]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66         struct drm_i915_private *dev_priv = dev->dev_private;
67
68         gen9_init_clock_gating(dev);
69
70         if (INTEL_REVID(dev) <= SKL_REVID_B0) {
71                 /*
72                  * WaDisableSDEUnitClockGating:skl
73                  * WaSetGAPSunitClckGateDisable:skl
74                  */
75                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76                            GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78
79                 /* WaDisableVFUnitClockGating:skl */
80                 I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
81                            GEN6_VFUNIT_CLOCK_GATE_DISABLE);
82         }
83
84         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
85                 /* WaDisableHDCInvalidation:skl */
86                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
87                            BDW_DISABLE_HDC_INVALIDATION);
88
89                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
90                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
91                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
92         }
93
94         if (INTEL_REVID(dev) <= SKL_REVID_E0)
95                 /* WaDisableLSQCROPERFforOCL:skl */
96                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
97                            GEN8_LQSC_RO_PERF_DIS);
98 }
99
100 static void bxt_init_clock_gating(struct drm_device *dev)
101 {
102         struct drm_i915_private *dev_priv = dev->dev_private;
103
104         gen9_init_clock_gating(dev);
105
106         /*
107          * FIXME:
108          * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
109          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
110          */
111          /* WaDisableSDEUnitClockGating:bxt */
112         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
114                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115
116         /* FIXME: apply on A0 only */
117         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
118 }
119
120 static void i915_pineview_get_mem_freq(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123         u32 tmp;
124
125         tmp = I915_READ(CLKCFG);
126
127         switch (tmp & CLKCFG_FSB_MASK) {
128         case CLKCFG_FSB_533:
129                 dev_priv->fsb_freq = 533; /* 133*4 */
130                 break;
131         case CLKCFG_FSB_800:
132                 dev_priv->fsb_freq = 800; /* 200*4 */
133                 break;
134         case CLKCFG_FSB_667:
135                 dev_priv->fsb_freq =  667; /* 167*4 */
136                 break;
137         case CLKCFG_FSB_400:
138                 dev_priv->fsb_freq = 400; /* 100*4 */
139                 break;
140         }
141
142         switch (tmp & CLKCFG_MEM_MASK) {
143         case CLKCFG_MEM_533:
144                 dev_priv->mem_freq = 533;
145                 break;
146         case CLKCFG_MEM_667:
147                 dev_priv->mem_freq = 667;
148                 break;
149         case CLKCFG_MEM_800:
150                 dev_priv->mem_freq = 800;
151                 break;
152         }
153
154         /* detect pineview DDR3 setting */
155         tmp = I915_READ(CSHRDDR3CTL);
156         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
157 }
158
159 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
160 {
161         struct drm_i915_private *dev_priv = dev->dev_private;
162         u16 ddrpll, csipll;
163
164         ddrpll = I915_READ16(DDRMPLL1);
165         csipll = I915_READ16(CSIPLL0);
166
167         switch (ddrpll & 0xff) {
168         case 0xc:
169                 dev_priv->mem_freq = 800;
170                 break;
171         case 0x10:
172                 dev_priv->mem_freq = 1066;
173                 break;
174         case 0x14:
175                 dev_priv->mem_freq = 1333;
176                 break;
177         case 0x18:
178                 dev_priv->mem_freq = 1600;
179                 break;
180         default:
181                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
182                                  ddrpll & 0xff);
183                 dev_priv->mem_freq = 0;
184                 break;
185         }
186
187         dev_priv->ips.r_t = dev_priv->mem_freq;
188
189         switch (csipll & 0x3ff) {
190         case 0x00c:
191                 dev_priv->fsb_freq = 3200;
192                 break;
193         case 0x00e:
194                 dev_priv->fsb_freq = 3733;
195                 break;
196         case 0x010:
197                 dev_priv->fsb_freq = 4266;
198                 break;
199         case 0x012:
200                 dev_priv->fsb_freq = 4800;
201                 break;
202         case 0x014:
203                 dev_priv->fsb_freq = 5333;
204                 break;
205         case 0x016:
206                 dev_priv->fsb_freq = 5866;
207                 break;
208         case 0x018:
209                 dev_priv->fsb_freq = 6400;
210                 break;
211         default:
212                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
213                                  csipll & 0x3ff);
214                 dev_priv->fsb_freq = 0;
215                 break;
216         }
217
218         if (dev_priv->fsb_freq == 3200) {
219                 dev_priv->ips.c_m = 0;
220         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
221                 dev_priv->ips.c_m = 1;
222         } else {
223                 dev_priv->ips.c_m = 2;
224         }
225 }
226
227 static const struct cxsr_latency cxsr_latency_table[] = {
228         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
229         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
230         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
231         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
232         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
233
234         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
235         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
236         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
237         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
238         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
239
240         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
241         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
242         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
243         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
244         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
245
246         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
247         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
248         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
249         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
250         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
251
252         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
253         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
254         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
255         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
256         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
257
258         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
259         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
260         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
261         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
262         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
263 };
264
265 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
266                                                          int is_ddr3,
267                                                          int fsb,
268                                                          int mem)
269 {
270         const struct cxsr_latency *latency;
271         int i;
272
273         if (fsb == 0 || mem == 0)
274                 return NULL;
275
276         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
277                 latency = &cxsr_latency_table[i];
278                 if (is_desktop == latency->is_desktop &&
279                     is_ddr3 == latency->is_ddr3 &&
280                     fsb == latency->fsb_freq && mem == latency->mem_freq)
281                         return latency;
282         }
283
284         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
285
286         return NULL;
287 }
288
289 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
290 {
291         u32 val;
292
293         mutex_lock(&dev_priv->rps.hw_lock);
294
295         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
296         if (enable)
297                 val &= ~FORCE_DDR_HIGH_FREQ;
298         else
299                 val |= FORCE_DDR_HIGH_FREQ;
300         val &= ~FORCE_DDR_LOW_FREQ;
301         val |= FORCE_DDR_FREQ_REQ_ACK;
302         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
303
304         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
305                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
306                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
307
308         mutex_unlock(&dev_priv->rps.hw_lock);
309 }
310
311 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
312 {
313         u32 val;
314
315         mutex_lock(&dev_priv->rps.hw_lock);
316
317         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
318         if (enable)
319                 val |= DSP_MAXFIFO_PM5_ENABLE;
320         else
321                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
322         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
323
324         mutex_unlock(&dev_priv->rps.hw_lock);
325 }
326
327 #define FW_WM(value, plane) \
328         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
329
330 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
331 {
332         struct drm_device *dev = dev_priv->dev;
333         u32 val;
334
335         if (IS_VALLEYVIEW(dev)) {
336                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
337                 if (IS_CHERRYVIEW(dev))
338                         chv_set_memory_pm5(dev_priv, enable);
339         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
340                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
341         } else if (IS_PINEVIEW(dev)) {
342                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
343                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
344                 I915_WRITE(DSPFW3, val);
345         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
346                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
347                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
348                 I915_WRITE(FW_BLC_SELF, val);
349         } else if (IS_I915GM(dev)) {
350                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
351                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
352                 I915_WRITE(INSTPM, val);
353         } else {
354                 return;
355         }
356
357         DRM_DEBUG_KMS("memory self-refresh is %s\n",
358                       enable ? "enabled" : "disabled");
359 }
360
361
362 /*
363  * Latency for FIFO fetches is dependent on several factors:
364  *   - memory configuration (speed, channels)
365  *   - chipset
366  *   - current MCH state
367  * It can be fairly high in some situations, so here we assume a fairly
368  * pessimal value.  It's a tradeoff between extra memory fetches (if we
369  * set this value too high, the FIFO will fetch frequently to stay full)
370  * and power consumption (set it too low to save power and we might see
371  * FIFO underruns and display "flicker").
372  *
373  * A value of 5us seems to be a good balance; safe for very low end
374  * platforms but not overly aggressive on lower latency configs.
375  */
376 static const int pessimal_latency_ns = 5000;
377
378 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
379         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
380
381 static int vlv_get_fifo_size(struct drm_device *dev,
382                               enum pipe pipe, int plane)
383 {
384         struct drm_i915_private *dev_priv = dev->dev_private;
385         int sprite0_start, sprite1_start, size;
386
387         switch (pipe) {
388                 uint32_t dsparb, dsparb2, dsparb3;
389         case PIPE_A:
390                 dsparb = I915_READ(DSPARB);
391                 dsparb2 = I915_READ(DSPARB2);
392                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
393                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
394                 break;
395         case PIPE_B:
396                 dsparb = I915_READ(DSPARB);
397                 dsparb2 = I915_READ(DSPARB2);
398                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
399                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
400                 break;
401         case PIPE_C:
402                 dsparb2 = I915_READ(DSPARB2);
403                 dsparb3 = I915_READ(DSPARB3);
404                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
405                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
406                 break;
407         default:
408                 return 0;
409         }
410
411         switch (plane) {
412         case 0:
413                 size = sprite0_start;
414                 break;
415         case 1:
416                 size = sprite1_start - sprite0_start;
417                 break;
418         case 2:
419                 size = 512 - 1 - sprite1_start;
420                 break;
421         default:
422                 return 0;
423         }
424
425         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
426                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
427                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
428                       size);
429
430         return size;
431 }
432
433 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434 {
435         struct drm_i915_private *dev_priv = dev->dev_private;
436         uint32_t dsparb = I915_READ(DSPARB);
437         int size;
438
439         size = dsparb & 0x7f;
440         if (plane)
441                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
442
443         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
444                       plane ? "B" : "A", size);
445
446         return size;
447 }
448
449 static int i830_get_fifo_size(struct drm_device *dev, int plane)
450 {
451         struct drm_i915_private *dev_priv = dev->dev_private;
452         uint32_t dsparb = I915_READ(DSPARB);
453         int size;
454
455         size = dsparb & 0x1ff;
456         if (plane)
457                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
458         size >>= 1; /* Convert to cachelines */
459
460         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
461                       plane ? "B" : "A", size);
462
463         return size;
464 }
465
466 static int i845_get_fifo_size(struct drm_device *dev, int plane)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469         uint32_t dsparb = I915_READ(DSPARB);
470         int size;
471
472         size = dsparb & 0x7f;
473         size >>= 2; /* Convert to cachelines */
474
475         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
476                       plane ? "B" : "A",
477                       size);
478
479         return size;
480 }
481
482 /* Pineview has different values for various configs */
483 static const struct intel_watermark_params pineview_display_wm = {
484         .fifo_size = PINEVIEW_DISPLAY_FIFO,
485         .max_wm = PINEVIEW_MAX_WM,
486         .default_wm = PINEVIEW_DFT_WM,
487         .guard_size = PINEVIEW_GUARD_WM,
488         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 };
490 static const struct intel_watermark_params pineview_display_hplloff_wm = {
491         .fifo_size = PINEVIEW_DISPLAY_FIFO,
492         .max_wm = PINEVIEW_MAX_WM,
493         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
494         .guard_size = PINEVIEW_GUARD_WM,
495         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 };
497 static const struct intel_watermark_params pineview_cursor_wm = {
498         .fifo_size = PINEVIEW_CURSOR_FIFO,
499         .max_wm = PINEVIEW_CURSOR_MAX_WM,
500         .default_wm = PINEVIEW_CURSOR_DFT_WM,
501         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
502         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 };
504 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505         .fifo_size = PINEVIEW_CURSOR_FIFO,
506         .max_wm = PINEVIEW_CURSOR_MAX_WM,
507         .default_wm = PINEVIEW_CURSOR_DFT_WM,
508         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
509         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 };
511 static const struct intel_watermark_params g4x_wm_info = {
512         .fifo_size = G4X_FIFO_SIZE,
513         .max_wm = G4X_MAX_WM,
514         .default_wm = G4X_MAX_WM,
515         .guard_size = 2,
516         .cacheline_size = G4X_FIFO_LINE_SIZE,
517 };
518 static const struct intel_watermark_params g4x_cursor_wm_info = {
519         .fifo_size = I965_CURSOR_FIFO,
520         .max_wm = I965_CURSOR_MAX_WM,
521         .default_wm = I965_CURSOR_DFT_WM,
522         .guard_size = 2,
523         .cacheline_size = G4X_FIFO_LINE_SIZE,
524 };
525 static const struct intel_watermark_params valleyview_wm_info = {
526         .fifo_size = VALLEYVIEW_FIFO_SIZE,
527         .max_wm = VALLEYVIEW_MAX_WM,
528         .default_wm = VALLEYVIEW_MAX_WM,
529         .guard_size = 2,
530         .cacheline_size = G4X_FIFO_LINE_SIZE,
531 };
532 static const struct intel_watermark_params valleyview_cursor_wm_info = {
533         .fifo_size = I965_CURSOR_FIFO,
534         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
535         .default_wm = I965_CURSOR_DFT_WM,
536         .guard_size = 2,
537         .cacheline_size = G4X_FIFO_LINE_SIZE,
538 };
539 static const struct intel_watermark_params i965_cursor_wm_info = {
540         .fifo_size = I965_CURSOR_FIFO,
541         .max_wm = I965_CURSOR_MAX_WM,
542         .default_wm = I965_CURSOR_DFT_WM,
543         .guard_size = 2,
544         .cacheline_size = I915_FIFO_LINE_SIZE,
545 };
546 static const struct intel_watermark_params i945_wm_info = {
547         .fifo_size = I945_FIFO_SIZE,
548         .max_wm = I915_MAX_WM,
549         .default_wm = 1,
550         .guard_size = 2,
551         .cacheline_size = I915_FIFO_LINE_SIZE,
552 };
553 static const struct intel_watermark_params i915_wm_info = {
554         .fifo_size = I915_FIFO_SIZE,
555         .max_wm = I915_MAX_WM,
556         .default_wm = 1,
557         .guard_size = 2,
558         .cacheline_size = I915_FIFO_LINE_SIZE,
559 };
560 static const struct intel_watermark_params i830_a_wm_info = {
561         .fifo_size = I855GM_FIFO_SIZE,
562         .max_wm = I915_MAX_WM,
563         .default_wm = 1,
564         .guard_size = 2,
565         .cacheline_size = I830_FIFO_LINE_SIZE,
566 };
567 static const struct intel_watermark_params i830_bc_wm_info = {
568         .fifo_size = I855GM_FIFO_SIZE,
569         .max_wm = I915_MAX_WM/2,
570         .default_wm = 1,
571         .guard_size = 2,
572         .cacheline_size = I830_FIFO_LINE_SIZE,
573 };
574 static const struct intel_watermark_params i845_wm_info = {
575         .fifo_size = I830_FIFO_SIZE,
576         .max_wm = I915_MAX_WM,
577         .default_wm = 1,
578         .guard_size = 2,
579         .cacheline_size = I830_FIFO_LINE_SIZE,
580 };
581
582 /**
583  * intel_calculate_wm - calculate watermark level
584  * @clock_in_khz: pixel clock
585  * @wm: chip FIFO params
586  * @pixel_size: display pixel size
587  * @latency_ns: memory latency for the platform
588  *
589  * Calculate the watermark level (the level at which the display plane will
590  * start fetching from memory again).  Each chip has a different display
591  * FIFO size and allocation, so the caller needs to figure that out and pass
592  * in the correct intel_watermark_params structure.
593  *
594  * As the pixel clock runs, the FIFO will be drained at a rate that depends
595  * on the pixel size.  When it reaches the watermark level, it'll start
596  * fetching FIFO line sized based chunks from memory until the FIFO fills
597  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
598  * will occur, and a display engine hang could result.
599  */
600 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
601                                         const struct intel_watermark_params *wm,
602                                         int fifo_size,
603                                         int pixel_size,
604                                         unsigned long latency_ns)
605 {
606         long entries_required, wm_size;
607
608         /*
609          * Note: we need to make sure we don't overflow for various clock &
610          * latency values.
611          * clocks go from a few thousand to several hundred thousand.
612          * latency is usually a few thousand
613          */
614         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
615                 1000;
616         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
617
618         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
619
620         wm_size = fifo_size - (entries_required + wm->guard_size);
621
622         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
623
624         /* Don't promote wm_size to unsigned... */
625         if (wm_size > (long)wm->max_wm)
626                 wm_size = wm->max_wm;
627         if (wm_size <= 0)
628                 wm_size = wm->default_wm;
629
630         /*
631          * Bspec seems to indicate that the value shouldn't be lower than
632          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
633          * Lets go for 8 which is the burst size since certain platforms
634          * already use a hardcoded 8 (which is what the spec says should be
635          * done).
636          */
637         if (wm_size <= 8)
638                 wm_size = 8;
639
640         return wm_size;
641 }
642
643 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
644 {
645         struct drm_crtc *crtc, *enabled = NULL;
646
647         for_each_crtc(dev, crtc) {
648                 if (intel_crtc_active(crtc)) {
649                         if (enabled)
650                                 return NULL;
651                         enabled = crtc;
652                 }
653         }
654
655         return enabled;
656 }
657
658 static void pineview_update_wm(struct drm_crtc *unused_crtc)
659 {
660         struct drm_device *dev = unused_crtc->dev;
661         struct drm_i915_private *dev_priv = dev->dev_private;
662         struct drm_crtc *crtc;
663         const struct cxsr_latency *latency;
664         u32 reg;
665         unsigned long wm;
666
667         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
668                                          dev_priv->fsb_freq, dev_priv->mem_freq);
669         if (!latency) {
670                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
671                 intel_set_memory_cxsr(dev_priv, false);
672                 return;
673         }
674
675         crtc = single_enabled_crtc(dev);
676         if (crtc) {
677                 const struct drm_display_mode *adjusted_mode;
678                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
679                 int clock;
680
681                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
682                 clock = adjusted_mode->crtc_clock;
683
684                 /* Display SR */
685                 wm = intel_calculate_wm(clock, &pineview_display_wm,
686                                         pineview_display_wm.fifo_size,
687                                         pixel_size, latency->display_sr);
688                 reg = I915_READ(DSPFW1);
689                 reg &= ~DSPFW_SR_MASK;
690                 reg |= FW_WM(wm, SR);
691                 I915_WRITE(DSPFW1, reg);
692                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
693
694                 /* cursor SR */
695                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
696                                         pineview_display_wm.fifo_size,
697                                         pixel_size, latency->cursor_sr);
698                 reg = I915_READ(DSPFW3);
699                 reg &= ~DSPFW_CURSOR_SR_MASK;
700                 reg |= FW_WM(wm, CURSOR_SR);
701                 I915_WRITE(DSPFW3, reg);
702
703                 /* Display HPLL off SR */
704                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
705                                         pineview_display_hplloff_wm.fifo_size,
706                                         pixel_size, latency->display_hpll_disable);
707                 reg = I915_READ(DSPFW3);
708                 reg &= ~DSPFW_HPLL_SR_MASK;
709                 reg |= FW_WM(wm, HPLL_SR);
710                 I915_WRITE(DSPFW3, reg);
711
712                 /* cursor HPLL off SR */
713                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
714                                         pineview_display_hplloff_wm.fifo_size,
715                                         pixel_size, latency->cursor_hpll_disable);
716                 reg = I915_READ(DSPFW3);
717                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
718                 reg |= FW_WM(wm, HPLL_CURSOR);
719                 I915_WRITE(DSPFW3, reg);
720                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
721
722                 intel_set_memory_cxsr(dev_priv, true);
723         } else {
724                 intel_set_memory_cxsr(dev_priv, false);
725         }
726 }
727
728 static bool g4x_compute_wm0(struct drm_device *dev,
729                             int plane,
730                             const struct intel_watermark_params *display,
731                             int display_latency_ns,
732                             const struct intel_watermark_params *cursor,
733                             int cursor_latency_ns,
734                             int *plane_wm,
735                             int *cursor_wm)
736 {
737         struct drm_crtc *crtc;
738         const struct drm_display_mode *adjusted_mode;
739         int htotal, hdisplay, clock, pixel_size;
740         int line_time_us, line_count;
741         int entries, tlb_miss;
742
743         crtc = intel_get_crtc_for_plane(dev, plane);
744         if (!intel_crtc_active(crtc)) {
745                 *cursor_wm = cursor->guard_size;
746                 *plane_wm = display->guard_size;
747                 return false;
748         }
749
750         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
751         clock = adjusted_mode->crtc_clock;
752         htotal = adjusted_mode->crtc_htotal;
753         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
754         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
755
756         /* Use the small buffer method to calculate plane watermark */
757         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
758         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
759         if (tlb_miss > 0)
760                 entries += tlb_miss;
761         entries = DIV_ROUND_UP(entries, display->cacheline_size);
762         *plane_wm = entries + display->guard_size;
763         if (*plane_wm > (int)display->max_wm)
764                 *plane_wm = display->max_wm;
765
766         /* Use the large buffer method to calculate cursor watermark */
767         line_time_us = max(htotal * 1000 / clock, 1);
768         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
769         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
770         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
771         if (tlb_miss > 0)
772                 entries += tlb_miss;
773         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
774         *cursor_wm = entries + cursor->guard_size;
775         if (*cursor_wm > (int)cursor->max_wm)
776                 *cursor_wm = (int)cursor->max_wm;
777
778         return true;
779 }
780
781 /*
782  * Check the wm result.
783  *
784  * If any calculated watermark values is larger than the maximum value that
785  * can be programmed into the associated watermark register, that watermark
786  * must be disabled.
787  */
788 static bool g4x_check_srwm(struct drm_device *dev,
789                            int display_wm, int cursor_wm,
790                            const struct intel_watermark_params *display,
791                            const struct intel_watermark_params *cursor)
792 {
793         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
794                       display_wm, cursor_wm);
795
796         if (display_wm > display->max_wm) {
797                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
798                               display_wm, display->max_wm);
799                 return false;
800         }
801
802         if (cursor_wm > cursor->max_wm) {
803                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
804                               cursor_wm, cursor->max_wm);
805                 return false;
806         }
807
808         if (!(display_wm || cursor_wm)) {
809                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
810                 return false;
811         }
812
813         return true;
814 }
815
816 static bool g4x_compute_srwm(struct drm_device *dev,
817                              int plane,
818                              int latency_ns,
819                              const struct intel_watermark_params *display,
820                              const struct intel_watermark_params *cursor,
821                              int *display_wm, int *cursor_wm)
822 {
823         struct drm_crtc *crtc;
824         const struct drm_display_mode *adjusted_mode;
825         int hdisplay, htotal, pixel_size, clock;
826         unsigned long line_time_us;
827         int line_count, line_size;
828         int small, large;
829         int entries;
830
831         if (!latency_ns) {
832                 *display_wm = *cursor_wm = 0;
833                 return false;
834         }
835
836         crtc = intel_get_crtc_for_plane(dev, plane);
837         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
838         clock = adjusted_mode->crtc_clock;
839         htotal = adjusted_mode->crtc_htotal;
840         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
841         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
842
843         line_time_us = max(htotal * 1000 / clock, 1);
844         line_count = (latency_ns / line_time_us + 1000) / 1000;
845         line_size = hdisplay * pixel_size;
846
847         /* Use the minimum of the small and large buffer method for primary */
848         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
849         large = line_count * line_size;
850
851         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
852         *display_wm = entries + display->guard_size;
853
854         /* calculate the self-refresh watermark for display cursor */
855         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
856         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
857         *cursor_wm = entries + cursor->guard_size;
858
859         return g4x_check_srwm(dev,
860                               *display_wm, *cursor_wm,
861                               display, cursor);
862 }
863
864 #define FW_WM_VLV(value, plane) \
865         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
866
867 static void vlv_write_wm_values(struct intel_crtc *crtc,
868                                 const struct vlv_wm_values *wm)
869 {
870         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
871         enum pipe pipe = crtc->pipe;
872
873         I915_WRITE(VLV_DDL(pipe),
874                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
875                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
876                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
877                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
878
879         I915_WRITE(DSPFW1,
880                    FW_WM(wm->sr.plane, SR) |
881                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
882                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
883                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
884         I915_WRITE(DSPFW2,
885                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
886                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
887                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
888         I915_WRITE(DSPFW3,
889                    FW_WM(wm->sr.cursor, CURSOR_SR));
890
891         if (IS_CHERRYVIEW(dev_priv)) {
892                 I915_WRITE(DSPFW7_CHV,
893                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
894                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
895                 I915_WRITE(DSPFW8_CHV,
896                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
897                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
898                 I915_WRITE(DSPFW9_CHV,
899                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
900                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
901                 I915_WRITE(DSPHOWM,
902                            FW_WM(wm->sr.plane >> 9, SR_HI) |
903                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
904                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
905                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
906                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
907                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
908                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
909                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
910                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
911                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
912         } else {
913                 I915_WRITE(DSPFW7,
914                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
915                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
916                 I915_WRITE(DSPHOWM,
917                            FW_WM(wm->sr.plane >> 9, SR_HI) |
918                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
919                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
920                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
921                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
922                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
923                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
924         }
925
926         POSTING_READ(DSPFW1);
927
928         dev_priv->wm.vlv = *wm;
929 }
930
931 #undef FW_WM_VLV
932
933 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
934                                          struct drm_plane *plane)
935 {
936         struct drm_device *dev = crtc->dev;
937         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
938         int entries, prec_mult, drain_latency, pixel_size;
939         int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
940         const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
941
942         /*
943          * FIXME the plane might have an fb
944          * but be invisible (eg. due to clipping)
945          */
946         if (!intel_crtc->active || !plane->state->fb)
947                 return 0;
948
949         if (WARN(clock == 0, "Pixel clock is zero!\n"))
950                 return 0;
951
952         pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
953
954         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
955                 return 0;
956
957         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
958
959         prec_mult = high_precision;
960         drain_latency = 64 * prec_mult * 4 / entries;
961
962         if (drain_latency > DRAIN_LATENCY_MASK) {
963                 prec_mult /= 2;
964                 drain_latency = 64 * prec_mult * 4 / entries;
965         }
966
967         if (drain_latency > DRAIN_LATENCY_MASK)
968                 drain_latency = DRAIN_LATENCY_MASK;
969
970         return drain_latency | (prec_mult == high_precision ?
971                                 DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
972 }
973
974 static int vlv_compute_wm(struct intel_crtc *crtc,
975                           struct intel_plane *plane,
976                           int fifo_size)
977 {
978         int clock, entries, pixel_size;
979
980         /*
981          * FIXME the plane might have an fb
982          * but be invisible (eg. due to clipping)
983          */
984         if (!crtc->active || !plane->base.state->fb)
985                 return 0;
986
987         pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
988         clock = crtc->config->base.adjusted_mode.crtc_clock;
989
990         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
991
992         /*
993          * Set up the watermark such that we don't start issuing memory
994          * requests until we are within PND's max deadline value (256us).
995          * Idea being to be idle as long as possible while still taking
996          * advatange of PND's deadline scheduling. The limit of 8
997          * cachelines (used when the FIFO will anyway drain in less time
998          * than 256us) should match what we would be done if trickle
999          * feed were enabled.
1000          */
1001         return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
1002 }
1003
1004 static bool vlv_compute_sr_wm(struct drm_device *dev,
1005                               struct vlv_wm_values *wm)
1006 {
1007         struct drm_i915_private *dev_priv = to_i915(dev);
1008         struct drm_crtc *crtc;
1009         enum pipe pipe = INVALID_PIPE;
1010         int num_planes = 0;
1011         int fifo_size = 0;
1012         struct intel_plane *plane;
1013
1014         wm->sr.cursor = wm->sr.plane = 0;
1015
1016         crtc = single_enabled_crtc(dev);
1017         /* maxfifo not supported on pipe C */
1018         if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
1019                 pipe = to_intel_crtc(crtc)->pipe;
1020                 num_planes = !!wm->pipe[pipe].primary +
1021                         !!wm->pipe[pipe].sprite[0] +
1022                         !!wm->pipe[pipe].sprite[1];
1023                 fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1024         }
1025
1026         if (fifo_size == 0 || num_planes > 1)
1027                 return false;
1028
1029         wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1030                                        to_intel_plane(crtc->cursor), 0x3f);
1031
1032         list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1033                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1034                         continue;
1035
1036                 if (plane->pipe != pipe)
1037                         continue;
1038
1039                 wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1040                                               plane, fifo_size);
1041                 if (wm->sr.plane != 0)
1042                         break;
1043         }
1044
1045         return true;
1046 }
1047
1048 static void valleyview_update_wm(struct drm_crtc *crtc)
1049 {
1050         struct drm_device *dev = crtc->dev;
1051         struct drm_i915_private *dev_priv = dev->dev_private;
1052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1053         enum pipe pipe = intel_crtc->pipe;
1054         bool cxsr_enabled;
1055         struct vlv_wm_values wm = dev_priv->wm.vlv;
1056
1057         wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1058         wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1059                                                to_intel_plane(crtc->primary),
1060                                                vlv_get_fifo_size(dev, pipe, 0));
1061
1062         wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1063         wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1064                                               to_intel_plane(crtc->cursor),
1065                                               0x3f);
1066
1067         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1068
1069         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1070                 return;
1071
1072         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1073                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1074                       wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1075                       wm.sr.plane, wm.sr.cursor);
1076
1077         /*
1078          * FIXME DDR DVFS introduces massive memory latencies which
1079          * are not known to system agent so any deadline specified
1080          * by the display may not be respected. To support DDR DVFS
1081          * the watermark code needs to be rewritten to essentially
1082          * bypass deadline mechanism and rely solely on the
1083          * watermarks. For now disable DDR DVFS.
1084          */
1085         if (IS_CHERRYVIEW(dev_priv))
1086                 chv_set_memory_dvfs(dev_priv, false);
1087
1088         if (!cxsr_enabled)
1089                 intel_set_memory_cxsr(dev_priv, false);
1090
1091         vlv_write_wm_values(intel_crtc, &wm);
1092
1093         if (cxsr_enabled)
1094                 intel_set_memory_cxsr(dev_priv, true);
1095 }
1096
1097 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1098                                         struct drm_crtc *crtc,
1099                                         uint32_t sprite_width,
1100                                         uint32_t sprite_height,
1101                                         int pixel_size,
1102                                         bool enabled, bool scaled)
1103 {
1104         struct drm_device *dev = crtc->dev;
1105         struct drm_i915_private *dev_priv = dev->dev_private;
1106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1107         enum pipe pipe = intel_crtc->pipe;
1108         int sprite = to_intel_plane(plane)->plane;
1109         bool cxsr_enabled;
1110         struct vlv_wm_values wm = dev_priv->wm.vlv;
1111
1112         if (enabled) {
1113                 wm.ddl[pipe].sprite[sprite] =
1114                         vlv_compute_drain_latency(crtc, plane);
1115
1116                 wm.pipe[pipe].sprite[sprite] =
1117                         vlv_compute_wm(intel_crtc,
1118                                        to_intel_plane(plane),
1119                                        vlv_get_fifo_size(dev, pipe, sprite+1));
1120         } else {
1121                 wm.ddl[pipe].sprite[sprite] = 0;
1122                 wm.pipe[pipe].sprite[sprite] = 0;
1123         }
1124
1125         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1126
1127         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1128                 return;
1129
1130         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1131                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1132                       sprite_name(pipe, sprite),
1133                       wm.pipe[pipe].sprite[sprite],
1134                       wm.sr.plane, wm.sr.cursor);
1135
1136         if (!cxsr_enabled)
1137                 intel_set_memory_cxsr(dev_priv, false);
1138
1139         vlv_write_wm_values(intel_crtc, &wm);
1140
1141         if (cxsr_enabled)
1142                 intel_set_memory_cxsr(dev_priv, true);
1143 }
1144
1145 #define single_plane_enabled(mask) is_power_of_2(mask)
1146
1147 static void g4x_update_wm(struct drm_crtc *crtc)
1148 {
1149         struct drm_device *dev = crtc->dev;
1150         static const int sr_latency_ns = 12000;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1153         int plane_sr, cursor_sr;
1154         unsigned int enabled = 0;
1155         bool cxsr_enabled;
1156
1157         if (g4x_compute_wm0(dev, PIPE_A,
1158                             &g4x_wm_info, pessimal_latency_ns,
1159                             &g4x_cursor_wm_info, pessimal_latency_ns,
1160                             &planea_wm, &cursora_wm))
1161                 enabled |= 1 << PIPE_A;
1162
1163         if (g4x_compute_wm0(dev, PIPE_B,
1164                             &g4x_wm_info, pessimal_latency_ns,
1165                             &g4x_cursor_wm_info, pessimal_latency_ns,
1166                             &planeb_wm, &cursorb_wm))
1167                 enabled |= 1 << PIPE_B;
1168
1169         if (single_plane_enabled(enabled) &&
1170             g4x_compute_srwm(dev, ffs(enabled) - 1,
1171                              sr_latency_ns,
1172                              &g4x_wm_info,
1173                              &g4x_cursor_wm_info,
1174                              &plane_sr, &cursor_sr)) {
1175                 cxsr_enabled = true;
1176         } else {
1177                 cxsr_enabled = false;
1178                 intel_set_memory_cxsr(dev_priv, false);
1179                 plane_sr = cursor_sr = 0;
1180         }
1181
1182         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1183                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1184                       planea_wm, cursora_wm,
1185                       planeb_wm, cursorb_wm,
1186                       plane_sr, cursor_sr);
1187
1188         I915_WRITE(DSPFW1,
1189                    FW_WM(plane_sr, SR) |
1190                    FW_WM(cursorb_wm, CURSORB) |
1191                    FW_WM(planeb_wm, PLANEB) |
1192                    FW_WM(planea_wm, PLANEA));
1193         I915_WRITE(DSPFW2,
1194                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1195                    FW_WM(cursora_wm, CURSORA));
1196         /* HPLL off in SR has some issues on G4x... disable it */
1197         I915_WRITE(DSPFW3,
1198                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1199                    FW_WM(cursor_sr, CURSOR_SR));
1200
1201         if (cxsr_enabled)
1202                 intel_set_memory_cxsr(dev_priv, true);
1203 }
1204
1205 static void i965_update_wm(struct drm_crtc *unused_crtc)
1206 {
1207         struct drm_device *dev = unused_crtc->dev;
1208         struct drm_i915_private *dev_priv = dev->dev_private;
1209         struct drm_crtc *crtc;
1210         int srwm = 1;
1211         int cursor_sr = 16;
1212         bool cxsr_enabled;
1213
1214         /* Calc sr entries for one plane configs */
1215         crtc = single_enabled_crtc(dev);
1216         if (crtc) {
1217                 /* self-refresh has much higher latency */
1218                 static const int sr_latency_ns = 12000;
1219                 const struct drm_display_mode *adjusted_mode =
1220                         &to_intel_crtc(crtc)->config->base.adjusted_mode;
1221                 int clock = adjusted_mode->crtc_clock;
1222                 int htotal = adjusted_mode->crtc_htotal;
1223                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1224                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1225                 unsigned long line_time_us;
1226                 int entries;
1227
1228                 line_time_us = max(htotal * 1000 / clock, 1);
1229
1230                 /* Use ns/us then divide to preserve precision */
1231                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1232                         pixel_size * hdisplay;
1233                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1234                 srwm = I965_FIFO_SIZE - entries;
1235                 if (srwm < 0)
1236                         srwm = 1;
1237                 srwm &= 0x1ff;
1238                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1239                               entries, srwm);
1240
1241                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1242                         pixel_size * crtc->cursor->state->crtc_w;
1243                 entries = DIV_ROUND_UP(entries,
1244                                           i965_cursor_wm_info.cacheline_size);
1245                 cursor_sr = i965_cursor_wm_info.fifo_size -
1246                         (entries + i965_cursor_wm_info.guard_size);
1247
1248                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1249                         cursor_sr = i965_cursor_wm_info.max_wm;
1250
1251                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1252                               "cursor %d\n", srwm, cursor_sr);
1253
1254                 cxsr_enabled = true;
1255         } else {
1256                 cxsr_enabled = false;
1257                 /* Turn off self refresh if both pipes are enabled */
1258                 intel_set_memory_cxsr(dev_priv, false);
1259         }
1260
1261         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1262                       srwm);
1263
1264         /* 965 has limitations... */
1265         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1266                    FW_WM(8, CURSORB) |
1267                    FW_WM(8, PLANEB) |
1268                    FW_WM(8, PLANEA));
1269         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1270                    FW_WM(8, PLANEC_OLD));
1271         /* update cursor SR watermark */
1272         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1273
1274         if (cxsr_enabled)
1275                 intel_set_memory_cxsr(dev_priv, true);
1276 }
1277
1278 #undef FW_WM
1279
1280 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1281 {
1282         struct drm_device *dev = unused_crtc->dev;
1283         struct drm_i915_private *dev_priv = dev->dev_private;
1284         const struct intel_watermark_params *wm_info;
1285         uint32_t fwater_lo;
1286         uint32_t fwater_hi;
1287         int cwm, srwm = 1;
1288         int fifo_size;
1289         int planea_wm, planeb_wm;
1290         struct drm_crtc *crtc, *enabled = NULL;
1291
1292         if (IS_I945GM(dev))
1293                 wm_info = &i945_wm_info;
1294         else if (!IS_GEN2(dev))
1295                 wm_info = &i915_wm_info;
1296         else
1297                 wm_info = &i830_a_wm_info;
1298
1299         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1300         crtc = intel_get_crtc_for_plane(dev, 0);
1301         if (intel_crtc_active(crtc)) {
1302                 const struct drm_display_mode *adjusted_mode;
1303                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1304                 if (IS_GEN2(dev))
1305                         cpp = 4;
1306
1307                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1308                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1309                                                wm_info, fifo_size, cpp,
1310                                                pessimal_latency_ns);
1311                 enabled = crtc;
1312         } else {
1313                 planea_wm = fifo_size - wm_info->guard_size;
1314                 if (planea_wm > (long)wm_info->max_wm)
1315                         planea_wm = wm_info->max_wm;
1316         }
1317
1318         if (IS_GEN2(dev))
1319                 wm_info = &i830_bc_wm_info;
1320
1321         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1322         crtc = intel_get_crtc_for_plane(dev, 1);
1323         if (intel_crtc_active(crtc)) {
1324                 const struct drm_display_mode *adjusted_mode;
1325                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1326                 if (IS_GEN2(dev))
1327                         cpp = 4;
1328
1329                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1330                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1331                                                wm_info, fifo_size, cpp,
1332                                                pessimal_latency_ns);
1333                 if (enabled == NULL)
1334                         enabled = crtc;
1335                 else
1336                         enabled = NULL;
1337         } else {
1338                 planeb_wm = fifo_size - wm_info->guard_size;
1339                 if (planeb_wm > (long)wm_info->max_wm)
1340                         planeb_wm = wm_info->max_wm;
1341         }
1342
1343         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1344
1345         if (IS_I915GM(dev) && enabled) {
1346                 struct drm_i915_gem_object *obj;
1347
1348                 obj = intel_fb_obj(enabled->primary->state->fb);
1349
1350                 /* self-refresh seems busted with untiled */
1351                 if (obj->tiling_mode == I915_TILING_NONE)
1352                         enabled = NULL;
1353         }
1354
1355         /*
1356          * Overlay gets an aggressive default since video jitter is bad.
1357          */
1358         cwm = 2;
1359
1360         /* Play safe and disable self-refresh before adjusting watermarks. */
1361         intel_set_memory_cxsr(dev_priv, false);
1362
1363         /* Calc sr entries for one plane configs */
1364         if (HAS_FW_BLC(dev) && enabled) {
1365                 /* self-refresh has much higher latency */
1366                 static const int sr_latency_ns = 6000;
1367                 const struct drm_display_mode *adjusted_mode =
1368                         &to_intel_crtc(enabled)->config->base.adjusted_mode;
1369                 int clock = adjusted_mode->crtc_clock;
1370                 int htotal = adjusted_mode->crtc_htotal;
1371                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1372                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1373                 unsigned long line_time_us;
1374                 int entries;
1375
1376                 line_time_us = max(htotal * 1000 / clock, 1);
1377
1378                 /* Use ns/us then divide to preserve precision */
1379                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1380                         pixel_size * hdisplay;
1381                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1382                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1383                 srwm = wm_info->fifo_size - entries;
1384                 if (srwm < 0)
1385                         srwm = 1;
1386
1387                 if (IS_I945G(dev) || IS_I945GM(dev))
1388                         I915_WRITE(FW_BLC_SELF,
1389                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1390                 else if (IS_I915GM(dev))
1391                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1392         }
1393
1394         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1395                       planea_wm, planeb_wm, cwm, srwm);
1396
1397         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1398         fwater_hi = (cwm & 0x1f);
1399
1400         /* Set request length to 8 cachelines per fetch */
1401         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1402         fwater_hi = fwater_hi | (1 << 8);
1403
1404         I915_WRITE(FW_BLC, fwater_lo);
1405         I915_WRITE(FW_BLC2, fwater_hi);
1406
1407         if (enabled)
1408                 intel_set_memory_cxsr(dev_priv, true);
1409 }
1410
1411 static void i845_update_wm(struct drm_crtc *unused_crtc)
1412 {
1413         struct drm_device *dev = unused_crtc->dev;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         struct drm_crtc *crtc;
1416         const struct drm_display_mode *adjusted_mode;
1417         uint32_t fwater_lo;
1418         int planea_wm;
1419
1420         crtc = single_enabled_crtc(dev);
1421         if (crtc == NULL)
1422                 return;
1423
1424         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1425         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1426                                        &i845_wm_info,
1427                                        dev_priv->display.get_fifo_size(dev, 0),
1428                                        4, pessimal_latency_ns);
1429         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1430         fwater_lo |= (3<<8) | planea_wm;
1431
1432         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1433
1434         I915_WRITE(FW_BLC, fwater_lo);
1435 }
1436
1437 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1438                                     struct drm_crtc *crtc)
1439 {
1440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1441         uint32_t pixel_rate;
1442
1443         pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1444
1445         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1446          * adjust the pixel_rate here. */
1447
1448         if (intel_crtc->config->pch_pfit.enabled) {
1449                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1450                 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1451
1452                 pipe_w = intel_crtc->config->pipe_src_w;
1453                 pipe_h = intel_crtc->config->pipe_src_h;
1454                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1455                 pfit_h = pfit_size & 0xFFFF;
1456                 if (pipe_w < pfit_w)
1457                         pipe_w = pfit_w;
1458                 if (pipe_h < pfit_h)
1459                         pipe_h = pfit_h;
1460
1461                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1462                                      pfit_w * pfit_h);
1463         }
1464
1465         return pixel_rate;
1466 }
1467
1468 /* latency must be in 0.1us units. */
1469 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1470                                uint32_t latency)
1471 {
1472         uint64_t ret;
1473
1474         if (WARN(latency == 0, "Latency value missing\n"))
1475                 return UINT_MAX;
1476
1477         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1478         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1479
1480         return ret;
1481 }
1482
1483 /* latency must be in 0.1us units. */
1484 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1485                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1486                                uint32_t latency)
1487 {
1488         uint32_t ret;
1489
1490         if (WARN(latency == 0, "Latency value missing\n"))
1491                 return UINT_MAX;
1492
1493         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1494         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1495         ret = DIV_ROUND_UP(ret, 64) + 2;
1496         return ret;
1497 }
1498
1499 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1500                            uint8_t bytes_per_pixel)
1501 {
1502         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1503 }
1504
1505 struct skl_pipe_wm_parameters {
1506         bool active;
1507         uint32_t pipe_htotal;
1508         uint32_t pixel_rate; /* in KHz */
1509         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1510         struct intel_plane_wm_parameters cursor;
1511 };
1512
1513 struct ilk_pipe_wm_parameters {
1514         bool active;
1515         uint32_t pipe_htotal;
1516         uint32_t pixel_rate;
1517         struct intel_plane_wm_parameters pri;
1518         struct intel_plane_wm_parameters spr;
1519         struct intel_plane_wm_parameters cur;
1520 };
1521
1522 struct ilk_wm_maximums {
1523         uint16_t pri;
1524         uint16_t spr;
1525         uint16_t cur;
1526         uint16_t fbc;
1527 };
1528
1529 /* used in computing the new watermarks state */
1530 struct intel_wm_config {
1531         unsigned int num_pipes_active;
1532         bool sprites_enabled;
1533         bool sprites_scaled;
1534 };
1535
1536 /*
1537  * For both WM_PIPE and WM_LP.
1538  * mem_value must be in 0.1us units.
1539  */
1540 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1541                                    uint32_t mem_value,
1542                                    bool is_lp)
1543 {
1544         uint32_t method1, method2;
1545
1546         if (!params->active || !params->pri.enabled)
1547                 return 0;
1548
1549         method1 = ilk_wm_method1(params->pixel_rate,
1550                                  params->pri.bytes_per_pixel,
1551                                  mem_value);
1552
1553         if (!is_lp)
1554                 return method1;
1555
1556         method2 = ilk_wm_method2(params->pixel_rate,
1557                                  params->pipe_htotal,
1558                                  params->pri.horiz_pixels,
1559                                  params->pri.bytes_per_pixel,
1560                                  mem_value);
1561
1562         return min(method1, method2);
1563 }
1564
1565 /*
1566  * For both WM_PIPE and WM_LP.
1567  * mem_value must be in 0.1us units.
1568  */
1569 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1570                                    uint32_t mem_value)
1571 {
1572         uint32_t method1, method2;
1573
1574         if (!params->active || !params->spr.enabled)
1575                 return 0;
1576
1577         method1 = ilk_wm_method1(params->pixel_rate,
1578                                  params->spr.bytes_per_pixel,
1579                                  mem_value);
1580         method2 = ilk_wm_method2(params->pixel_rate,
1581                                  params->pipe_htotal,
1582                                  params->spr.horiz_pixels,
1583                                  params->spr.bytes_per_pixel,
1584                                  mem_value);
1585         return min(method1, method2);
1586 }
1587
1588 /*
1589  * For both WM_PIPE and WM_LP.
1590  * mem_value must be in 0.1us units.
1591  */
1592 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1593                                    uint32_t mem_value)
1594 {
1595         if (!params->active || !params->cur.enabled)
1596                 return 0;
1597
1598         return ilk_wm_method2(params->pixel_rate,
1599                               params->pipe_htotal,
1600                               params->cur.horiz_pixels,
1601                               params->cur.bytes_per_pixel,
1602                               mem_value);
1603 }
1604
1605 /* Only for WM_LP. */
1606 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1607                                    uint32_t pri_val)
1608 {
1609         if (!params->active || !params->pri.enabled)
1610                 return 0;
1611
1612         return ilk_wm_fbc(pri_val,
1613                           params->pri.horiz_pixels,
1614                           params->pri.bytes_per_pixel);
1615 }
1616
1617 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1618 {
1619         if (INTEL_INFO(dev)->gen >= 8)
1620                 return 3072;
1621         else if (INTEL_INFO(dev)->gen >= 7)
1622                 return 768;
1623         else
1624                 return 512;
1625 }
1626
1627 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1628                                          int level, bool is_sprite)
1629 {
1630         if (INTEL_INFO(dev)->gen >= 8)
1631                 /* BDW primary/sprite plane watermarks */
1632                 return level == 0 ? 255 : 2047;
1633         else if (INTEL_INFO(dev)->gen >= 7)
1634                 /* IVB/HSW primary/sprite plane watermarks */
1635                 return level == 0 ? 127 : 1023;
1636         else if (!is_sprite)
1637                 /* ILK/SNB primary plane watermarks */
1638                 return level == 0 ? 127 : 511;
1639         else
1640                 /* ILK/SNB sprite plane watermarks */
1641                 return level == 0 ? 63 : 255;
1642 }
1643
1644 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1645                                           int level)
1646 {
1647         if (INTEL_INFO(dev)->gen >= 7)
1648                 return level == 0 ? 63 : 255;
1649         else
1650                 return level == 0 ? 31 : 63;
1651 }
1652
1653 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1654 {
1655         if (INTEL_INFO(dev)->gen >= 8)
1656                 return 31;
1657         else
1658                 return 15;
1659 }
1660
1661 /* Calculate the maximum primary/sprite plane watermark */
1662 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1663                                      int level,
1664                                      const struct intel_wm_config *config,
1665                                      enum intel_ddb_partitioning ddb_partitioning,
1666                                      bool is_sprite)
1667 {
1668         unsigned int fifo_size = ilk_display_fifo_size(dev);
1669
1670         /* if sprites aren't enabled, sprites get nothing */
1671         if (is_sprite && !config->sprites_enabled)
1672                 return 0;
1673
1674         /* HSW allows LP1+ watermarks even with multiple pipes */
1675         if (level == 0 || config->num_pipes_active > 1) {
1676                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1677
1678                 /*
1679                  * For some reason the non self refresh
1680                  * FIFO size is only half of the self
1681                  * refresh FIFO size on ILK/SNB.
1682                  */
1683                 if (INTEL_INFO(dev)->gen <= 6)
1684                         fifo_size /= 2;
1685         }
1686
1687         if (config->sprites_enabled) {
1688                 /* level 0 is always calculated with 1:1 split */
1689                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1690                         if (is_sprite)
1691                                 fifo_size *= 5;
1692                         fifo_size /= 6;
1693                 } else {
1694                         fifo_size /= 2;
1695                 }
1696         }
1697
1698         /* clamp to max that the registers can hold */
1699         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1700 }
1701
1702 /* Calculate the maximum cursor plane watermark */
1703 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1704                                       int level,
1705                                       const struct intel_wm_config *config)
1706 {
1707         /* HSW LP1+ watermarks w/ multiple pipes */
1708         if (level > 0 && config->num_pipes_active > 1)
1709                 return 64;
1710
1711         /* otherwise just report max that registers can hold */
1712         return ilk_cursor_wm_reg_max(dev, level);
1713 }
1714
1715 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1716                                     int level,
1717                                     const struct intel_wm_config *config,
1718                                     enum intel_ddb_partitioning ddb_partitioning,
1719                                     struct ilk_wm_maximums *max)
1720 {
1721         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1722         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1723         max->cur = ilk_cursor_wm_max(dev, level, config);
1724         max->fbc = ilk_fbc_wm_reg_max(dev);
1725 }
1726
1727 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1728                                         int level,
1729                                         struct ilk_wm_maximums *max)
1730 {
1731         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1732         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1733         max->cur = ilk_cursor_wm_reg_max(dev, level);
1734         max->fbc = ilk_fbc_wm_reg_max(dev);
1735 }
1736
1737 static bool ilk_validate_wm_level(int level,
1738                                   const struct ilk_wm_maximums *max,
1739                                   struct intel_wm_level *result)
1740 {
1741         bool ret;
1742
1743         /* already determined to be invalid? */
1744         if (!result->enable)
1745                 return false;
1746
1747         result->enable = result->pri_val <= max->pri &&
1748                          result->spr_val <= max->spr &&
1749                          result->cur_val <= max->cur;
1750
1751         ret = result->enable;
1752
1753         /*
1754          * HACK until we can pre-compute everything,
1755          * and thus fail gracefully if LP0 watermarks
1756          * are exceeded...
1757          */
1758         if (level == 0 && !result->enable) {
1759                 if (result->pri_val > max->pri)
1760                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1761                                       level, result->pri_val, max->pri);
1762                 if (result->spr_val > max->spr)
1763                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1764                                       level, result->spr_val, max->spr);
1765                 if (result->cur_val > max->cur)
1766                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1767                                       level, result->cur_val, max->cur);
1768
1769                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1770                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1771                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1772                 result->enable = true;
1773         }
1774
1775         return ret;
1776 }
1777
1778 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1779                                  int level,
1780                                  const struct ilk_pipe_wm_parameters *p,
1781                                  struct intel_wm_level *result)
1782 {
1783         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1784         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1785         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1786
1787         /* WM1+ latency values stored in 0.5us units */
1788         if (level > 0) {
1789                 pri_latency *= 5;
1790                 spr_latency *= 5;
1791                 cur_latency *= 5;
1792         }
1793
1794         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1795         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1796         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1797         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1798         result->enable = true;
1799 }
1800
1801 static uint32_t
1802 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1803 {
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1806         struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1807         u32 linetime, ips_linetime;
1808
1809         if (!intel_crtc->active)
1810                 return 0;
1811
1812         /* The WM are computed with base on how long it takes to fill a single
1813          * row at the given clock rate, multiplied by 8.
1814          * */
1815         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1816                                      mode->crtc_clock);
1817         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1818                                          dev_priv->display.get_display_clock_speed(dev_priv->dev));
1819
1820         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1821                PIPE_WM_LINETIME_TIME(linetime);
1822 }
1823
1824 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1825 {
1826         struct drm_i915_private *dev_priv = dev->dev_private;
1827
1828         if (IS_GEN9(dev)) {
1829                 uint32_t val;
1830                 int ret, i;
1831                 int level, max_level = ilk_wm_max_level(dev);
1832
1833                 /* read the first set of memory latencies[0:3] */
1834                 val = 0; /* data0 to be programmed to 0 for first set */
1835                 mutex_lock(&dev_priv->rps.hw_lock);
1836                 ret = sandybridge_pcode_read(dev_priv,
1837                                              GEN9_PCODE_READ_MEM_LATENCY,
1838                                              &val);
1839                 mutex_unlock(&dev_priv->rps.hw_lock);
1840
1841                 if (ret) {
1842                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1843                         return;
1844                 }
1845
1846                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1847                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1848                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1849                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1850                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1851                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1852                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1853
1854                 /* read the second set of memory latencies[4:7] */
1855                 val = 1; /* data0 to be programmed to 1 for second set */
1856                 mutex_lock(&dev_priv->rps.hw_lock);
1857                 ret = sandybridge_pcode_read(dev_priv,
1858                                              GEN9_PCODE_READ_MEM_LATENCY,
1859                                              &val);
1860                 mutex_unlock(&dev_priv->rps.hw_lock);
1861                 if (ret) {
1862                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1863                         return;
1864                 }
1865
1866                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1867                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1868                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1869                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1870                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1871                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1872                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1873
1874                 /*
1875                  * WaWmMemoryReadLatency:skl
1876                  *
1877                  * punit doesn't take into account the read latency so we need
1878                  * to add 2us to the various latency levels we retrieve from
1879                  * the punit.
1880                  *   - W0 is a bit special in that it's the only level that
1881                  *   can't be disabled if we want to have display working, so
1882                  *   we always add 2us there.
1883                  *   - For levels >=1, punit returns 0us latency when they are
1884                  *   disabled, so we respect that and don't add 2us then
1885                  *
1886                  * Additionally, if a level n (n > 1) has a 0us latency, all
1887                  * levels m (m >= n) need to be disabled. We make sure to
1888                  * sanitize the values out of the punit to satisfy this
1889                  * requirement.
1890                  */
1891                 wm[0] += 2;
1892                 for (level = 1; level <= max_level; level++)
1893                         if (wm[level] != 0)
1894                                 wm[level] += 2;
1895                         else {
1896                                 for (i = level + 1; i <= max_level; i++)
1897                                         wm[i] = 0;
1898
1899                                 break;
1900                         }
1901         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1902                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1903
1904                 wm[0] = (sskpd >> 56) & 0xFF;
1905                 if (wm[0] == 0)
1906                         wm[0] = sskpd & 0xF;
1907                 wm[1] = (sskpd >> 4) & 0xFF;
1908                 wm[2] = (sskpd >> 12) & 0xFF;
1909                 wm[3] = (sskpd >> 20) & 0x1FF;
1910                 wm[4] = (sskpd >> 32) & 0x1FF;
1911         } else if (INTEL_INFO(dev)->gen >= 6) {
1912                 uint32_t sskpd = I915_READ(MCH_SSKPD);
1913
1914                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1915                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1916                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1917                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1918         } else if (INTEL_INFO(dev)->gen >= 5) {
1919                 uint32_t mltr = I915_READ(MLTR_ILK);
1920
1921                 /* ILK primary LP0 latency is 700 ns */
1922                 wm[0] = 7;
1923                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1924                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1925         }
1926 }
1927
1928 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1929 {
1930         /* ILK sprite LP0 latency is 1300 ns */
1931         if (INTEL_INFO(dev)->gen == 5)
1932                 wm[0] = 13;
1933 }
1934
1935 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1936 {
1937         /* ILK cursor LP0 latency is 1300 ns */
1938         if (INTEL_INFO(dev)->gen == 5)
1939                 wm[0] = 13;
1940
1941         /* WaDoubleCursorLP3Latency:ivb */
1942         if (IS_IVYBRIDGE(dev))
1943                 wm[3] *= 2;
1944 }
1945
1946 int ilk_wm_max_level(const struct drm_device *dev)
1947 {
1948         /* how many WM levels are we expecting */
1949         if (INTEL_INFO(dev)->gen >= 9)
1950                 return 7;
1951         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1952                 return 4;
1953         else if (INTEL_INFO(dev)->gen >= 6)
1954                 return 3;
1955         else
1956                 return 2;
1957 }
1958
1959 static void intel_print_wm_latency(struct drm_device *dev,
1960                                    const char *name,
1961                                    const uint16_t wm[8])
1962 {
1963         int level, max_level = ilk_wm_max_level(dev);
1964
1965         for (level = 0; level <= max_level; level++) {
1966                 unsigned int latency = wm[level];
1967
1968                 if (latency == 0) {
1969                         DRM_ERROR("%s WM%d latency not provided\n",
1970                                   name, level);
1971                         continue;
1972                 }
1973
1974                 /*
1975                  * - latencies are in us on gen9.
1976                  * - before then, WM1+ latency values are in 0.5us units
1977                  */
1978                 if (IS_GEN9(dev))
1979                         latency *= 10;
1980                 else if (level > 0)
1981                         latency *= 5;
1982
1983                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1984                               name, level, wm[level],
1985                               latency / 10, latency % 10);
1986         }
1987 }
1988
1989 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1990                                     uint16_t wm[5], uint16_t min)
1991 {
1992         int level, max_level = ilk_wm_max_level(dev_priv->dev);
1993
1994         if (wm[0] >= min)
1995                 return false;
1996
1997         wm[0] = max(wm[0], min);
1998         for (level = 1; level <= max_level; level++)
1999                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2000
2001         return true;
2002 }
2003
2004 static void snb_wm_latency_quirk(struct drm_device *dev)
2005 {
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         bool changed;
2008
2009         /*
2010          * The BIOS provided WM memory latency values are often
2011          * inadequate for high resolution displays. Adjust them.
2012          */
2013         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2014                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2015                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2016
2017         if (!changed)
2018                 return;
2019
2020         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2021         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2022         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2023         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2024 }
2025
2026 static void ilk_setup_wm_latency(struct drm_device *dev)
2027 {
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029
2030         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2031
2032         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2033                sizeof(dev_priv->wm.pri_latency));
2034         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2035                sizeof(dev_priv->wm.pri_latency));
2036
2037         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2038         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2039
2040         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2041         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2042         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2043
2044         if (IS_GEN6(dev))
2045                 snb_wm_latency_quirk(dev);
2046 }
2047
2048 static void skl_setup_wm_latency(struct drm_device *dev)
2049 {
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051
2052         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2053         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2054 }
2055
2056 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2057                                       struct ilk_pipe_wm_parameters *p)
2058 {
2059         struct drm_device *dev = crtc->dev;
2060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061         enum pipe pipe = intel_crtc->pipe;
2062         struct drm_plane *plane;
2063
2064         if (!intel_crtc->active)
2065                 return;
2066
2067         p->active = true;
2068         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2069         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2070
2071         if (crtc->primary->state->fb)
2072                 p->pri.bytes_per_pixel =
2073                         crtc->primary->state->fb->bits_per_pixel / 8;
2074         else
2075                 p->pri.bytes_per_pixel = 4;
2076
2077         p->cur.bytes_per_pixel = 4;
2078         /*
2079          * TODO: for now, assume primary and cursor planes are always enabled.
2080          * Setting them to false makes the screen flicker.
2081          */
2082         p->pri.enabled = true;
2083         p->cur.enabled = true;
2084
2085         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2086         p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2087
2088         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2089                 struct intel_plane *intel_plane = to_intel_plane(plane);
2090
2091                 if (intel_plane->pipe == pipe) {
2092                         p->spr = intel_plane->wm;
2093                         break;
2094                 }
2095         }
2096 }
2097
2098 static void ilk_compute_wm_config(struct drm_device *dev,
2099                                   struct intel_wm_config *config)
2100 {
2101         struct intel_crtc *intel_crtc;
2102
2103         /* Compute the currently _active_ config */
2104         for_each_intel_crtc(dev, intel_crtc) {
2105                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2106
2107                 if (!wm->pipe_enabled)
2108                         continue;
2109
2110                 config->sprites_enabled |= wm->sprites_enabled;
2111                 config->sprites_scaled |= wm->sprites_scaled;
2112                 config->num_pipes_active++;
2113         }
2114 }
2115
2116 /* Compute new watermarks for the pipe */
2117 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2118                                   const struct ilk_pipe_wm_parameters *params,
2119                                   struct intel_pipe_wm *pipe_wm)
2120 {
2121         struct drm_device *dev = crtc->dev;
2122         const struct drm_i915_private *dev_priv = dev->dev_private;
2123         int level, max_level = ilk_wm_max_level(dev);
2124         /* LP0 watermark maximums depend on this pipe alone */
2125         struct intel_wm_config config = {
2126                 .num_pipes_active = 1,
2127                 .sprites_enabled = params->spr.enabled,
2128                 .sprites_scaled = params->spr.scaled,
2129         };
2130         struct ilk_wm_maximums max;
2131
2132         pipe_wm->pipe_enabled = params->active;
2133         pipe_wm->sprites_enabled = params->spr.enabled;
2134         pipe_wm->sprites_scaled = params->spr.scaled;
2135
2136         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2137         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2138                 max_level = 1;
2139
2140         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2141         if (params->spr.scaled)
2142                 max_level = 0;
2143
2144         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2145
2146         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2147                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2148
2149         /* LP0 watermarks always use 1/2 DDB partitioning */
2150         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2151
2152         /* At least LP0 must be valid */
2153         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2154                 return false;
2155
2156         ilk_compute_wm_reg_maximums(dev, 1, &max);
2157
2158         for (level = 1; level <= max_level; level++) {
2159                 struct intel_wm_level wm = {};
2160
2161                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2162
2163                 /*
2164                  * Disable any watermark level that exceeds the
2165                  * register maximums since such watermarks are
2166                  * always invalid.
2167                  */
2168                 if (!ilk_validate_wm_level(level, &max, &wm))
2169                         break;
2170
2171                 pipe_wm->wm[level] = wm;
2172         }
2173
2174         return true;
2175 }
2176
2177 /*
2178  * Merge the watermarks from all active pipes for a specific level.
2179  */
2180 static void ilk_merge_wm_level(struct drm_device *dev,
2181                                int level,
2182                                struct intel_wm_level *ret_wm)
2183 {
2184         const struct intel_crtc *intel_crtc;
2185
2186         ret_wm->enable = true;
2187
2188         for_each_intel_crtc(dev, intel_crtc) {
2189                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2190                 const struct intel_wm_level *wm = &active->wm[level];
2191
2192                 if (!active->pipe_enabled)
2193                         continue;
2194
2195                 /*
2196                  * The watermark values may have been used in the past,
2197                  * so we must maintain them in the registers for some
2198                  * time even if the level is now disabled.
2199                  */
2200                 if (!wm->enable)
2201                         ret_wm->enable = false;
2202
2203                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2204                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2205                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2206                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2207         }
2208 }
2209
2210 /*
2211  * Merge all low power watermarks for all active pipes.
2212  */
2213 static void ilk_wm_merge(struct drm_device *dev,
2214                          const struct intel_wm_config *config,
2215                          const struct ilk_wm_maximums *max,
2216                          struct intel_pipe_wm *merged)
2217 {
2218         int level, max_level = ilk_wm_max_level(dev);
2219         int last_enabled_level = max_level;
2220
2221         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2222         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2223             config->num_pipes_active > 1)
2224                 return;
2225
2226         /* ILK: FBC WM must be disabled always */
2227         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2228
2229         /* merge each WM1+ level */
2230         for (level = 1; level <= max_level; level++) {
2231                 struct intel_wm_level *wm = &merged->wm[level];
2232
2233                 ilk_merge_wm_level(dev, level, wm);
2234
2235                 if (level > last_enabled_level)
2236                         wm->enable = false;
2237                 else if (!ilk_validate_wm_level(level, max, wm))
2238                         /* make sure all following levels get disabled */
2239                         last_enabled_level = level - 1;
2240
2241                 /*
2242                  * The spec says it is preferred to disable
2243                  * FBC WMs instead of disabling a WM level.
2244                  */
2245                 if (wm->fbc_val > max->fbc) {
2246                         if (wm->enable)
2247                                 merged->fbc_wm_enabled = false;
2248                         wm->fbc_val = 0;
2249                 }
2250         }
2251
2252         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2253         /*
2254          * FIXME this is racy. FBC might get enabled later.
2255          * What we should check here is whether FBC can be
2256          * enabled sometime later.
2257          */
2258         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2259                 for (level = 2; level <= max_level; level++) {
2260                         struct intel_wm_level *wm = &merged->wm[level];
2261
2262                         wm->enable = false;
2263                 }
2264         }
2265 }
2266
2267 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2268 {
2269         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2270         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2271 }
2272
2273 /* The value we need to program into the WM_LPx latency field */
2274 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2275 {
2276         struct drm_i915_private *dev_priv = dev->dev_private;
2277
2278         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2279                 return 2 * level;
2280         else
2281                 return dev_priv->wm.pri_latency[level];
2282 }
2283
2284 static void ilk_compute_wm_results(struct drm_device *dev,
2285                                    const struct intel_pipe_wm *merged,
2286                                    enum intel_ddb_partitioning partitioning,
2287                                    struct ilk_wm_values *results)
2288 {
2289         struct intel_crtc *intel_crtc;
2290         int level, wm_lp;
2291
2292         results->enable_fbc_wm = merged->fbc_wm_enabled;
2293         results->partitioning = partitioning;
2294
2295         /* LP1+ register values */
2296         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2297                 const struct intel_wm_level *r;
2298
2299                 level = ilk_wm_lp_to_level(wm_lp, merged);
2300
2301                 r = &merged->wm[level];
2302
2303                 /*
2304                  * Maintain the watermark values even if the level is
2305                  * disabled. Doing otherwise could cause underruns.
2306                  */
2307                 results->wm_lp[wm_lp - 1] =
2308                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2309                         (r->pri_val << WM1_LP_SR_SHIFT) |
2310                         r->cur_val;
2311
2312                 if (r->enable)
2313                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2314
2315                 if (INTEL_INFO(dev)->gen >= 8)
2316                         results->wm_lp[wm_lp - 1] |=
2317                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2318                 else
2319                         results->wm_lp[wm_lp - 1] |=
2320                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2321
2322                 /*
2323                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2324                  * level is disabled. Doing otherwise could cause underruns.
2325                  */
2326                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2327                         WARN_ON(wm_lp != 1);
2328                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2329                 } else
2330                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2331         }
2332
2333         /* LP0 register values */
2334         for_each_intel_crtc(dev, intel_crtc) {
2335                 enum pipe pipe = intel_crtc->pipe;
2336                 const struct intel_wm_level *r =
2337                         &intel_crtc->wm.active.wm[0];
2338
2339                 if (WARN_ON(!r->enable))
2340                         continue;
2341
2342                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2343
2344                 results->wm_pipe[pipe] =
2345                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2346                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2347                         r->cur_val;
2348         }
2349 }
2350
2351 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2352  * case both are at the same level. Prefer r1 in case they're the same. */
2353 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2354                                                   struct intel_pipe_wm *r1,
2355                                                   struct intel_pipe_wm *r2)
2356 {
2357         int level, max_level = ilk_wm_max_level(dev);
2358         int level1 = 0, level2 = 0;
2359
2360         for (level = 1; level <= max_level; level++) {
2361                 if (r1->wm[level].enable)
2362                         level1 = level;
2363                 if (r2->wm[level].enable)
2364                         level2 = level;
2365         }
2366
2367         if (level1 == level2) {
2368                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2369                         return r2;
2370                 else
2371                         return r1;
2372         } else if (level1 > level2) {
2373                 return r1;
2374         } else {
2375                 return r2;
2376         }
2377 }
2378
2379 /* dirty bits used to track which watermarks need changes */
2380 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2381 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2382 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2383 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2384 #define WM_DIRTY_FBC (1 << 24)
2385 #define WM_DIRTY_DDB (1 << 25)
2386
2387 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2388                                          const struct ilk_wm_values *old,
2389                                          const struct ilk_wm_values *new)
2390 {
2391         unsigned int dirty = 0;
2392         enum pipe pipe;
2393         int wm_lp;
2394
2395         for_each_pipe(dev_priv, pipe) {
2396                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2397                         dirty |= WM_DIRTY_LINETIME(pipe);
2398                         /* Must disable LP1+ watermarks too */
2399                         dirty |= WM_DIRTY_LP_ALL;
2400                 }
2401
2402                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2403                         dirty |= WM_DIRTY_PIPE(pipe);
2404                         /* Must disable LP1+ watermarks too */
2405                         dirty |= WM_DIRTY_LP_ALL;
2406                 }
2407         }
2408
2409         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2410                 dirty |= WM_DIRTY_FBC;
2411                 /* Must disable LP1+ watermarks too */
2412                 dirty |= WM_DIRTY_LP_ALL;
2413         }
2414
2415         if (old->partitioning != new->partitioning) {
2416                 dirty |= WM_DIRTY_DDB;
2417                 /* Must disable LP1+ watermarks too */
2418                 dirty |= WM_DIRTY_LP_ALL;
2419         }
2420
2421         /* LP1+ watermarks already deemed dirty, no need to continue */
2422         if (dirty & WM_DIRTY_LP_ALL)
2423                 return dirty;
2424
2425         /* Find the lowest numbered LP1+ watermark in need of an update... */
2426         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2427                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2428                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2429                         break;
2430         }
2431
2432         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2433         for (; wm_lp <= 3; wm_lp++)
2434                 dirty |= WM_DIRTY_LP(wm_lp);
2435
2436         return dirty;
2437 }
2438
2439 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2440                                unsigned int dirty)
2441 {
2442         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2443         bool changed = false;
2444
2445         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2446                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2447                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2448                 changed = true;
2449         }
2450         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2451                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2452                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2453                 changed = true;
2454         }
2455         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2456                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2457                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2458                 changed = true;
2459         }
2460
2461         /*
2462          * Don't touch WM1S_LP_EN here.
2463          * Doing so could cause underruns.
2464          */
2465
2466         return changed;
2467 }
2468
2469 /*
2470  * The spec says we shouldn't write when we don't need, because every write
2471  * causes WMs to be re-evaluated, expending some power.
2472  */
2473 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2474                                 struct ilk_wm_values *results)
2475 {
2476         struct drm_device *dev = dev_priv->dev;
2477         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2478         unsigned int dirty;
2479         uint32_t val;
2480
2481         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2482         if (!dirty)
2483                 return;
2484
2485         _ilk_disable_lp_wm(dev_priv, dirty);
2486
2487         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2488                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2489         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2490                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2491         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2492                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2493
2494         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2495                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2496         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2497                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2498         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2499                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2500
2501         if (dirty & WM_DIRTY_DDB) {
2502                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2503                         val = I915_READ(WM_MISC);
2504                         if (results->partitioning == INTEL_DDB_PART_1_2)
2505                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2506                         else
2507                                 val |= WM_MISC_DATA_PARTITION_5_6;
2508                         I915_WRITE(WM_MISC, val);
2509                 } else {
2510                         val = I915_READ(DISP_ARB_CTL2);
2511                         if (results->partitioning == INTEL_DDB_PART_1_2)
2512                                 val &= ~DISP_DATA_PARTITION_5_6;
2513                         else
2514                                 val |= DISP_DATA_PARTITION_5_6;
2515                         I915_WRITE(DISP_ARB_CTL2, val);
2516                 }
2517         }
2518
2519         if (dirty & WM_DIRTY_FBC) {
2520                 val = I915_READ(DISP_ARB_CTL);
2521                 if (results->enable_fbc_wm)
2522                         val &= ~DISP_FBC_WM_DIS;
2523                 else
2524                         val |= DISP_FBC_WM_DIS;
2525                 I915_WRITE(DISP_ARB_CTL, val);
2526         }
2527
2528         if (dirty & WM_DIRTY_LP(1) &&
2529             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2530                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2531
2532         if (INTEL_INFO(dev)->gen >= 7) {
2533                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2534                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2535                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2536                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2537         }
2538
2539         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2540                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2541         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2542                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2543         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2544                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2545
2546         dev_priv->wm.hw = *results;
2547 }
2548
2549 static bool ilk_disable_lp_wm(struct drm_device *dev)
2550 {
2551         struct drm_i915_private *dev_priv = dev->dev_private;
2552
2553         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2554 }
2555
2556 /*
2557  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2558  * different active planes.
2559  */
2560
2561 #define SKL_DDB_SIZE            896     /* in blocks */
2562 #define BXT_DDB_SIZE            512
2563
2564 static void
2565 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2566                                    struct drm_crtc *for_crtc,
2567                                    const struct intel_wm_config *config,
2568                                    const struct skl_pipe_wm_parameters *params,
2569                                    struct skl_ddb_entry *alloc /* out */)
2570 {
2571         struct drm_crtc *crtc;
2572         unsigned int pipe_size, ddb_size;
2573         int nth_active_pipe;
2574
2575         if (!params->active) {
2576                 alloc->start = 0;
2577                 alloc->end = 0;
2578                 return;
2579         }
2580
2581         if (IS_BROXTON(dev))
2582                 ddb_size = BXT_DDB_SIZE;
2583         else
2584                 ddb_size = SKL_DDB_SIZE;
2585
2586         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2587
2588         nth_active_pipe = 0;
2589         for_each_crtc(dev, crtc) {
2590                 if (!to_intel_crtc(crtc)->active)
2591                         continue;
2592
2593                 if (crtc == for_crtc)
2594                         break;
2595
2596                 nth_active_pipe++;
2597         }
2598
2599         pipe_size = ddb_size / config->num_pipes_active;
2600         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2601         alloc->end = alloc->start + pipe_size;
2602 }
2603
2604 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2605 {
2606         if (config->num_pipes_active == 1)
2607                 return 32;
2608
2609         return 8;
2610 }
2611
2612 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2613 {
2614         entry->start = reg & 0x3ff;
2615         entry->end = (reg >> 16) & 0x3ff;
2616         if (entry->end)
2617                 entry->end += 1;
2618 }
2619
2620 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2621                           struct skl_ddb_allocation *ddb /* out */)
2622 {
2623         enum pipe pipe;
2624         int plane;
2625         u32 val;
2626
2627         for_each_pipe(dev_priv, pipe) {
2628                 for_each_plane(dev_priv, pipe, plane) {
2629                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2630                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2631                                                    val);
2632                 }
2633
2634                 val = I915_READ(CUR_BUF_CFG(pipe));
2635                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2636         }
2637 }
2638
2639 static unsigned int
2640 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2641 {
2642
2643         /* for planar format */
2644         if (p->y_bytes_per_pixel) {
2645                 if (y)  /* y-plane data rate */
2646                         return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2647                 else    /* uv-plane data rate */
2648                         return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2649         }
2650
2651         /* for packed formats */
2652         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2653 }
2654
2655 /*
2656  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2657  * a 8192x4096@32bpp framebuffer:
2658  *   3 * 4096 * 8192  * 4 < 2^32
2659  */
2660 static unsigned int
2661 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2662                                  const struct skl_pipe_wm_parameters *params)
2663 {
2664         unsigned int total_data_rate = 0;
2665         int plane;
2666
2667         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2668                 const struct intel_plane_wm_parameters *p;
2669
2670                 p = &params->plane[plane];
2671                 if (!p->enabled)
2672                         continue;
2673
2674                 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2675                 if (p->y_bytes_per_pixel) {
2676                         total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2677                 }
2678         }
2679
2680         return total_data_rate;
2681 }
2682
2683 static void
2684 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2685                       const struct intel_wm_config *config,
2686                       const struct skl_pipe_wm_parameters *params,
2687                       struct skl_ddb_allocation *ddb /* out */)
2688 {
2689         struct drm_device *dev = crtc->dev;
2690         struct drm_i915_private *dev_priv = dev->dev_private;
2691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692         enum pipe pipe = intel_crtc->pipe;
2693         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2694         uint16_t alloc_size, start, cursor_blocks;
2695         uint16_t minimum[I915_MAX_PLANES];
2696         uint16_t y_minimum[I915_MAX_PLANES];
2697         unsigned int total_data_rate;
2698         int plane;
2699
2700         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2701         alloc_size = skl_ddb_entry_size(alloc);
2702         if (alloc_size == 0) {
2703                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2704                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2705                 return;
2706         }
2707
2708         cursor_blocks = skl_cursor_allocation(config);
2709         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2710         ddb->cursor[pipe].end = alloc->end;
2711
2712         alloc_size -= cursor_blocks;
2713         alloc->end -= cursor_blocks;
2714
2715         /* 1. Allocate the mininum required blocks for each active plane */
2716         for_each_plane(dev_priv, pipe, plane) {
2717                 const struct intel_plane_wm_parameters *p;
2718
2719                 p = &params->plane[plane];
2720                 if (!p->enabled)
2721                         continue;
2722
2723                 minimum[plane] = 8;
2724                 alloc_size -= minimum[plane];
2725                 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2726                 alloc_size -= y_minimum[plane];
2727         }
2728
2729         /*
2730          * 2. Distribute the remaining space in proportion to the amount of
2731          * data each plane needs to fetch from memory.
2732          *
2733          * FIXME: we may not allocate every single block here.
2734          */
2735         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2736
2737         start = alloc->start;
2738         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2739                 const struct intel_plane_wm_parameters *p;
2740                 unsigned int data_rate, y_data_rate;
2741                 uint16_t plane_blocks, y_plane_blocks = 0;
2742
2743                 p = &params->plane[plane];
2744                 if (!p->enabled)
2745                         continue;
2746
2747                 data_rate = skl_plane_relative_data_rate(p, 0);
2748
2749                 /*
2750                  * allocation for (packed formats) or (uv-plane part of planar format):
2751                  * promote the expression to 64 bits to avoid overflowing, the
2752                  * result is < available as data_rate / total_data_rate < 1
2753                  */
2754                 plane_blocks = minimum[plane];
2755                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2756                                         total_data_rate);
2757
2758                 ddb->plane[pipe][plane].start = start;
2759                 ddb->plane[pipe][plane].end = start + plane_blocks;
2760
2761                 start += plane_blocks;
2762
2763                 /*
2764                  * allocation for y_plane part of planar format:
2765                  */
2766                 if (p->y_bytes_per_pixel) {
2767                         y_data_rate = skl_plane_relative_data_rate(p, 1);
2768                         y_plane_blocks = y_minimum[plane];
2769                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2770                                                 total_data_rate);
2771
2772                         ddb->y_plane[pipe][plane].start = start;
2773                         ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2774
2775                         start += y_plane_blocks;
2776                 }
2777
2778         }
2779
2780 }
2781
2782 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2783 {
2784         /* TODO: Take into account the scalers once we support them */
2785         return config->base.adjusted_mode.crtc_clock;
2786 }
2787
2788 /*
2789  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2790  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2791  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2792  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2793 */
2794 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2795                                uint32_t latency)
2796 {
2797         uint32_t wm_intermediate_val, ret;
2798
2799         if (latency == 0)
2800                 return UINT_MAX;
2801
2802         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2803         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2804
2805         return ret;
2806 }
2807
2808 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2809                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2810                                uint64_t tiling, uint32_t latency)
2811 {
2812         uint32_t ret;
2813         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2814         uint32_t wm_intermediate_val;
2815
2816         if (latency == 0)
2817                 return UINT_MAX;
2818
2819         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2820
2821         if (tiling == I915_FORMAT_MOD_Y_TILED ||
2822             tiling == I915_FORMAT_MOD_Yf_TILED) {
2823                 plane_bytes_per_line *= 4;
2824                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2825                 plane_blocks_per_line /= 4;
2826         } else {
2827                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2828         }
2829
2830         wm_intermediate_val = latency * pixel_rate;
2831         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2832                                 plane_blocks_per_line;
2833
2834         return ret;
2835 }
2836
2837 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2838                                        const struct intel_crtc *intel_crtc)
2839 {
2840         struct drm_device *dev = intel_crtc->base.dev;
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2843         enum pipe pipe = intel_crtc->pipe;
2844
2845         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2846                    sizeof(new_ddb->plane[pipe])))
2847                 return true;
2848
2849         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2850                     sizeof(new_ddb->cursor[pipe])))
2851                 return true;
2852
2853         return false;
2854 }
2855
2856 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2857                                              struct intel_wm_config *config)
2858 {
2859         struct drm_crtc *crtc;
2860         struct drm_plane *plane;
2861
2862         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2863                 config->num_pipes_active += to_intel_crtc(crtc)->active;
2864
2865         /* FIXME: I don't think we need those two global parameters on SKL */
2866         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2867                 struct intel_plane *intel_plane = to_intel_plane(plane);
2868
2869                 config->sprites_enabled |= intel_plane->wm.enabled;
2870                 config->sprites_scaled |= intel_plane->wm.scaled;
2871         }
2872 }
2873
2874 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2875                                            struct skl_pipe_wm_parameters *p)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2879         enum pipe pipe = intel_crtc->pipe;
2880         struct drm_plane *plane;
2881         struct drm_framebuffer *fb;
2882         int i = 1; /* Index for sprite planes start */
2883
2884         p->active = intel_crtc->active;
2885         if (p->active) {
2886                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2887                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2888
2889                 fb = crtc->primary->state->fb;
2890                 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
2891                 if (fb) {
2892                         p->plane[0].enabled = true;
2893                         p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
2894                                 drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
2895                         p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
2896                                 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
2897                         p->plane[0].tiling = fb->modifier[0];
2898                 } else {
2899                         p->plane[0].enabled = false;
2900                         p->plane[0].bytes_per_pixel = 0;
2901                         p->plane[0].y_bytes_per_pixel = 0;
2902                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2903                 }
2904                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2905                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2906                 p->plane[0].rotation = crtc->primary->state->rotation;
2907
2908                 fb = crtc->cursor->state->fb;
2909                 p->cursor.y_bytes_per_pixel = 0;
2910                 if (fb) {
2911                         p->cursor.enabled = true;
2912                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2913                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2914                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2915                 } else {
2916                         p->cursor.enabled = false;
2917                         p->cursor.bytes_per_pixel = 0;
2918                         p->cursor.horiz_pixels = 64;
2919                         p->cursor.vert_pixels = 64;
2920                 }
2921         }
2922
2923         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2924                 struct intel_plane *intel_plane = to_intel_plane(plane);
2925
2926                 if (intel_plane->pipe == pipe &&
2927                         plane->type == DRM_PLANE_TYPE_OVERLAY)
2928                         p->plane[i++] = intel_plane->wm;
2929         }
2930 }
2931
2932 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2933                                  struct skl_pipe_wm_parameters *p,
2934                                  struct intel_plane_wm_parameters *p_params,
2935                                  uint16_t ddb_allocation,
2936                                  int level,
2937                                  uint16_t *out_blocks, /* out */
2938                                  uint8_t *out_lines /* out */)
2939 {
2940         uint32_t latency = dev_priv->wm.skl_latency[level];
2941         uint32_t method1, method2;
2942         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2943         uint32_t res_blocks, res_lines;
2944         uint32_t selected_result;
2945         uint8_t bytes_per_pixel;
2946
2947         if (latency == 0 || !p->active || !p_params->enabled)
2948                 return false;
2949
2950         bytes_per_pixel = p_params->y_bytes_per_pixel ?
2951                 p_params->y_bytes_per_pixel :
2952                 p_params->bytes_per_pixel;
2953         method1 = skl_wm_method1(p->pixel_rate,
2954                                  bytes_per_pixel,
2955                                  latency);
2956         method2 = skl_wm_method2(p->pixel_rate,
2957                                  p->pipe_htotal,
2958                                  p_params->horiz_pixels,
2959                                  bytes_per_pixel,
2960                                  p_params->tiling,
2961                                  latency);
2962
2963         plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
2964         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2965
2966         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2967             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2968                 uint32_t min_scanlines = 4;
2969                 uint32_t y_tile_minimum;
2970                 if (intel_rotation_90_or_270(p_params->rotation)) {
2971                         switch (p_params->bytes_per_pixel) {
2972                         case 1:
2973                                 min_scanlines = 16;
2974                                 break;
2975                         case 2:
2976                                 min_scanlines = 8;
2977                                 break;
2978                         case 8:
2979                                 WARN(1, "Unsupported pixel depth for rotation");
2980                         }
2981                 }
2982                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
2983                 selected_result = max(method2, y_tile_minimum);
2984         } else {
2985                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2986                         selected_result = min(method1, method2);
2987                 else
2988                         selected_result = method1;
2989         }
2990
2991         res_blocks = selected_result + 1;
2992         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2993
2994         if (level >= 1 && level <= 7) {
2995                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2996                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2997                         res_lines += 4;
2998                 else
2999                         res_blocks++;
3000         }
3001
3002         if (res_blocks >= ddb_allocation || res_lines > 31)
3003                 return false;
3004
3005         *out_blocks = res_blocks;
3006         *out_lines = res_lines;
3007
3008         return true;
3009 }
3010
3011 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3012                                  struct skl_ddb_allocation *ddb,
3013                                  struct skl_pipe_wm_parameters *p,
3014                                  enum pipe pipe,
3015                                  int level,
3016                                  int num_planes,
3017                                  struct skl_wm_level *result)
3018 {
3019         uint16_t ddb_blocks;
3020         int i;
3021
3022         for (i = 0; i < num_planes; i++) {
3023                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3024
3025                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3026                                                 p, &p->plane[i],
3027                                                 ddb_blocks,
3028                                                 level,
3029                                                 &result->plane_res_b[i],
3030                                                 &result->plane_res_l[i]);
3031         }
3032
3033         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3034         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3035                                                  ddb_blocks, level,
3036                                                  &result->cursor_res_b,
3037                                                  &result->cursor_res_l);
3038 }
3039
3040 static uint32_t
3041 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3042 {
3043         if (!to_intel_crtc(crtc)->active)
3044                 return 0;
3045
3046         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3047
3048 }
3049
3050 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3051                                       struct skl_pipe_wm_parameters *params,
3052                                       struct skl_wm_level *trans_wm /* out */)
3053 {
3054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055         int i;
3056
3057         if (!params->active)
3058                 return;
3059
3060         /* Until we know more, just disable transition WMs */
3061         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3062                 trans_wm->plane_en[i] = false;
3063         trans_wm->cursor_en = false;
3064 }
3065
3066 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3067                                 struct skl_ddb_allocation *ddb,
3068                                 struct skl_pipe_wm_parameters *params,
3069                                 struct skl_pipe_wm *pipe_wm)
3070 {
3071         struct drm_device *dev = crtc->dev;
3072         const struct drm_i915_private *dev_priv = dev->dev_private;
3073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3074         int level, max_level = ilk_wm_max_level(dev);
3075
3076         for (level = 0; level <= max_level; level++) {
3077                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3078                                      level, intel_num_planes(intel_crtc),
3079                                      &pipe_wm->wm[level]);
3080         }
3081         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3082
3083         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3084 }
3085
3086 static void skl_compute_wm_results(struct drm_device *dev,
3087                                    struct skl_pipe_wm_parameters *p,
3088                                    struct skl_pipe_wm *p_wm,
3089                                    struct skl_wm_values *r,
3090                                    struct intel_crtc *intel_crtc)
3091 {
3092         int level, max_level = ilk_wm_max_level(dev);
3093         enum pipe pipe = intel_crtc->pipe;
3094         uint32_t temp;
3095         int i;
3096
3097         for (level = 0; level <= max_level; level++) {
3098                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3099                         temp = 0;
3100
3101                         temp |= p_wm->wm[level].plane_res_l[i] <<
3102                                         PLANE_WM_LINES_SHIFT;
3103                         temp |= p_wm->wm[level].plane_res_b[i];
3104                         if (p_wm->wm[level].plane_en[i])
3105                                 temp |= PLANE_WM_EN;
3106
3107                         r->plane[pipe][i][level] = temp;
3108                 }
3109
3110                 temp = 0;
3111
3112                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3113                 temp |= p_wm->wm[level].cursor_res_b;
3114
3115                 if (p_wm->wm[level].cursor_en)
3116                         temp |= PLANE_WM_EN;
3117
3118                 r->cursor[pipe][level] = temp;
3119
3120         }
3121
3122         /* transition WMs */
3123         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3124                 temp = 0;
3125                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3126                 temp |= p_wm->trans_wm.plane_res_b[i];
3127                 if (p_wm->trans_wm.plane_en[i])
3128                         temp |= PLANE_WM_EN;
3129
3130                 r->plane_trans[pipe][i] = temp;
3131         }
3132
3133         temp = 0;
3134         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3135         temp |= p_wm->trans_wm.cursor_res_b;
3136         if (p_wm->trans_wm.cursor_en)
3137                 temp |= PLANE_WM_EN;
3138
3139         r->cursor_trans[pipe] = temp;
3140
3141         r->wm_linetime[pipe] = p_wm->linetime;
3142 }
3143
3144 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3145                                 const struct skl_ddb_entry *entry)
3146 {
3147         if (entry->end)
3148                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3149         else
3150                 I915_WRITE(reg, 0);
3151 }
3152
3153 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3154                                 const struct skl_wm_values *new)
3155 {
3156         struct drm_device *dev = dev_priv->dev;
3157         struct intel_crtc *crtc;
3158
3159         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3160                 int i, level, max_level = ilk_wm_max_level(dev);
3161                 enum pipe pipe = crtc->pipe;
3162
3163                 if (!new->dirty[pipe])
3164                         continue;
3165
3166                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3167
3168                 for (level = 0; level <= max_level; level++) {
3169                         for (i = 0; i < intel_num_planes(crtc); i++)
3170                                 I915_WRITE(PLANE_WM(pipe, i, level),
3171                                            new->plane[pipe][i][level]);
3172                         I915_WRITE(CUR_WM(pipe, level),
3173                                    new->cursor[pipe][level]);
3174                 }
3175                 for (i = 0; i < intel_num_planes(crtc); i++)
3176                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3177                                    new->plane_trans[pipe][i]);
3178                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3179
3180                 for (i = 0; i < intel_num_planes(crtc); i++) {
3181                         skl_ddb_entry_write(dev_priv,
3182                                             PLANE_BUF_CFG(pipe, i),
3183                                             &new->ddb.plane[pipe][i]);
3184                         skl_ddb_entry_write(dev_priv,
3185                                             PLANE_NV12_BUF_CFG(pipe, i),
3186                                             &new->ddb.y_plane[pipe][i]);
3187                 }
3188
3189                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3190                                     &new->ddb.cursor[pipe]);
3191         }
3192 }
3193
3194 /*
3195  * When setting up a new DDB allocation arrangement, we need to correctly
3196  * sequence the times at which the new allocations for the pipes are taken into
3197  * account or we'll have pipes fetching from space previously allocated to
3198  * another pipe.
3199  *
3200  * Roughly the sequence looks like:
3201  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3202  *     overlapping with a previous light-up pipe (another way to put it is:
3203  *     pipes with their new allocation strickly included into their old ones).
3204  *  2. re-allocate the other pipes that get their allocation reduced
3205  *  3. allocate the pipes having their allocation increased
3206  *
3207  * Steps 1. and 2. are here to take care of the following case:
3208  * - Initially DDB looks like this:
3209  *     |   B    |   C    |
3210  * - enable pipe A.
3211  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3212  *   allocation
3213  *     |  A  |  B  |  C  |
3214  *
3215  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3216  */
3217
3218 static void
3219 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3220 {
3221         int plane;
3222
3223         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3224
3225         for_each_plane(dev_priv, pipe, plane) {
3226                 I915_WRITE(PLANE_SURF(pipe, plane),
3227                            I915_READ(PLANE_SURF(pipe, plane)));
3228         }
3229         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3230 }
3231
3232 static bool
3233 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3234                             const struct skl_ddb_allocation *new,
3235                             enum pipe pipe)
3236 {
3237         uint16_t old_size, new_size;
3238
3239         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3240         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3241
3242         return old_size != new_size &&
3243                new->pipe[pipe].start >= old->pipe[pipe].start &&
3244                new->pipe[pipe].end <= old->pipe[pipe].end;
3245 }
3246
3247 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3248                                 struct skl_wm_values *new_values)
3249 {
3250         struct drm_device *dev = dev_priv->dev;
3251         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3252         bool reallocated[I915_MAX_PIPES] = {};
3253         struct intel_crtc *crtc;
3254         enum pipe pipe;
3255
3256         new_ddb = &new_values->ddb;
3257         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3258
3259         /*
3260          * First pass: flush the pipes with the new allocation contained into
3261          * the old space.
3262          *
3263          * We'll wait for the vblank on those pipes to ensure we can safely
3264          * re-allocate the freed space without this pipe fetching from it.
3265          */
3266         for_each_intel_crtc(dev, crtc) {
3267                 if (!crtc->active)
3268                         continue;
3269
3270                 pipe = crtc->pipe;
3271
3272                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3273                         continue;
3274
3275                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3276                 intel_wait_for_vblank(dev, pipe);
3277
3278                 reallocated[pipe] = true;
3279         }
3280
3281
3282         /*
3283          * Second pass: flush the pipes that are having their allocation
3284          * reduced, but overlapping with a previous allocation.
3285          *
3286          * Here as well we need to wait for the vblank to make sure the freed
3287          * space is not used anymore.
3288          */
3289         for_each_intel_crtc(dev, crtc) {
3290                 if (!crtc->active)
3291                         continue;
3292
3293                 pipe = crtc->pipe;
3294
3295                 if (reallocated[pipe])
3296                         continue;
3297
3298                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3299                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3300                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3301                         intel_wait_for_vblank(dev, pipe);
3302                         reallocated[pipe] = true;
3303                 }
3304         }
3305
3306         /*
3307          * Third pass: flush the pipes that got more space allocated.
3308          *
3309          * We don't need to actively wait for the update here, next vblank
3310          * will just get more DDB space with the correct WM values.
3311          */
3312         for_each_intel_crtc(dev, crtc) {
3313                 if (!crtc->active)
3314                         continue;
3315
3316                 pipe = crtc->pipe;
3317
3318                 /*
3319                  * At this point, only the pipes more space than before are
3320                  * left to re-allocate.
3321                  */
3322                 if (reallocated[pipe])
3323                         continue;
3324
3325                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3326         }
3327 }
3328
3329 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3330                                struct skl_pipe_wm_parameters *params,
3331                                struct intel_wm_config *config,
3332                                struct skl_ddb_allocation *ddb, /* out */
3333                                struct skl_pipe_wm *pipe_wm /* out */)
3334 {
3335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336
3337         skl_compute_wm_pipe_parameters(crtc, params);
3338         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3339         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3340
3341         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3342                 return false;
3343
3344         intel_crtc->wm.skl_active = *pipe_wm;
3345
3346         return true;
3347 }
3348
3349 static void skl_update_other_pipe_wm(struct drm_device *dev,
3350                                      struct drm_crtc *crtc,
3351                                      struct intel_wm_config *config,
3352                                      struct skl_wm_values *r)
3353 {
3354         struct intel_crtc *intel_crtc;
3355         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3356
3357         /*
3358          * If the WM update hasn't changed the allocation for this_crtc (the
3359          * crtc we are currently computing the new WM values for), other
3360          * enabled crtcs will keep the same allocation and we don't need to
3361          * recompute anything for them.
3362          */
3363         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3364                 return;
3365
3366         /*
3367          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3368          * other active pipes need new DDB allocation and WM values.
3369          */
3370         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3371                                 base.head) {
3372                 struct skl_pipe_wm_parameters params = {};
3373                 struct skl_pipe_wm pipe_wm = {};
3374                 bool wm_changed;
3375
3376                 if (this_crtc->pipe == intel_crtc->pipe)
3377                         continue;
3378
3379                 if (!intel_crtc->active)
3380                         continue;
3381
3382                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3383                                                 &params, config,
3384                                                 &r->ddb, &pipe_wm);
3385
3386                 /*
3387                  * If we end up re-computing the other pipe WM values, it's
3388                  * because it was really needed, so we expect the WM values to
3389                  * be different.
3390                  */
3391                 WARN_ON(!wm_changed);
3392
3393                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3394                 r->dirty[intel_crtc->pipe] = true;
3395         }
3396 }
3397
3398 static void skl_update_wm(struct drm_crtc *crtc)
3399 {
3400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3401         struct drm_device *dev = crtc->dev;
3402         struct drm_i915_private *dev_priv = dev->dev_private;
3403         struct skl_pipe_wm_parameters params = {};
3404         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3405         struct skl_pipe_wm pipe_wm = {};
3406         struct intel_wm_config config = {};
3407
3408         memset(results, 0, sizeof(*results));
3409
3410         skl_compute_wm_global_parameters(dev, &config);
3411
3412         if (!skl_update_pipe_wm(crtc, &params, &config,
3413                                 &results->ddb, &pipe_wm))
3414                 return;
3415
3416         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3417         results->dirty[intel_crtc->pipe] = true;
3418
3419         skl_update_other_pipe_wm(dev, crtc, &config, results);
3420         skl_write_wm_values(dev_priv, results);
3421         skl_flush_wm_values(dev_priv, results);
3422
3423         /* store the new configuration */
3424         dev_priv->wm.skl_hw = *results;
3425 }
3426
3427 static void
3428 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3429                      uint32_t sprite_width, uint32_t sprite_height,
3430                      int pixel_size, bool enabled, bool scaled)
3431 {
3432         struct intel_plane *intel_plane = to_intel_plane(plane);
3433         struct drm_framebuffer *fb = plane->state->fb;
3434
3435         intel_plane->wm.enabled = enabled;
3436         intel_plane->wm.scaled = scaled;
3437         intel_plane->wm.horiz_pixels = sprite_width;
3438         intel_plane->wm.vert_pixels = sprite_height;
3439         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3440
3441         /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3442         intel_plane->wm.bytes_per_pixel =
3443                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3444                 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3445         intel_plane->wm.y_bytes_per_pixel =
3446                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3447                 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3448
3449         /*
3450          * Framebuffer can be NULL on plane disable, but it does not
3451          * matter for watermarks if we assume no tiling in that case.
3452          */
3453         if (fb)
3454                 intel_plane->wm.tiling = fb->modifier[0];
3455         intel_plane->wm.rotation = plane->state->rotation;
3456
3457         skl_update_wm(crtc);
3458 }
3459
3460 static void ilk_update_wm(struct drm_crtc *crtc)
3461 {
3462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3463         struct drm_device *dev = crtc->dev;
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         struct ilk_wm_maximums max;
3466         struct ilk_pipe_wm_parameters params = {};
3467         struct ilk_wm_values results = {};
3468         enum intel_ddb_partitioning partitioning;
3469         struct intel_pipe_wm pipe_wm = {};
3470         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3471         struct intel_wm_config config = {};
3472
3473         ilk_compute_wm_parameters(crtc, &params);
3474
3475         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3476
3477         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3478                 return;
3479
3480         intel_crtc->wm.active = pipe_wm;
3481
3482         ilk_compute_wm_config(dev, &config);
3483
3484         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3485         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3486
3487         /* 5/6 split only in single pipe config on IVB+ */
3488         if (INTEL_INFO(dev)->gen >= 7 &&
3489             config.num_pipes_active == 1 && config.sprites_enabled) {
3490                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3491                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3492
3493                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3494         } else {
3495                 best_lp_wm = &lp_wm_1_2;
3496         }
3497
3498         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3499                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3500
3501         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3502
3503         ilk_write_wm_values(dev_priv, &results);
3504 }
3505
3506 static void
3507 ilk_update_sprite_wm(struct drm_plane *plane,
3508                      struct drm_crtc *crtc,
3509                      uint32_t sprite_width, uint32_t sprite_height,
3510                      int pixel_size, bool enabled, bool scaled)
3511 {
3512         struct drm_device *dev = plane->dev;
3513         struct intel_plane *intel_plane = to_intel_plane(plane);
3514
3515         intel_plane->wm.enabled = enabled;
3516         intel_plane->wm.scaled = scaled;
3517         intel_plane->wm.horiz_pixels = sprite_width;
3518         intel_plane->wm.vert_pixels = sprite_width;
3519         intel_plane->wm.bytes_per_pixel = pixel_size;
3520
3521         /*
3522          * IVB workaround: must disable low power watermarks for at least
3523          * one frame before enabling scaling.  LP watermarks can be re-enabled
3524          * when scaling is disabled.
3525          *
3526          * WaCxSRDisabledForSpriteScaling:ivb
3527          */
3528         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3529                 intel_wait_for_vblank(dev, intel_plane->pipe);
3530
3531         ilk_update_wm(crtc);
3532 }
3533
3534 static void skl_pipe_wm_active_state(uint32_t val,
3535                                      struct skl_pipe_wm *active,
3536                                      bool is_transwm,
3537                                      bool is_cursor,
3538                                      int i,
3539                                      int level)
3540 {
3541         bool is_enabled = (val & PLANE_WM_EN) != 0;
3542
3543         if (!is_transwm) {
3544                 if (!is_cursor) {
3545                         active->wm[level].plane_en[i] = is_enabled;
3546                         active->wm[level].plane_res_b[i] =
3547                                         val & PLANE_WM_BLOCKS_MASK;
3548                         active->wm[level].plane_res_l[i] =
3549                                         (val >> PLANE_WM_LINES_SHIFT) &
3550                                                 PLANE_WM_LINES_MASK;
3551                 } else {
3552                         active->wm[level].cursor_en = is_enabled;
3553                         active->wm[level].cursor_res_b =
3554                                         val & PLANE_WM_BLOCKS_MASK;
3555                         active->wm[level].cursor_res_l =
3556                                         (val >> PLANE_WM_LINES_SHIFT) &
3557                                                 PLANE_WM_LINES_MASK;
3558                 }
3559         } else {
3560                 if (!is_cursor) {
3561                         active->trans_wm.plane_en[i] = is_enabled;
3562                         active->trans_wm.plane_res_b[i] =
3563                                         val & PLANE_WM_BLOCKS_MASK;
3564                         active->trans_wm.plane_res_l[i] =
3565                                         (val >> PLANE_WM_LINES_SHIFT) &
3566                                                 PLANE_WM_LINES_MASK;
3567                 } else {
3568                         active->trans_wm.cursor_en = is_enabled;
3569                         active->trans_wm.cursor_res_b =
3570                                         val & PLANE_WM_BLOCKS_MASK;
3571                         active->trans_wm.cursor_res_l =
3572                                         (val >> PLANE_WM_LINES_SHIFT) &
3573                                                 PLANE_WM_LINES_MASK;
3574                 }
3575         }
3576 }
3577
3578 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3579 {
3580         struct drm_device *dev = crtc->dev;
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3584         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3585         enum pipe pipe = intel_crtc->pipe;
3586         int level, i, max_level;
3587         uint32_t temp;
3588
3589         max_level = ilk_wm_max_level(dev);
3590
3591         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3592
3593         for (level = 0; level <= max_level; level++) {
3594                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3595                         hw->plane[pipe][i][level] =
3596                                         I915_READ(PLANE_WM(pipe, i, level));
3597                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3598         }
3599
3600         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3601                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3602         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3603
3604         if (!intel_crtc->active)
3605                 return;
3606
3607         hw->dirty[pipe] = true;
3608
3609         active->linetime = hw->wm_linetime[pipe];
3610
3611         for (level = 0; level <= max_level; level++) {
3612                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3613                         temp = hw->plane[pipe][i][level];
3614                         skl_pipe_wm_active_state(temp, active, false,
3615                                                 false, i, level);
3616                 }
3617                 temp = hw->cursor[pipe][level];
3618                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3619         }
3620
3621         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3622                 temp = hw->plane_trans[pipe][i];
3623                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3624         }
3625
3626         temp = hw->cursor_trans[pipe];
3627         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3628 }
3629
3630 void skl_wm_get_hw_state(struct drm_device *dev)
3631 {
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3634         struct drm_crtc *crtc;
3635
3636         skl_ddb_get_hw_state(dev_priv, ddb);
3637         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3638                 skl_pipe_wm_get_hw_state(crtc);
3639 }
3640
3641 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3642 {
3643         struct drm_device *dev = crtc->dev;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3647         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3648         enum pipe pipe = intel_crtc->pipe;
3649         static const unsigned int wm0_pipe_reg[] = {
3650                 [PIPE_A] = WM0_PIPEA_ILK,
3651                 [PIPE_B] = WM0_PIPEB_ILK,
3652                 [PIPE_C] = WM0_PIPEC_IVB,
3653         };
3654
3655         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3656         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3657                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3658
3659         active->pipe_enabled = intel_crtc->active;
3660
3661         if (active->pipe_enabled) {
3662                 u32 tmp = hw->wm_pipe[pipe];
3663
3664                 /*
3665                  * For active pipes LP0 watermark is marked as
3666                  * enabled, and LP1+ watermaks as disabled since
3667                  * we can't really reverse compute them in case
3668                  * multiple pipes are active.
3669                  */
3670                 active->wm[0].enable = true;
3671                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3672                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3673                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3674                 active->linetime = hw->wm_linetime[pipe];
3675         } else {
3676                 int level, max_level = ilk_wm_max_level(dev);
3677
3678                 /*
3679                  * For inactive pipes, all watermark levels
3680                  * should be marked as enabled but zeroed,
3681                  * which is what we'd compute them to.
3682                  */
3683                 for (level = 0; level <= max_level; level++)
3684                         active->wm[level].enable = true;
3685         }
3686 }
3687
3688 void ilk_wm_get_hw_state(struct drm_device *dev)
3689 {
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3692         struct drm_crtc *crtc;
3693
3694         for_each_crtc(dev, crtc)
3695                 ilk_pipe_wm_get_hw_state(crtc);
3696
3697         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3698         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3699         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3700
3701         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3702         if (INTEL_INFO(dev)->gen >= 7) {
3703                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3704                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3705         }
3706
3707         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3708                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3709                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3710         else if (IS_IVYBRIDGE(dev))
3711                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3712                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3713
3714         hw->enable_fbc_wm =
3715                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3716 }
3717
3718 /**
3719  * intel_update_watermarks - update FIFO watermark values based on current modes
3720  *
3721  * Calculate watermark values for the various WM regs based on current mode
3722  * and plane configuration.
3723  *
3724  * There are several cases to deal with here:
3725  *   - normal (i.e. non-self-refresh)
3726  *   - self-refresh (SR) mode
3727  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3728  *   - lines are small relative to FIFO size (buffer can hold more than 2
3729  *     lines), so need to account for TLB latency
3730  *
3731  *   The normal calculation is:
3732  *     watermark = dotclock * bytes per pixel * latency
3733  *   where latency is platform & configuration dependent (we assume pessimal
3734  *   values here).
3735  *
3736  *   The SR calculation is:
3737  *     watermark = (trunc(latency/line time)+1) * surface width *
3738  *       bytes per pixel
3739  *   where
3740  *     line time = htotal / dotclock
3741  *     surface width = hdisplay for normal plane and 64 for cursor
3742  *   and latency is assumed to be high, as above.
3743  *
3744  * The final value programmed to the register should always be rounded up,
3745  * and include an extra 2 entries to account for clock crossings.
3746  *
3747  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3748  * to set the non-SR watermarks to 8.
3749  */
3750 void intel_update_watermarks(struct drm_crtc *crtc)
3751 {
3752         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3753
3754         if (dev_priv->display.update_wm)
3755                 dev_priv->display.update_wm(crtc);
3756 }
3757
3758 void intel_update_sprite_watermarks(struct drm_plane *plane,
3759                                     struct drm_crtc *crtc,
3760                                     uint32_t sprite_width,
3761                                     uint32_t sprite_height,
3762                                     int pixel_size,
3763                                     bool enabled, bool scaled)
3764 {
3765         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3766
3767         if (dev_priv->display.update_sprite_wm)
3768                 dev_priv->display.update_sprite_wm(plane, crtc,
3769                                                    sprite_width, sprite_height,
3770                                                    pixel_size, enabled, scaled);
3771 }
3772
3773 /**
3774  * Lock protecting IPS related data structures
3775  */
3776 DEFINE_SPINLOCK(mchdev_lock);
3777
3778 /* Global for IPS driver to get at the current i915 device. Protected by
3779  * mchdev_lock. */
3780 static struct drm_i915_private *i915_mch_dev;
3781
3782 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3783 {
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         u16 rgvswctl;
3786
3787         assert_spin_locked(&mchdev_lock);
3788
3789         rgvswctl = I915_READ16(MEMSWCTL);
3790         if (rgvswctl & MEMCTL_CMD_STS) {
3791                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3792                 return false; /* still busy with another command */
3793         }
3794
3795         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3796                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3797         I915_WRITE16(MEMSWCTL, rgvswctl);
3798         POSTING_READ16(MEMSWCTL);
3799
3800         rgvswctl |= MEMCTL_CMD_STS;
3801         I915_WRITE16(MEMSWCTL, rgvswctl);
3802
3803         return true;
3804 }
3805
3806 static void ironlake_enable_drps(struct drm_device *dev)
3807 {
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809         u32 rgvmodectl = I915_READ(MEMMODECTL);
3810         u8 fmax, fmin, fstart, vstart;
3811
3812         spin_lock_irq(&mchdev_lock);
3813
3814         /* Enable temp reporting */
3815         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3816         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3817
3818         /* 100ms RC evaluation intervals */
3819         I915_WRITE(RCUPEI, 100000);
3820         I915_WRITE(RCDNEI, 100000);
3821
3822         /* Set max/min thresholds to 90ms and 80ms respectively */
3823         I915_WRITE(RCBMAXAVG, 90000);
3824         I915_WRITE(RCBMINAVG, 80000);
3825
3826         I915_WRITE(MEMIHYST, 1);
3827
3828         /* Set up min, max, and cur for interrupt handling */
3829         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3830         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3831         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3832                 MEMMODE_FSTART_SHIFT;
3833
3834         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3835                 PXVFREQ_PX_SHIFT;
3836
3837         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3838         dev_priv->ips.fstart = fstart;
3839
3840         dev_priv->ips.max_delay = fstart;
3841         dev_priv->ips.min_delay = fmin;
3842         dev_priv->ips.cur_delay = fstart;
3843
3844         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3845                          fmax, fmin, fstart);
3846
3847         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3848
3849         /*
3850          * Interrupts will be enabled in ironlake_irq_postinstall
3851          */
3852
3853         I915_WRITE(VIDSTART, vstart);
3854         POSTING_READ(VIDSTART);
3855
3856         rgvmodectl |= MEMMODE_SWMODE_EN;
3857         I915_WRITE(MEMMODECTL, rgvmodectl);
3858
3859         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3860                 DRM_ERROR("stuck trying to change perf mode\n");
3861         mdelay(1);
3862
3863         ironlake_set_drps(dev, fstart);
3864
3865         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3866                 I915_READ(0x112e0);
3867         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3868         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3869         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3870
3871         spin_unlock_irq(&mchdev_lock);
3872 }
3873
3874 static void ironlake_disable_drps(struct drm_device *dev)
3875 {
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877         u16 rgvswctl;
3878
3879         spin_lock_irq(&mchdev_lock);
3880
3881         rgvswctl = I915_READ16(MEMSWCTL);
3882
3883         /* Ack interrupts, disable EFC interrupt */
3884         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3885         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3886         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3887         I915_WRITE(DEIIR, DE_PCU_EVENT);
3888         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3889
3890         /* Go back to the starting frequency */
3891         ironlake_set_drps(dev, dev_priv->ips.fstart);
3892         mdelay(1);
3893         rgvswctl |= MEMCTL_CMD_STS;
3894         I915_WRITE(MEMSWCTL, rgvswctl);
3895         mdelay(1);
3896
3897         spin_unlock_irq(&mchdev_lock);
3898 }
3899
3900 /* There's a funny hw issue where the hw returns all 0 when reading from
3901  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3902  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3903  * all limits and the gpu stuck at whatever frequency it is at atm).
3904  */
3905 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3906 {
3907         u32 limits;
3908
3909         /* Only set the down limit when we've reached the lowest level to avoid
3910          * getting more interrupts, otherwise leave this clear. This prevents a
3911          * race in the hw when coming out of rc6: There's a tiny window where
3912          * the hw runs at the minimal clock before selecting the desired
3913          * frequency, if the down threshold expires in that window we will not
3914          * receive a down interrupt. */
3915         if (IS_GEN9(dev_priv->dev)) {
3916                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
3917                 if (val <= dev_priv->rps.min_freq_softlimit)
3918                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3919         } else {
3920                 limits = dev_priv->rps.max_freq_softlimit << 24;
3921                 if (val <= dev_priv->rps.min_freq_softlimit)
3922                         limits |= dev_priv->rps.min_freq_softlimit << 16;
3923         }
3924
3925         return limits;
3926 }
3927
3928 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3929 {
3930         int new_power;
3931         u32 threshold_up = 0, threshold_down = 0; /* in % */
3932         u32 ei_up = 0, ei_down = 0;
3933
3934         new_power = dev_priv->rps.power;
3935         switch (dev_priv->rps.power) {
3936         case LOW_POWER:
3937                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3938                         new_power = BETWEEN;
3939                 break;
3940
3941         case BETWEEN:
3942                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3943                         new_power = LOW_POWER;
3944                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3945                         new_power = HIGH_POWER;
3946                 break;
3947
3948         case HIGH_POWER:
3949                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3950                         new_power = BETWEEN;
3951                 break;
3952         }
3953         /* Max/min bins are special */
3954         if (val <= dev_priv->rps.min_freq_softlimit)
3955                 new_power = LOW_POWER;
3956         if (val >= dev_priv->rps.max_freq_softlimit)
3957                 new_power = HIGH_POWER;
3958         if (new_power == dev_priv->rps.power)
3959                 return;
3960
3961         /* Note the units here are not exactly 1us, but 1280ns. */
3962         switch (new_power) {
3963         case LOW_POWER:
3964                 /* Upclock if more than 95% busy over 16ms */
3965                 ei_up = 16000;
3966                 threshold_up = 95;
3967
3968                 /* Downclock if less than 85% busy over 32ms */
3969                 ei_down = 32000;
3970                 threshold_down = 85;
3971                 break;
3972
3973         case BETWEEN:
3974                 /* Upclock if more than 90% busy over 13ms */
3975                 ei_up = 13000;
3976                 threshold_up = 90;
3977
3978                 /* Downclock if less than 75% busy over 32ms */
3979                 ei_down = 32000;
3980                 threshold_down = 75;
3981                 break;
3982
3983         case HIGH_POWER:
3984                 /* Upclock if more than 85% busy over 10ms */
3985                 ei_up = 10000;
3986                 threshold_up = 85;
3987
3988                 /* Downclock if less than 60% busy over 32ms */
3989                 ei_down = 32000;
3990                 threshold_down = 60;
3991                 break;
3992         }
3993
3994         I915_WRITE(GEN6_RP_UP_EI,
3995                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
3996         I915_WRITE(GEN6_RP_UP_THRESHOLD,
3997                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
3998
3999         I915_WRITE(GEN6_RP_DOWN_EI,
4000                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4001         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4002                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4003
4004          I915_WRITE(GEN6_RP_CONTROL,
4005                     GEN6_RP_MEDIA_TURBO |
4006                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4007                     GEN6_RP_MEDIA_IS_GFX |
4008                     GEN6_RP_ENABLE |
4009                     GEN6_RP_UP_BUSY_AVG |
4010                     GEN6_RP_DOWN_IDLE_AVG);
4011
4012         dev_priv->rps.power = new_power;
4013         dev_priv->rps.up_threshold = threshold_up;
4014         dev_priv->rps.down_threshold = threshold_down;
4015         dev_priv->rps.last_adj = 0;
4016 }
4017
4018 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4019 {
4020         u32 mask = 0;
4021
4022         if (val > dev_priv->rps.min_freq_softlimit)
4023                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4024         if (val < dev_priv->rps.max_freq_softlimit)
4025                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4026
4027         mask &= dev_priv->pm_rps_events;
4028
4029         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4030 }
4031
4032 /* gen6_set_rps is called to update the frequency request, but should also be
4033  * called when the range (min_delay and max_delay) is modified so that we can
4034  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4035 static void gen6_set_rps(struct drm_device *dev, u8 val)
4036 {
4037         struct drm_i915_private *dev_priv = dev->dev_private;
4038
4039         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4040         WARN_ON(val > dev_priv->rps.max_freq);
4041         WARN_ON(val < dev_priv->rps.min_freq);
4042
4043         /* min/max delay may still have been modified so be sure to
4044          * write the limits value.
4045          */
4046         if (val != dev_priv->rps.cur_freq) {
4047                 gen6_set_rps_thresholds(dev_priv, val);
4048
4049                 if (IS_GEN9(dev))
4050                         I915_WRITE(GEN6_RPNSWREQ,
4051                                    GEN9_FREQUENCY(val));
4052                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4053                         I915_WRITE(GEN6_RPNSWREQ,
4054                                    HSW_FREQUENCY(val));
4055                 else
4056                         I915_WRITE(GEN6_RPNSWREQ,
4057                                    GEN6_FREQUENCY(val) |
4058                                    GEN6_OFFSET(0) |
4059                                    GEN6_AGGRESSIVE_TURBO);
4060         }
4061
4062         /* Make sure we continue to get interrupts
4063          * until we hit the minimum or maximum frequencies.
4064          */
4065         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4066         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4067
4068         POSTING_READ(GEN6_RPNSWREQ);
4069
4070         dev_priv->rps.cur_freq = val;
4071         trace_intel_gpu_freq_change(val * 50);
4072 }
4073
4074 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4075 {
4076         struct drm_i915_private *dev_priv = dev->dev_private;
4077
4078         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4079         WARN_ON(val > dev_priv->rps.max_freq);
4080         WARN_ON(val < dev_priv->rps.min_freq);
4081
4082         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4083                       "Odd GPU freq value\n"))
4084                 val &= ~1;
4085
4086         if (val != dev_priv->rps.cur_freq) {
4087                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4088                 if (!IS_CHERRYVIEW(dev_priv))
4089                         gen6_set_rps_thresholds(dev_priv, val);
4090         }
4091
4092         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4093
4094         dev_priv->rps.cur_freq = val;
4095         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4096 }
4097
4098 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4099  *
4100  * * If Gfx is Idle, then
4101  * 1. Forcewake Media well.
4102  * 2. Request idle freq.
4103  * 3. Release Forcewake of Media well.
4104 */
4105 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4106 {
4107         u32 val = dev_priv->rps.idle_freq;
4108
4109         if (dev_priv->rps.cur_freq <= val)
4110                 return;
4111
4112         /* Wake up the media well, as that takes a lot less
4113          * power than the Render well. */
4114         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4115         valleyview_set_rps(dev_priv->dev, val);
4116         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4117 }
4118
4119 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4120 {
4121         mutex_lock(&dev_priv->rps.hw_lock);
4122         if (dev_priv->rps.enabled) {
4123                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4124                         gen6_rps_reset_ei(dev_priv);
4125                 I915_WRITE(GEN6_PMINTRMSK,
4126                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4127         }
4128         mutex_unlock(&dev_priv->rps.hw_lock);
4129 }
4130
4131 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4132 {
4133         struct drm_device *dev = dev_priv->dev;
4134
4135         mutex_lock(&dev_priv->rps.hw_lock);
4136         if (dev_priv->rps.enabled) {
4137                 if (IS_VALLEYVIEW(dev))
4138                         vlv_set_rps_idle(dev_priv);
4139                 else
4140                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4141                 dev_priv->rps.last_adj = 0;
4142                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4143         }
4144         mutex_unlock(&dev_priv->rps.hw_lock);
4145
4146         spin_lock(&dev_priv->rps.client_lock);
4147         while (!list_empty(&dev_priv->rps.clients))
4148                 list_del_init(dev_priv->rps.clients.next);
4149         spin_unlock(&dev_priv->rps.client_lock);
4150 }
4151
4152 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4153                     struct intel_rps_client *rps,
4154                     unsigned long submitted)
4155 {
4156         /* This is intentionally racy! We peek at the state here, then
4157          * validate inside the RPS worker.
4158          */
4159         if (!(dev_priv->mm.busy &&
4160               dev_priv->rps.enabled &&
4161               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4162                 return;
4163
4164         /* Force a RPS boost (and don't count it against the client) if
4165          * the GPU is severely congested.
4166          */
4167         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4168                 rps = NULL;
4169
4170         spin_lock(&dev_priv->rps.client_lock);
4171         if (rps == NULL || list_empty(&rps->link)) {
4172                 spin_lock_irq(&dev_priv->irq_lock);
4173                 if (dev_priv->rps.interrupts_enabled) {
4174                         dev_priv->rps.client_boost = true;
4175                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4176                 }
4177                 spin_unlock_irq(&dev_priv->irq_lock);
4178
4179                 if (rps != NULL) {
4180                         list_add(&rps->link, &dev_priv->rps.clients);
4181                         rps->boosts++;
4182                 } else
4183                         dev_priv->rps.boosts++;
4184         }
4185         spin_unlock(&dev_priv->rps.client_lock);
4186 }
4187
4188 void intel_set_rps(struct drm_device *dev, u8 val)
4189 {
4190         if (IS_VALLEYVIEW(dev))
4191                 valleyview_set_rps(dev, val);
4192         else
4193                 gen6_set_rps(dev, val);
4194 }
4195
4196 static void gen9_disable_rps(struct drm_device *dev)
4197 {
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199
4200         I915_WRITE(GEN6_RC_CONTROL, 0);
4201         I915_WRITE(GEN9_PG_ENABLE, 0);
4202 }
4203
4204 static void gen6_disable_rps(struct drm_device *dev)
4205 {
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207
4208         I915_WRITE(GEN6_RC_CONTROL, 0);
4209         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4210 }
4211
4212 static void cherryview_disable_rps(struct drm_device *dev)
4213 {
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215
4216         I915_WRITE(GEN6_RC_CONTROL, 0);
4217 }
4218
4219 static void valleyview_disable_rps(struct drm_device *dev)
4220 {
4221         struct drm_i915_private *dev_priv = dev->dev_private;
4222
4223         /* we're doing forcewake before Disabling RC6,
4224          * This what the BIOS expects when going into suspend */
4225         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4226
4227         I915_WRITE(GEN6_RC_CONTROL, 0);
4228
4229         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4230 }
4231
4232 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4233 {
4234         if (IS_VALLEYVIEW(dev)) {
4235                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4236                         mode = GEN6_RC_CTL_RC6_ENABLE;
4237                 else
4238                         mode = 0;
4239         }
4240         if (HAS_RC6p(dev))
4241                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4242                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4243                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4244                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4245
4246         else
4247                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4248                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4249 }
4250
4251 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4252 {
4253         /* No RC6 before Ironlake */
4254         if (INTEL_INFO(dev)->gen < 5)
4255                 return 0;
4256
4257         /* RC6 is only on Ironlake mobile not on desktop */
4258         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4259                 return 0;
4260
4261         /* Respect the kernel parameter if it is set */
4262         if (enable_rc6 >= 0) {
4263                 int mask;
4264
4265                 if (HAS_RC6p(dev))
4266                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4267                                INTEL_RC6pp_ENABLE;
4268                 else
4269                         mask = INTEL_RC6_ENABLE;
4270
4271                 if ((enable_rc6 & mask) != enable_rc6)
4272                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4273                                       enable_rc6 & mask, enable_rc6, mask);
4274
4275                 return enable_rc6 & mask;
4276         }
4277
4278         /* Disable RC6 on Ironlake */
4279         if (INTEL_INFO(dev)->gen == 5)
4280                 return 0;
4281
4282         if (IS_IVYBRIDGE(dev))
4283                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4284
4285         return INTEL_RC6_ENABLE;
4286 }
4287
4288 int intel_enable_rc6(const struct drm_device *dev)
4289 {
4290         return i915.enable_rc6;
4291 }
4292
4293 static void gen6_init_rps_frequencies(struct drm_device *dev)
4294 {
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         uint32_t rp_state_cap;
4297         u32 ddcc_status = 0;
4298         int ret;
4299
4300         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4301         /* All of these values are in units of 50MHz */
4302         dev_priv->rps.cur_freq          = 0;
4303         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4304         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
4305         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
4306         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
4307         if (IS_SKYLAKE(dev)) {
4308                 /* Store the frequency values in 16.66 MHZ units, which is
4309                    the natural hardware unit for SKL */
4310                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4311                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4312                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4313         }
4314         /* hw_max = RP0 until we check for overclocking */
4315         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4316
4317         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4318         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4319                 ret = sandybridge_pcode_read(dev_priv,
4320                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4321                                         &ddcc_status);
4322                 if (0 == ret)
4323                         dev_priv->rps.efficient_freq =
4324                                 clamp_t(u8,
4325                                         ((ddcc_status >> 8) & 0xff),
4326                                         dev_priv->rps.min_freq,
4327                                         dev_priv->rps.max_freq);
4328         }
4329
4330         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4331
4332         /* Preserve min/max settings in case of re-init */
4333         if (dev_priv->rps.max_freq_softlimit == 0)
4334                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4335
4336         if (dev_priv->rps.min_freq_softlimit == 0) {
4337                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4338                         dev_priv->rps.min_freq_softlimit =
4339                                 max_t(int, dev_priv->rps.efficient_freq,
4340                                       intel_freq_opcode(dev_priv, 450));
4341                 else
4342                         dev_priv->rps.min_freq_softlimit =
4343                                 dev_priv->rps.min_freq;
4344         }
4345 }
4346
4347 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4348 static void gen9_enable_rps(struct drm_device *dev)
4349 {
4350         struct drm_i915_private *dev_priv = dev->dev_private;
4351
4352         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4353
4354         gen6_init_rps_frequencies(dev);
4355
4356         /* Program defaults and thresholds for RPS*/
4357         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4358                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4359
4360         /* 1 second timeout*/
4361         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4362                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4363
4364         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4365
4366         /* Leaning on the below call to gen6_set_rps to program/setup the
4367          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4368          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4369         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4370         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4371
4372         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4373 }
4374
4375 static void gen9_enable_rc6(struct drm_device *dev)
4376 {
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         struct intel_engine_cs *ring;
4379         uint32_t rc6_mask = 0;
4380         int unused;
4381
4382         /* 1a: Software RC state - RC0 */
4383         I915_WRITE(GEN6_RC_STATE, 0);
4384
4385         /* 1b: Get forcewake during program sequence. Although the driver
4386          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4387         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4388
4389         /* 2a: Disable RC states. */
4390         I915_WRITE(GEN6_RC_CONTROL, 0);
4391
4392         /* 2b: Program RC6 thresholds.*/
4393         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4394         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4395         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4396         for_each_ring(ring, dev_priv, unused)
4397                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4398         I915_WRITE(GEN6_RC_SLEEP, 0);
4399         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4400
4401         /* 2c: Program Coarse Power Gating Policies. */
4402         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4403         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4404
4405         /* 3a: Enable RC6 */
4406         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4407                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4408         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4409                         "on" : "off");
4410         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4411                                    GEN6_RC_CTL_EI_MODE(1) |
4412                                    rc6_mask);
4413
4414         /*
4415          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4416          * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
4417          */
4418         I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4419                         GEN9_MEDIA_PG_ENABLE : 0);
4420
4421
4422         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4423
4424 }
4425
4426 static void gen8_enable_rps(struct drm_device *dev)
4427 {
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429         struct intel_engine_cs *ring;
4430         uint32_t rc6_mask = 0;
4431         int unused;
4432
4433         /* 1a: Software RC state - RC0 */
4434         I915_WRITE(GEN6_RC_STATE, 0);
4435
4436         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4437          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4438         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4439
4440         /* 2a: Disable RC states. */
4441         I915_WRITE(GEN6_RC_CONTROL, 0);
4442
4443         /* Initialize rps frequencies */
4444         gen6_init_rps_frequencies(dev);
4445
4446         /* 2b: Program RC6 thresholds.*/
4447         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4448         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4449         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4450         for_each_ring(ring, dev_priv, unused)
4451                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4452         I915_WRITE(GEN6_RC_SLEEP, 0);
4453         if (IS_BROADWELL(dev))
4454                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4455         else
4456                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4457
4458         /* 3: Enable RC6 */
4459         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4460                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4461         intel_print_rc6_info(dev, rc6_mask);
4462         if (IS_BROADWELL(dev))
4463                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4464                                 GEN7_RC_CTL_TO_MODE |
4465                                 rc6_mask);
4466         else
4467                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4468                                 GEN6_RC_CTL_EI_MODE(1) |
4469                                 rc6_mask);
4470
4471         /* 4 Program defaults and thresholds for RPS*/
4472         I915_WRITE(GEN6_RPNSWREQ,
4473                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4474         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4475                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4476         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4477         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4478
4479         /* Docs recommend 900MHz, and 300 MHz respectively */
4480         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4481                    dev_priv->rps.max_freq_softlimit << 24 |
4482                    dev_priv->rps.min_freq_softlimit << 16);
4483
4484         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4485         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4486         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4487         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4488
4489         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4490
4491         /* 5: Enable RPS */
4492         I915_WRITE(GEN6_RP_CONTROL,
4493                    GEN6_RP_MEDIA_TURBO |
4494                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4495                    GEN6_RP_MEDIA_IS_GFX |
4496                    GEN6_RP_ENABLE |
4497                    GEN6_RP_UP_BUSY_AVG |
4498                    GEN6_RP_DOWN_IDLE_AVG);
4499
4500         /* 6: Ring frequency + overclocking (our driver does this later */
4501
4502         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4503         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4504
4505         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4506 }
4507
4508 static void gen6_enable_rps(struct drm_device *dev)
4509 {
4510         struct drm_i915_private *dev_priv = dev->dev_private;
4511         struct intel_engine_cs *ring;
4512         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4513         u32 gtfifodbg;
4514         int rc6_mode;
4515         int i, ret;
4516
4517         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4518
4519         /* Here begins a magic sequence of register writes to enable
4520          * auto-downclocking.
4521          *
4522          * Perhaps there might be some value in exposing these to
4523          * userspace...
4524          */
4525         I915_WRITE(GEN6_RC_STATE, 0);
4526
4527         /* Clear the DBG now so we don't confuse earlier errors */
4528         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4529                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4530                 I915_WRITE(GTFIFODBG, gtfifodbg);
4531         }
4532
4533         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4534
4535         /* Initialize rps frequencies */
4536         gen6_init_rps_frequencies(dev);
4537
4538         /* disable the counters and set deterministic thresholds */
4539         I915_WRITE(GEN6_RC_CONTROL, 0);
4540
4541         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4542         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4543         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4544         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4545         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4546
4547         for_each_ring(ring, dev_priv, i)
4548                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4549
4550         I915_WRITE(GEN6_RC_SLEEP, 0);
4551         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4552         if (IS_IVYBRIDGE(dev))
4553                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4554         else
4555                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4556         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4557         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4558
4559         /* Check if we are enabling RC6 */
4560         rc6_mode = intel_enable_rc6(dev_priv->dev);
4561         if (rc6_mode & INTEL_RC6_ENABLE)
4562                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4563
4564         /* We don't use those on Haswell */
4565         if (!IS_HASWELL(dev)) {
4566                 if (rc6_mode & INTEL_RC6p_ENABLE)
4567                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4568
4569                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4570                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4571         }
4572
4573         intel_print_rc6_info(dev, rc6_mask);
4574
4575         I915_WRITE(GEN6_RC_CONTROL,
4576                    rc6_mask |
4577                    GEN6_RC_CTL_EI_MODE(1) |
4578                    GEN6_RC_CTL_HW_ENABLE);
4579
4580         /* Power down if completely idle for over 50ms */
4581         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4582         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4583
4584         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4585         if (ret)
4586                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4587
4588         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4589         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4590                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4591                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4592                                  (pcu_mbox & 0xff) * 50);
4593                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4594         }
4595
4596         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4597         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4598
4599         rc6vids = 0;
4600         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4601         if (IS_GEN6(dev) && ret) {
4602                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4603         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4604                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4605                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4606                 rc6vids &= 0xffff00;
4607                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4608                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4609                 if (ret)
4610                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4611         }
4612
4613         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4614 }
4615
4616 static void __gen6_update_ring_freq(struct drm_device *dev)
4617 {
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619         int min_freq = 15;
4620         unsigned int gpu_freq;
4621         unsigned int max_ia_freq, min_ring_freq;
4622         int scaling_factor = 180;
4623         struct cpufreq_policy *policy;
4624
4625         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4626
4627         policy = cpufreq_cpu_get(0);
4628         if (policy) {
4629                 max_ia_freq = policy->cpuinfo.max_freq;
4630                 cpufreq_cpu_put(policy);
4631         } else {
4632                 /*
4633                  * Default to measured freq if none found, PCU will ensure we
4634                  * don't go over
4635                  */
4636                 max_ia_freq = tsc_khz;
4637         }
4638
4639         /* Convert from kHz to MHz */
4640         max_ia_freq /= 1000;
4641
4642         min_ring_freq = I915_READ(DCLK) & 0xf;
4643         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4644         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4645
4646         /*
4647          * For each potential GPU frequency, load a ring frequency we'd like
4648          * to use for memory access.  We do this by specifying the IA frequency
4649          * the PCU should use as a reference to determine the ring frequency.
4650          */
4651         for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4652              gpu_freq--) {
4653                 int diff = dev_priv->rps.max_freq - gpu_freq;
4654                 unsigned int ia_freq = 0, ring_freq = 0;
4655
4656                 if (INTEL_INFO(dev)->gen >= 8) {
4657                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4658                         ring_freq = max(min_ring_freq, gpu_freq);
4659                 } else if (IS_HASWELL(dev)) {
4660                         ring_freq = mult_frac(gpu_freq, 5, 4);
4661                         ring_freq = max(min_ring_freq, ring_freq);
4662                         /* leave ia_freq as the default, chosen by cpufreq */
4663                 } else {
4664                         /* On older processors, there is no separate ring
4665                          * clock domain, so in order to boost the bandwidth
4666                          * of the ring, we need to upclock the CPU (ia_freq).
4667                          *
4668                          * For GPU frequencies less than 750MHz,
4669                          * just use the lowest ring freq.
4670                          */
4671                         if (gpu_freq < min_freq)
4672                                 ia_freq = 800;
4673                         else
4674                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4675                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4676                 }
4677
4678                 sandybridge_pcode_write(dev_priv,
4679                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4680                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4681                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4682                                         gpu_freq);
4683         }
4684 }
4685
4686 void gen6_update_ring_freq(struct drm_device *dev)
4687 {
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4691                 return;
4692
4693         mutex_lock(&dev_priv->rps.hw_lock);
4694         __gen6_update_ring_freq(dev);
4695         mutex_unlock(&dev_priv->rps.hw_lock);
4696 }
4697
4698 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4699 {
4700         struct drm_device *dev = dev_priv->dev;
4701         u32 val, rp0;
4702
4703         if (dev->pdev->revision >= 0x20) {
4704                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4705
4706                 switch (INTEL_INFO(dev)->eu_total) {
4707                 case 8:
4708                                 /* (2 * 4) config */
4709                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4710                                 break;
4711                 case 12:
4712                                 /* (2 * 6) config */
4713                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4714                                 break;
4715                 case 16:
4716                                 /* (2 * 8) config */
4717                 default:
4718                                 /* Setting (2 * 8) Min RP0 for any other combination */
4719                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4720                                 break;
4721                 }
4722                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4723         } else {
4724                 /* For pre-production hardware */
4725                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4726                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4727                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4728         }
4729         return rp0;
4730 }
4731
4732 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4733 {
4734         u32 val, rpe;
4735
4736         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4737         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4738
4739         return rpe;
4740 }
4741
4742 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4743 {
4744         struct drm_device *dev = dev_priv->dev;
4745         u32 val, rp1;
4746
4747         if (dev->pdev->revision >= 0x20) {
4748                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4749                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4750         } else {
4751                 /* For pre-production hardware */
4752                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4753                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4754                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4755         }
4756         return rp1;
4757 }
4758
4759 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4760 {
4761         u32 val, rp1;
4762
4763         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4764
4765         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4766
4767         return rp1;
4768 }
4769
4770 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4771 {
4772         u32 val, rp0;
4773
4774         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4775
4776         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4777         /* Clamp to max */
4778         rp0 = min_t(u32, rp0, 0xea);
4779
4780         return rp0;
4781 }
4782
4783 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4784 {
4785         u32 val, rpe;
4786
4787         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4788         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4789         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4790         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4791
4792         return rpe;
4793 }
4794
4795 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4796 {
4797         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4798 }
4799
4800 /* Check that the pctx buffer wasn't move under us. */
4801 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4802 {
4803         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4804
4805         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4806                              dev_priv->vlv_pctx->stolen->start);
4807 }
4808
4809
4810 /* Check that the pcbr address is not empty. */
4811 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4812 {
4813         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4814
4815         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4816 }
4817
4818 static void cherryview_setup_pctx(struct drm_device *dev)
4819 {
4820         struct drm_i915_private *dev_priv = dev->dev_private;
4821         unsigned long pctx_paddr, paddr;
4822         struct i915_gtt *gtt = &dev_priv->gtt;
4823         u32 pcbr;
4824         int pctx_size = 32*1024;
4825
4826         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4827
4828         pcbr = I915_READ(VLV_PCBR);
4829         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4830                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4831                 paddr = (dev_priv->mm.stolen_base +
4832                          (gtt->stolen_size - pctx_size));
4833
4834                 pctx_paddr = (paddr & (~4095));
4835                 I915_WRITE(VLV_PCBR, pctx_paddr);
4836         }
4837
4838         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4839 }
4840
4841 static void valleyview_setup_pctx(struct drm_device *dev)
4842 {
4843         struct drm_i915_private *dev_priv = dev->dev_private;
4844         struct drm_i915_gem_object *pctx;
4845         unsigned long pctx_paddr;
4846         u32 pcbr;
4847         int pctx_size = 24*1024;
4848
4849         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4850
4851         pcbr = I915_READ(VLV_PCBR);
4852         if (pcbr) {
4853                 /* BIOS set it up already, grab the pre-alloc'd space */
4854                 int pcbr_offset;
4855
4856                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4857                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4858                                                                       pcbr_offset,
4859                                                                       I915_GTT_OFFSET_NONE,
4860                                                                       pctx_size);
4861                 goto out;
4862         }
4863
4864         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4865
4866         /*
4867          * From the Gunit register HAS:
4868          * The Gfx driver is expected to program this register and ensure
4869          * proper allocation within Gfx stolen memory.  For example, this
4870          * register should be programmed such than the PCBR range does not
4871          * overlap with other ranges, such as the frame buffer, protected
4872          * memory, or any other relevant ranges.
4873          */
4874         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4875         if (!pctx) {
4876                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4877                 return;
4878         }
4879
4880         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4881         I915_WRITE(VLV_PCBR, pctx_paddr);
4882
4883 out:
4884         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4885         dev_priv->vlv_pctx = pctx;
4886 }
4887
4888 static void valleyview_cleanup_pctx(struct drm_device *dev)
4889 {
4890         struct drm_i915_private *dev_priv = dev->dev_private;
4891
4892         if (WARN_ON(!dev_priv->vlv_pctx))
4893                 return;
4894
4895         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4896         dev_priv->vlv_pctx = NULL;
4897 }
4898
4899 static void valleyview_init_gt_powersave(struct drm_device *dev)
4900 {
4901         struct drm_i915_private *dev_priv = dev->dev_private;
4902         u32 val;
4903
4904         valleyview_setup_pctx(dev);
4905
4906         mutex_lock(&dev_priv->rps.hw_lock);
4907
4908         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4909         switch ((val >> 6) & 3) {
4910         case 0:
4911         case 1:
4912                 dev_priv->mem_freq = 800;
4913                 break;
4914         case 2:
4915                 dev_priv->mem_freq = 1066;
4916                 break;
4917         case 3:
4918                 dev_priv->mem_freq = 1333;
4919                 break;
4920         }
4921         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4922
4923         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4924         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4925         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4926                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4927                          dev_priv->rps.max_freq);
4928
4929         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4930         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4931                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4932                          dev_priv->rps.efficient_freq);
4933
4934         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4935         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4936                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4937                          dev_priv->rps.rp1_freq);
4938
4939         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4940         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4941                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4942                          dev_priv->rps.min_freq);
4943
4944         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4945
4946         /* Preserve min/max settings in case of re-init */
4947         if (dev_priv->rps.max_freq_softlimit == 0)
4948                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4949
4950         if (dev_priv->rps.min_freq_softlimit == 0)
4951                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4952
4953         mutex_unlock(&dev_priv->rps.hw_lock);
4954 }
4955
4956 static void cherryview_init_gt_powersave(struct drm_device *dev)
4957 {
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         u32 val;
4960
4961         cherryview_setup_pctx(dev);
4962
4963         mutex_lock(&dev_priv->rps.hw_lock);
4964
4965         mutex_lock(&dev_priv->sb_lock);
4966         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4967         mutex_unlock(&dev_priv->sb_lock);
4968
4969         switch ((val >> 2) & 0x7) {
4970         case 0:
4971         case 1:
4972                 dev_priv->rps.cz_freq = 200;
4973                 dev_priv->mem_freq = 1600;
4974                 break;
4975         case 2:
4976                 dev_priv->rps.cz_freq = 267;
4977                 dev_priv->mem_freq = 1600;
4978                 break;
4979         case 3:
4980                 dev_priv->rps.cz_freq = 333;
4981                 dev_priv->mem_freq = 2000;
4982                 break;
4983         case 4:
4984                 dev_priv->rps.cz_freq = 320;
4985                 dev_priv->mem_freq = 1600;
4986                 break;
4987         case 5:
4988                 dev_priv->rps.cz_freq = 400;
4989                 dev_priv->mem_freq = 1600;
4990                 break;
4991         }
4992         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4993
4994         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4995         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4996         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4997                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4998                          dev_priv->rps.max_freq);
4999
5000         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5001         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5002                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5003                          dev_priv->rps.efficient_freq);
5004
5005         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5006         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5007                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5008                          dev_priv->rps.rp1_freq);
5009
5010         /* PUnit validated range is only [RPe, RP0] */
5011         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5012         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5013                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5014                          dev_priv->rps.min_freq);
5015
5016         WARN_ONCE((dev_priv->rps.max_freq |
5017                    dev_priv->rps.efficient_freq |
5018                    dev_priv->rps.rp1_freq |
5019                    dev_priv->rps.min_freq) & 1,
5020                   "Odd GPU freq values\n");
5021
5022         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5023
5024         /* Preserve min/max settings in case of re-init */
5025         if (dev_priv->rps.max_freq_softlimit == 0)
5026                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5027
5028         if (dev_priv->rps.min_freq_softlimit == 0)
5029                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5030
5031         mutex_unlock(&dev_priv->rps.hw_lock);
5032 }
5033
5034 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5035 {
5036         valleyview_cleanup_pctx(dev);
5037 }
5038
5039 static void cherryview_enable_rps(struct drm_device *dev)
5040 {
5041         struct drm_i915_private *dev_priv = dev->dev_private;
5042         struct intel_engine_cs *ring;
5043         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5044         int i;
5045
5046         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5047
5048         gtfifodbg = I915_READ(GTFIFODBG);
5049         if (gtfifodbg) {
5050                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5051                                  gtfifodbg);
5052                 I915_WRITE(GTFIFODBG, gtfifodbg);
5053         }
5054
5055         cherryview_check_pctx(dev_priv);
5056
5057         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5058          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5059         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060
5061         /*  Disable RC states. */
5062         I915_WRITE(GEN6_RC_CONTROL, 0);
5063
5064         /* 2a: Program RC6 thresholds.*/
5065         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5066         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5067         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5068
5069         for_each_ring(ring, dev_priv, i)
5070                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5071         I915_WRITE(GEN6_RC_SLEEP, 0);
5072
5073         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5074         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5075
5076         /* allows RC6 residency counter to work */
5077         I915_WRITE(VLV_COUNTER_CONTROL,
5078                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5079                                       VLV_MEDIA_RC6_COUNT_EN |
5080                                       VLV_RENDER_RC6_COUNT_EN));
5081
5082         /* For now we assume BIOS is allocating and populating the PCBR  */
5083         pcbr = I915_READ(VLV_PCBR);
5084
5085         /* 3: Enable RC6 */
5086         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5087                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5088                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5089
5090         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5091
5092         /* 4 Program defaults and thresholds for RPS*/
5093         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5094         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5095         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5096         I915_WRITE(GEN6_RP_UP_EI, 66000);
5097         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5098
5099         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5100
5101         /* 5: Enable RPS */
5102         I915_WRITE(GEN6_RP_CONTROL,
5103                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5104                    GEN6_RP_MEDIA_IS_GFX |
5105                    GEN6_RP_ENABLE |
5106                    GEN6_RP_UP_BUSY_AVG |
5107                    GEN6_RP_DOWN_IDLE_AVG);
5108
5109         /* Setting Fixed Bias */
5110         val = VLV_OVERRIDE_EN |
5111                   VLV_SOC_TDP_EN |
5112                   CHV_BIAS_CPU_50_SOC_50;
5113         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5114
5115         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5116
5117         /* RPS code assumes GPLL is used */
5118         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5119
5120         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5121         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5122
5123         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5124         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5125                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5126                          dev_priv->rps.cur_freq);
5127
5128         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5129                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5130                          dev_priv->rps.efficient_freq);
5131
5132         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5133
5134         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5135 }
5136
5137 static void valleyview_enable_rps(struct drm_device *dev)
5138 {
5139         struct drm_i915_private *dev_priv = dev->dev_private;
5140         struct intel_engine_cs *ring;
5141         u32 gtfifodbg, val, rc6_mode = 0;
5142         int i;
5143
5144         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5145
5146         valleyview_check_pctx(dev_priv);
5147
5148         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5149                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5150                                  gtfifodbg);
5151                 I915_WRITE(GTFIFODBG, gtfifodbg);
5152         }
5153
5154         /* If VLV, Forcewake all wells, else re-direct to regular path */
5155         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5156
5157         /*  Disable RC states. */
5158         I915_WRITE(GEN6_RC_CONTROL, 0);
5159
5160         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5161         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5162         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5163         I915_WRITE(GEN6_RP_UP_EI, 66000);
5164         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5165
5166         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5167
5168         I915_WRITE(GEN6_RP_CONTROL,
5169                    GEN6_RP_MEDIA_TURBO |
5170                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5171                    GEN6_RP_MEDIA_IS_GFX |
5172                    GEN6_RP_ENABLE |
5173                    GEN6_RP_UP_BUSY_AVG |
5174                    GEN6_RP_DOWN_IDLE_CONT);
5175
5176         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5177         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5178         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5179
5180         for_each_ring(ring, dev_priv, i)
5181                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5182
5183         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5184
5185         /* allows RC6 residency counter to work */
5186         I915_WRITE(VLV_COUNTER_CONTROL,
5187                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5188                                       VLV_RENDER_RC0_COUNT_EN |
5189                                       VLV_MEDIA_RC6_COUNT_EN |
5190                                       VLV_RENDER_RC6_COUNT_EN));
5191
5192         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5193                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5194
5195         intel_print_rc6_info(dev, rc6_mode);
5196
5197         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5198
5199         /* Setting Fixed Bias */
5200         val = VLV_OVERRIDE_EN |
5201                   VLV_SOC_TDP_EN |
5202                   VLV_BIAS_CPU_125_SOC_875;
5203         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5204
5205         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5206
5207         /* RPS code assumes GPLL is used */
5208         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5209
5210         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5211         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5212
5213         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5214         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5215                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5216                          dev_priv->rps.cur_freq);
5217
5218         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5219                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5220                          dev_priv->rps.efficient_freq);
5221
5222         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5223
5224         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5225 }
5226
5227 static unsigned long intel_pxfreq(u32 vidfreq)
5228 {
5229         unsigned long freq;
5230         int div = (vidfreq & 0x3f0000) >> 16;
5231         int post = (vidfreq & 0x3000) >> 12;
5232         int pre = (vidfreq & 0x7);
5233
5234         if (!pre)
5235                 return 0;
5236
5237         freq = ((div * 133333) / ((1<<post) * pre));
5238
5239         return freq;
5240 }
5241
5242 static const struct cparams {
5243         u16 i;
5244         u16 t;
5245         u16 m;
5246         u16 c;
5247 } cparams[] = {
5248         { 1, 1333, 301, 28664 },
5249         { 1, 1066, 294, 24460 },
5250         { 1, 800, 294, 25192 },
5251         { 0, 1333, 276, 27605 },
5252         { 0, 1066, 276, 27605 },
5253         { 0, 800, 231, 23784 },
5254 };
5255
5256 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5257 {
5258         u64 total_count, diff, ret;
5259         u32 count1, count2, count3, m = 0, c = 0;
5260         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5261         int i;
5262
5263         assert_spin_locked(&mchdev_lock);
5264
5265         diff1 = now - dev_priv->ips.last_time1;
5266
5267         /* Prevent division-by-zero if we are asking too fast.
5268          * Also, we don't get interesting results if we are polling
5269          * faster than once in 10ms, so just return the saved value
5270          * in such cases.
5271          */
5272         if (diff1 <= 10)
5273                 return dev_priv->ips.chipset_power;
5274
5275         count1 = I915_READ(DMIEC);
5276         count2 = I915_READ(DDREC);
5277         count3 = I915_READ(CSIEC);
5278
5279         total_count = count1 + count2 + count3;
5280
5281         /* FIXME: handle per-counter overflow */
5282         if (total_count < dev_priv->ips.last_count1) {
5283                 diff = ~0UL - dev_priv->ips.last_count1;
5284                 diff += total_count;
5285         } else {
5286                 diff = total_count - dev_priv->ips.last_count1;
5287         }
5288
5289         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5290                 if (cparams[i].i == dev_priv->ips.c_m &&
5291                     cparams[i].t == dev_priv->ips.r_t) {
5292                         m = cparams[i].m;
5293                         c = cparams[i].c;
5294                         break;
5295                 }
5296         }
5297
5298         diff = div_u64(diff, diff1);
5299         ret = ((m * diff) + c);
5300         ret = div_u64(ret, 10);
5301
5302         dev_priv->ips.last_count1 = total_count;
5303         dev_priv->ips.last_time1 = now;
5304
5305         dev_priv->ips.chipset_power = ret;
5306
5307         return ret;
5308 }
5309
5310 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5311 {
5312         struct drm_device *dev = dev_priv->dev;
5313         unsigned long val;
5314
5315         if (INTEL_INFO(dev)->gen != 5)
5316                 return 0;
5317
5318         spin_lock_irq(&mchdev_lock);
5319
5320         val = __i915_chipset_val(dev_priv);
5321
5322         spin_unlock_irq(&mchdev_lock);
5323
5324         return val;
5325 }
5326
5327 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5328 {
5329         unsigned long m, x, b;
5330         u32 tsfs;
5331
5332         tsfs = I915_READ(TSFS);
5333
5334         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5335         x = I915_READ8(TR1);
5336
5337         b = tsfs & TSFS_INTR_MASK;
5338
5339         return ((m * x) / 127) - b;
5340 }
5341
5342 static int _pxvid_to_vd(u8 pxvid)
5343 {
5344         if (pxvid == 0)
5345                 return 0;
5346
5347         if (pxvid >= 8 && pxvid < 31)
5348                 pxvid = 31;
5349
5350         return (pxvid + 2) * 125;
5351 }
5352
5353 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5354 {
5355         struct drm_device *dev = dev_priv->dev;
5356         const int vd = _pxvid_to_vd(pxvid);
5357         const int vm = vd - 1125;
5358
5359         if (INTEL_INFO(dev)->is_mobile)
5360                 return vm > 0 ? vm : 0;
5361
5362         return vd;
5363 }
5364
5365 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5366 {
5367         u64 now, diff, diffms;
5368         u32 count;
5369
5370         assert_spin_locked(&mchdev_lock);
5371
5372         now = ktime_get_raw_ns();
5373         diffms = now - dev_priv->ips.last_time2;
5374         do_div(diffms, NSEC_PER_MSEC);
5375
5376         /* Don't divide by 0 */
5377         if (!diffms)
5378                 return;
5379
5380         count = I915_READ(GFXEC);
5381
5382         if (count < dev_priv->ips.last_count2) {
5383                 diff = ~0UL - dev_priv->ips.last_count2;
5384                 diff += count;
5385         } else {
5386                 diff = count - dev_priv->ips.last_count2;
5387         }
5388
5389         dev_priv->ips.last_count2 = count;
5390         dev_priv->ips.last_time2 = now;
5391
5392         /* More magic constants... */
5393         diff = diff * 1181;
5394         diff = div_u64(diff, diffms * 10);
5395         dev_priv->ips.gfx_power = diff;
5396 }
5397
5398 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5399 {
5400         struct drm_device *dev = dev_priv->dev;
5401
5402         if (INTEL_INFO(dev)->gen != 5)
5403                 return;
5404
5405         spin_lock_irq(&mchdev_lock);
5406
5407         __i915_update_gfx_val(dev_priv);
5408
5409         spin_unlock_irq(&mchdev_lock);
5410 }
5411
5412 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5413 {
5414         unsigned long t, corr, state1, corr2, state2;
5415         u32 pxvid, ext_v;
5416
5417         assert_spin_locked(&mchdev_lock);
5418
5419         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5420         pxvid = (pxvid >> 24) & 0x7f;
5421         ext_v = pvid_to_extvid(dev_priv, pxvid);
5422
5423         state1 = ext_v;
5424
5425         t = i915_mch_val(dev_priv);
5426
5427         /* Revel in the empirically derived constants */
5428
5429         /* Correction factor in 1/100000 units */
5430         if (t > 80)
5431                 corr = ((t * 2349) + 135940);
5432         else if (t >= 50)
5433                 corr = ((t * 964) + 29317);
5434         else /* < 50 */
5435                 corr = ((t * 301) + 1004);
5436
5437         corr = corr * ((150142 * state1) / 10000 - 78642);
5438         corr /= 100000;
5439         corr2 = (corr * dev_priv->ips.corr);
5440
5441         state2 = (corr2 * state1) / 10000;
5442         state2 /= 100; /* convert to mW */
5443
5444         __i915_update_gfx_val(dev_priv);
5445
5446         return dev_priv->ips.gfx_power + state2;
5447 }
5448
5449 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5450 {
5451         struct drm_device *dev = dev_priv->dev;
5452         unsigned long val;
5453
5454         if (INTEL_INFO(dev)->gen != 5)
5455                 return 0;
5456
5457         spin_lock_irq(&mchdev_lock);
5458
5459         val = __i915_gfx_val(dev_priv);
5460
5461         spin_unlock_irq(&mchdev_lock);
5462
5463         return val;
5464 }
5465
5466 /**
5467  * i915_read_mch_val - return value for IPS use
5468  *
5469  * Calculate and return a value for the IPS driver to use when deciding whether
5470  * we have thermal and power headroom to increase CPU or GPU power budget.
5471  */
5472 unsigned long i915_read_mch_val(void)
5473 {
5474         struct drm_i915_private *dev_priv;
5475         unsigned long chipset_val, graphics_val, ret = 0;
5476
5477         spin_lock_irq(&mchdev_lock);
5478         if (!i915_mch_dev)
5479                 goto out_unlock;
5480         dev_priv = i915_mch_dev;
5481
5482         chipset_val = __i915_chipset_val(dev_priv);
5483         graphics_val = __i915_gfx_val(dev_priv);
5484
5485         ret = chipset_val + graphics_val;
5486
5487 out_unlock:
5488         spin_unlock_irq(&mchdev_lock);
5489
5490         return ret;
5491 }
5492 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5493
5494 /**
5495  * i915_gpu_raise - raise GPU frequency limit
5496  *
5497  * Raise the limit; IPS indicates we have thermal headroom.
5498  */
5499 bool i915_gpu_raise(void)
5500 {
5501         struct drm_i915_private *dev_priv;
5502         bool ret = true;
5503
5504         spin_lock_irq(&mchdev_lock);
5505         if (!i915_mch_dev) {
5506                 ret = false;
5507                 goto out_unlock;
5508         }
5509         dev_priv = i915_mch_dev;
5510
5511         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5512                 dev_priv->ips.max_delay--;
5513
5514 out_unlock:
5515         spin_unlock_irq(&mchdev_lock);
5516
5517         return ret;
5518 }
5519 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5520
5521 /**
5522  * i915_gpu_lower - lower GPU frequency limit
5523  *
5524  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5525  * frequency maximum.
5526  */
5527 bool i915_gpu_lower(void)
5528 {
5529         struct drm_i915_private *dev_priv;
5530         bool ret = true;
5531
5532         spin_lock_irq(&mchdev_lock);
5533         if (!i915_mch_dev) {
5534                 ret = false;
5535                 goto out_unlock;
5536         }
5537         dev_priv = i915_mch_dev;
5538
5539         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5540                 dev_priv->ips.max_delay++;
5541
5542 out_unlock:
5543         spin_unlock_irq(&mchdev_lock);
5544
5545         return ret;
5546 }
5547 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5548
5549 /**
5550  * i915_gpu_busy - indicate GPU business to IPS
5551  *
5552  * Tell the IPS driver whether or not the GPU is busy.
5553  */
5554 bool i915_gpu_busy(void)
5555 {
5556         struct drm_i915_private *dev_priv;
5557         struct intel_engine_cs *ring;
5558         bool ret = false;
5559         int i;
5560
5561         spin_lock_irq(&mchdev_lock);
5562         if (!i915_mch_dev)
5563                 goto out_unlock;
5564         dev_priv = i915_mch_dev;
5565
5566         for_each_ring(ring, dev_priv, i)
5567                 ret |= !list_empty(&ring->request_list);
5568
5569 out_unlock:
5570         spin_unlock_irq(&mchdev_lock);
5571
5572         return ret;
5573 }
5574 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5575
5576 /**
5577  * i915_gpu_turbo_disable - disable graphics turbo
5578  *
5579  * Disable graphics turbo by resetting the max frequency and setting the
5580  * current frequency to the default.
5581  */
5582 bool i915_gpu_turbo_disable(void)
5583 {
5584         struct drm_i915_private *dev_priv;
5585         bool ret = true;
5586
5587         spin_lock_irq(&mchdev_lock);
5588         if (!i915_mch_dev) {
5589                 ret = false;
5590                 goto out_unlock;
5591         }
5592         dev_priv = i915_mch_dev;
5593
5594         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5595
5596         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5597                 ret = false;
5598
5599 out_unlock:
5600         spin_unlock_irq(&mchdev_lock);
5601
5602         return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5605
5606 /**
5607  * Tells the intel_ips driver that the i915 driver is now loaded, if
5608  * IPS got loaded first.
5609  *
5610  * This awkward dance is so that neither module has to depend on the
5611  * other in order for IPS to do the appropriate communication of
5612  * GPU turbo limits to i915.
5613  */
5614 static void
5615 ips_ping_for_i915_load(void)
5616 {
5617         void (*link)(void);
5618
5619         link = symbol_get(ips_link_to_i915_driver);
5620         if (link) {
5621                 link();
5622                 symbol_put(ips_link_to_i915_driver);
5623         }
5624 }
5625
5626 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5627 {
5628         /* We only register the i915 ips part with intel-ips once everything is
5629          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5630         spin_lock_irq(&mchdev_lock);
5631         i915_mch_dev = dev_priv;
5632         spin_unlock_irq(&mchdev_lock);
5633
5634         ips_ping_for_i915_load();
5635 }
5636
5637 void intel_gpu_ips_teardown(void)
5638 {
5639         spin_lock_irq(&mchdev_lock);
5640         i915_mch_dev = NULL;
5641         spin_unlock_irq(&mchdev_lock);
5642 }
5643
5644 static void intel_init_emon(struct drm_device *dev)
5645 {
5646         struct drm_i915_private *dev_priv = dev->dev_private;
5647         u32 lcfuse;
5648         u8 pxw[16];
5649         int i;
5650
5651         /* Disable to program */
5652         I915_WRITE(ECR, 0);
5653         POSTING_READ(ECR);
5654
5655         /* Program energy weights for various events */
5656         I915_WRITE(SDEW, 0x15040d00);
5657         I915_WRITE(CSIEW0, 0x007f0000);
5658         I915_WRITE(CSIEW1, 0x1e220004);
5659         I915_WRITE(CSIEW2, 0x04000004);
5660
5661         for (i = 0; i < 5; i++)
5662                 I915_WRITE(PEW + (i * 4), 0);
5663         for (i = 0; i < 3; i++)
5664                 I915_WRITE(DEW + (i * 4), 0);
5665
5666         /* Program P-state weights to account for frequency power adjustment */
5667         for (i = 0; i < 16; i++) {
5668                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5669                 unsigned long freq = intel_pxfreq(pxvidfreq);
5670                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5671                         PXVFREQ_PX_SHIFT;
5672                 unsigned long val;
5673
5674                 val = vid * vid;
5675                 val *= (freq / 1000);
5676                 val *= 255;
5677                 val /= (127*127*900);
5678                 if (val > 0xff)
5679                         DRM_ERROR("bad pxval: %ld\n", val);
5680                 pxw[i] = val;
5681         }
5682         /* Render standby states get 0 weight */
5683         pxw[14] = 0;
5684         pxw[15] = 0;
5685
5686         for (i = 0; i < 4; i++) {
5687                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5688                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5689                 I915_WRITE(PXW + (i * 4), val);
5690         }
5691
5692         /* Adjust magic regs to magic values (more experimental results) */
5693         I915_WRITE(OGW0, 0);
5694         I915_WRITE(OGW1, 0);
5695         I915_WRITE(EG0, 0x00007f00);
5696         I915_WRITE(EG1, 0x0000000e);
5697         I915_WRITE(EG2, 0x000e0000);
5698         I915_WRITE(EG3, 0x68000300);
5699         I915_WRITE(EG4, 0x42000000);
5700         I915_WRITE(EG5, 0x00140031);
5701         I915_WRITE(EG6, 0);
5702         I915_WRITE(EG7, 0);
5703
5704         for (i = 0; i < 8; i++)
5705                 I915_WRITE(PXWL + (i * 4), 0);
5706
5707         /* Enable PMON + select events */
5708         I915_WRITE(ECR, 0x80000019);
5709
5710         lcfuse = I915_READ(LCFUSE02);
5711
5712         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5713 }
5714
5715 void intel_init_gt_powersave(struct drm_device *dev)
5716 {
5717         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5718
5719         if (IS_CHERRYVIEW(dev))
5720                 cherryview_init_gt_powersave(dev);
5721         else if (IS_VALLEYVIEW(dev))
5722                 valleyview_init_gt_powersave(dev);
5723 }
5724
5725 void intel_cleanup_gt_powersave(struct drm_device *dev)
5726 {
5727         if (IS_CHERRYVIEW(dev))
5728                 return;
5729         else if (IS_VALLEYVIEW(dev))
5730                 valleyview_cleanup_gt_powersave(dev);
5731 }
5732
5733 static void gen6_suspend_rps(struct drm_device *dev)
5734 {
5735         struct drm_i915_private *dev_priv = dev->dev_private;
5736
5737         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5738
5739         gen6_disable_rps_interrupts(dev);
5740 }
5741
5742 /**
5743  * intel_suspend_gt_powersave - suspend PM work and helper threads
5744  * @dev: drm device
5745  *
5746  * We don't want to disable RC6 or other features here, we just want
5747  * to make sure any work we've queued has finished and won't bother
5748  * us while we're suspended.
5749  */
5750 void intel_suspend_gt_powersave(struct drm_device *dev)
5751 {
5752         struct drm_i915_private *dev_priv = dev->dev_private;
5753
5754         if (INTEL_INFO(dev)->gen < 6)
5755                 return;
5756
5757         gen6_suspend_rps(dev);
5758
5759         /* Force GPU to min freq during suspend */
5760         gen6_rps_idle(dev_priv);
5761 }
5762
5763 void intel_disable_gt_powersave(struct drm_device *dev)
5764 {
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766
5767         if (IS_IRONLAKE_M(dev)) {
5768                 ironlake_disable_drps(dev);
5769         } else if (INTEL_INFO(dev)->gen >= 6) {
5770                 intel_suspend_gt_powersave(dev);
5771
5772                 mutex_lock(&dev_priv->rps.hw_lock);
5773                 if (INTEL_INFO(dev)->gen >= 9)
5774                         gen9_disable_rps(dev);
5775                 else if (IS_CHERRYVIEW(dev))
5776                         cherryview_disable_rps(dev);
5777                 else if (IS_VALLEYVIEW(dev))
5778                         valleyview_disable_rps(dev);
5779                 else
5780                         gen6_disable_rps(dev);
5781
5782                 dev_priv->rps.enabled = false;
5783                 mutex_unlock(&dev_priv->rps.hw_lock);
5784         }
5785 }
5786
5787 static void intel_gen6_powersave_work(struct work_struct *work)
5788 {
5789         struct drm_i915_private *dev_priv =
5790                 container_of(work, struct drm_i915_private,
5791                              rps.delayed_resume_work.work);
5792         struct drm_device *dev = dev_priv->dev;
5793
5794         mutex_lock(&dev_priv->rps.hw_lock);
5795
5796         gen6_reset_rps_interrupts(dev);
5797
5798         if (IS_CHERRYVIEW(dev)) {
5799                 cherryview_enable_rps(dev);
5800         } else if (IS_VALLEYVIEW(dev)) {
5801                 valleyview_enable_rps(dev);
5802         } else if (INTEL_INFO(dev)->gen >= 9) {
5803                 gen9_enable_rc6(dev);
5804                 gen9_enable_rps(dev);
5805                 __gen6_update_ring_freq(dev);
5806         } else if (IS_BROADWELL(dev)) {
5807                 gen8_enable_rps(dev);
5808                 __gen6_update_ring_freq(dev);
5809         } else {
5810                 gen6_enable_rps(dev);
5811                 __gen6_update_ring_freq(dev);
5812         }
5813
5814         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5815         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5816
5817         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5818         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5819
5820         dev_priv->rps.enabled = true;
5821
5822         gen6_enable_rps_interrupts(dev);
5823
5824         mutex_unlock(&dev_priv->rps.hw_lock);
5825
5826         intel_runtime_pm_put(dev_priv);
5827 }
5828
5829 void intel_enable_gt_powersave(struct drm_device *dev)
5830 {
5831         struct drm_i915_private *dev_priv = dev->dev_private;
5832
5833         /* Powersaving is controlled by the host when inside a VM */
5834         if (intel_vgpu_active(dev))
5835                 return;
5836
5837         if (IS_IRONLAKE_M(dev)) {
5838                 mutex_lock(&dev->struct_mutex);
5839                 ironlake_enable_drps(dev);
5840                 intel_init_emon(dev);
5841                 mutex_unlock(&dev->struct_mutex);
5842         } else if (INTEL_INFO(dev)->gen >= 6) {
5843                 /*
5844                  * PCU communication is slow and this doesn't need to be
5845                  * done at any specific time, so do this out of our fast path
5846                  * to make resume and init faster.
5847                  *
5848                  * We depend on the HW RC6 power context save/restore
5849                  * mechanism when entering D3 through runtime PM suspend. So
5850                  * disable RPM until RPS/RC6 is properly setup. We can only
5851                  * get here via the driver load/system resume/runtime resume
5852                  * paths, so the _noresume version is enough (and in case of
5853                  * runtime resume it's necessary).
5854                  */
5855                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5856                                            round_jiffies_up_relative(HZ)))
5857                         intel_runtime_pm_get_noresume(dev_priv);
5858         }
5859 }
5860
5861 void intel_reset_gt_powersave(struct drm_device *dev)
5862 {
5863         struct drm_i915_private *dev_priv = dev->dev_private;
5864
5865         if (INTEL_INFO(dev)->gen < 6)
5866                 return;
5867
5868         gen6_suspend_rps(dev);
5869         dev_priv->rps.enabled = false;
5870 }
5871
5872 static void ibx_init_clock_gating(struct drm_device *dev)
5873 {
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875
5876         /*
5877          * On Ibex Peak and Cougar Point, we need to disable clock
5878          * gating for the panel power sequencer or it will fail to
5879          * start up when no ports are active.
5880          */
5881         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5882 }
5883
5884 static void g4x_disable_trickle_feed(struct drm_device *dev)
5885 {
5886         struct drm_i915_private *dev_priv = dev->dev_private;
5887         enum pipe pipe;
5888
5889         for_each_pipe(dev_priv, pipe) {
5890                 I915_WRITE(DSPCNTR(pipe),
5891                            I915_READ(DSPCNTR(pipe)) |
5892                            DISPPLANE_TRICKLE_FEED_DISABLE);
5893
5894                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
5895                 POSTING_READ(DSPSURF(pipe));
5896         }
5897 }
5898
5899 static void ilk_init_lp_watermarks(struct drm_device *dev)
5900 {
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902
5903         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5904         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5905         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5906
5907         /*
5908          * Don't touch WM1S_LP_EN here.
5909          * Doing so could cause underruns.
5910          */
5911 }
5912
5913 static void ironlake_init_clock_gating(struct drm_device *dev)
5914 {
5915         struct drm_i915_private *dev_priv = dev->dev_private;
5916         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5917
5918         /*
5919          * Required for FBC
5920          * WaFbcDisableDpfcClockGating:ilk
5921          */
5922         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5923                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5924                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5925
5926         I915_WRITE(PCH_3DCGDIS0,
5927                    MARIUNIT_CLOCK_GATE_DISABLE |
5928                    SVSMUNIT_CLOCK_GATE_DISABLE);
5929         I915_WRITE(PCH_3DCGDIS1,
5930                    VFMUNIT_CLOCK_GATE_DISABLE);
5931
5932         /*
5933          * According to the spec the following bits should be set in
5934          * order to enable memory self-refresh
5935          * The bit 22/21 of 0x42004
5936          * The bit 5 of 0x42020
5937          * The bit 15 of 0x45000
5938          */
5939         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5940                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5941                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5942         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5943         I915_WRITE(DISP_ARB_CTL,
5944                    (I915_READ(DISP_ARB_CTL) |
5945                     DISP_FBC_WM_DIS));
5946
5947         ilk_init_lp_watermarks(dev);
5948
5949         /*
5950          * Based on the document from hardware guys the following bits
5951          * should be set unconditionally in order to enable FBC.
5952          * The bit 22 of 0x42000
5953          * The bit 22 of 0x42004
5954          * The bit 7,8,9 of 0x42020.
5955          */
5956         if (IS_IRONLAKE_M(dev)) {
5957                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5958                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5959                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5960                            ILK_FBCQ_DIS);
5961                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5962                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5963                            ILK_DPARB_GATE);
5964         }
5965
5966         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5967
5968         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5969                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5970                    ILK_ELPIN_409_SELECT);
5971         I915_WRITE(_3D_CHICKEN2,
5972                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5973                    _3D_CHICKEN2_WM_READ_PIPELINED);
5974
5975         /* WaDisableRenderCachePipelinedFlush:ilk */
5976         I915_WRITE(CACHE_MODE_0,
5977                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5978
5979         /* WaDisable_RenderCache_OperationalFlush:ilk */
5980         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5981
5982         g4x_disable_trickle_feed(dev);
5983
5984         ibx_init_clock_gating(dev);
5985 }
5986
5987 static void cpt_init_clock_gating(struct drm_device *dev)
5988 {
5989         struct drm_i915_private *dev_priv = dev->dev_private;
5990         int pipe;
5991         uint32_t val;
5992
5993         /*
5994          * On Ibex Peak and Cougar Point, we need to disable clock
5995          * gating for the panel power sequencer or it will fail to
5996          * start up when no ports are active.
5997          */
5998         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5999                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6000                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6001         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6002                    DPLS_EDP_PPS_FIX_DIS);
6003         /* The below fixes the weird display corruption, a few pixels shifted
6004          * downward, on (only) LVDS of some HP laptops with IVY.
6005          */
6006         for_each_pipe(dev_priv, pipe) {
6007                 val = I915_READ(TRANS_CHICKEN2(pipe));
6008                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6009                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6010                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6011                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6012                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6013                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6014                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6015                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6016         }
6017         /* WADP0ClockGatingDisable */
6018         for_each_pipe(dev_priv, pipe) {
6019                 I915_WRITE(TRANS_CHICKEN1(pipe),
6020                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6021         }
6022 }
6023
6024 static void gen6_check_mch_setup(struct drm_device *dev)
6025 {
6026         struct drm_i915_private *dev_priv = dev->dev_private;
6027         uint32_t tmp;
6028
6029         tmp = I915_READ(MCH_SSKPD);
6030         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6031                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6032                               tmp);
6033 }
6034
6035 static void gen6_init_clock_gating(struct drm_device *dev)
6036 {
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6039
6040         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6041
6042         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6043                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6044                    ILK_ELPIN_409_SELECT);
6045
6046         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6047         I915_WRITE(_3D_CHICKEN,
6048                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6049
6050         /* WaDisable_RenderCache_OperationalFlush:snb */
6051         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6052
6053         /*
6054          * BSpec recoomends 8x4 when MSAA is used,
6055          * however in practice 16x4 seems fastest.
6056          *
6057          * Note that PS/WM thread counts depend on the WIZ hashing
6058          * disable bit, which we don't touch here, but it's good
6059          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6060          */
6061         I915_WRITE(GEN6_GT_MODE,
6062                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6063
6064         ilk_init_lp_watermarks(dev);
6065
6066         I915_WRITE(CACHE_MODE_0,
6067                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6068
6069         I915_WRITE(GEN6_UCGCTL1,
6070                    I915_READ(GEN6_UCGCTL1) |
6071                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6072                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6073
6074         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6075          * gating disable must be set.  Failure to set it results in
6076          * flickering pixels due to Z write ordering failures after
6077          * some amount of runtime in the Mesa "fire" demo, and Unigine
6078          * Sanctuary and Tropics, and apparently anything else with
6079          * alpha test or pixel discard.
6080          *
6081          * According to the spec, bit 11 (RCCUNIT) must also be set,
6082          * but we didn't debug actual testcases to find it out.
6083          *
6084          * WaDisableRCCUnitClockGating:snb
6085          * WaDisableRCPBUnitClockGating:snb
6086          */
6087         I915_WRITE(GEN6_UCGCTL2,
6088                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6089                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6090
6091         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6092         I915_WRITE(_3D_CHICKEN3,
6093                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6094
6095         /*
6096          * Bspec says:
6097          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6098          * 3DSTATE_SF number of SF output attributes is more than 16."
6099          */
6100         I915_WRITE(_3D_CHICKEN3,
6101                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6102
6103         /*
6104          * According to the spec the following bits should be
6105          * set in order to enable memory self-refresh and fbc:
6106          * The bit21 and bit22 of 0x42000
6107          * The bit21 and bit22 of 0x42004
6108          * The bit5 and bit7 of 0x42020
6109          * The bit14 of 0x70180
6110          * The bit14 of 0x71180
6111          *
6112          * WaFbcAsynchFlipDisableFbcQueue:snb
6113          */
6114         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6115                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6116                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6117         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6118                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6119                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6120         I915_WRITE(ILK_DSPCLK_GATE_D,
6121                    I915_READ(ILK_DSPCLK_GATE_D) |
6122                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6123                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6124
6125         g4x_disable_trickle_feed(dev);
6126
6127         cpt_init_clock_gating(dev);
6128
6129         gen6_check_mch_setup(dev);
6130 }
6131
6132 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6133 {
6134         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6135
6136         /*
6137          * WaVSThreadDispatchOverride:ivb,vlv
6138          *
6139          * This actually overrides the dispatch
6140          * mode for all thread types.
6141          */
6142         reg &= ~GEN7_FF_SCHED_MASK;
6143         reg |= GEN7_FF_TS_SCHED_HW;
6144         reg |= GEN7_FF_VS_SCHED_HW;
6145         reg |= GEN7_FF_DS_SCHED_HW;
6146
6147         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6148 }
6149
6150 static void lpt_init_clock_gating(struct drm_device *dev)
6151 {
6152         struct drm_i915_private *dev_priv = dev->dev_private;
6153
6154         /*
6155          * TODO: this bit should only be enabled when really needed, then
6156          * disabled when not needed anymore in order to save power.
6157          */
6158         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6159                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6160                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6161                            PCH_LP_PARTITION_LEVEL_DISABLE);
6162
6163         /* WADPOClockGatingDisable:hsw */
6164         I915_WRITE(_TRANSA_CHICKEN1,
6165                    I915_READ(_TRANSA_CHICKEN1) |
6166                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6167 }
6168
6169 static void lpt_suspend_hw(struct drm_device *dev)
6170 {
6171         struct drm_i915_private *dev_priv = dev->dev_private;
6172
6173         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6174                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6175
6176                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6177                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6178         }
6179 }
6180
6181 static void broadwell_init_clock_gating(struct drm_device *dev)
6182 {
6183         struct drm_i915_private *dev_priv = dev->dev_private;
6184         enum pipe pipe;
6185         uint32_t misccpctl;
6186
6187         ilk_init_lp_watermarks(dev);
6188
6189         /* WaSwitchSolVfFArbitrationPriority:bdw */
6190         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6191
6192         /* WaPsrDPAMaskVBlankInSRD:bdw */
6193         I915_WRITE(CHICKEN_PAR1_1,
6194                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6195
6196         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6197         for_each_pipe(dev_priv, pipe) {
6198                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6199                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6200                            BDW_DPRS_MASK_VBLANK_SRD);
6201         }
6202
6203         /* WaVSRefCountFullforceMissDisable:bdw */
6204         /* WaDSRefCountFullforceMissDisable:bdw */
6205         I915_WRITE(GEN7_FF_THREAD_MODE,
6206                    I915_READ(GEN7_FF_THREAD_MODE) &
6207                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6208
6209         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6210                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6211
6212         /* WaDisableSDEUnitClockGating:bdw */
6213         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6214                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6215
6216         /*
6217          * WaProgramL3SqcReg1Default:bdw
6218          * WaTempDisableDOPClkGating:bdw
6219          */
6220         misccpctl = I915_READ(GEN7_MISCCPCTL);
6221         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6222         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6223         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6224
6225         /*
6226          * WaGttCachingOffByDefault:bdw
6227          * GTT cache may not work with big pages, so if those
6228          * are ever enabled GTT cache may need to be disabled.
6229          */
6230         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6231
6232         lpt_init_clock_gating(dev);
6233 }
6234
6235 static void haswell_init_clock_gating(struct drm_device *dev)
6236 {
6237         struct drm_i915_private *dev_priv = dev->dev_private;
6238
6239         ilk_init_lp_watermarks(dev);
6240
6241         /* L3 caching of data atomics doesn't work -- disable it. */
6242         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6243         I915_WRITE(HSW_ROW_CHICKEN3,
6244                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6245
6246         /* This is required by WaCatErrorRejectionIssue:hsw */
6247         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6248                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6249                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6250
6251         /* WaVSRefCountFullforceMissDisable:hsw */
6252         I915_WRITE(GEN7_FF_THREAD_MODE,
6253                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6254
6255         /* WaDisable_RenderCache_OperationalFlush:hsw */
6256         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6257
6258         /* enable HiZ Raw Stall Optimization */
6259         I915_WRITE(CACHE_MODE_0_GEN7,
6260                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6261
6262         /* WaDisable4x2SubspanOptimization:hsw */
6263         I915_WRITE(CACHE_MODE_1,
6264                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6265
6266         /*
6267          * BSpec recommends 8x4 when MSAA is used,
6268          * however in practice 16x4 seems fastest.
6269          *
6270          * Note that PS/WM thread counts depend on the WIZ hashing
6271          * disable bit, which we don't touch here, but it's good
6272          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6273          */
6274         I915_WRITE(GEN7_GT_MODE,
6275                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6276
6277         /* WaSampleCChickenBitEnable:hsw */
6278         I915_WRITE(HALF_SLICE_CHICKEN3,
6279                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6280
6281         /* WaSwitchSolVfFArbitrationPriority:hsw */
6282         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6283
6284         /* WaRsPkgCStateDisplayPMReq:hsw */
6285         I915_WRITE(CHICKEN_PAR1_1,
6286                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6287
6288         lpt_init_clock_gating(dev);
6289 }
6290
6291 static void ivybridge_init_clock_gating(struct drm_device *dev)
6292 {
6293         struct drm_i915_private *dev_priv = dev->dev_private;
6294         uint32_t snpcr;
6295
6296         ilk_init_lp_watermarks(dev);
6297
6298         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6299
6300         /* WaDisableEarlyCull:ivb */
6301         I915_WRITE(_3D_CHICKEN3,
6302                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6303
6304         /* WaDisableBackToBackFlipFix:ivb */
6305         I915_WRITE(IVB_CHICKEN3,
6306                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6307                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6308
6309         /* WaDisablePSDDualDispatchEnable:ivb */
6310         if (IS_IVB_GT1(dev))
6311                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6312                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6313
6314         /* WaDisable_RenderCache_OperationalFlush:ivb */
6315         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6316
6317         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6318         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6319                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6320
6321         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6322         I915_WRITE(GEN7_L3CNTLREG1,
6323                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6324         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6325                    GEN7_WA_L3_CHICKEN_MODE);
6326         if (IS_IVB_GT1(dev))
6327                 I915_WRITE(GEN7_ROW_CHICKEN2,
6328                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6329         else {
6330                 /* must write both registers */
6331                 I915_WRITE(GEN7_ROW_CHICKEN2,
6332                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6333                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6334                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6335         }
6336
6337         /* WaForceL3Serialization:ivb */
6338         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6339                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6340
6341         /*
6342          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6343          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6344          */
6345         I915_WRITE(GEN6_UCGCTL2,
6346                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6347
6348         /* This is required by WaCatErrorRejectionIssue:ivb */
6349         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6350                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6351                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6352
6353         g4x_disable_trickle_feed(dev);
6354
6355         gen7_setup_fixed_func_scheduler(dev_priv);
6356
6357         if (0) { /* causes HiZ corruption on ivb:gt1 */
6358                 /* enable HiZ Raw Stall Optimization */
6359                 I915_WRITE(CACHE_MODE_0_GEN7,
6360                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6361         }
6362
6363         /* WaDisable4x2SubspanOptimization:ivb */
6364         I915_WRITE(CACHE_MODE_1,
6365                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6366
6367         /*
6368          * BSpec recommends 8x4 when MSAA is used,
6369          * however in practice 16x4 seems fastest.
6370          *
6371          * Note that PS/WM thread counts depend on the WIZ hashing
6372          * disable bit, which we don't touch here, but it's good
6373          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6374          */
6375         I915_WRITE(GEN7_GT_MODE,
6376                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6377
6378         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6379         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6380         snpcr |= GEN6_MBC_SNPCR_MED;
6381         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6382
6383         if (!HAS_PCH_NOP(dev))
6384                 cpt_init_clock_gating(dev);
6385
6386         gen6_check_mch_setup(dev);
6387 }
6388
6389 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6390 {
6391         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6392
6393         /*
6394          * Disable trickle feed and enable pnd deadline calculation
6395          */
6396         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6397         I915_WRITE(CBR1_VLV, 0);
6398 }
6399
6400 static void valleyview_init_clock_gating(struct drm_device *dev)
6401 {
6402         struct drm_i915_private *dev_priv = dev->dev_private;
6403
6404         vlv_init_display_clock_gating(dev_priv);
6405
6406         /* WaDisableEarlyCull:vlv */
6407         I915_WRITE(_3D_CHICKEN3,
6408                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6409
6410         /* WaDisableBackToBackFlipFix:vlv */
6411         I915_WRITE(IVB_CHICKEN3,
6412                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6413                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6414
6415         /* WaPsdDispatchEnable:vlv */
6416         /* WaDisablePSDDualDispatchEnable:vlv */
6417         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6418                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6419                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6420
6421         /* WaDisable_RenderCache_OperationalFlush:vlv */
6422         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6423
6424         /* WaForceL3Serialization:vlv */
6425         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6426                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6427
6428         /* WaDisableDopClockGating:vlv */
6429         I915_WRITE(GEN7_ROW_CHICKEN2,
6430                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6431
6432         /* This is required by WaCatErrorRejectionIssue:vlv */
6433         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6434                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6435                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6436
6437         gen7_setup_fixed_func_scheduler(dev_priv);
6438
6439         /*
6440          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6441          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6442          */
6443         I915_WRITE(GEN6_UCGCTL2,
6444                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6445
6446         /* WaDisableL3Bank2xClockGate:vlv
6447          * Disabling L3 clock gating- MMIO 940c[25] = 1
6448          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6449         I915_WRITE(GEN7_UCGCTL4,
6450                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6451
6452         /*
6453          * BSpec says this must be set, even though
6454          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6455          */
6456         I915_WRITE(CACHE_MODE_1,
6457                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6458
6459         /*
6460          * BSpec recommends 8x4 when MSAA is used,
6461          * however in practice 16x4 seems fastest.
6462          *
6463          * Note that PS/WM thread counts depend on the WIZ hashing
6464          * disable bit, which we don't touch here, but it's good
6465          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6466          */
6467         I915_WRITE(GEN7_GT_MODE,
6468                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6469
6470         /*
6471          * WaIncreaseL3CreditsForVLVB0:vlv
6472          * This is the hardware default actually.
6473          */
6474         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6475
6476         /*
6477          * WaDisableVLVClockGating_VBIIssue:vlv
6478          * Disable clock gating on th GCFG unit to prevent a delay
6479          * in the reporting of vblank events.
6480          */
6481         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6482 }
6483
6484 static void cherryview_init_clock_gating(struct drm_device *dev)
6485 {
6486         struct drm_i915_private *dev_priv = dev->dev_private;
6487
6488         vlv_init_display_clock_gating(dev_priv);
6489
6490         /* WaVSRefCountFullforceMissDisable:chv */
6491         /* WaDSRefCountFullforceMissDisable:chv */
6492         I915_WRITE(GEN7_FF_THREAD_MODE,
6493                    I915_READ(GEN7_FF_THREAD_MODE) &
6494                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6495
6496         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6497         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6498                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6499
6500         /* WaDisableCSUnitClockGating:chv */
6501         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6502                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6503
6504         /* WaDisableSDEUnitClockGating:chv */
6505         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6506                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6507
6508         /*
6509          * GTT cache may not work with big pages, so if those
6510          * are ever enabled GTT cache may need to be disabled.
6511          */
6512         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6513 }
6514
6515 static void g4x_init_clock_gating(struct drm_device *dev)
6516 {
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         uint32_t dspclk_gate;
6519
6520         I915_WRITE(RENCLK_GATE_D1, 0);
6521         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6522                    GS_UNIT_CLOCK_GATE_DISABLE |
6523                    CL_UNIT_CLOCK_GATE_DISABLE);
6524         I915_WRITE(RAMCLK_GATE_D, 0);
6525         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6526                 OVRUNIT_CLOCK_GATE_DISABLE |
6527                 OVCUNIT_CLOCK_GATE_DISABLE;
6528         if (IS_GM45(dev))
6529                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6530         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6531
6532         /* WaDisableRenderCachePipelinedFlush */
6533         I915_WRITE(CACHE_MODE_0,
6534                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6535
6536         /* WaDisable_RenderCache_OperationalFlush:g4x */
6537         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6538
6539         g4x_disable_trickle_feed(dev);
6540 }
6541
6542 static void crestline_init_clock_gating(struct drm_device *dev)
6543 {
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545
6546         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6547         I915_WRITE(RENCLK_GATE_D2, 0);
6548         I915_WRITE(DSPCLK_GATE_D, 0);
6549         I915_WRITE(RAMCLK_GATE_D, 0);
6550         I915_WRITE16(DEUC, 0);
6551         I915_WRITE(MI_ARB_STATE,
6552                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6553
6554         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6555         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6556 }
6557
6558 static void broadwater_init_clock_gating(struct drm_device *dev)
6559 {
6560         struct drm_i915_private *dev_priv = dev->dev_private;
6561
6562         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6563                    I965_RCC_CLOCK_GATE_DISABLE |
6564                    I965_RCPB_CLOCK_GATE_DISABLE |
6565                    I965_ISC_CLOCK_GATE_DISABLE |
6566                    I965_FBC_CLOCK_GATE_DISABLE);
6567         I915_WRITE(RENCLK_GATE_D2, 0);
6568         I915_WRITE(MI_ARB_STATE,
6569                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6570
6571         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6572         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6573 }
6574
6575 static void gen3_init_clock_gating(struct drm_device *dev)
6576 {
6577         struct drm_i915_private *dev_priv = dev->dev_private;
6578         u32 dstate = I915_READ(D_STATE);
6579
6580         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6581                 DSTATE_DOT_CLOCK_GATING;
6582         I915_WRITE(D_STATE, dstate);
6583
6584         if (IS_PINEVIEW(dev))
6585                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6586
6587         /* IIR "flip pending" means done if this bit is set */
6588         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6589
6590         /* interrupts should cause a wake up from C3 */
6591         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6592
6593         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6594         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6595
6596         I915_WRITE(MI_ARB_STATE,
6597                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6598 }
6599
6600 static void i85x_init_clock_gating(struct drm_device *dev)
6601 {
6602         struct drm_i915_private *dev_priv = dev->dev_private;
6603
6604         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6605
6606         /* interrupts should cause a wake up from C3 */
6607         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6608                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6609
6610         I915_WRITE(MEM_MODE,
6611                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6612 }
6613
6614 static void i830_init_clock_gating(struct drm_device *dev)
6615 {
6616         struct drm_i915_private *dev_priv = dev->dev_private;
6617
6618         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6619
6620         I915_WRITE(MEM_MODE,
6621                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6622                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6623 }
6624
6625 void intel_init_clock_gating(struct drm_device *dev)
6626 {
6627         struct drm_i915_private *dev_priv = dev->dev_private;
6628
6629         if (dev_priv->display.init_clock_gating)
6630                 dev_priv->display.init_clock_gating(dev);
6631 }
6632
6633 void intel_suspend_hw(struct drm_device *dev)
6634 {
6635         if (HAS_PCH_LPT(dev))
6636                 lpt_suspend_hw(dev);
6637 }
6638
6639 /* Set up chip specific power management-related functions */
6640 void intel_init_pm(struct drm_device *dev)
6641 {
6642         struct drm_i915_private *dev_priv = dev->dev_private;
6643
6644         intel_fbc_init(dev_priv);
6645
6646         /* For cxsr */
6647         if (IS_PINEVIEW(dev))
6648                 i915_pineview_get_mem_freq(dev);
6649         else if (IS_GEN5(dev))
6650                 i915_ironlake_get_mem_freq(dev);
6651
6652         /* For FIFO watermark updates */
6653         if (INTEL_INFO(dev)->gen >= 9) {
6654                 skl_setup_wm_latency(dev);
6655
6656                 if (IS_BROXTON(dev))
6657                         dev_priv->display.init_clock_gating =
6658                                 bxt_init_clock_gating;
6659                 else if (IS_SKYLAKE(dev))
6660                         dev_priv->display.init_clock_gating =
6661                                 skl_init_clock_gating;
6662                 dev_priv->display.update_wm = skl_update_wm;
6663                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6664         } else if (HAS_PCH_SPLIT(dev)) {
6665                 ilk_setup_wm_latency(dev);
6666
6667                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6668                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6669                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6670                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6671                         dev_priv->display.update_wm = ilk_update_wm;
6672                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6673                 } else {
6674                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6675                                       "Disable CxSR\n");
6676                 }
6677
6678                 if (IS_GEN5(dev))
6679                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6680                 else if (IS_GEN6(dev))
6681                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6682                 else if (IS_IVYBRIDGE(dev))
6683                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6684                 else if (IS_HASWELL(dev))
6685                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6686                 else if (INTEL_INFO(dev)->gen == 8)
6687                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6688         } else if (IS_CHERRYVIEW(dev)) {
6689                 dev_priv->display.update_wm = valleyview_update_wm;
6690                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6691                 dev_priv->display.init_clock_gating =
6692                         cherryview_init_clock_gating;
6693         } else if (IS_VALLEYVIEW(dev)) {
6694                 dev_priv->display.update_wm = valleyview_update_wm;
6695                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6696                 dev_priv->display.init_clock_gating =
6697                         valleyview_init_clock_gating;
6698         } else if (IS_PINEVIEW(dev)) {
6699                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6700                                             dev_priv->is_ddr3,
6701                                             dev_priv->fsb_freq,
6702                                             dev_priv->mem_freq)) {
6703                         DRM_INFO("failed to find known CxSR latency "
6704                                  "(found ddr%s fsb freq %d, mem freq %d), "
6705                                  "disabling CxSR\n",
6706                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6707                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6708                         /* Disable CxSR and never update its watermark again */
6709                         intel_set_memory_cxsr(dev_priv, false);
6710                         dev_priv->display.update_wm = NULL;
6711                 } else
6712                         dev_priv->display.update_wm = pineview_update_wm;
6713                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6714         } else if (IS_G4X(dev)) {
6715                 dev_priv->display.update_wm = g4x_update_wm;
6716                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6717         } else if (IS_GEN4(dev)) {
6718                 dev_priv->display.update_wm = i965_update_wm;
6719                 if (IS_CRESTLINE(dev))
6720                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6721                 else if (IS_BROADWATER(dev))
6722                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6723         } else if (IS_GEN3(dev)) {
6724                 dev_priv->display.update_wm = i9xx_update_wm;
6725                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6726                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6727         } else if (IS_GEN2(dev)) {
6728                 if (INTEL_INFO(dev)->num_pipes == 1) {
6729                         dev_priv->display.update_wm = i845_update_wm;
6730                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6731                 } else {
6732                         dev_priv->display.update_wm = i9xx_update_wm;
6733                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6734                 }
6735
6736                 if (IS_I85X(dev) || IS_I865G(dev))
6737                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6738                 else
6739                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6740         } else {
6741                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6742         }
6743 }
6744
6745 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6746 {
6747         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6748
6749         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6750                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6751                 return -EAGAIN;
6752         }
6753
6754         I915_WRITE(GEN6_PCODE_DATA, *val);
6755         I915_WRITE(GEN6_PCODE_DATA1, 0);
6756         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6757
6758         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6759                      500)) {
6760                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6761                 return -ETIMEDOUT;
6762         }
6763
6764         *val = I915_READ(GEN6_PCODE_DATA);
6765         I915_WRITE(GEN6_PCODE_DATA, 0);
6766
6767         return 0;
6768 }
6769
6770 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6771 {
6772         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6773
6774         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6775                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6776                 return -EAGAIN;
6777         }
6778
6779         I915_WRITE(GEN6_PCODE_DATA, val);
6780         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6781
6782         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6783                      500)) {
6784                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6785                 return -ETIMEDOUT;
6786         }
6787
6788         I915_WRITE(GEN6_PCODE_DATA, 0);
6789
6790         return 0;
6791 }
6792
6793 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6794 {
6795         switch (czclk_freq) {
6796         case 200:
6797                 return 10;
6798         case 267:
6799                 return 12;
6800         case 320:
6801         case 333:
6802                 return 16;
6803         case 400:
6804                 return 20;
6805         default:
6806                 return -1;
6807         }
6808 }
6809
6810 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6811 {
6812         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6813
6814         div = vlv_gpu_freq_div(czclk_freq);
6815         if (div < 0)
6816                 return div;
6817
6818         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6819 }
6820
6821 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6822 {
6823         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6824
6825         mul = vlv_gpu_freq_div(czclk_freq);
6826         if (mul < 0)
6827                 return mul;
6828
6829         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6830 }
6831
6832 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6833 {
6834         int div, czclk_freq = dev_priv->rps.cz_freq;
6835
6836         div = vlv_gpu_freq_div(czclk_freq) / 2;
6837         if (div < 0)
6838                 return div;
6839
6840         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6841 }
6842
6843 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6844 {
6845         int mul, czclk_freq = dev_priv->rps.cz_freq;
6846
6847         mul = vlv_gpu_freq_div(czclk_freq) / 2;
6848         if (mul < 0)
6849                 return mul;
6850
6851         /* CHV needs even values */
6852         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6853 }
6854
6855 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6856 {
6857         if (IS_GEN9(dev_priv->dev))
6858                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6859         else if (IS_CHERRYVIEW(dev_priv->dev))
6860                 return chv_gpu_freq(dev_priv, val);
6861         else if (IS_VALLEYVIEW(dev_priv->dev))
6862                 return byt_gpu_freq(dev_priv, val);
6863         else
6864                 return val * GT_FREQUENCY_MULTIPLIER;
6865 }
6866
6867 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6868 {
6869         if (IS_GEN9(dev_priv->dev))
6870                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6871         else if (IS_CHERRYVIEW(dev_priv->dev))
6872                 return chv_freq_opcode(dev_priv, val);
6873         else if (IS_VALLEYVIEW(dev_priv->dev))
6874                 return byt_freq_opcode(dev_priv, val);
6875         else
6876                 return val / GT_FREQUENCY_MULTIPLIER;
6877 }
6878
6879 struct request_boost {
6880         struct work_struct work;
6881         struct drm_i915_gem_request *req;
6882 };
6883
6884 static void __intel_rps_boost_work(struct work_struct *work)
6885 {
6886         struct request_boost *boost = container_of(work, struct request_boost, work);
6887         struct drm_i915_gem_request *req = boost->req;
6888
6889         if (!i915_gem_request_completed(req, true))
6890                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
6891                                req->emitted_jiffies);
6892
6893         i915_gem_request_unreference__unlocked(req);
6894         kfree(boost);
6895 }
6896
6897 void intel_queue_rps_boost_for_request(struct drm_device *dev,
6898                                        struct drm_i915_gem_request *req)
6899 {
6900         struct request_boost *boost;
6901
6902         if (req == NULL || INTEL_INFO(dev)->gen < 6)
6903                 return;
6904
6905         if (i915_gem_request_completed(req, true))
6906                 return;
6907
6908         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
6909         if (boost == NULL)
6910                 return;
6911
6912         i915_gem_request_reference(req);
6913         boost->req = req;
6914
6915         INIT_WORK(&boost->work, __intel_rps_boost_work);
6916         queue_work(to_i915(dev)->wq, &boost->work);
6917 }
6918
6919 void intel_pm_setup(struct drm_device *dev)
6920 {
6921         struct drm_i915_private *dev_priv = dev->dev_private;
6922
6923         mutex_init(&dev_priv->rps.hw_lock);
6924         spin_lock_init(&dev_priv->rps.client_lock);
6925
6926         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6927                           intel_gen6_powersave_work);
6928         INIT_LIST_HEAD(&dev_priv->rps.clients);
6929         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
6930         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
6931
6932         dev_priv->pm.suspended = false;
6933 }