *dev, u8 val)
4459 {
4460         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4461                 valleyview_set_rps(dev, val);
4462         else
4463                 gen6_set_rps(dev, val);
4464 }
4465
4466 static void gen9_disable_rps(struct drm_device *dev)
4467 {
4468         struct drm_i915_private *dev_priv = dev->dev_private;
4469
4470         I915_WRITE(GEN6_RC_CONTROL, 0);
4471         I915_WRITE(GEN9_PG_ENABLE, 0);
4472 }
4473
4474 static void gen6_disable_rps(struct drm_device *dev)
4475 {
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477
4478         I915_WRITE(GEN6_RC_CONTROL, 0);
4479         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4480 }
4481
4482 static void cherryview_disable_rps(struct drm_device *dev)
4483 {
4484         struct drm_i915_private *dev_priv = dev->dev_private;
4485
4486         I915_WRITE(GEN6_RC_CONTROL, 0);
4487 }
4488
4489 static void valleyview_disable_rps(struct drm_device *dev)
4490 {
4491         struct drm_i915_private *dev_priv = dev->dev_private;
4492
4493         /* we're doing forcewake before Disabling RC6,
4494          * This what the BIOS expects when going into suspend */
4495         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4496
4497         I915_WRITE(GEN6_RC_CONTROL, 0);
4498
4499         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4500 }
4501
4502 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4503 {
4504         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4505                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4506                         mode = GEN6_RC_CTL_RC6_ENABLE;
4507                 else
4508                         mode = 0;
4509         }
4510         if (HAS_RC6p(dev))
4511                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4512                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4513                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4514                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4515
4516         else
4517                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4518                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4519 }
4520
4521 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4522 {
4523         /* No RC6 before Ironlake and code is gone for ilk. */
4524         if (INTEL_INFO(dev)->gen < 6)
4525                 return 0;
4526
4527         /* Respect the kernel parameter if it is set */
4528         if (enable_rc6 >= 0) {
4529                 int mask;
4530
4531                 if (HAS_RC6p(dev))
4532                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4533                                INTEL_RC6pp_ENABLE;
4534                 else
4535                         mask = INTEL_RC6_ENABLE;
4536
4537                 if ((enable_rc6 & mask) != enable_rc6)
4538                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4539                                       enable_rc6 & mask, enable_rc6, mask);
4540
4541                 return enable_rc6 & mask;
4542         }
4543
4544         if (IS_IVYBRIDGE(dev))
4545                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4546
4547         return INTEL_RC6_ENABLE;
4548 }
4549
4550 int intel_enable_rc6(const struct drm_device *dev)
4551 {
4552         return i915.enable_rc6;
4553 }
4554
4555 static void gen6_init_rps_frequencies(struct drm_device *dev)
4556 {
4557         struct drm_i915_private *dev_priv = dev->dev_private;
4558         uint32_t rp_state_cap;
4559         u32 ddcc_status = 0;
4560         int ret;
4561
4562         /* All of these values are in units of 50MHz */
4563         dev_priv->rps.cur_freq          = 0;
4564         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4565         if (IS_BROXTON(dev)) {
4566                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4567                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4568                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4569                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4570         } else {
4571                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4572                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4573                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4574                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4575         }
4576
4577         /* hw_max = RP0 until we check for overclocking */
4578         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4579
4580         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4581         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4582             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4583                 ret = sandybridge_pcode_read(dev_priv,
4584                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4585                                         &ddcc_status);
4586                 if (0 == ret)
4587                         dev_priv->rps.efficient_freq =
4588                                 clamp_t(u8,
4589                                         ((ddcc_status >> 8) & 0xff),
4590                                         dev_priv->rps.min_freq,
4591                                         dev_priv->rps.max_freq);
4592         }
4593
4594         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4595                 /* Store the frequency values in 16.66 MHZ units, which is
4596                    the natural hardware unit for SKL */
4597                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4598                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4599                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4600                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4601                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4602         }
4603
4604         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4605
4606         /* Preserve min/max settings in case of re-init */
4607         if (dev_priv->rps.max_freq_softlimit == 0)
4608                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4609
4610         if (dev_priv->rps.min_freq_softlimit == 0) {
4611                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4612                         dev_priv->rps.min_freq_softlimit =
4613                                 max_t(int, dev_priv->rps.efficient_freq,
4614                                       intel_freq_opcode(dev_priv, 450));
4615                 else
4616                         dev_priv->rps.min_freq_softlimit =
4617                                 dev_priv->rps.min_freq;
4618         }
4619 }
4620
4621 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4622 static void gen9_enable_rps(struct drm_device *dev)
4623 {
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4627
4628         gen6_init_rps_frequencies(dev);
4629
4630         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4631         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4632                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4633                 return;
4634         }
4635
4636         /* Program defaults and thresholds for RPS*/
4637         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4638                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4639
4640         /* 1 second timeout*/
4641         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4642                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4643
4644         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4645
4646         /* Leaning on the below call to gen6_set_rps to program/setup the
4647          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4648          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4649         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4650         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4651
4652         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4653 }
4654
4655 static void gen9_enable_rc6(struct drm_device *dev)
4656 {
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct intel_engine_cs *ring;
4659         uint32_t rc6_mask = 0;
4660         int unused;
4661
4662         /* 1a: Software RC state - RC0 */
4663         I915_WRITE(GEN6_RC_STATE, 0);
4664
4665         /* 1b: Get forcewake during program sequence. Although the driver
4666          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4667         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4668
4669         /* 2a: Disable RC states. */
4670         I915_WRITE(GEN6_RC_CONTROL, 0);
4671
4672         /* 2b: Program RC6 thresholds.*/
4673
4674         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4675         if (IS_SKYLAKE(dev))
4676                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4677         else
4678                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4679         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4680         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4681         for_each_ring(ring, dev_priv, unused)
4682                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4683
4684         if (HAS_GUC_UCODE(dev))
4685                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4686
4687         I915_WRITE(GEN6_RC_SLEEP, 0);
4688
4689         /* 2c: Program Coarse Power Gating Policies. */
4690         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4691         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4692
4693         /* 3a: Enable RC6 */
4694         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4695                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4696         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4697                         "on" : "off");
4698         /* WaRsUseTimeoutMode */
4699         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4700             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4701                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4702                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4703                            GEN7_RC_CTL_TO_MODE |
4704                            rc6_mask);
4705         } else {
4706                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4707                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4708                            GEN6_RC_CTL_EI_MODE(1) |
4709                            rc6_mask);
4710         }
4711
4712         /*
4713          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4714          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4715          */
4716         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4717             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4718                 I915_WRITE(GEN9_PG_ENABLE, 0);
4719         else
4720                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4721                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4722
4723         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4724
4725 }
4726
4727 static void gen8_enable_rps(struct drm_device *dev)
4728 {
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730         struct intel_engine_cs *ring;
4731         uint32_t rc6_mask = 0;
4732         int unused;
4733
4734         /* 1a: Software RC state - RC0 */
4735         I915_WRITE(GEN6_RC_STATE, 0);
4736
4737         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4738          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4739         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4740
4741         /* 2a: Disable RC states. */
4742         I915_WRITE(GEN6_RC_CONTROL, 0);
4743
4744         /* Initialize rps frequencies */
4745         gen6_init_rps_frequencies(dev);
4746
4747         /* 2b: Program RC6 thresholds.*/
4748         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4749         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4750         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4751         for_each_ring(ring, dev_priv, unused)
4752                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4753         I915_WRITE(GEN6_RC_SLEEP, 0);
4754         if (IS_BROADWELL(dev))
4755                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4756         else
4757                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4758
4759         /* 3: Enable RC6 */
4760         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4761                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4762         intel_print_rc6_info(dev, rc6_mask);
4763         if (IS_BROADWELL(dev))
4764                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4765                                 GEN7_RC_CTL_TO_MODE |
4766                                 rc6_mask);
4767         else
4768                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4769                                 GEN6_RC_CTL_EI_MODE(1) |
4770                                 rc6_mask);
4771
4772         /* 4 Program defaults and thresholds for RPS*/
4773         I915_WRITE(GEN6_RPNSWREQ,
4774                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4775         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4776                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4777         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4778         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4779
4780         /* Docs recommend 900MHz, and 300 MHz respectively */
4781         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4782                    dev_priv->rps.max_freq_softlimit << 24 |
4783                    dev_priv->rps.min_freq_softlimit << 16);
4784
4785         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4786         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4787         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4788         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4789
4790         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4791
4792         /* 5: Enable RPS */
4793         I915_WRITE(GEN6_RP_CONTROL,
4794                    GEN6_RP_MEDIA_TURBO |
4795                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4796                    GEN6_RP_MEDIA_IS_GFX |
4797                    GEN6_RP_ENABLE |
4798                    GEN6_RP_UP_BUSY_AVG |
4799                    GEN6_RP_DOWN_IDLE_AVG);
4800
4801         /* 6: Ring frequency + overclocking (our driver does this later */
4802
4803         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4804         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4805
4806         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4807 }
4808
4809 static void gen6_enable_rps(struct drm_device *dev)
4810 {
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         struct intel_engine_cs *ring;
4813         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4814         u32 gtfifodbg;
4815         int rc6_mode;
4816         int i, ret;
4817
4818         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4819
4820         /* Here begins a magic sequence of register writes to enable
4821          * auto-downclocking.
4822          *
4823          * Perhaps there might be some value in exposing these to
4824          * userspace...
4825          */
4826         I915_WRITE(GEN6_RC_STATE, 0);
4827
4828         /* Clear the DBG now so we don't confuse earlier errors */
4829         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4830                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4831                 I915_WRITE(GTFIFODBG, gtfifodbg);
4832         }
4833
4834         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4835
4836         /* Initialize rps frequencies */
4837         gen6_init_rps_frequencies(dev);
4838
4839         /* disable the counters and set deterministic thresholds */
4840         I915_WRITE(GEN6_RC_CONTROL, 0);
4841
4842         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4843         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4844         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4845         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4846         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4847
4848         for_each_ring(ring, dev_priv, i)
4849                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4850
4851         I915_WRITE(GEN6_RC_SLEEP, 0);
4852         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4853         if (IS_IVYBRIDGE(dev))
4854                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4855         else
4856                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4857         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4858         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4859
4860         /* Check if we are enabling RC6 */
4861         rc6_mode = intel_enable_rc6(dev_priv->dev);
4862         if (rc6_mode & INTEL_RC6_ENABLE)
4863                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4864
4865         /* We don't use those on Haswell */
4866         if (!IS_HASWELL(dev)) {
4867                 if (rc6_mode & INTEL_RC6p_ENABLE)
4868                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4869
4870                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4871                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4872         }
4873
4874         intel_print_rc6_info(dev, rc6_mask);
4875
4876         I915_WRITE(GEN6_RC_CONTROL,
4877                    rc6_mask |
4878                    GEN6_RC_CTL_EI_MODE(1) |
4879                    GEN6_RC_CTL_HW_ENABLE);
4880
4881         /* Power down if completely idle for over 50ms */
4882         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4883         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4884
4885         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4886         if (ret)
4887                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4888
4889         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4890         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4891                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4892                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4893                                  (pcu_mbox & 0xff) * 50);
4894                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4895         }
4896
4897         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4898         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4899
4900         rc6vids = 0;
4901         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4902         if (IS_GEN6(dev) && ret) {
4903                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4904         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4905                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4906                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4907                 rc6vids &= 0xffff00;
4908                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4909                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4910                 if (ret)
4911                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4912         }
4913
4914         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4915 }
4916
4917 static void __gen6_update_ring_freq(struct drm_device *dev)
4918 {
4919         struct drm_i915_private *dev_priv = dev->dev_private;
4920         int min_freq = 15;
4921         unsigned int gpu_freq;
4922         unsigned int max_ia_freq, min_ring_freq;
4923         unsigned int max_gpu_freq, min_gpu_freq;
4924         int scaling_factor = 180;
4925         struct cpufreq_policy *policy;
4926
4927         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4928
4929         policy = cpufreq_cpu_get(0);
4930         if (policy) {
4931                 max_ia_freq = policy->cpuinfo.max_freq;
4932                 cpufreq_cpu_put(policy);
4933         } else {
4934                 /*
4935                  * Default to measured freq if none found, PCU will ensure we
4936                  * don't go over
4937                  */
4938                 max_ia_freq = tsc_khz;
4939         }
4940
4941         /* Convert from kHz to MHz */
4942         max_ia_freq /= 1000;
4943
4944         min_ring_freq = I915_READ(DCLK) & 0xf;
4945         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4946         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4947
4948         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4949                 /* Convert GT frequency to 50 HZ units */
4950                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4951                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4952         } else {
4953                 min_gpu_freq = dev_priv->rps.min_freq;
4954                 max_gpu_freq = dev_priv->rps.max_freq;
4955         }
4956
4957         /*
4958          * For each potential GPU frequency, load a ring frequency we'd like
4959          * to use for memory access.  We do this by specifying the IA frequency
4960          * the PCU should use as a reference to determine the ring frequency.
4961          */
4962         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4963                 int diff = max_gpu_freq - gpu_freq;
4964                 unsigned int ia_freq = 0, ring_freq = 0;
4965
4966                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4967                         /*
4968                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
4969                          * No floor required for ring frequency on SKL.
4970                          */
4971                         ring_freq = gpu_freq;
4972                 } else if (INTEL_INFO(dev)->gen >= 8) {
4973                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4974                         ring_freq = max(min_ring_freq, gpu_freq);
4975                 } else if (IS_HASWELL(dev)) {
4976                         ring_freq = mult_frac(gpu_freq, 5, 4);
4977                         ring_freq = max(min_ring_freq, ring_freq);
4978                         /* leave ia_freq as the default, chosen by cpufreq */
4979                 } else {
4980                         /* On older processors, there is no separate ring
4981                          * clock domain, so in order to boost the bandwidth
4982                          * of the ring, we need to upclock the CPU (ia_freq).
4983                          *
4984                          * For GPU frequencies less than 750MHz,
4985                          * just use the lowest ring freq.
4986                          */
4987                         if (gpu_freq < min_freq)
4988                                 ia_freq = 800;
4989                         else
4990                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4991                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4992                 }
4993
4994                 sandybridge_pcode_write(dev_priv,
4995                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4996                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4997                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4998                                         gpu_freq);
4999         }
5000 }
5001
5002 void gen6_update_ring_freq(struct drm_device *dev)
5003 {
5004         struct drm_i915_private *dev_priv = dev->dev_private;
5005
5006         if (!HAS_CORE_RING_FREQ(dev))
5007                 return;
5008
5009         mutex_lock(&dev_priv->rps.hw_lock);
5010         __gen6_update_ring_freq(dev);
5011         mutex_unlock(&dev_priv->rps.hw_lock);
5012 }
5013
5014 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5015 {
5016         struct drm_device *dev = dev_priv->dev;
5017         u32 val, rp0;
5018
5019         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5020
5021         switch (INTEL_INFO(dev)->eu_total) {
5022         case 8:
5023                 /* (2 * 4) config */
5024                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5025                 break;
5026         case 12:
5027                 /* (2 * 6) config */
5028                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5029                 break;
5030         case 16:
5031                 /* (2 * 8) config */
5032         default:
5033                 /* Setting (2 * 8) Min RP0 for any other combination */
5034                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5035                 break;
5036         }
5037
5038         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5039
5040         return rp0;
5041 }
5042
5043 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5044 {
5045         u32 val, rpe;
5046
5047         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5048         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5049
5050         return rpe;
5051 }
5052
5053 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5054 {
5055         u32 val, rp1;
5056
5057         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5058         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5059
5060         return rp1;
5061 }
5062
5063 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5064 {
5065         u32 val, rp1;
5066
5067         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5068
5069         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5070
5071         return rp1;
5072 }
5073
5074 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5075 {
5076         u32 val, rp0;
5077
5078         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5079
5080         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5081         /* Clamp to max */
5082         rp0 = min_t(u32, rp0, 0xea);
5083
5084         return rp0;
5085 }
5086
5087 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5088 {
5089         u32 val, rpe;
5090
5091         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5092         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5093         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5094         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5095
5096         return rpe;
5097 }
5098
5099 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5100 {
5101         u32 val;
5102
5103         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5104         /*
5105          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5106          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5107          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5108          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5109          * to make sure it matches what Punit accepts.
5110          */
5111         return max_t(u32, val, 0xc0);
5112 }
5113
5114 /* Check that the pctx buffer wasn't move under us. */
5115 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5116 {
5117         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5118
5119         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5120                              dev_priv->vlv_pctx->stolen->start);
5121 }
5122
5123
5124 /* Check that the pcbr address is not empty. */
5125 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5126 {
5127         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5128
5129         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5130 }
5131
5132 static void cherryview_setup_pctx(struct drm_device *dev)
5133 {
5134         struct drm_i915_private *dev_priv = dev->dev_private;
5135         unsigned long pctx_paddr, paddr;
5136         struct i915_gtt *gtt = &dev_priv->gtt;
5137         u32 pcbr;
5138         int pctx_size = 32*1024;
5139
5140         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5141
5142         pcbr = I915_READ(VLV_PCBR);
5143         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5144                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5145                 paddr = (dev_priv->mm.stolen_base +
5146                          (gtt->stolen_size - pctx_size));
5147
5148                 pctx_paddr = (paddr & (~4095));
5149                 I915_WRITE(VLV_PCBR, pctx_paddr);
5150         }
5151
5152         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5153 }
5154
5155 static void valleyview_setup_pctx(struct drm_device *dev)
5156 {
5157         struct drm_i915_private *dev_priv = dev->dev_private;
5158         struct drm_i915_gem_object *pctx;
5159         unsigned long pctx_paddr;
5160         u32 pcbr;
5161         int pctx_size = 24*1024;
5162
5163         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5164
5165         pcbr = I915_READ(VLV_PCBR);
5166         if (pcbr) {
5167                 /* BIOS set it up already, grab the pre-alloc'd space */
5168                 int pcbr_offset;
5169
5170                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5171                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5172                                                                       pcbr_offset,
5173                                                                       I915_GTT_OFFSET_NONE,
5174                                                                       pctx_size);
5175                 goto out;
5176         }
5177
5178         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5179
5180         /*
5181          * From the Gunit register HAS:
5182          * The Gfx driver is expected to program this register and ensure
5183          * proper allocation within Gfx stolen memory.  For example, this
5184          * register should be programmed such than the PCBR range does not
5185          * overlap with other ranges, such as the frame buffer, protected
5186          * memory, or any other relevant ranges.
5187          */
5188         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5189         if (!pctx) {
5190                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5191                 return;
5192         }
5193
5194         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5195         I915_WRITE(VLV_PCBR, pctx_paddr);
5196
5197 out:
5198         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5199         dev_priv->vlv_pctx = pctx;
5200 }
5201
5202 static void valleyview_cleanup_pctx(struct drm_device *dev)
5203 {
5204         struct drm_i915_private *dev_priv = dev->dev_private;
5205
5206         if (WARN_ON(!dev_priv->vlv_pctx))
5207                 return;
5208
5209         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5210         dev_priv->vlv_pctx = NULL;
5211 }
5212
5213 static void valleyview_init_gt_powersave(struct drm_device *dev)
5214 {
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         u32 val;
5217
5218         valleyview_setup_pctx(dev);
5219
5220         mutex_lock(&dev_priv->rps.hw_lock);
5221
5222         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5223         switch ((val >> 6) & 3) {
5224         case 0:
5225         case 1:
5226                 dev_priv->mem_freq = 800;
5227                 break;
5228         case 2:
5229                 dev_priv->mem_freq = 1066;
5230                 break;
5231         case 3:
5232                 dev_priv->mem_freq = 1333;
5233                 break;
5234         }
5235         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5236
5237         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5238         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5239         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5240                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5241                          dev_priv->rps.max_freq);
5242
5243         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5244         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5245                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5246                          dev_priv->rps.efficient_freq);
5247
5248         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5249         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5250                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5251                          dev_priv->rps.rp1_freq);
5252
5253         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5254         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5255                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5256                          dev_priv->rps.min_freq);
5257
5258         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5259
5260         /* Preserve min/max settings in case of re-init */
5261         if (dev_priv->rps.max_freq_softlimit == 0)
5262                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5263
5264         if (dev_priv->rps.min_freq_softlimit == 0)
5265                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5266
5267         mutex_unlock(&dev_priv->rps.hw_lock);
5268 }
5269
5270 static void cherryview_init_gt_powersave(struct drm_device *dev)
5271 {
5272         struct drm_i915_private *dev_priv = dev->dev_private;
5273         u32 val;
5274
5275         cherryview_setup_pctx(dev);
5276
5277         mutex_lock(&dev_priv->rps.hw_lock);
5278
5279         mutex_lock(&dev_priv->sb_lock);
5280         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5281         mutex_unlock(&dev_priv->sb_lock);
5282
5283         switch ((val >> 2) & 0x7) {
5284         case 3:
5285                 dev_priv->mem_freq = 2000;
5286                 break;
5287         default:
5288                 dev_priv->mem_freq = 1600;
5289                 break;
5290         }
5291         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5292
5293         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5294         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5295         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5296                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5297                          dev_priv->rps.max_freq);
5298
5299         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5300         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5301                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5302                          dev_priv->rps.efficient_freq);
5303
5304         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5305         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5306                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5307                          dev_priv->rps.rp1_freq);
5308
5309         /* PUnit validated range is only [RPe, RP0] */
5310         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5311         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5312                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5313                          dev_priv->rps.min_freq);
5314
5315         WARN_ONCE((dev_priv->rps.max_freq |
5316                    dev_priv->rps.efficient_freq |
5317                    dev_priv->rps.rp1_freq |
5318                    dev_priv->rps.min_freq) & 1,
5319                   "Odd GPU freq values\n");
5320
5321         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5322
5323         /* Preserve min/max settings in case of re-init */
5324         if (dev_priv->rps.max_freq_softlimit == 0)
5325                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5326
5327         if (dev_priv->rps.min_freq_softlimit == 0)
5328                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5329
5330         mutex_unlock(&dev_priv->rps.hw_lock);
5331 }
5332
5333 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5334 {
5335         valleyview_cleanup_pctx(dev);
5336 }
5337
5338 static void cherryview_enable_rps(struct drm_device *dev)
5339 {
5340         struct drm_i915_private *dev_priv = dev->dev_private;
5341         struct intel_engine_cs *ring;
5342         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5343         int i;
5344
5345         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5346
5347         gtfifodbg = I915_READ(GTFIFODBG);
5348         if (gtfifodbg) {
5349                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5350                                  gtfifodbg);
5351                 I915_WRITE(GTFIFODBG, gtfifodbg);
5352         }
5353
5354         cherryview_check_pctx(dev_priv);
5355
5356         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5357          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5358         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5359
5360         /*  Disable RC states. */
5361         I915_WRITE(GEN6_RC_CONTROL, 0);
5362
5363         /* 2a: Program RC6 thresholds.*/
5364         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5365         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5366         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5367
5368         for_each_ring(ring, dev_priv, i)
5369                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5370         I915_WRITE(GEN6_RC_SLEEP, 0);
5371
5372         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5373         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5374
5375         /* allows RC6 residency counter to work */
5376         I915_WRITE(VLV_COUNTER_CONTROL,
5377                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5378                                       VLV_MEDIA_RC6_COUNT_EN |
5379                                       VLV_RENDER_RC6_COUNT_EN));
5380
5381         /* For now we assume BIOS is allocating and populating the PCBR  */
5382         pcbr = I915_READ(VLV_PCBR);
5383
5384         /* 3: Enable RC6 */
5385         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5386                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5387                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5388
5389         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5390
5391         /* 4 Program defaults and thresholds for RPS*/
5392         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5393         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5394         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5395         I915_WRITE(GEN6_RP_UP_EI, 66000);
5396         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5397
5398         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5399
5400         /* 5: Enable RPS */
5401         I915_WRITE(GEN6_RP_CONTROL,
5402                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5403                    GEN6_RP_MEDIA_IS_GFX |
5404                    GEN6_RP_ENABLE |
5405                    GEN6_RP_UP_BUSY_AVG |
5406                    GEN6_RP_DOWN_IDLE_AVG);
5407
5408         /* Setting Fixed Bias */
5409         val = VLV_OVERRIDE_EN |
5410                   VLV_SOC_TDP_EN |
5411                   CHV_BIAS_CPU_50_SOC_50;
5412         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5413
5414         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5415
5416         /* RPS code assumes GPLL is used */
5417         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5418
5419         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5420         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5421
5422         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5423         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5424                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5425                          dev_priv->rps.cur_freq);
5426
5427         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5428                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5429                          dev_priv->rps.efficient_freq);
5430
5431         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5432
5433         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5434 }
5435
5436 static void valleyview_enable_rps(struct drm_device *dev)
5437 {
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439         struct intel_engine_cs *ring;
5440         u32 gtfifodbg, val, rc6_mode = 0;
5441         int i;
5442
5443         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5444
5445         valleyview_check_pctx(dev_priv);
5446
5447         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5448                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5449                                  gtfifodbg);
5450                 I915_WRITE(GTFIFODBG, gtfifodbg);
5451         }
5452
5453         /* If VLV, Forcewake all wells, else re-direct to regular path */
5454         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5455
5456         /*  Disable RC states. */
5457         I915_WRITE(GEN6_RC_CONTROL, 0);
5458
5459         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5460         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5461         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5462         I915_WRITE(GEN6_RP_UP_EI, 66000);
5463         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5464
5465         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5466
5467         I915_WRITE(GEN6_RP_CONTROL,
5468                    GEN6_RP_MEDIA_TURBO |
5469                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5470                    GEN6_RP_MEDIA_IS_GFX |
5471                    GEN6_RP_ENABLE |
5472                    GEN6_RP_UP_BUSY_AVG |
5473                    GEN6_RP_DOWN_IDLE_CONT);
5474
5475         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5476         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5477         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5478
5479         for_each_ring(ring, dev_priv, i)
5480                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5481
5482         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5483
5484         /* allows RC6 residency counter to work */
5485         I915_WRITE(VLV_COUNTER_CONTROL,
5486                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5487                                       VLV_RENDER_RC0_COUNT_EN |
5488                                       VLV_MEDIA_RC6_COUNT_EN |
5489                                       VLV_RENDER_RC6_COUNT_EN));
5490
5491         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5492                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5493
5494         intel_print_rc6_info(dev, rc6_mode);
5495
5496         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5497
5498         /* Setting Fixed Bias */
5499         val = VLV_OVERRIDE_EN |
5500                   VLV_SOC_TDP_EN |
5501                   VLV_BIAS_CPU_125_SOC_875;
5502         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5503
5504         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5505
5506         /* RPS code assumes GPLL is used */
5507         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5508
5509         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5510         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5511
5512         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5513         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5514                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5515                          dev_priv->rps.cur_freq);
5516
5517         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5518                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5519                          dev_priv->rps.efficient_freq);
5520
5521         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5522
5523         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5524 }
5525
5526 static unsigned long intel_pxfreq(u32 vidfreq)
5527 {
5528         unsigned long freq;
5529         int div = (vidfreq & 0x3f0000) >> 16;
5530         int post = (vidfreq & 0x3000) >> 12;
5531         int pre = (vidfreq & 0x7);
5532
5533         if (!pre)
5534                 return 0;
5535
5536         freq = ((div * 133333) / ((1<<post) * pre));
5537
5538         return freq;
5539 }
5540
5541 static const struct cparams {
5542         u16 i;
5543         u16 t;
5544         u16 m;
5545         u16 c;
5546 } cparams[] = {
5547         { 1, 1333, 301, 28664 },
5548         { 1, 1066, 294, 24460 },
5549         { 1, 800, 294, 25192 },
5550         { 0, 1333, 276, 27605 },
5551         { 0, 1066, 276, 27605 },
5552         { 0, 800, 231, 23784 },
5553 };
5554
5555 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5556 {
5557         u64 total_count, diff, ret;
5558         u32 count1, count2, count3, m = 0, c = 0;
5559         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5560         int i;
5561
5562         assert_spin_locked(&mchdev_lock);
5563
5564         diff1 = now - dev_priv->ips.last_time1;
5565
5566         /* Prevent division-by-zero if we are asking too fast.
5567          * Also, we don't get interesting results if we are polling
5568          * faster than once in 10ms, so just return the saved value
5569          * in such cases.
5570          */
5571         if (diff1 <= 10)
5572                 return dev_priv->ips.chipset_power;
5573
5574         count1 = I915_READ(DMIEC);
5575         count2 = I915_READ(DDREC);
5576         count3 = I915_READ(CSIEC);
5577
5578         total_count = count1 + count2 + count3;
5579
5580         /* FIXME: handle per-counter overflow */
5581         if (total_count < dev_priv->ips.last_count1) {
5582                 diff = ~0UL - dev_priv->ips.last_count1;
5583                 diff += total_count;
5584         } else {
5585                 diff = total_count - dev_priv->ips.last_count1;
5586         }
5587
5588         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5589                 if (cparams[i].i == dev_priv->ips.c_m &&
5590                     cparams[i].t == dev_priv->ips.r_t) {
5591                         m = cparams[i].m;
5592                         c = cparams[i].c;
5593                         break;
5594                 }
5595         }
5596
5597         diff = div_u64(diff, diff1);
5598         ret = ((m * diff) + c);
5599         ret = div_u64(ret, 10);
5600
5601         dev_priv->ips.last_count1 = total_count;
5602         dev_priv->ips.last_time1 = now;
5603
5604         dev_priv->ips.chipset_power = ret;
5605
5606         return ret;
5607 }
5608
5609 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5610 {
5611         struct drm_device *dev = dev_priv->dev;
5612         unsigned long val;
5613
5614         if (INTEL_INFO(dev)->gen != 5)
5615                 return 0;
5616
5617         spin_lock_irq(&mchdev_lock);
5618
5619         val = __i915_chipset_val(dev_priv);
5620
5621         spin_unlock_irq(&mchdev_lock);
5622
5623         return val;
5624 }
5625
5626 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5627 {
5628         unsigned long m, x, b;
5629         u32 tsfs;
5630
5631         tsfs = I915_READ(TSFS);
5632
5633         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5634         x = I915_READ8(TR1);
5635
5636         b = tsfs & TSFS_INTR_MASK;
5637
5638         return ((m * x) / 127) - b;
5639 }
5640
5641 static int _pxvid_to_vd(u8 pxvid)
5642 {
5643         if (pxvid == 0)
5644                 return 0;
5645
5646         if (pxvid >= 8 && pxvid < 31)
5647                 pxvid = 31;
5648
5649         return (pxvid + 2) * 125;
5650 }
5651
5652 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5653 {
5654         struct drm_device *dev = dev_priv->dev;
5655         const int vd = _pxvid_to_vd(pxvid);
5656         const int vm = vd - 1125;
5657
5658         if (INTEL_INFO(dev)->is_mobile)
5659                 return vm > 0 ? vm : 0;
5660
5661         return vd;
5662 }
5663
5664 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5665 {
5666         u64 now, diff, diffms;
5667         u32 count;
5668
5669         assert_spin_locked(&mchdev_lock);
5670
5671         now = ktime_get_raw_ns();
5672         diffms = now - dev_priv->ips.last_time2;
5673         do_div(diffms, NSEC_PER_MSEC);
5674
5675         /* Don't divide by 0 */
5676         if (!diffms)
5677                 return;
5678
5679         count = I915_READ(GFXEC);
5680
5681         if (count < dev_priv->ips.last_count2) {
5682                 diff = ~0UL - dev_priv->ips.last_count2;
5683                 diff += count;
5684         } else {
5685                 diff = count - dev_priv->ips.last_count2;
5686         }
5687
5688         dev_priv->ips.last_count2 = count;
5689         dev_priv->ips.last_time2 = now;
5690
5691         /* More magic constants... */
5692         diff = diff * 1181;
5693         diff = div_u64(diff, diffms * 10);
5694         dev_priv->ips.gfx_power = diff;
5695 }
5696
5697 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5698 {
5699         struct drm_device *dev = dev_priv->dev;
5700
5701         if (INTEL_INFO(dev)->gen != 5)
5702                 return;
5703
5704         spin_lock_irq(&mchdev_lock);
5705
5706         __i915_update_gfx_val(dev_priv);
5707
5708         spin_unlock_irq(&mchdev_lock);
5709 }
5710
5711 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5712 {
5713         unsigned long t, corr, state1, corr2, state2;
5714         u32 pxvid, ext_v;
5715
5716         assert_spin_locked(&mchdev_lock);
5717
5718         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5719         pxvid = (pxvid >> 24) & 0x7f;
5720         ext_v = pvid_to_extvid(dev_priv, pxvid);
5721
5722         state1 = ext_v;
5723
5724         t = i915_mch_val(dev_priv);
5725
5726         /* Revel in the empirically derived constants */
5727
5728         /* Correction factor in 1/100000 units */
5729         if (t > 80)
5730                 corr = ((t * 2349) + 135940);
5731         else if (t >= 50)
5732                 corr = ((t * 964) + 29317);
5733         else /* < 50 */
5734                 corr = ((t * 301) + 1004);
5735
5736         corr = corr * ((150142 * state1) / 10000 - 78642);
5737         corr /= 100000;
5738         corr2 = (corr * dev_priv->ips.corr);
5739
5740         state2 = (corr2 * state1) / 10000;
5741         state2 /= 100; /* convert to mW */
5742
5743         __i915_update_gfx_val(dev_priv);
5744
5745         return dev_priv->ips.gfx_power + state2;
5746 }
5747
5748 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5749 {
5750         struct drm_device *dev = dev_priv->dev;
5751         unsigned long val;
5752
5753         if (INTEL_INFO(dev)->gen != 5)
5754                 return 0;
5755
5756         spin_lock_irq(&mchdev_lock);
5757
5758         val = __i915_gfx_val(dev_priv);
5759
5760         spin_unlock_irq(&mchdev_lock);
5761
5762         return val;
5763 }
5764
5765 /**
5766  * i915_read_mch_val - return value for IPS use
5767  *
5768  * Calculate and return a value for the IPS driver to use when deciding whether
5769  * we have thermal and power headroom to increase CPU or GPU power budget.
5770  */
5771 unsigned long i915_read_mch_val(void)
5772 {
5773         struct drm_i915_private *dev_priv;
5774         unsigned long chipset_val, graphics_val, ret = 0;
5775
5776         spin_lock_irq(&mchdev_lock);
5777         if (!i915_mch_dev)
5778                 goto out_unlock;
5779         dev_priv = i915_mch_dev;
5780
5781         chipset_val = __i915_chipset_val(dev_priv);
5782         graphics_val = __i915_gfx_val(dev_priv);
5783
5784         ret = chipset_val + graphics_val;
5785
5786 out_unlock:
5787         spin_unlock_irq(&mchdev_lock);
5788
5789         return ret;
5790 }
5791 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5792
5793 /**
5794  * i915_gpu_raise - raise GPU frequency limit
5795  *
5796  * Raise the limit; IPS indicates we have thermal headroom.
5797  */
5798 bool i915_gpu_raise(void)
5799 {
5800         struct drm_i915_private *dev_priv;
5801         bool ret = true;
5802
5803         spin_lock_irq(&mchdev_lock);
5804         if (!i915_mch_dev) {
5805                 ret = false;
5806                 goto out_unlock;
5807         }
5808         dev_priv = i915_mch_dev;
5809
5810         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5811                 dev_priv->ips.max_delay--;
5812
5813 out_unlock:
5814         spin_unlock_irq(&mchdev_lock);
5815
5816         return ret;
5817 }
5818 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5819
5820 /**
5821  * i915_gpu_lower - lower GPU frequency limit
5822  *
5823  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5824  * frequency maximum.
5825  */
5826 bool i915_gpu_lower(void)
5827 {
5828         struct drm_i915_private *dev_priv;
5829         bool ret = true;
5830
5831         spin_lock_irq(&mchdev_lock);
5832         if (!i915_mch_dev) {
5833                 ret = false;
5834                 goto out_unlock;
5835         }
5836         dev_priv = i915_mch_dev;
5837
5838         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5839                 dev_priv->ips.max_delay++;
5840
5841 out_unlock:
5842         spin_unlock_irq(&mchdev_lock);
5843
5844         return ret;
5845 }
5846 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5847
5848 /**
5849  * i915_gpu_busy - indicate GPU business to IPS
5850  *
5851  * Tell the IPS driver whether or not the GPU is busy.
5852  */
5853 bool i915_gpu_busy(void)
5854 {
5855         struct drm_i915_private *dev_priv;
5856         struct intel_engine_cs *ring;
5857         bool ret = false;
5858         int i;
5859
5860         spin_lock_irq(&mchdev_lock);
5861         if (!i915_mch_dev)
5862                 goto out_unlock;
5863         dev_priv = i915_mch_dev;
5864
5865         for_each_ring(ring, dev_priv, i)
5866                 ret |= !list_empty(&ring->request_list);
5867
5868 out_unlock:
5869         spin_unlock_irq(&mchdev_lock);
5870
5871         return ret;
5872 }
5873 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5874
5875 /**
5876  * i915_gpu_turbo_disable - disable graphics turbo
5877  *
5878  * Disable graphics turbo by resetting the max frequency and setting the
5879  * current frequency to the default.
5880  */
5881 bool i915_gpu_turbo_disable(void)
5882 {
5883         struct drm_i915_private *dev_priv;
5884         bool ret = true;
5885
5886         spin_lock_irq(&mchdev_lock);
5887         if (!i915_mch_dev) {
5888                 ret = false;
5889                 goto out_unlock;
5890         }
5891         dev_priv = i915_mch_dev;
5892
5893         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5894
5895         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5896                 ret = false;
5897
5898 out_unlock:
5899         spin_unlock_irq(&mchdev_lock);
5900
5901         return ret;
5902 }
5903 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5904
5905 /**
5906  * Tells the intel_ips driver that the i915 driver is now loaded, if
5907  * IPS got loaded first.
5908  *
5909  * This awkward dance is so that neither module has to depend on the
5910  * other in order for IPS to do the appropriate communication of
5911  * GPU turbo limits to i915.
5912  */
5913 static void
5914 ips_ping_for_i915_load(void)
5915 {
5916         void (*link)(void);
5917
5918         link = symbol_get(ips_link_to_i915_driver);
5919         if (link) {
5920                 link();
5921                 symbol_put(ips_link_to_i915_driver);
5922         }
5923 }
5924
5925 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5926 {
5927         /* We only register the i915 ips part with intel-ips once everything is
5928          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5929         spin_lock_irq(&mchdev_lock);
5930         i915_mch_dev = dev_priv;
5931         spin_unlock_irq(&mchdev_lock);
5932
5933         ips_ping_for_i915_load();
5934 }
5935
5936 void intel_gpu_ips_teardown(void)
5937 {
5938         spin_lock_irq(&mchdev_lock);
5939         i915_mch_dev = NULL;
5940         spin_unlock_irq(&mchdev_lock);
5941 }
5942
5943 static void intel_init_emon(struct drm_device *dev)
5944 {
5945         struct drm_i915_private *dev_priv = dev->dev_private;
5946         u32 lcfuse;
5947         u8 pxw[16];
5948         int i;
5949
5950         /* Disable to program */
5951         I915_WRITE(ECR, 0);
5952         POSTING_READ(ECR);
5953
5954         /* Program energy weights for various events */
5955         I915_WRITE(SDEW, 0x15040d00);
5956         I915_WRITE(CSIEW0, 0x007f0000);
5957         I915_WRITE(CSIEW1, 0x1e220004);
5958         I915_WRITE(CSIEW2, 0x04000004);
5959
5960         for (i = 0; i < 5; i++)
5961                 I915_WRITE(PEW(i), 0);
5962         for (i = 0; i < 3; i++)
5963                 I915_WRITE(DEW(i), 0);
5964
5965         /* Program P-state weights to account for frequency power adjustment */
5966         for (i = 0; i < 16; i++) {
5967                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
5968                 unsigned long freq = intel_pxfreq(pxvidfreq);
5969                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5970                         PXVFREQ_PX_SHIFT;
5971                 unsigned long val;
5972
5973                 val = vid * vid;
5974                 val *= (freq / 1000);
5975                 val *= 255;
5976                 val /= (127*127*900);
5977                 if (val > 0xff)
5978                         DRM_ERROR("bad pxval: %ld\n", val);
5979                 pxw[i] = val;
5980         }
5981         /* Render standby states get 0 weight */
5982         pxw[14] = 0;
5983         pxw[15] = 0;
5984
5985         for (i = 0; i < 4; i++) {
5986                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5987                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5988                 I915_WRITE(PXW(i), val);
5989         }
5990
5991         /* Adjust magic regs to magic values (more experimental results) */
5992         I915_WRITE(OGW0, 0);
5993         I915_WRITE(OGW1, 0);
5994         I915_WRITE(EG0, 0x00007f00);
5995         I915_WRITE(EG1, 0x0000000e);
5996         I915_WRITE(EG2, 0x000e0000);
5997         I915_WRITE(EG3, 0x68000300);
5998         I915_WRITE(EG4, 0x42000000);
5999         I915_WRITE(EG5, 0x00140031);
6000         I915_WRITE(EG6, 0);
6001         I915_WRITE(EG7, 0);
6002
6003         for (i = 0; i < 8; i++)
6004                 I915_WRITE(PXWL(i), 0);
6005
6006         /* Enable PMON + select events */
6007         I915_WRITE(ECR, 0x80000019);
6008
6009         lcfuse = I915_READ(LCFUSE02);
6010
6011         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6012 }
6013
6014 void intel_init_gt_powersave(struct drm_device *dev)
6015 {
6016         struct drm_i915_private *dev_priv = dev->dev_private;
6017
6018         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6019         /*
6020          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6021          * requirement.
6022          */
6023         if (!i915.enable_rc6) {
6024                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6025                 intel_runtime_pm_get(dev_priv);
6026         }
6027
6028         if (IS_CHERRYVIEW(dev))
6029                 cherryview_init_gt_powersave(dev);
6030         else if (IS_VALLEYVIEW(dev))
6031                 valleyview_init_gt_powersave(dev);
6032 }
6033
6034 void intel_cleanup_gt_powersave(struct drm_device *dev)
6035 {
6036         struct drm_i915_private *dev_priv = dev->dev_private;
6037
6038         if (IS_CHERRYVIEW(dev))
6039                 return;
6040         else if (IS_VALLEYVIEW(dev))
6041                 valleyview_cleanup_gt_powersave(dev);
6042
6043         if (!i915.enable_rc6)
6044                 intel_runtime_pm_put(dev_priv);
6045 }
6046
6047 static void gen6_suspend_rps(struct drm_device *dev)
6048 {
6049         struct drm_i915_private *dev_priv = dev->dev_private;
6050
6051         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6052
6053         gen6_disable_rps_interrupts(dev);
6054 }
6055
6056 /**
6057  * intel_suspend_gt_powersave - suspend PM work and helper threads
6058  * @dev: drm device
6059  *
6060  * We don't want to disable RC6 or other features here, we just want
6061  * to make sure any work we've queued has finished and won't bother
6062  * us while we're suspended.
6063  */
6064 void intel_suspend_gt_powersave(struct drm_device *dev)
6065 {
6066         struct drm_i915_private *dev_priv = dev->dev_private;
6067
6068         if (INTEL_INFO(dev)->gen < 6)
6069                 return;
6070
6071         gen6_suspend_rps(dev);
6072
6073         /* Force GPU to min freq during suspend */
6074         gen6_rps_idle(dev_priv);
6075 }
6076
6077 void intel_disable_gt_powersave(struct drm_device *dev)
6078 {
6079         struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081         if (IS_IRONLAKE_M(dev)) {
6082                 ironlake_disable_drps(dev);
6083         } else if (INTEL_INFO(dev)->gen >= 6) {
6084                 intel_suspend_gt_powersave(dev);
6085
6086                 mutex_lock(&dev_priv->rps.hw_lock);
6087                 if (INTEL_INFO(dev)->gen >= 9)
6088                         gen9_disable_rps(dev);
6089                 else if (IS_CHERRYVIEW(dev))
6090                         cherryview_disable_rps(dev);
6091                 else if (IS_VALLEYVIEW(dev))
6092                         valleyview_disable_rps(dev);
6093                 else
6094                         gen6_disable_rps(dev);
6095
6096                 dev_priv->rps.enabled = false;
6097                 mutex_unlock(&dev_priv->rps.hw_lock);
6098         }
6099 }
6100
6101 static void intel_gen6_powersave_work(struct work_struct *work)
6102 {
6103         struct drm_i915_private *dev_priv =
6104                 container_of(work, struct drm_i915_private,
6105                              rps.delayed_resume_work.work);
6106         struct drm_device *dev = dev_priv->dev;
6107
6108         mutex_lock(&dev_priv->rps.hw_lock);
6109
6110         gen6_reset_rps_interrupts(dev);
6111
6112         if (IS_CHERRYVIEW(dev)) {
6113                 cherryview_enable_rps(dev);
6114         } else if (IS_VALLEYVIEW(dev)) {
6115                 valleyview_enable_rps(dev);
6116         } else if (INTEL_INFO(dev)->gen >= 9) {
6117                 gen9_enable_rc6(dev);
6118                 gen9_enable_rps(dev);
6119                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6120                         __gen6_update_ring_freq(dev);
6121         } else if (IS_BROADWELL(dev)) {
6122                 gen8_enable_rps(dev);
6123                 __gen6_update_ring_freq(dev);
6124         } else {
6125                 gen6_enable_rps(dev);
6126                 __gen6_update_ring_freq(dev);
6127         }
6128
6129         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6130         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6131
6132         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6133         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6134
6135         dev_priv->rps.enabled = true;
6136
6137         gen6_enable_rps_interrupts(dev);
6138
6139         mutex_unlock(&dev_priv->rps.hw_lock);
6140
6141         intel_runtime_pm_put(dev_priv);
6142 }
6143
6144 void intel_enable_gt_powersave(struct drm_device *dev)
6145 {
6146         struct drm_i915_private *dev_priv = dev->dev_private;
6147
6148         /* Powersaving is controlled by the host when inside a VM */
6149         if (intel_vgpu_active(dev))
6150                 return;
6151
6152         if (IS_IRONLAKE_M(dev)) {
6153                 mutex_lock(&dev->struct_mutex);
6154                 ironlake_enable_drps(dev);
6155                 intel_init_emon(dev);
6156                 mutex_unlock(&dev->struct_mutex);
6157         } else if (INTEL_INFO(dev)->gen >= 6) {
6158                 /*
6159                  * PCU communication is slow and this doesn't need to be
6160                  * done at any specific time, so do this out of our fast path
6161                  * to make resume and init faster.
6162                  *
6163                  * We depend on the HW RC6 power context save/restore
6164                  * mechanism when entering D3 through runtime PM suspend. So
6165                  * disable RPM until RPS/RC6 is properly setup. We can only
6166                  * get here via the driver load/system resume/runtime resume
6167                  * paths, so the _noresume version is enough (and in case of
6168                  * runtime resume it's necessary).
6169                  */
6170                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6171                                            round_jiffies_up_relative(HZ)))
6172                         intel_runtime_pm_get_noresume(dev_priv);
6173         }
6174 }
6175
6176 void intel_reset_gt_powersave(struct drm_device *dev)
6177 {
6178         struct drm_i915_private *dev_priv = dev->dev_private;
6179
6180         if (INTEL_INFO(dev)->gen < 6)
6181                 return;
6182
6183         gen6_suspend_rps(dev);
6184         dev_priv->rps.enabled = false;
6185 }
6186
6187 static void ibx_init_clock_gating(struct drm_device *dev)
6188 {
6189         struct drm_i915_private *dev_priv = dev->dev_private;
6190
6191         /*
6192          * On Ibex Peak and Cougar Point, we need to disable clock
6193          * gating for the panel power sequencer or it will fail to
6194          * start up when no ports are active.
6195          */
6196         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6197 }
6198
6199 static void g4x_disable_trickle_feed(struct drm_device *dev)
6200 {
6201         struct drm_i915_private *dev_priv = dev->dev_private;
6202         enum pipe pipe;
6203
6204         for_each_pipe(dev_priv, pipe) {
6205                 I915_WRITE(DSPCNTR(pipe),
6206                            I915_READ(DSPCNTR(pipe)) |
6207                            DISPPLANE_TRICKLE_FEED_DISABLE);
6208
6209                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6210                 POSTING_READ(DSPSURF(pipe));
6211         }
6212 }
6213
6214 static void ilk_init_lp_watermarks(struct drm_device *dev)
6215 {
6216         struct drm_i915_private *dev_priv = dev->dev_private;
6217
6218         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6219         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6220         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6221
6222         /*
6223          * Don't touch WM1S_LP_EN here.
6224          * Doing so could cause underruns.
6225          */
6226 }
6227
6228 static void ironlake_init_clock_gating(struct drm_device *dev)
6229 {
6230         struct drm_i915_private *dev_priv = dev->dev_private;
6231         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6232
6233         /*
6234          * Required for FBC
6235          * WaFbcDisableDpfcClockGating:ilk
6236          */
6237         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6238                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6239                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6240
6241         I915_WRITE(PCH_3DCGDIS0,
6242                    MARIUNIT_CLOCK_GATE_DISABLE |
6243                    SVSMUNIT_CLOCK_GATE_DISABLE);
6244         I915_WRITE(PCH_3DCGDIS1,
6245                    VFMUNIT_CLOCK_GATE_DISABLE);
6246
6247         /*
6248          * According to the spec the following bits should be set in
6249          * order to enable memory self-refresh
6250          * The bit 22/21 of 0x42004
6251          * The bit 5 of 0x42020
6252          * The bit 15 of 0x45000
6253          */
6254         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6255                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6256                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6257         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6258         I915_WRITE(DISP_ARB_CTL,
6259                    (I915_READ(DISP_ARB_CTL) |
6260                     DISP_FBC_WM_DIS));
6261
6262         ilk_init_lp_watermarks(dev);
6263
6264         /*
6265          * Based on the document from hardware guys the following bits
6266          * should be set unconditionally in order to enable FBC.
6267          * The bit 22 of 0x42000
6268          * The bit 22 of 0x42004
6269          * The bit 7,8,9 of 0x42020.
6270          */
6271         if (IS_IRONLAKE_M(dev)) {
6272                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6273                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6274                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6275                            ILK_FBCQ_DIS);
6276                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6277                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6278                            ILK_DPARB_GATE);
6279         }
6280
6281         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6282
6283         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6284                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6285                    ILK_ELPIN_409_SELECT);
6286         I915_WRITE(_3D_CHICKEN2,
6287                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6288                    _3D_CHICKEN2_WM_READ_PIPELINED);
6289
6290         /* WaDisableRenderCachePipelinedFlush:ilk */
6291         I915_WRITE(CACHE_MODE_0,
6292                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6293
6294         /* WaDisable_RenderCache_OperationalFlush:ilk */
6295         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6296
6297         g4x_disable_trickle_feed(dev);
6298
6299         ibx_init_clock_gating(dev);
6300 }
6301
6302 static void cpt_init_clock_gating(struct drm_device *dev)
6303 {
6304         struct drm_i915_private *dev_priv = dev->dev_private;
6305         int pipe;
6306         uint32_t val;
6307
6308         /*
6309          * On Ibex Peak and Cougar Point, we need to disable clock
6310          * gating for the panel power sequencer or it will fail to
6311          * start up when no ports are active.
6312          */
6313         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6314                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6315                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6316         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6317                    DPLS_EDP_PPS_FIX_DIS);
6318         /* The below fixes the weird display corruption, a few pixels shifted
6319          * downward, on (only) LVDS of some HP laptops with IVY.
6320          */
6321         for_each_pipe(dev_priv, pipe) {
6322                 val = I915_READ(TRANS_CHICKEN2(pipe));
6323                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6324                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6325                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6326                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6327                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6328                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6329                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6330                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6331         }
6332         /* WADP0ClockGatingDisable */
6333         for_each_pipe(dev_priv, pipe) {
6334                 I915_WRITE(TRANS_CHICKEN1(pipe),
6335                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6336         }
6337 }
6338
6339 static void gen6_check_mch_setup(struct drm_device *dev)
6340 {
6341         struct drm_i915_private *dev_priv = dev->dev_private;
6342         uint32_t tmp;
6343
6344         tmp = I915_READ(MCH_SSKPD);
6345         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6346                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6347                               tmp);
6348 }
6349
6350 static void gen6_init_clock_gating(struct drm_device *dev)
6351 {
6352         struct drm_i915_private *dev_priv = dev->dev_private;
6353         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6354
6355         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6356
6357         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6358                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6359                    ILK_ELPIN_409_SELECT);
6360
6361         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6362         I915_WRITE(_3D_CHICKEN,
6363                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6364
6365         /* WaDisable_RenderCache_OperationalFlush:snb */
6366         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6367
6368         /*
6369          * BSpec recoomends 8x4 when MSAA is used,
6370          * however in practice 16x4 seems fastest.
6371          *
6372          * Note that PS/WM thread counts depend on the WIZ hashing
6373          * disable bit, which we don't touch here, but it's good
6374          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6375          */
6376         I915_WRITE(GEN6_GT_MODE,
6377                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6378
6379         ilk_init_lp_watermarks(dev);
6380
6381         I915_WRITE(CACHE_MODE_0,
6382                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6383
6384         I915_WRITE(GEN6_UCGCTL1,
6385                    I915_READ(GEN6_UCGCTL1) |
6386                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6387                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6388
6389         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6390          * gating disable must be set.  Failure to set it results in
6391          * flickering pixels due to Z write ordering failures after
6392          * some amount of runtime in the Mesa "fire" demo, and Unigine
6393          * Sanctuary and Tropics, and apparently anything else with
6394          * alpha test or pixel discard.
6395          *
6396          * According to the spec, bit 11 (RCCUNIT) must also be set,
6397          * but we didn't debug actual testcases to find it out.
6398          *
6399          * WaDisableRCCUnitClockGating:snb
6400          * WaDisableRCPBUnitClockGating:snb
6401          */
6402         I915_WRITE(GEN6_UCGCTL2,
6403                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6404                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6405
6406         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6407         I915_WRITE(_3D_CHICKEN3,
6408                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6409
6410         /*
6411          * Bspec says:
6412          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6413          * 3DSTATE_SF number of SF output attributes is more than 16."
6414          */
6415         I915_WRITE(_3D_CHICKEN3,
6416                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6417
6418         /*
6419          * According to the spec the following bits should be
6420          * set in order to enable memory self-refresh and fbc:
6421          * The bit21 and bit22 of 0x42000
6422          * The bit21 and bit22 of 0x42004
6423          * The bit5 and bit7 of 0x42020
6424          * The bit14 of 0x70180
6425          * The bit14 of 0x71180
6426          *
6427          * WaFbcAsynchFlipDisableFbcQueue:snb
6428          */
6429         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6430                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6431                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6432         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6433                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6434                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6435         I915_WRITE(ILK_DSPCLK_GATE_D,
6436                    I915_READ(ILK_DSPCLK_GATE_D) |
6437                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6438                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6439
6440         g4x_disable_trickle_feed(dev);
6441
6442         cpt_init_clock_gating(dev);
6443
6444         gen6_check_mch_setup(dev);
6445 }
6446
6447 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6448 {
6449         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6450
6451         /*
6452          * WaVSThreadDispatchOverride:ivb,vlv
6453          *
6454          * This actually overrides the dispatch
6455          * mode for all thread types.
6456          */
6457         reg &= ~GEN7_FF_SCHED_MASK;
6458         reg |= GEN7_FF_TS_SCHED_HW;
6459         reg |= GEN7_FF_VS_SCHED_HW;
6460         reg |= GEN7_FF_DS_SCHED_HW;
6461
6462         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6463 }
6464
6465 static void lpt_init_clock_gating(struct drm_device *dev)
6466 {
6467         struct drm_i915_private *dev_priv = dev->dev_private;
6468
6469         /*
6470          * TODO: this bit should only be enabled when really needed, then
6471          * disabled when not needed anymore in order to save power.
6472          */
6473         if (HAS_PCH_LPT_LP(dev))
6474                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6475                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6476                            PCH_LP_PARTITION_LEVEL_DISABLE);
6477
6478         /* WADPOClockGatingDisable:hsw */
6479         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6480                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6481                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6482 }
6483
6484 static void lpt_suspend_hw(struct drm_device *dev)
6485 {
6486         struct drm_i915_private *dev_priv = dev->dev_private;
6487
6488         if (HAS_PCH_LPT_LP(dev)) {
6489                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6490
6491                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6492                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6493         }
6494 }
6495
6496 static void broadwell_init_clock_gating(struct drm_device *dev)
6497 {
6498         struct drm_i915_private *dev_priv = dev->dev_private;
6499         enum pipe pipe;
6500         uint32_t misccpctl;
6501
6502         ilk_init_lp_watermarks(dev);
6503
6504         /* WaSwitchSolVfFArbitrationPriority:bdw */
6505         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6506
6507         /* WaPsrDPAMaskVBlankInSRD:bdw */
6508         I915_WRITE(CHICKEN_PAR1_1,
6509                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6510
6511         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6512         for_each_pipe(dev_priv, pipe) {
6513                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6514                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6515                            BDW_DPRS_MASK_VBLANK_SRD);
6516         }
6517
6518         /* WaVSRefCountFullforceMissDisable:bdw */
6519         /* WaDSRefCountFullforceMissDisable:bdw */
6520         I915_WRITE(GEN7_FF_THREAD_MODE,
6521                    I915_READ(GEN7_FF_THREAD_MODE) &
6522                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6523
6524         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6525                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6526
6527         /* WaDisableSDEUnitClockGating:bdw */
6528         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6529                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6530
6531         /*
6532          * WaProgramL3SqcReg1Default:bdw
6533          * WaTempDisableDOPClkGating:bdw
6534          */
6535         misccpctl = I915_READ(GEN7_MISCCPCTL);
6536         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6537         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6538         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6539
6540         /*
6541          * WaGttCachingOffByDefault:bdw
6542          * GTT cache may not work with big pages, so if those
6543          * are ever enabled GTT cache may need to be disabled.
6544          */
6545         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6546
6547         lpt_init_clock_gating(dev);
6548 }
6549
6550 static void haswell_init_clock_gating(struct drm_device *dev)
6551 {
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553
6554         ilk_init_lp_watermarks(dev);
6555
6556         /* L3 caching of data atomics doesn't work -- disable it. */
6557         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6558         I915_WRITE(HSW_ROW_CHICKEN3,
6559                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6560
6561         /* This is required by WaCatErrorRejectionIssue:hsw */
6562         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6563                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6564                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6565
6566         /* WaVSRefCountFullforceMissDisable:hsw */
6567         I915_WRITE(GEN7_FF_THREAD_MODE,
6568                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6569
6570         /* WaDisable_RenderCache_OperationalFlush:hsw */
6571         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6572
6573         /* enable HiZ Raw Stall Optimization */
6574         I915_WRITE(CACHE_MODE_0_GEN7,
6575                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6576
6577         /* WaDisable4x2SubspanOptimization:hsw */
6578         I915_WRITE(CACHE_MODE_1,
6579                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6580
6581         /*
6582          * BSpec recommends 8x4 when MSAA is used,
6583          * however in practice 16x4 seems fastest.
6584          *
6585          * Note that PS/WM thread counts depend on the WIZ hashing
6586          * disable bit, which we don't touch here, but it's good
6587          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6588          */
6589         I915_WRITE(GEN7_GT_MODE,
6590                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6591
6592         /* WaSampleCChickenBitEnable:hsw */
6593         I915_WRITE(HALF_SLICE_CHICKEN3,
6594                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6595
6596         /* WaSwitchSolVfFArbitrationPriority:hsw */
6597         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6598
6599         /* WaRsPkgCStateDisplayPMReq:hsw */
6600         I915_WRITE(CHICKEN_PAR1_1,
6601                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6602
6603         lpt_init_clock_gating(dev);
6604 }
6605
6606 static void ivybridge_init_clock_gating(struct drm_device *dev)
6607 {
6608         struct drm_i915_private *dev_priv = dev->dev_private;
6609         uint32_t snpcr;
6610
6611         ilk_init_lp_watermarks(dev);
6612
6613         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6614
6615         /* WaDisableEarlyCull:ivb */
6616         I915_WRITE(_3D_CHICKEN3,
6617                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6618
6619         /* WaDisableBackToBackFlipFix:ivb */
6620         I915_WRITE(IVB_CHICKEN3,
6621                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6622                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6623
6624         /* WaDisablePSDDualDispatchEnable:ivb */
6625         if (IS_IVB_GT1(dev))
6626                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6627                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6628
6629         /* WaDisable_RenderCache_OperationalFlush:ivb */
6630         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6631
6632         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6633         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6634                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6635
6636         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6637         I915_WRITE(GEN7_L3CNTLREG1,
6638                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6639         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6640                    GEN7_WA_L3_CHICKEN_MODE);
6641         if (IS_IVB_GT1(dev))
6642                 I915_WRITE(GEN7_ROW_CHICKEN2,
6643                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6644         else {
6645                 /* must write both registers */
6646                 I915_WRITE(GEN7_ROW_CHICKEN2,
6647                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6648                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6649                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6650         }
6651
6652         /* WaForceL3Serialization:ivb */
6653         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6654                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6655
6656         /*
6657          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6658          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6659          */
6660         I915_WRITE(GEN6_UCGCTL2,
6661                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6662
6663         /* This is required by WaCatErrorRejectionIssue:ivb */
6664         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6665                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6666                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6667
6668         g4x_disable_trickle_feed(dev);
6669
6670         gen7_setup_fixed_func_scheduler(dev_priv);
6671
6672         if (0) { /* causes HiZ corruption on ivb:gt1 */
6673                 /* enable HiZ Raw Stall Optimization */
6674                 I915_WRITE(CACHE_MODE_0_GEN7,
6675                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6676         }
6677
6678         /* WaDisable4x2SubspanOptimization:ivb */
6679         I915_WRITE(CACHE_MODE_1,
6680                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6681
6682         /*
6683          * BSpec recommends 8x4 when MSAA is used,
6684          * however in practice 16x4 seems fastest.
6685          *
6686          * Note that PS/WM thread counts depend on the WIZ hashing
6687          * disable bit, which we don't touch here, but it's good
6688          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6689          */
6690         I915_WRITE(GEN7_GT_MODE,
6691                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6692
6693         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6694         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6695         snpcr |= GEN6_MBC_SNPCR_MED;
6696         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6697
6698         if (!HAS_PCH_NOP(dev))
6699                 cpt_init_clock_gating(dev);
6700
6701         gen6_check_mch_setup(dev);
6702 }
6703
6704 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6705 {
6706         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6707
6708         /*
6709          * Disable trickle feed and enable pnd deadline calculation
6710          */
6711         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6712         I915_WRITE(CBR1_VLV, 0);
6713 }
6714
6715 static void valleyview_init_clock_gating(struct drm_device *dev)
6716 {
6717         struct drm_i915_private *dev_priv = dev->dev_private;
6718
6719         vlv_init_display_clock_gating(dev_priv);
6720
6721         /* WaDisableEarlyCull:vlv */
6722         I915_WRITE(_3D_CHICKEN3,
6723                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6724
6725         /* WaDisableBackToBackFlipFix:vlv */
6726         I915_WRITE(IVB_CHICKEN3,
6727                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6728                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6729
6730         /* WaPsdDispatchEnable:vlv */
6731         /* WaDisablePSDDualDispatchEnable:vlv */
6732         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6733                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6734                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6735
6736         /* WaDisable_RenderCache_OperationalFlush:vlv */
6737         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6738
6739         /* WaForceL3Serialization:vlv */
6740         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6741                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6742
6743         /* WaDisableDopClockGating:vlv */
6744         I915_WRITE(GEN7_ROW_CHICKEN2,
6745                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6746
6747         /* This is required by WaCatErrorRejectionIssue:vlv */
6748         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6749                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6750                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6751
6752         gen7_setup_fixed_func_scheduler(dev_priv);
6753
6754         /*
6755          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6756          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6757          */
6758         I915_WRITE(GEN6_UCGCTL2,
6759                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6760
6761         /* WaDisableL3Bank2xClockGate:vlv
6762          * Disabling L3 clock gating- MMIO 940c[25] = 1
6763          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6764         I915_WRITE(GEN7_UCGCTL4,
6765                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6766
6767         /*
6768          * BSpec says this must be set, even though
6769          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6770          */
6771         I915_WRITE(CACHE_MODE_1,
6772                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6773
6774         /*
6775          * BSpec recommends 8x4 when MSAA is used,
6776          * however in practice 16x4 seems fastest.
6777          *
6778          * Note that PS/WM thread counts depend on the WIZ hashing
6779          * disable bit, which we don't touch here, but it's good
6780          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6781          */
6782         I915_WRITE(GEN7_GT_MODE,
6783                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6784
6785         /*
6786          * WaIncreaseL3CreditsForVLVB0:vlv
6787          * This is the hardware default actually.
6788          */
6789         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6790
6791         /*
6792          * WaDisableVLVClockGating_VBIIssue:vlv
6793          * Disable clock gating on th GCFG unit to prevent a delay
6794          * in the reporting of vblank events.
6795          */
6796         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6797 }
6798
6799 static void cherryview_init_clock_gating(struct drm_device *dev)
6800 {
6801         struct drm_i915_private *dev_priv = dev->dev_private;
6802
6803         vlv_init_display_clock_gating(dev_priv);
6804
6805         /* WaVSRefCountFullforceMissDisable:chv */
6806         /* WaDSRefCountFullforceMissDisable:chv */
6807         I915_WRITE(GEN7_FF_THREAD_MODE,
6808                    I915_READ(GEN7_FF_THREAD_MODE) &
6809                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6810
6811         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6812         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6813                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6814
6815         /* WaDisableCSUnitClockGating:chv */
6816         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6817                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6818
6819         /* WaDisableSDEUnitClockGating:chv */
6820         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6821                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6822
6823         /*
6824          * GTT cache may not work with big pages, so if those
6825          * are ever enabled GTT cache may need to be disabled.
6826          */
6827         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6828 }
6829
6830 static void g4x_init_clock_gating(struct drm_device *dev)
6831 {
6832         struct drm_i915_private *dev_priv = dev->dev_private;
6833         uint32_t dspclk_gate;
6834
6835         I915_WRITE(RENCLK_GATE_D1, 0);
6836         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6837                    GS_UNIT_CLOCK_GATE_DISABLE |
6838                    CL_UNIT_CLOCK_GATE_DISABLE);
6839         I915_WRITE(RAMCLK_GATE_D, 0);
6840         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6841                 OVRUNIT_CLOCK_GATE_DISABLE |
6842                 OVCUNIT_CLOCK_GATE_DISABLE;
6843         if (IS_GM45(dev))
6844                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6845         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6846
6847         /* WaDisableRenderCachePipelinedFlush */
6848         I915_WRITE(CACHE_MODE_0,
6849                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6850
6851         /* WaDisable_RenderCache_OperationalFlush:g4x */
6852         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6853
6854         g4x_disable_trickle_feed(dev);
6855 }
6856
6857 static void crestline_init_clock_gating(struct drm_device *dev)
6858 {
6859         struct drm_i915_private *dev_priv = dev->dev_private;
6860
6861         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6862         I915_WRITE(RENCLK_GATE_D2, 0);
6863         I915_WRITE(DSPCLK_GATE_D, 0);
6864         I915_WRITE(RAMCLK_GATE_D, 0);
6865         I915_WRITE16(DEUC, 0);
6866         I915_WRITE(MI_ARB_STATE,
6867                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6868
6869         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6870         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6871 }
6872
6873 static void broadwater_init_clock_gating(struct drm_device *dev)
6874 {
6875         struct drm_i915_private *dev_priv = dev->dev_private;
6876
6877         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6878                    I965_RCC_CLOCK_GATE_DISABLE |
6879                    I965_RCPB_CLOCK_GATE_DISABLE |
6880                    I965_ISC_CLOCK_GATE_DISABLE |
6881                    I965_FBC_CLOCK_GATE_DISABLE);
6882         I915_WRITE(RENCLK_GATE_D2, 0);
6883         I915_WRITE(MI_ARB_STATE,
6884                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6885
6886         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6887         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6888 }
6889
6890 static void gen3_init_clock_gating(struct drm_device *dev)
6891 {
6892         struct drm_i915_private *dev_priv = dev->dev_private;
6893         u32 dstate = I915_READ(D_STATE);
6894
6895         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6896                 DSTATE_DOT_CLOCK_GATING;
6897         I915_WRITE(D_STATE, dstate);
6898
6899         if (IS_PINEVIEW(dev))
6900                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6901
6902         /* IIR "flip pending" means done if this bit is set */
6903         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6904
6905         /* interrupts should cause a wake up from C3 */
6906         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6907
6908         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6909         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6910
6911         I915_WRITE(MI_ARB_STATE,
6912                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6913 }
6914
6915 static void i85x_init_clock_gating(struct drm_device *dev)
6916 {
6917         struct drm_i915_private *dev_priv = dev->dev_private;
6918
6919         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6920
6921         /* interrupts should cause a wake up from C3 */
6922         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6923                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6924
6925         I915_WRITE(MEM_MODE,
6926                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6927 }
6928
6929 static void i830_init_clock_gating(struct drm_device *dev)
6930 {
6931         struct drm_i915_private *dev_priv = dev->dev_private;
6932
6933         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6934
6935         I915_WRITE(MEM_MODE,
6936                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6937                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6938 }
6939
6940 void intel_init_clock_gating(struct drm_device *dev)
6941 {
6942         struct drm_i915_private *dev_priv = dev->dev_private;
6943
6944         if (dev_priv->display.init_clock_gating)
6945                 dev_priv->display.init_clock_gating(dev);
6946 }
6947
6948 void intel_suspend_hw(struct drm_device *dev)
6949 {
6950         if (HAS_PCH_LPT(dev))
6951                 lpt_suspend_hw(dev);
6952 }
6953
6954 /* Set up chip specific power management-related functions */
6955 void intel_init_pm(struct drm_device *dev)
6956 {
6957         struct drm_i915_private *dev_priv = dev->dev_private;
6958
6959         intel_fbc_init(dev_priv);
6960
6961         /* For cxsr */
6962         if (IS_PINEVIEW(dev))
6963                 i915_pineview_get_mem_freq(dev);
6964         else if (IS_GEN5(dev))
6965                 i915_ironlake_get_mem_freq(dev);
6966
6967         /* For FIFO watermark updates */
6968         if (INTEL_INFO(dev)->gen >= 9) {
6969                 skl_setup_wm_latency(dev);
6970
6971                 if (IS_BROXTON(dev))
6972                         dev_priv->display.init_clock_gating =
6973                                 bxt_init_clock_gating;
6974                 dev_priv->display.update_wm = skl_update_wm;
6975         } else if (HAS_PCH_SPLIT(dev)) {
6976                 ilk_setup_wm_latency(dev);
6977
6978                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6979                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6980                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6981                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6982                         dev_priv->display.update_wm = ilk_update_wm;
6983                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6984                 } else {
6985                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6986                                       "Disable CxSR\n");
6987                 }
6988
6989                 if (IS_GEN5(dev))
6990                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6991                 else if (IS_GEN6(dev))
6992                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6993                 else if (IS_IVYBRIDGE(dev))
6994                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6995                 else if (IS_HASWELL(dev))
6996                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6997                 else if (INTEL_INFO(dev)->gen == 8)
6998                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6999         } else if (IS_CHERRYVIEW(dev)) {
7000                 vlv_setup_wm_latency(dev);
7001
7002                 dev_priv->display.update_wm = vlv_update_wm;
7003                 dev_priv->display.init_clock_gating =
7004                         cherryview_init_clock_gating;
7005         } else if (IS_VALLEYVIEW(dev)) {
7006                 vlv_setup_wm_latency(dev);
7007
7008                 dev_priv->display.update_wm = vlv_update_wm;
7009                 dev_priv->display.init_clock_gating =
7010                         valleyview_init_clock_gating;
7011         } else if (IS_PINEVIEW(dev)) {
7012                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7013                                             dev_priv->is_ddr3,
7014                                             dev_priv->fsb_freq,
7015                                             dev_priv->mem_freq)) {
7016                         DRM_INFO("failed to find known CxSR latency "
7017                                  "(found ddr%s fsb freq %d, mem freq %d), "
7018                                  "disabling CxSR\n",
7019                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7020                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7021                         /* Disable CxSR and never update its watermark again */
7022                         intel_set_memory_cxsr(dev_priv, false);
7023                         dev_priv->display.update_wm = NULL;
7024                 } else
7025                         dev_priv->display.update_wm = pineview_update_wm;
7026                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7027         } else if (IS_G4X(dev)) {
7028                 dev_priv->display.update_wm = g4x_update_wm;
7029                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7030         } else if (IS_GEN4(dev)) {
7031                 dev_priv->display.update_wm = i965_update_wm;
7032                 if (IS_CRESTLINE(dev))
7033                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7034                 else if (IS_BROADWATER(dev))
7035                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7036         } else if (IS_GEN3(dev)) {
7037                 dev_priv->display.update_wm = i9xx_update_wm;
7038                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7039                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7040         } else if (IS_GEN2(dev)) {
7041                 if (INTEL_INFO(dev)->num_pipes == 1) {
7042                         dev_priv->display.update_wm = i845_update_wm;
7043                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7044                 } else {
7045                         dev_priv->display.update_wm = i9xx_update_wm;
7046                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7047                 }
7048
7049                 if (IS_I85X(dev) || IS_I865G(dev))
7050                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7051                 else
7052                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7053         } else {
7054                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7055         }
7056 }
7057
7058 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7059 {
7060         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7061
7062         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7063                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7064                 return -EAGAIN;
7065         }
7066
7067         I915_WRITE(GEN6_PCODE_DATA, *val);
7068         I915_WRITE(GEN6_PCODE_DATA1, 0);
7069         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7070
7071         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7072                      500)) {
7073                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7074                 return -ETIMEDOUT;
7075         }
7076
7077         *val = I915_READ(GEN6_PCODE_DATA);
7078         I915_WRITE(GEN6_PCODE_DATA, 0);
7079
7080         return 0;
7081 }
7082
7083 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7084 {
7085         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7086
7087         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7088                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7089                 return -EAGAIN;
7090         }
7091
7092         I915_WRITE(GEN6_PCODE_DATA, val);
7093         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7094
7095         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7096                      500)) {
7097                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7098                 return -ETIMEDOUT;
7099         }
7100
7101         I915_WRITE(GEN6_PCODE_DATA, 0);
7102
7103         return 0;
7104 }
7105
7106 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7107 {
7108         switch (czclk_freq) {
7109         case 200:
7110                 return 10;
7111         case 267:
7112                 return 12;
7113         case 320:
7114         case 333:
7115                 return 16;
7116         case 400:
7117                 return 20;
7118         default:
7119                 return -1;
7120         }
7121 }
7122
7123 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7124 {
7125         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7126
7127         div = vlv_gpu_freq_div(czclk_freq);
7128         if (div < 0)
7129                 return div;
7130
7131         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7132 }
7133
7134 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7135 {
7136         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7137
7138         mul = vlv_gpu_freq_div(czclk_freq);
7139         if (mul < 0)
7140                 return mul;
7141
7142         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7143 }
7144
7145 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7146 {
7147         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7148
7149         div = vlv_gpu_freq_div(czclk_freq) / 2;
7150         if (div < 0)
7151                 return div;
7152
7153         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7154 }
7155
7156 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7157 {
7158         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7159
7160         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7161         if (mul < 0)
7162                 return mul;
7163
7164         /* CHV needs even values */
7165         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7166 }
7167
7168 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7169 {
7170         if (IS_GEN9(dev_priv->dev))
7171                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7172                                          GEN9_FREQ_SCALER);
7173         else if (IS_CHERRYVIEW(dev_priv->dev))
7174                 return chv_gpu_freq(dev_priv, val);
7175         else if (IS_VALLEYVIEW(dev_priv->dev))
7176                 return byt_gpu_freq(dev_priv, val);
7177         else
7178                 return val * GT_FREQUENCY_MULTIPLIER;
7179 }
7180
7181 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7182 {
7183         if (IS_GEN9(dev_priv->dev))
7184                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7185                                          GT_FREQUENCY_MULTIPLIER);
7186         else if (IS_CHERRYVIEW(dev_priv->dev))
7187                 return chv_freq_opcode(dev_priv, val);
7188         else if (IS_VALLEYVIEW(dev_priv->dev))
7189                 return byt_freq_opcode(dev_priv, val);
7190         else
7191                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7192 }
7193
7194 struct request_boost {
7195         struct work_struct work;
7196         struct drm_i915_gem_request *req;
7197 };
7198
7199 static void __intel_rps_boost_work(struct work_struct *work)
7200 {
7201         struct request_boost *boost = container_of(work, struct request_boost, work);
7202         struct drm_i915_gem_request *req = boost->req;
7203
7204         if (!i915_gem_request_completed(req, true))
7205                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7206                                req->emitted_jiffies);
7207
7208         i915_gem_request_unreference__unlocked(req);
7209         kfree(boost);
7210 }
7211
7212 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7213                                        struct drm_i915_gem_request *req)
7214 {
7215         struct request_boost *boost;
7216
7217         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7218                 return;
7219
7220         if (i915_gem_request_completed(req, true))
7221                 return;
7222
7223         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7224         if (boost == NULL)
7225                 return;
7226
7227         i915_gem_request_reference(req);
7228         boost->req = req;
7229
7230         INIT_WORK(&boost->work, __intel_rps_boost_work);
7231         queue_work(to_i915(dev)->wq, &boost->work);
7232 }
7233
7234 void intel_pm_setup(struct drm_device *dev)
7235 {
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237
7238         mutex_init(&dev_priv->rps.hw_lock);
7239         spin_lock_init(&dev_priv->rps.client_lock);
7240
7241         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7242                           intel_gen6_powersave_work);
7243         INIT_LIST_HEAD(&dev_priv->rps.clients);
7244         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7245         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7246
7247         dev_priv->pm.suspended = false;
7248         atomic_set(&dev_priv->pm.wakeref_count, 0);
7249         atomic_set(&dev_priv->pm.atomic_seq, 0);
7250 }