]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Move the global sync optimisation to the timeline
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52         if (ring->last_retired_head != -1) {
53                 ring->head = ring->last_retired_head;
54                 ring->last_retired_head = -1;
55         }
56
57         ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58                                          ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64         struct intel_ring *ring = req->ring;
65         u32 cmd;
66         int ret;
67
68         cmd = MI_FLUSH;
69
70         if (mode & EMIT_INVALIDATE)
71                 cmd |= MI_READ_FLUSH;
72
73         ret = intel_ring_begin(req, 2);
74         if (ret)
75                 return ret;
76
77         intel_ring_emit(ring, cmd);
78         intel_ring_emit(ring, MI_NOOP);
79         intel_ring_advance(ring);
80
81         return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87         struct intel_ring *ring = req->ring;
88         u32 cmd;
89         int ret;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         ret = intel_ring_begin(req, 2);
127         if (ret)
128                 return ret;
129
130         intel_ring_emit(ring, cmd);
131         intel_ring_emit(ring, MI_NOOP);
132         intel_ring_advance(ring);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         struct intel_ring *ring = req->ring;
178         u32 scratch_addr =
179                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180         int ret;
181
182         ret = intel_ring_begin(req, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(req, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213         struct intel_ring *ring = req->ring;
214         u32 scratch_addr =
215                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216         u32 flags = 0;
217         int ret;
218
219         /* Force SNB workarounds for PIPE_CONTROL flushes */
220         ret = intel_emit_post_sync_nonzero_flush(req);
221         if (ret)
222                 return ret;
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         if (mode & EMIT_FLUSH) {
229                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231                 /*
232                  * Ensure that any following seqno writes only happen
233                  * when the render cache is indeed flushed.
234                  */
235                 flags |= PIPE_CONTROL_CS_STALL;
236         }
237         if (mode & EMIT_INVALIDATE) {
238                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244                 /*
245                  * TLB invalidate requires a post-sync write.
246                  */
247                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248         }
249
250         ret = intel_ring_begin(req, 4);
251         if (ret)
252                 return ret;
253
254         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255         intel_ring_emit(ring, flags);
256         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257         intel_ring_emit(ring, 0);
258         intel_ring_advance(ring);
259
260         return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266         struct intel_ring *ring = req->ring;
267         int ret;
268
269         ret = intel_ring_begin(req, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring,
275                         PIPE_CONTROL_CS_STALL |
276                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
277         intel_ring_emit(ring, 0);
278         intel_ring_emit(ring, 0);
279         intel_ring_advance(ring);
280
281         return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287         struct intel_ring *ring = req->ring;
288         u32 scratch_addr =
289                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290         u32 flags = 0;
291         int ret;
292
293         /*
294          * Ensure that any following seqno writes only happen when the render
295          * cache is indeed flushed.
296          *
297          * Workaround: 4th PIPE_CONTROL command (except the ones with only
298          * read-cache invalidate bits set) must have the CS_STALL bit set. We
299          * don't try to be clever and just set it unconditionally.
300          */
301         flags |= PIPE_CONTROL_CS_STALL;
302
303         /* Just flush everything.  Experiments have shown that reducing the
304          * number of bits based on the write domains has little performance
305          * impact.
306          */
307         if (mode & EMIT_FLUSH) {
308                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312         }
313         if (mode & EMIT_INVALIDATE) {
314                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321                 /*
322                  * TLB invalidate requires a post-sync write.
323                  */
324                 flags |= PIPE_CONTROL_QW_WRITE;
325                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329                 /* Workaround: we must issue a pipe_control with CS-stall bit
330                  * set before a pipe_control command that has the state cache
331                  * invalidate bit set. */
332                 gen7_render_ring_cs_stall_wa(req);
333         }
334
335         ret = intel_ring_begin(req, 4);
336         if (ret)
337                 return ret;
338
339         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340         intel_ring_emit(ring, flags);
341         intel_ring_emit(ring, scratch_addr);
342         intel_ring_emit(ring, 0);
343         intel_ring_advance(ring);
344
345         return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350                        u32 flags, u32 scratch_addr)
351 {
352         struct intel_ring *ring = req->ring;
353         int ret;
354
355         ret = intel_ring_begin(req, 6);
356         if (ret)
357                 return ret;
358
359         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360         intel_ring_emit(ring, flags);
361         intel_ring_emit(ring, scratch_addr);
362         intel_ring_emit(ring, 0);
363         intel_ring_emit(ring, 0);
364         intel_ring_emit(ring, 0);
365         intel_ring_advance(ring);
366
367         return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373         u32 scratch_addr =
374                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375         u32 flags = 0;
376         int ret;
377
378         flags |= PIPE_CONTROL_CS_STALL;
379
380         if (mode & EMIT_FLUSH) {
381                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385         }
386         if (mode & EMIT_INVALIDATE) {
387                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_QW_WRITE;
394                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397                 ret = gen8_emit_pipe_control(req,
398                                              PIPE_CONTROL_CS_STALL |
399                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
400                                              0);
401                 if (ret)
402                         return ret;
403         }
404
405         return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410         struct drm_i915_private *dev_priv = engine->i915;
411         u32 addr;
412
413         addr = dev_priv->status_page_dmah->busaddr;
414         if (INTEL_GEN(dev_priv) >= 4)
415                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416         I915_WRITE(HWS_PGA, addr);
417 }
418
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421         struct drm_i915_private *dev_priv = engine->i915;
422         i915_reg_t mmio;
423
424         /* The ring status page addresses are no longer next to the rest of
425          * the ring registers as of gen7.
426          */
427         if (IS_GEN7(dev_priv)) {
428                 switch (engine->id) {
429                 case RCS:
430                         mmio = RENDER_HWS_PGA_GEN7;
431                         break;
432                 case BCS:
433                         mmio = BLT_HWS_PGA_GEN7;
434                         break;
435                 /*
436                  * VCS2 actually doesn't exist on Gen7. Only shut up
437                  * gcc switch check warning
438                  */
439                 case VCS2:
440                 case VCS:
441                         mmio = BSD_HWS_PGA_GEN7;
442                         break;
443                 case VECS:
444                         mmio = VEBOX_HWS_PGA_GEN7;
445                         break;
446                 }
447         } else if (IS_GEN6(dev_priv)) {
448                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449         } else {
450                 /* XXX: gen8 returns to sanity */
451                 mmio = RING_HWS_PGA(engine->mmio_base);
452         }
453
454         I915_WRITE(mmio, engine->status_page.ggtt_offset);
455         POSTING_READ(mmio);
456
457         /*
458          * Flush the TLB for this page
459          *
460          * FIXME: These two bits have disappeared on gen8, so a question
461          * arises: do we still need this and if so how should we go about
462          * invalidating the TLB?
463          */
464         if (IS_GEN(dev_priv, 6, 7)) {
465                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466
467                 /* ring should be idle before issuing a sync flush*/
468                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469
470                 I915_WRITE(reg,
471                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472                                               INSTPM_SYNC_FLUSH));
473                 if (intel_wait_for_register(dev_priv,
474                                             reg, INSTPM_SYNC_FLUSH, 0,
475                                             1000))
476                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477                                   engine->name);
478         }
479 }
480
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483         struct drm_i915_private *dev_priv = engine->i915;
484
485         if (INTEL_GEN(dev_priv) > 2) {
486                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487                 if (intel_wait_for_register(dev_priv,
488                                             RING_MI_MODE(engine->mmio_base),
489                                             MODE_IDLE,
490                                             MODE_IDLE,
491                                             1000)) {
492                         DRM_ERROR("%s : timed out trying to stop ring\n",
493                                   engine->name);
494                         /* Sometimes we observe that the idle flag is not
495                          * set even though the ring is empty. So double
496                          * check before giving up.
497                          */
498                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499                                 return false;
500                 }
501         }
502
503         I915_WRITE_CTL(engine, 0);
504         I915_WRITE_HEAD(engine, 0);
505         I915_WRITE_TAIL(engine, 0);
506
507         if (INTEL_GEN(dev_priv) > 2) {
508                 (void)I915_READ_CTL(engine);
509                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510         }
511
512         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517         struct drm_i915_private *dev_priv = engine->i915;
518         struct intel_ring *ring = engine->buffer;
519         int ret = 0;
520
521         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522
523         if (!stop_ring(engine)) {
524                 /* G45 ring initialization often fails to reset head to zero */
525                 DRM_DEBUG_KMS("%s head not reset to zero "
526                               "ctl %08x head %08x tail %08x start %08x\n",
527                               engine->name,
528                               I915_READ_CTL(engine),
529                               I915_READ_HEAD(engine),
530                               I915_READ_TAIL(engine),
531                               I915_READ_START(engine));
532
533                 if (!stop_ring(engine)) {
534                         DRM_ERROR("failed to set %s head to zero "
535                                   "ctl %08x head %08x tail %08x start %08x\n",
536                                   engine->name,
537                                   I915_READ_CTL(engine),
538                                   I915_READ_HEAD(engine),
539                                   I915_READ_TAIL(engine),
540                                   I915_READ_START(engine));
541                         ret = -EIO;
542                         goto out;
543                 }
544         }
545
546         if (HWS_NEEDS_PHYSICAL(dev_priv))
547                 ring_setup_phys_status_page(engine);
548         else
549                 intel_ring_setup_status_page(engine);
550
551         intel_engine_reset_breadcrumbs(engine);
552
553         /* Enforce ordering by reading HEAD register back */
554         I915_READ_HEAD(engine);
555
556         /* Initialize the ring. This must happen _after_ we've cleared the ring
557          * registers with the above sequence (the readback of the HEAD registers
558          * also enforces ordering), otherwise the hw might lose the new ring
559          * register values. */
560         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561
562         /* WaClearRingBufHeadRegAtInit:ctg,elk */
563         if (I915_READ_HEAD(engine))
564                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565                           engine->name, I915_READ_HEAD(engine));
566
567         intel_ring_update_space(ring);
568         I915_WRITE_HEAD(engine, ring->head);
569         I915_WRITE_TAIL(engine, ring->tail);
570         (void)I915_READ_TAIL(engine);
571
572         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573
574         /* If the head is still not zero, the ring is dead */
575         if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576                                        RING_VALID, RING_VALID,
577                                        50)) {
578                 DRM_ERROR("%s initialization failed "
579                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580                           engine->name,
581                           I915_READ_CTL(engine),
582                           I915_READ_CTL(engine) & RING_VALID,
583                           I915_READ_HEAD(engine), ring->head,
584                           I915_READ_TAIL(engine), ring->tail,
585                           I915_READ_START(engine),
586                           i915_ggtt_offset(ring->vma));
587                 ret = -EIO;
588                 goto out;
589         }
590
591         intel_engine_init_hangcheck(engine);
592
593 out:
594         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595
596         return ret;
597 }
598
599 static void reset_ring_common(struct intel_engine_cs *engine,
600                               struct drm_i915_gem_request *request)
601 {
602         struct intel_ring *ring = request->ring;
603
604         ring->head = request->postfix;
605         ring->last_retired_head = -1;
606 }
607
608 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609 {
610         struct intel_ring *ring = req->ring;
611         struct i915_workarounds *w = &req->i915->workarounds;
612         int ret, i;
613
614         if (w->count == 0)
615                 return 0;
616
617         ret = req->engine->emit_flush(req, EMIT_BARRIER);
618         if (ret)
619                 return ret;
620
621         ret = intel_ring_begin(req, (w->count * 2 + 2));
622         if (ret)
623                 return ret;
624
625         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626         for (i = 0; i < w->count; i++) {
627                 intel_ring_emit_reg(ring, w->reg[i].addr);
628                 intel_ring_emit(ring, w->reg[i].value);
629         }
630         intel_ring_emit(ring, MI_NOOP);
631
632         intel_ring_advance(ring);
633
634         ret = req->engine->emit_flush(req, EMIT_BARRIER);
635         if (ret)
636                 return ret;
637
638         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639
640         return 0;
641 }
642
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645         int ret;
646
647         ret = intel_ring_workarounds_emit(req);
648         if (ret != 0)
649                 return ret;
650
651         ret = i915_gem_render_state_emit(req);
652         if (ret)
653                 return ret;
654
655         return 0;
656 }
657
658 static int wa_add(struct drm_i915_private *dev_priv,
659                   i915_reg_t addr,
660                   const u32 mask, const u32 val)
661 {
662         const u32 idx = dev_priv->workarounds.count;
663
664         if (WARN_ON(idx >= I915_MAX_WA_REGS))
665                 return -ENOSPC;
666
667         dev_priv->workarounds.reg[idx].addr = addr;
668         dev_priv->workarounds.reg[idx].value = val;
669         dev_priv->workarounds.reg[idx].mask = mask;
670
671         dev_priv->workarounds.count++;
672
673         return 0;
674 }
675
676 #define WA_REG(addr, mask, val) do { \
677                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678                 if (r) \
679                         return r; \
680         } while (0)
681
682 #define WA_SET_BIT_MASKED(addr, mask) \
683         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684
685 #define WA_CLR_BIT_MASKED(addr, mask) \
686         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687
688 #define WA_SET_FIELD_MASKED(addr, mask, value) \
689         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690
691 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
692 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693
694 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695
696 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
697                                  i915_reg_t reg)
698 {
699         struct drm_i915_private *dev_priv = engine->i915;
700         struct i915_workarounds *wa = &dev_priv->workarounds;
701         const uint32_t index = wa->hw_whitelist_count[engine->id];
702
703         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
704                 return -EINVAL;
705
706         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707                  i915_mmio_reg_offset(reg));
708         wa->hw_whitelist_count[engine->id]++;
709
710         return 0;
711 }
712
713 static int gen8_init_workarounds(struct intel_engine_cs *engine)
714 {
715         struct drm_i915_private *dev_priv = engine->i915;
716
717         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718
719         /* WaDisableAsyncFlipPerfMode:bdw,chv */
720         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
721
722         /* WaDisablePartialInstShootdown:bdw,chv */
723         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
724                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
725
726         /* Use Force Non-Coherent whenever executing a 3D context. This is a
727          * workaround for for a possible hang in the unlikely event a TLB
728          * invalidation occurs during a PSD flush.
729          */
730         /* WaForceEnableNonCoherent:bdw,chv */
731         /* WaHdcDisableFetchWhenMasked:bdw,chv */
732         WA_SET_BIT_MASKED(HDC_CHICKEN0,
733                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734                           HDC_FORCE_NON_COHERENT);
735
736         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
737          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
738          *  polygons in the same 8x4 pixel/sample area to be processed without
739          *  stalling waiting for the earlier ones to write to Hierarchical Z
740          *  buffer."
741          *
742          * This optimization is off by default for BDW and CHV; turn it on.
743          */
744         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
745
746         /* Wa4x4STCOptimizationDisable:bdw,chv */
747         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
748
749         /*
750          * BSpec recommends 8x4 when MSAA is used,
751          * however in practice 16x4 seems fastest.
752          *
753          * Note that PS/WM thread counts depend on the WIZ hashing
754          * disable bit, which we don't touch here, but it's good
755          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
756          */
757         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
758                             GEN6_WIZ_HASHING_MASK,
759                             GEN6_WIZ_HASHING_16x4);
760
761         return 0;
762 }
763
764 static int bdw_init_workarounds(struct intel_engine_cs *engine)
765 {
766         struct drm_i915_private *dev_priv = engine->i915;
767         int ret;
768
769         ret = gen8_init_workarounds(engine);
770         if (ret)
771                 return ret;
772
773         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775
776         /* WaDisableDopClockGating:bdw */
777         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
778                           DOP_CLOCK_GATING_DISABLE);
779
780         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
781                           GEN8_SAMPLER_POWER_BYPASS_DIS);
782
783         WA_SET_BIT_MASKED(HDC_CHICKEN0,
784                           /* WaForceContextSaveRestoreNonCoherent:bdw */
785                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
786                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788
789         return 0;
790 }
791
792 static int chv_init_workarounds(struct intel_engine_cs *engine)
793 {
794         struct drm_i915_private *dev_priv = engine->i915;
795         int ret;
796
797         ret = gen8_init_workarounds(engine);
798         if (ret)
799                 return ret;
800
801         /* WaDisableThreadStallDopClockGating:chv */
802         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803
804         /* Improve HiZ throughput on CHV. */
805         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
806
807         return 0;
808 }
809
810 static int gen9_init_workarounds(struct intel_engine_cs *engine)
811 {
812         struct drm_i915_private *dev_priv = engine->i915;
813         int ret;
814
815         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
816         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
817
818         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
820                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
821
822         /* WaDisableKillLogic:bxt,skl,kbl */
823         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
824                    ECOCHK_DIS_TLB);
825
826         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
827         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
828         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829                           FLOW_CONTROL_ENABLE |
830                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831
832         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
834                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
835
836         /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
837         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
839                                   GEN9_DG_MIRROR_FIX_ENABLE);
840
841         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
842         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
844                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
845                 /*
846                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
847                  * but we do that in per ctx batchbuffer as there is an issue
848                  * with this register not getting restored on ctx restore
849                  */
850         }
851
852         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
854                           GEN9_ENABLE_GPGPU_PREEMPTION);
855
856         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
857         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
858         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
859                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860
861         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
863                           GEN9_CCS_TLB_PREFETCH_ENABLE);
864
865         /* WaDisableMaskBasedCammingInRCC:bxt */
866         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
868                                   PIXEL_MASK_CAMMING_DISABLE);
869
870         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
871         WA_SET_BIT_MASKED(HDC_CHICKEN0,
872                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
873                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874
875         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
876          * both tied to WaForceContextSaveRestoreNonCoherent
877          * in some hsds for skl. We keep the tie for all gen9. The
878          * documentation is a bit hazy and so we want to get common behaviour,
879          * even though there is no clear evidence we would need both on kbl/bxt.
880          * This area has been source of system hangs so we play it safe
881          * and mimic the skl regardless of what bspec says.
882          *
883          * Use Force Non-Coherent whenever executing a 3D context. This
884          * is a workaround for a possible hang in the unlikely event
885          * a TLB invalidation occurs during a PSD flush.
886          */
887
888         /* WaForceEnableNonCoherent:skl,bxt,kbl */
889         WA_SET_BIT_MASKED(HDC_CHICKEN0,
890                           HDC_FORCE_NON_COHERENT);
891
892         /* WaDisableHDCInvalidation:skl,bxt,kbl */
893         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
894                    BDW_DISABLE_HDC_INVALIDATION);
895
896         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
897         if (IS_SKYLAKE(dev_priv) ||
898             IS_KABYLAKE(dev_priv) ||
899             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
901                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
902
903         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
905
906         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
907         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
908                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
909
910         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
911         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
912         if (ret)
913                 return ret;
914
915         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917         if (ret)
918                 return ret;
919
920         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922         if (ret)
923                 return ret;
924
925         return 0;
926 }
927
928 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929 {
930         struct drm_i915_private *dev_priv = engine->i915;
931         u8 vals[3] = { 0, 0, 0 };
932         unsigned int i;
933
934         for (i = 0; i < 3; i++) {
935                 u8 ss;
936
937                 /*
938                  * Only consider slices where one, and only one, subslice has 7
939                  * EUs
940                  */
941                 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942                         continue;
943
944                 /*
945                  * subslice_7eu[i] != 0 (because of the check above) and
946                  * ss_max == 4 (maximum number of subslices possible per slice)
947                  *
948                  * ->    0 <= ss <= 3;
949                  */
950                 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951                 vals[i] = 3 - ss;
952         }
953
954         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
955                 return 0;
956
957         /* Tune IZ hashing. See intel_device_info_runtime_init() */
958         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
959                             GEN9_IZ_HASHING_MASK(2) |
960                             GEN9_IZ_HASHING_MASK(1) |
961                             GEN9_IZ_HASHING_MASK(0),
962                             GEN9_IZ_HASHING(2, vals[2]) |
963                             GEN9_IZ_HASHING(1, vals[1]) |
964                             GEN9_IZ_HASHING(0, vals[0]));
965
966         return 0;
967 }
968
969 static int skl_init_workarounds(struct intel_engine_cs *engine)
970 {
971         struct drm_i915_private *dev_priv = engine->i915;
972         int ret;
973
974         ret = gen9_init_workarounds(engine);
975         if (ret)
976                 return ret;
977
978         /*
979          * Actual WA is to disable percontext preemption granularity control
980          * until D0 which is the default case so this is equivalent to
981          * !WaDisablePerCtxtPreemptionGranularityControl:skl
982          */
983         I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
984                    _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985
986         /* WaEnableGapsTsvCreditFix:skl */
987         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
988                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
989
990         /* WaDisableGafsUnitClkGating:skl */
991         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
992
993         /* WaInPlaceDecompressionHang:skl */
994         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
995                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
996                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
997
998         /* WaDisableLSQCROPERFforOCL:skl */
999         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000         if (ret)
1001                 return ret;
1002
1003         return skl_tune_iz_hashing(engine);
1004 }
1005
1006 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007 {
1008         struct drm_i915_private *dev_priv = engine->i915;
1009         int ret;
1010
1011         ret = gen9_init_workarounds(engine);
1012         if (ret)
1013                 return ret;
1014
1015         /* WaStoreMultiplePTEenable:bxt */
1016         /* This is a requirement according to Hardware specification */
1017         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1019
1020         /* WaSetClckGatingDisableMedia:bxt */
1021         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1023                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1024         }
1025
1026         /* WaDisableThreadStallDopClockGating:bxt */
1027         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1028                           STALL_DOP_GATING_DISABLE);
1029
1030         /* WaDisablePooledEuLoadBalancingFix:bxt */
1031         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1032                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1033                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1034         }
1035
1036         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1037         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038                 WA_SET_BIT_MASKED(
1039                         GEN7_HALF_SLICE_CHICKEN1,
1040                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1041         }
1042
1043         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046         /* WaDisableLSQCROPERFforOCL:bxt */
1047         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049                 if (ret)
1050                         return ret;
1051
1052                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053                 if (ret)
1054                         return ret;
1055         }
1056
1057         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1060                                            L3_HIGH_PRIO_CREDITS(2));
1061
1062         /* WaToEnableHwFixForPushConstHWBug:bxt */
1063         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1065                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1066
1067         /* WaInPlaceDecompressionHang:bxt */
1068         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1069                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1070                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1071
1072         return 0;
1073 }
1074
1075 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1076 {
1077         struct drm_i915_private *dev_priv = engine->i915;
1078         int ret;
1079
1080         ret = gen9_init_workarounds(engine);
1081         if (ret)
1082                 return ret;
1083
1084         /* WaEnableGapsTsvCreditFix:kbl */
1085         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1086                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1087
1088         /* WaDisableDynamicCreditSharing:kbl */
1089         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1090                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1091                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1092
1093         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1095                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096                                   HDC_FENCE_DEST_SLM_DISABLE);
1097
1098         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1099          * involving this register should also be added to WA batch as required.
1100          */
1101         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1102                 /* WaDisableLSQCROPERFforOCL:kbl */
1103                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1104                            GEN8_LQSC_RO_PERF_DIS);
1105
1106         /* WaToEnableHwFixForPushConstHWBug:kbl */
1107         if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1108                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1109                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1110
1111         /* WaDisableGafsUnitClkGating:kbl */
1112         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1113
1114         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1115         WA_SET_BIT_MASKED(
1116                 GEN7_HALF_SLICE_CHICKEN1,
1117                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1118
1119         /* WaInPlaceDecompressionHang:kbl */
1120         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1121                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1122
1123         /* WaDisableLSQCROPERFforOCL:kbl */
1124         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1125         if (ret)
1126                 return ret;
1127
1128         return 0;
1129 }
1130
1131 int init_workarounds_ring(struct intel_engine_cs *engine)
1132 {
1133         struct drm_i915_private *dev_priv = engine->i915;
1134
1135         WARN_ON(engine->id != RCS);
1136
1137         dev_priv->workarounds.count = 0;
1138         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1139
1140         if (IS_BROADWELL(dev_priv))
1141                 return bdw_init_workarounds(engine);
1142
1143         if (IS_CHERRYVIEW(dev_priv))
1144                 return chv_init_workarounds(engine);
1145
1146         if (IS_SKYLAKE(dev_priv))
1147                 return skl_init_workarounds(engine);
1148
1149         if (IS_BROXTON(dev_priv))
1150                 return bxt_init_workarounds(engine);
1151
1152         if (IS_KABYLAKE(dev_priv))
1153                 return kbl_init_workarounds(engine);
1154
1155         return 0;
1156 }
1157
1158 static int init_render_ring(struct intel_engine_cs *engine)
1159 {
1160         struct drm_i915_private *dev_priv = engine->i915;
1161         int ret = init_ring_common(engine);
1162         if (ret)
1163                 return ret;
1164
1165         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166         if (IS_GEN(dev_priv, 4, 6))
1167                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168
1169         /* We need to disable the AsyncFlip performance optimisations in order
1170          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1171          * programmed to '1' on all products.
1172          *
1173          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174          */
1175         if (IS_GEN(dev_priv, 6, 7))
1176                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1177
1178         /* Required for the hardware to program scanline values for waiting */
1179         /* WaEnableFlushTlbInvalidationMode:snb */
1180         if (IS_GEN6(dev_priv))
1181                 I915_WRITE(GFX_MODE,
1182                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183
1184         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185         if (IS_GEN7(dev_priv))
1186                 I915_WRITE(GFX_MODE_GEN7,
1187                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189
1190         if (IS_GEN6(dev_priv)) {
1191                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1192                  * "If this bit is set, STCunit will have LRA as replacement
1193                  *  policy. [...] This bit must be reset.  LRA replacement
1194                  *  policy is not supported."
1195                  */
1196                 I915_WRITE(CACHE_MODE_0,
1197                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198         }
1199
1200         if (IS_GEN(dev_priv, 6, 7))
1201                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202
1203         if (INTEL_INFO(dev_priv)->gen >= 6)
1204                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1205
1206         return init_workarounds_ring(engine);
1207 }
1208
1209 static void render_ring_cleanup(struct intel_engine_cs *engine)
1210 {
1211         struct drm_i915_private *dev_priv = engine->i915;
1212
1213         i915_vma_unpin_and_release(&dev_priv->semaphore);
1214 }
1215
1216 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1217 {
1218         struct drm_i915_private *dev_priv = req->i915;
1219         struct intel_engine_cs *waiter;
1220         enum intel_engine_id id;
1221
1222         for_each_engine(waiter, dev_priv, id) {
1223                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1224                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1225                         continue;
1226
1227                 *out++ = GFX_OP_PIPE_CONTROL(6);
1228                 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1229                           PIPE_CONTROL_QW_WRITE |
1230                           PIPE_CONTROL_CS_STALL);
1231                 *out++ = lower_32_bits(gtt_offset);
1232                 *out++ = upper_32_bits(gtt_offset);
1233                 *out++ = req->global_seqno;
1234                 *out++ = 0;
1235                 *out++ = (MI_SEMAPHORE_SIGNAL |
1236                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1237                 *out++ = 0;
1238         }
1239
1240         return out;
1241 }
1242
1243 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1244 {
1245         struct drm_i915_private *dev_priv = req->i915;
1246         struct intel_engine_cs *waiter;
1247         enum intel_engine_id id;
1248
1249         for_each_engine(waiter, dev_priv, id) {
1250                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1251                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1252                         continue;
1253
1254                 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1255                 *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1256                 *out++ = upper_32_bits(gtt_offset);
1257                 *out++ = req->global_seqno;
1258                 *out++ = (MI_SEMAPHORE_SIGNAL |
1259                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1260                 *out++ = 0;
1261         }
1262
1263         return out;
1264 }
1265
1266 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1267 {
1268         struct drm_i915_private *dev_priv = req->i915;
1269         struct intel_engine_cs *engine;
1270         enum intel_engine_id id;
1271         int num_rings = 0;
1272
1273         for_each_engine(engine, dev_priv, id) {
1274                 i915_reg_t mbox_reg;
1275
1276                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1277                         continue;
1278
1279                 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1280                 if (i915_mmio_reg_valid(mbox_reg)) {
1281                         *out++ = MI_LOAD_REGISTER_IMM(1);
1282                         *out++ = i915_mmio_reg_offset(mbox_reg);
1283                         *out++ = req->global_seqno;
1284                         num_rings++;
1285                 }
1286         }
1287         if (num_rings & 1)
1288                 *out++ = MI_NOOP;
1289
1290         return out;
1291 }
1292
1293 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1294 {
1295         struct drm_i915_private *dev_priv = request->i915;
1296
1297         I915_WRITE_TAIL(request->engine, request->tail);
1298 }
1299
1300 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1301                                  u32 *out)
1302 {
1303         *out++ = MI_STORE_DWORD_INDEX;
1304         *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1305         *out++ = req->global_seqno;
1306         *out++ = MI_USER_INTERRUPT;
1307
1308         req->tail = intel_ring_offset(req->ring, out);
1309 }
1310
1311 static const int i9xx_emit_breadcrumb_sz = 4;
1312
1313 /**
1314  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1315  *
1316  * @request - request to write to the ring
1317  *
1318  * Update the mailbox registers in the *other* rings with the current seqno.
1319  * This acts like a signal in the canonical semaphore.
1320  */
1321 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1322                                       u32 *out)
1323 {
1324         return i9xx_emit_breadcrumb(req,
1325                                     req->engine->semaphore.signal(req, out));
1326 }
1327
1328 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1329                                         u32 *out)
1330 {
1331         struct intel_engine_cs *engine = req->engine;
1332
1333         if (engine->semaphore.signal)
1334                 out = engine->semaphore.signal(req, out);
1335
1336         *out++ = GFX_OP_PIPE_CONTROL(6);
1337         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1338                                PIPE_CONTROL_CS_STALL |
1339                                PIPE_CONTROL_QW_WRITE);
1340         *out++ = intel_hws_seqno_address(engine);
1341         *out++ = 0;
1342         *out++ = req->global_seqno;
1343         /* We're thrashing one dword of HWS. */
1344         *out++ = 0;
1345         *out++ = MI_USER_INTERRUPT;
1346         *out++ = MI_NOOP;
1347
1348         req->tail = intel_ring_offset(req->ring, out);
1349 }
1350
1351 static const int gen8_render_emit_breadcrumb_sz = 8;
1352
1353 /**
1354  * intel_ring_sync - sync the waiter to the signaller on seqno
1355  *
1356  * @waiter - ring that is waiting
1357  * @signaller - ring which has, or will signal
1358  * @seqno - seqno which the waiter will block on
1359  */
1360
1361 static int
1362 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1363                   struct drm_i915_gem_request *signal)
1364 {
1365         struct intel_ring *ring = req->ring;
1366         struct drm_i915_private *dev_priv = req->i915;
1367         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1368         struct i915_hw_ppgtt *ppgtt;
1369         int ret;
1370
1371         ret = intel_ring_begin(req, 4);
1372         if (ret)
1373                 return ret;
1374
1375         intel_ring_emit(ring,
1376                         MI_SEMAPHORE_WAIT |
1377                         MI_SEMAPHORE_GLOBAL_GTT |
1378                         MI_SEMAPHORE_SAD_GTE_SDD);
1379         intel_ring_emit(ring, signal->global_seqno);
1380         intel_ring_emit(ring, lower_32_bits(offset));
1381         intel_ring_emit(ring, upper_32_bits(offset));
1382         intel_ring_advance(ring);
1383
1384         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1385          * pagetables and we must reload them before executing the batch.
1386          * We do this on the i915_switch_context() following the wait and
1387          * before the dispatch.
1388          */
1389         ppgtt = req->ctx->ppgtt;
1390         if (ppgtt && req->engine->id != RCS)
1391                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1392         return 0;
1393 }
1394
1395 static int
1396 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1397                   struct drm_i915_gem_request *signal)
1398 {
1399         struct intel_ring *ring = req->ring;
1400         u32 dw1 = MI_SEMAPHORE_MBOX |
1401                   MI_SEMAPHORE_COMPARE |
1402                   MI_SEMAPHORE_REGISTER;
1403         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1404         int ret;
1405
1406         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1407
1408         ret = intel_ring_begin(req, 4);
1409         if (ret)
1410                 return ret;
1411
1412         intel_ring_emit(ring, dw1 | wait_mbox);
1413         /* Throughout all of the GEM code, seqno passed implies our current
1414          * seqno is >= the last seqno executed. However for hardware the
1415          * comparison is strictly greater than.
1416          */
1417         intel_ring_emit(ring, signal->global_seqno - 1);
1418         intel_ring_emit(ring, 0);
1419         intel_ring_emit(ring, MI_NOOP);
1420         intel_ring_advance(ring);
1421
1422         return 0;
1423 }
1424
1425 static void
1426 gen5_seqno_barrier(struct intel_engine_cs *engine)
1427 {
1428         /* MI_STORE are internally buffered by the GPU and not flushed
1429          * either by MI_FLUSH or SyncFlush or any other combination of
1430          * MI commands.
1431          *
1432          * "Only the submission of the store operation is guaranteed.
1433          * The write result will be complete (coherent) some time later
1434          * (this is practically a finite period but there is no guaranteed
1435          * latency)."
1436          *
1437          * Empirically, we observe that we need a delay of at least 75us to
1438          * be sure that the seqno write is visible by the CPU.
1439          */
1440         usleep_range(125, 250);
1441 }
1442
1443 static void
1444 gen6_seqno_barrier(struct intel_engine_cs *engine)
1445 {
1446         struct drm_i915_private *dev_priv = engine->i915;
1447
1448         /* Workaround to force correct ordering between irq and seqno writes on
1449          * ivb (and maybe also on snb) by reading from a CS register (like
1450          * ACTHD) before reading the status page.
1451          *
1452          * Note that this effectively stalls the read by the time it takes to
1453          * do a memory transaction, which more or less ensures that the write
1454          * from the GPU has sufficient time to invalidate the CPU cacheline.
1455          * Alternatively we could delay the interrupt from the CS ring to give
1456          * the write time to land, but that would incur a delay after every
1457          * batch i.e. much more frequent than a delay when waiting for the
1458          * interrupt (with the same net latency).
1459          *
1460          * Also note that to prevent whole machine hangs on gen7, we have to
1461          * take the spinlock to guard against concurrent cacheline access.
1462          */
1463         spin_lock_irq(&dev_priv->uncore.lock);
1464         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1465         spin_unlock_irq(&dev_priv->uncore.lock);
1466 }
1467
1468 static void
1469 gen5_irq_enable(struct intel_engine_cs *engine)
1470 {
1471         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1472 }
1473
1474 static void
1475 gen5_irq_disable(struct intel_engine_cs *engine)
1476 {
1477         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1478 }
1479
1480 static void
1481 i9xx_irq_enable(struct intel_engine_cs *engine)
1482 {
1483         struct drm_i915_private *dev_priv = engine->i915;
1484
1485         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1486         I915_WRITE(IMR, dev_priv->irq_mask);
1487         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1488 }
1489
1490 static void
1491 i9xx_irq_disable(struct intel_engine_cs *engine)
1492 {
1493         struct drm_i915_private *dev_priv = engine->i915;
1494
1495         dev_priv->irq_mask |= engine->irq_enable_mask;
1496         I915_WRITE(IMR, dev_priv->irq_mask);
1497 }
1498
1499 static void
1500 i8xx_irq_enable(struct intel_engine_cs *engine)
1501 {
1502         struct drm_i915_private *dev_priv = engine->i915;
1503
1504         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1505         I915_WRITE16(IMR, dev_priv->irq_mask);
1506         POSTING_READ16(RING_IMR(engine->mmio_base));
1507 }
1508
1509 static void
1510 i8xx_irq_disable(struct intel_engine_cs *engine)
1511 {
1512         struct drm_i915_private *dev_priv = engine->i915;
1513
1514         dev_priv->irq_mask |= engine->irq_enable_mask;
1515         I915_WRITE16(IMR, dev_priv->irq_mask);
1516 }
1517
1518 static int
1519 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1520 {
1521         struct intel_ring *ring = req->ring;
1522         int ret;
1523
1524         ret = intel_ring_begin(req, 2);
1525         if (ret)
1526                 return ret;
1527
1528         intel_ring_emit(ring, MI_FLUSH);
1529         intel_ring_emit(ring, MI_NOOP);
1530         intel_ring_advance(ring);
1531         return 0;
1532 }
1533
1534 static void
1535 gen6_irq_enable(struct intel_engine_cs *engine)
1536 {
1537         struct drm_i915_private *dev_priv = engine->i915;
1538
1539         I915_WRITE_IMR(engine,
1540                        ~(engine->irq_enable_mask |
1541                          engine->irq_keep_mask));
1542         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1543 }
1544
1545 static void
1546 gen6_irq_disable(struct intel_engine_cs *engine)
1547 {
1548         struct drm_i915_private *dev_priv = engine->i915;
1549
1550         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1551         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1552 }
1553
1554 static void
1555 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1556 {
1557         struct drm_i915_private *dev_priv = engine->i915;
1558
1559         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1560         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1561 }
1562
1563 static void
1564 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1565 {
1566         struct drm_i915_private *dev_priv = engine->i915;
1567
1568         I915_WRITE_IMR(engine, ~0);
1569         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1570 }
1571
1572 static void
1573 gen8_irq_enable(struct intel_engine_cs *engine)
1574 {
1575         struct drm_i915_private *dev_priv = engine->i915;
1576
1577         I915_WRITE_IMR(engine,
1578                        ~(engine->irq_enable_mask |
1579                          engine->irq_keep_mask));
1580         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1581 }
1582
1583 static void
1584 gen8_irq_disable(struct intel_engine_cs *engine)
1585 {
1586         struct drm_i915_private *dev_priv = engine->i915;
1587
1588         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1589 }
1590
1591 static int
1592 i965_emit_bb_start(struct drm_i915_gem_request *req,
1593                    u64 offset, u32 length,
1594                    unsigned int dispatch_flags)
1595 {
1596         struct intel_ring *ring = req->ring;
1597         int ret;
1598
1599         ret = intel_ring_begin(req, 2);
1600         if (ret)
1601                 return ret;
1602
1603         intel_ring_emit(ring,
1604                         MI_BATCH_BUFFER_START |
1605                         MI_BATCH_GTT |
1606                         (dispatch_flags & I915_DISPATCH_SECURE ?
1607                          0 : MI_BATCH_NON_SECURE_I965));
1608         intel_ring_emit(ring, offset);
1609         intel_ring_advance(ring);
1610
1611         return 0;
1612 }
1613
1614 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1615 #define I830_BATCH_LIMIT (256*1024)
1616 #define I830_TLB_ENTRIES (2)
1617 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1618 static int
1619 i830_emit_bb_start(struct drm_i915_gem_request *req,
1620                    u64 offset, u32 len,
1621                    unsigned int dispatch_flags)
1622 {
1623         struct intel_ring *ring = req->ring;
1624         u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1625         int ret;
1626
1627         ret = intel_ring_begin(req, 6);
1628         if (ret)
1629                 return ret;
1630
1631         /* Evict the invalid PTE TLBs */
1632         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1633         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1634         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1635         intel_ring_emit(ring, cs_offset);
1636         intel_ring_emit(ring, 0xdeadbeef);
1637         intel_ring_emit(ring, MI_NOOP);
1638         intel_ring_advance(ring);
1639
1640         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1641                 if (len > I830_BATCH_LIMIT)
1642                         return -ENOSPC;
1643
1644                 ret = intel_ring_begin(req, 6 + 2);
1645                 if (ret)
1646                         return ret;
1647
1648                 /* Blit the batch (which has now all relocs applied) to the
1649                  * stable batch scratch bo area (so that the CS never
1650                  * stumbles over its tlb invalidation bug) ...
1651                  */
1652                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1653                 intel_ring_emit(ring,
1654                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1655                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1656                 intel_ring_emit(ring, cs_offset);
1657                 intel_ring_emit(ring, 4096);
1658                 intel_ring_emit(ring, offset);
1659
1660                 intel_ring_emit(ring, MI_FLUSH);
1661                 intel_ring_emit(ring, MI_NOOP);
1662                 intel_ring_advance(ring);
1663
1664                 /* ... and execute it. */
1665                 offset = cs_offset;
1666         }
1667
1668         ret = intel_ring_begin(req, 2);
1669         if (ret)
1670                 return ret;
1671
1672         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1673         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1674                                         0 : MI_BATCH_NON_SECURE));
1675         intel_ring_advance(ring);
1676
1677         return 0;
1678 }
1679
1680 static int
1681 i915_emit_bb_start(struct drm_i915_gem_request *req,
1682                    u64 offset, u32 len,
1683                    unsigned int dispatch_flags)
1684 {
1685         struct intel_ring *ring = req->ring;
1686         int ret;
1687
1688         ret = intel_ring_begin(req, 2);
1689         if (ret)
1690                 return ret;
1691
1692         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1693         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1694                                         0 : MI_BATCH_NON_SECURE));
1695         intel_ring_advance(ring);
1696
1697         return 0;
1698 }
1699
1700 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1701 {
1702         struct drm_i915_private *dev_priv = engine->i915;
1703
1704         if (!dev_priv->status_page_dmah)
1705                 return;
1706
1707         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1708         engine->status_page.page_addr = NULL;
1709 }
1710
1711 static void cleanup_status_page(struct intel_engine_cs *engine)
1712 {
1713         struct i915_vma *vma;
1714         struct drm_i915_gem_object *obj;
1715
1716         vma = fetch_and_zero(&engine->status_page.vma);
1717         if (!vma)
1718                 return;
1719
1720         obj = vma->obj;
1721
1722         i915_vma_unpin(vma);
1723         i915_vma_close(vma);
1724
1725         i915_gem_object_unpin_map(obj);
1726         __i915_gem_object_release_unless_active(obj);
1727 }
1728
1729 static int init_status_page(struct intel_engine_cs *engine)
1730 {
1731         struct drm_i915_gem_object *obj;
1732         struct i915_vma *vma;
1733         unsigned int flags;
1734         void *vaddr;
1735         int ret;
1736
1737         obj = i915_gem_object_create_internal(engine->i915, 4096);
1738         if (IS_ERR(obj)) {
1739                 DRM_ERROR("Failed to allocate status page\n");
1740                 return PTR_ERR(obj);
1741         }
1742
1743         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1744         if (ret)
1745                 goto err;
1746
1747         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1748         if (IS_ERR(vma)) {
1749                 ret = PTR_ERR(vma);
1750                 goto err;
1751         }
1752
1753         flags = PIN_GLOBAL;
1754         if (!HAS_LLC(engine->i915))
1755                 /* On g33, we cannot place HWS above 256MiB, so
1756                  * restrict its pinning to the low mappable arena.
1757                  * Though this restriction is not documented for
1758                  * gen4, gen5, or byt, they also behave similarly
1759                  * and hang if the HWS is placed at the top of the
1760                  * GTT. To generalise, it appears that all !llc
1761                  * platforms have issues with us placing the HWS
1762                  * above the mappable region (even though we never
1763                  * actualy map it).
1764                  */
1765                 flags |= PIN_MAPPABLE;
1766         ret = i915_vma_pin(vma, 0, 4096, flags);
1767         if (ret)
1768                 goto err;
1769
1770         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1771         if (IS_ERR(vaddr)) {
1772                 ret = PTR_ERR(vaddr);
1773                 goto err_unpin;
1774         }
1775
1776         engine->status_page.vma = vma;
1777         engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1778         engine->status_page.page_addr = memset(vaddr, 0, 4096);
1779
1780         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1781                          engine->name, i915_ggtt_offset(vma));
1782         return 0;
1783
1784 err_unpin:
1785         i915_vma_unpin(vma);
1786 err:
1787         i915_gem_object_put(obj);
1788         return ret;
1789 }
1790
1791 static int init_phys_status_page(struct intel_engine_cs *engine)
1792 {
1793         struct drm_i915_private *dev_priv = engine->i915;
1794
1795         dev_priv->status_page_dmah =
1796                 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1797         if (!dev_priv->status_page_dmah)
1798                 return -ENOMEM;
1799
1800         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1801         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1802
1803         return 0;
1804 }
1805
1806 int intel_ring_pin(struct intel_ring *ring)
1807 {
1808         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1809         unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1810         enum i915_map_type map;
1811         struct i915_vma *vma = ring->vma;
1812         void *addr;
1813         int ret;
1814
1815         GEM_BUG_ON(ring->vaddr);
1816
1817         map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1818
1819         if (vma->obj->stolen)
1820                 flags |= PIN_MAPPABLE;
1821
1822         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1823                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1824                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1825                 else
1826                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1827                 if (unlikely(ret))
1828                         return ret;
1829         }
1830
1831         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1832         if (unlikely(ret))
1833                 return ret;
1834
1835         if (i915_vma_is_map_and_fenceable(vma))
1836                 addr = (void __force *)i915_vma_pin_iomap(vma);
1837         else
1838                 addr = i915_gem_object_pin_map(vma->obj, map);
1839         if (IS_ERR(addr))
1840                 goto err;
1841
1842         ring->vaddr = addr;
1843         return 0;
1844
1845 err:
1846         i915_vma_unpin(vma);
1847         return PTR_ERR(addr);
1848 }
1849
1850 void intel_ring_unpin(struct intel_ring *ring)
1851 {
1852         GEM_BUG_ON(!ring->vma);
1853         GEM_BUG_ON(!ring->vaddr);
1854
1855         if (i915_vma_is_map_and_fenceable(ring->vma))
1856                 i915_vma_unpin_iomap(ring->vma);
1857         else
1858                 i915_gem_object_unpin_map(ring->vma->obj);
1859         ring->vaddr = NULL;
1860
1861         i915_vma_unpin(ring->vma);
1862 }
1863
1864 static struct i915_vma *
1865 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1866 {
1867         struct drm_i915_gem_object *obj;
1868         struct i915_vma *vma;
1869
1870         obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1871         if (!obj)
1872                 obj = i915_gem_object_create(&dev_priv->drm, size);
1873         if (IS_ERR(obj))
1874                 return ERR_CAST(obj);
1875
1876         /* mark ring buffers as read-only from GPU side by default */
1877         obj->gt_ro = 1;
1878
1879         vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1880         if (IS_ERR(vma))
1881                 goto err;
1882
1883         return vma;
1884
1885 err:
1886         i915_gem_object_put(obj);
1887         return vma;
1888 }
1889
1890 struct intel_ring *
1891 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1892 {
1893         struct intel_ring *ring;
1894         struct i915_vma *vma;
1895
1896         GEM_BUG_ON(!is_power_of_2(size));
1897         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1898
1899         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1900         if (!ring)
1901                 return ERR_PTR(-ENOMEM);
1902
1903         ring->engine = engine;
1904
1905         INIT_LIST_HEAD(&ring->request_list);
1906
1907         ring->size = size;
1908         /* Workaround an erratum on the i830 which causes a hang if
1909          * the TAIL pointer points to within the last 2 cachelines
1910          * of the buffer.
1911          */
1912         ring->effective_size = size;
1913         if (IS_I830(engine->i915) || IS_845G(engine->i915))
1914                 ring->effective_size -= 2 * CACHELINE_BYTES;
1915
1916         ring->last_retired_head = -1;
1917         intel_ring_update_space(ring);
1918
1919         vma = intel_ring_create_vma(engine->i915, size);
1920         if (IS_ERR(vma)) {
1921                 kfree(ring);
1922                 return ERR_CAST(vma);
1923         }
1924         ring->vma = vma;
1925
1926         return ring;
1927 }
1928
1929 void
1930 intel_ring_free(struct intel_ring *ring)
1931 {
1932         struct drm_i915_gem_object *obj = ring->vma->obj;
1933
1934         i915_vma_close(ring->vma);
1935         __i915_gem_object_release_unless_active(obj);
1936
1937         kfree(ring);
1938 }
1939
1940 static int intel_ring_context_pin(struct i915_gem_context *ctx,
1941                                   struct intel_engine_cs *engine)
1942 {
1943         struct intel_context *ce = &ctx->engine[engine->id];
1944         int ret;
1945
1946         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1947
1948         if (ce->pin_count++)
1949                 return 0;
1950
1951         if (ce->state) {
1952                 ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
1953                 if (ret)
1954                         goto error;
1955
1956                 ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
1957                                    PIN_GLOBAL | PIN_HIGH);
1958                 if (ret)
1959                         goto error;
1960         }
1961
1962         /* The kernel context is only used as a placeholder for flushing the
1963          * active context. It is never used for submitting user rendering and
1964          * as such never requires the golden render context, and so we can skip
1965          * emitting it when we switch to the kernel context. This is required
1966          * as during eviction we cannot allocate and pin the renderstate in
1967          * order to initialise the context.
1968          */
1969         if (ctx == ctx->i915->kernel_context)
1970                 ce->initialised = true;
1971
1972         i915_gem_context_get(ctx);
1973         return 0;
1974
1975 error:
1976         ce->pin_count = 0;
1977         return ret;
1978 }
1979
1980 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
1981                                      struct intel_engine_cs *engine)
1982 {
1983         struct intel_context *ce = &ctx->engine[engine->id];
1984
1985         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1986
1987         if (--ce->pin_count)
1988                 return;
1989
1990         if (ce->state)
1991                 i915_vma_unpin(ce->state);
1992
1993         i915_gem_context_put(ctx);
1994 }
1995
1996 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1997 {
1998         struct drm_i915_private *dev_priv = engine->i915;
1999         struct intel_ring *ring;
2000         int ret;
2001
2002         WARN_ON(engine->buffer);
2003
2004         intel_engine_setup_common(engine);
2005
2006         ret = intel_engine_init_common(engine);
2007         if (ret)
2008                 goto error;
2009
2010         /* We may need to do things with the shrinker which
2011          * require us to immediately switch back to the default
2012          * context. This can cause a problem as pinning the
2013          * default context also requires GTT space which may not
2014          * be available. To avoid this we always pin the default
2015          * context.
2016          */
2017         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2018         if (ret)
2019                 goto error;
2020
2021         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2022         if (IS_ERR(ring)) {
2023                 ret = PTR_ERR(ring);
2024                 goto error;
2025         }
2026
2027         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2028                 WARN_ON(engine->id != RCS);
2029                 ret = init_phys_status_page(engine);
2030                 if (ret)
2031                         goto error;
2032         } else {
2033                 ret = init_status_page(engine);
2034                 if (ret)
2035                         goto error;
2036         }
2037
2038         ret = intel_ring_pin(ring);
2039         if (ret) {
2040                 intel_ring_free(ring);
2041                 goto error;
2042         }
2043         engine->buffer = ring;
2044
2045         return 0;
2046
2047 error:
2048         intel_engine_cleanup(engine);
2049         return ret;
2050 }
2051
2052 void intel_engine_cleanup(struct intel_engine_cs *engine)
2053 {
2054         struct drm_i915_private *dev_priv;
2055
2056         dev_priv = engine->i915;
2057
2058         if (engine->buffer) {
2059                 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2060                         (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2061
2062                 intel_ring_unpin(engine->buffer);
2063                 intel_ring_free(engine->buffer);
2064                 engine->buffer = NULL;
2065         }
2066
2067         if (engine->cleanup)
2068                 engine->cleanup(engine);
2069
2070         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2071                 WARN_ON(engine->id != RCS);
2072                 cleanup_phys_status_page(engine);
2073         } else {
2074                 cleanup_status_page(engine);
2075         }
2076
2077         intel_engine_cleanup_common(engine);
2078
2079         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2080
2081         engine->i915 = NULL;
2082         dev_priv->engine[engine->id] = NULL;
2083         kfree(engine);
2084 }
2085
2086 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2087 {
2088         struct intel_engine_cs *engine;
2089         enum intel_engine_id id;
2090
2091         for_each_engine(engine, dev_priv, id) {
2092                 engine->buffer->head = engine->buffer->tail;
2093                 engine->buffer->last_retired_head = -1;
2094         }
2095 }
2096
2097 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2098 {
2099         int ret;
2100
2101         /* Flush enough space to reduce the likelihood of waiting after
2102          * we start building the request - in which case we will just
2103          * have to repeat work.
2104          */
2105         request->reserved_space += LEGACY_REQUEST_SIZE;
2106
2107         request->ring = request->engine->buffer;
2108
2109         ret = intel_ring_begin(request, 0);
2110         if (ret)
2111                 return ret;
2112
2113         request->reserved_space -= LEGACY_REQUEST_SIZE;
2114         return 0;
2115 }
2116
2117 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2118 {
2119         struct intel_ring *ring = req->ring;
2120         struct drm_i915_gem_request *target;
2121         long timeout;
2122
2123         lockdep_assert_held(&req->i915->drm.struct_mutex);
2124
2125         intel_ring_update_space(ring);
2126         if (ring->space >= bytes)
2127                 return 0;
2128
2129         /*
2130          * Space is reserved in the ringbuffer for finalising the request,
2131          * as that cannot be allowed to fail. During request finalisation,
2132          * reserved_space is set to 0 to stop the overallocation and the
2133          * assumption is that then we never need to wait (which has the
2134          * risk of failing with EINTR).
2135          *
2136          * See also i915_gem_request_alloc() and i915_add_request().
2137          */
2138         GEM_BUG_ON(!req->reserved_space);
2139
2140         list_for_each_entry(target, &ring->request_list, ring_link) {
2141                 unsigned space;
2142
2143                 /* Would completion of this request free enough space? */
2144                 space = __intel_ring_space(target->postfix, ring->tail,
2145                                            ring->size);
2146                 if (space >= bytes)
2147                         break;
2148         }
2149
2150         if (WARN_ON(&target->ring_link == &ring->request_list))
2151                 return -ENOSPC;
2152
2153         timeout = i915_wait_request(target,
2154                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2155                                     MAX_SCHEDULE_TIMEOUT);
2156         if (timeout < 0)
2157                 return timeout;
2158
2159         i915_gem_request_retire_upto(target);
2160
2161         intel_ring_update_space(ring);
2162         GEM_BUG_ON(ring->space < bytes);
2163         return 0;
2164 }
2165
2166 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2167 {
2168         struct intel_ring *ring = req->ring;
2169         int remain_actual = ring->size - ring->tail;
2170         int remain_usable = ring->effective_size - ring->tail;
2171         int bytes = num_dwords * sizeof(u32);
2172         int total_bytes, wait_bytes;
2173         bool need_wrap = false;
2174
2175         total_bytes = bytes + req->reserved_space;
2176
2177         if (unlikely(bytes > remain_usable)) {
2178                 /*
2179                  * Not enough space for the basic request. So need to flush
2180                  * out the remainder and then wait for base + reserved.
2181                  */
2182                 wait_bytes = remain_actual + total_bytes;
2183                 need_wrap = true;
2184         } else if (unlikely(total_bytes > remain_usable)) {
2185                 /*
2186                  * The base request will fit but the reserved space
2187                  * falls off the end. So we don't need an immediate wrap
2188                  * and only need to effectively wait for the reserved
2189                  * size space from the start of ringbuffer.
2190                  */
2191                 wait_bytes = remain_actual + req->reserved_space;
2192         } else {
2193                 /* No wrapping required, just waiting. */
2194                 wait_bytes = total_bytes;
2195         }
2196
2197         if (wait_bytes > ring->space) {
2198                 int ret = wait_for_space(req, wait_bytes);
2199                 if (unlikely(ret))
2200                         return ret;
2201         }
2202
2203         if (unlikely(need_wrap)) {
2204                 GEM_BUG_ON(remain_actual > ring->space);
2205                 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2206
2207                 /* Fill the tail with MI_NOOP */
2208                 memset(ring->vaddr + ring->tail, 0, remain_actual);
2209                 ring->tail = 0;
2210                 ring->space -= remain_actual;
2211         }
2212
2213         ring->space -= bytes;
2214         GEM_BUG_ON(ring->space < 0);
2215         return 0;
2216 }
2217
2218 /* Align the ring tail to a cacheline boundary */
2219 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2220 {
2221         struct intel_ring *ring = req->ring;
2222         int num_dwords =
2223                 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2224         int ret;
2225
2226         if (num_dwords == 0)
2227                 return 0;
2228
2229         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2230         ret = intel_ring_begin(req, num_dwords);
2231         if (ret)
2232                 return ret;
2233
2234         while (num_dwords--)
2235                 intel_ring_emit(ring, MI_NOOP);
2236
2237         intel_ring_advance(ring);
2238
2239         return 0;
2240 }
2241
2242 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2243 {
2244         struct drm_i915_private *dev_priv = request->i915;
2245
2246         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2247
2248        /* Every tail move must follow the sequence below */
2249
2250         /* Disable notification that the ring is IDLE. The GT
2251          * will then assume that it is busy and bring it out of rc6.
2252          */
2253         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2254                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2255
2256         /* Clear the context id. Here be magic! */
2257         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2258
2259         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2260         if (intel_wait_for_register_fw(dev_priv,
2261                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2262                                        GEN6_BSD_SLEEP_INDICATOR,
2263                                        0,
2264                                        50))
2265                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2266
2267         /* Now that the ring is fully powered up, update the tail */
2268         i9xx_submit_request(request);
2269
2270         /* Let the ring send IDLE messages to the GT again,
2271          * and so let it sleep to conserve power when idle.
2272          */
2273         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2274                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2275
2276         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2277 }
2278
2279 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2280 {
2281         struct intel_ring *ring = req->ring;
2282         uint32_t cmd;
2283         int ret;
2284
2285         ret = intel_ring_begin(req, 4);
2286         if (ret)
2287                 return ret;
2288
2289         cmd = MI_FLUSH_DW;
2290         if (INTEL_GEN(req->i915) >= 8)
2291                 cmd += 1;
2292
2293         /* We always require a command barrier so that subsequent
2294          * commands, such as breadcrumb interrupts, are strictly ordered
2295          * wrt the contents of the write cache being flushed to memory
2296          * (and thus being coherent from the CPU).
2297          */
2298         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2299
2300         /*
2301          * Bspec vol 1c.5 - video engine command streamer:
2302          * "If ENABLED, all TLBs will be invalidated once the flush
2303          * operation is complete. This bit is only valid when the
2304          * Post-Sync Operation field is a value of 1h or 3h."
2305          */
2306         if (mode & EMIT_INVALIDATE)
2307                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2308
2309         intel_ring_emit(ring, cmd);
2310         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2311         if (INTEL_GEN(req->i915) >= 8) {
2312                 intel_ring_emit(ring, 0); /* upper addr */
2313                 intel_ring_emit(ring, 0); /* value */
2314         } else  {
2315                 intel_ring_emit(ring, 0);
2316                 intel_ring_emit(ring, MI_NOOP);
2317         }
2318         intel_ring_advance(ring);
2319         return 0;
2320 }
2321
2322 static int
2323 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2324                    u64 offset, u32 len,
2325                    unsigned int dispatch_flags)
2326 {
2327         struct intel_ring *ring = req->ring;
2328         bool ppgtt = USES_PPGTT(req->i915) &&
2329                         !(dispatch_flags & I915_DISPATCH_SECURE);
2330         int ret;
2331
2332         ret = intel_ring_begin(req, 4);
2333         if (ret)
2334                 return ret;
2335
2336         /* FIXME(BDW): Address space and security selectors. */
2337         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2338                         (dispatch_flags & I915_DISPATCH_RS ?
2339                          MI_BATCH_RESOURCE_STREAMER : 0));
2340         intel_ring_emit(ring, lower_32_bits(offset));
2341         intel_ring_emit(ring, upper_32_bits(offset));
2342         intel_ring_emit(ring, MI_NOOP);
2343         intel_ring_advance(ring);
2344
2345         return 0;
2346 }
2347
2348 static int
2349 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2350                   u64 offset, u32 len,
2351                   unsigned int dispatch_flags)
2352 {
2353         struct intel_ring *ring = req->ring;
2354         int ret;
2355
2356         ret = intel_ring_begin(req, 2);
2357         if (ret)
2358                 return ret;
2359
2360         intel_ring_emit(ring,
2361                         MI_BATCH_BUFFER_START |
2362                         (dispatch_flags & I915_DISPATCH_SECURE ?
2363                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2364                         (dispatch_flags & I915_DISPATCH_RS ?
2365                          MI_BATCH_RESOURCE_STREAMER : 0));
2366         /* bit0-7 is the length on GEN6+ */
2367         intel_ring_emit(ring, offset);
2368         intel_ring_advance(ring);
2369
2370         return 0;
2371 }
2372
2373 static int
2374 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2375                    u64 offset, u32 len,
2376                    unsigned int dispatch_flags)
2377 {
2378         struct intel_ring *ring = req->ring;
2379         int ret;
2380
2381         ret = intel_ring_begin(req, 2);
2382         if (ret)
2383                 return ret;
2384
2385         intel_ring_emit(ring,
2386                         MI_BATCH_BUFFER_START |
2387                         (dispatch_flags & I915_DISPATCH_SECURE ?
2388                          0 : MI_BATCH_NON_SECURE_I965));
2389         /* bit0-7 is the length on GEN6+ */
2390         intel_ring_emit(ring, offset);
2391         intel_ring_advance(ring);
2392
2393         return 0;
2394 }
2395
2396 /* Blitter support (SandyBridge+) */
2397
2398 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2399 {
2400         struct intel_ring *ring = req->ring;
2401         uint32_t cmd;
2402         int ret;
2403
2404         ret = intel_ring_begin(req, 4);
2405         if (ret)
2406                 return ret;
2407
2408         cmd = MI_FLUSH_DW;
2409         if (INTEL_GEN(req->i915) >= 8)
2410                 cmd += 1;
2411
2412         /* We always require a command barrier so that subsequent
2413          * commands, such as breadcrumb interrupts, are strictly ordered
2414          * wrt the contents of the write cache being flushed to memory
2415          * (and thus being coherent from the CPU).
2416          */
2417         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2418
2419         /*
2420          * Bspec vol 1c.3 - blitter engine command streamer:
2421          * "If ENABLED, all TLBs will be invalidated once the flush
2422          * operation is complete. This bit is only valid when the
2423          * Post-Sync Operation field is a value of 1h or 3h."
2424          */
2425         if (mode & EMIT_INVALIDATE)
2426                 cmd |= MI_INVALIDATE_TLB;
2427         intel_ring_emit(ring, cmd);
2428         intel_ring_emit(ring,
2429                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2430         if (INTEL_GEN(req->i915) >= 8) {
2431                 intel_ring_emit(ring, 0); /* upper addr */
2432                 intel_ring_emit(ring, 0); /* value */
2433         } else  {
2434                 intel_ring_emit(ring, 0);
2435                 intel_ring_emit(ring, MI_NOOP);
2436         }
2437         intel_ring_advance(ring);
2438
2439         return 0;
2440 }
2441
2442 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2443                                        struct intel_engine_cs *engine)
2444 {
2445         struct drm_i915_gem_object *obj;
2446         int ret, i;
2447
2448         if (!i915.semaphores)
2449                 return;
2450
2451         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2452                 struct i915_vma *vma;
2453
2454                 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2455                 if (IS_ERR(obj))
2456                         goto err;
2457
2458                 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2459                 if (IS_ERR(vma))
2460                         goto err_obj;
2461
2462                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2463                 if (ret)
2464                         goto err_obj;
2465
2466                 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2467                 if (ret)
2468                         goto err_obj;
2469
2470                 dev_priv->semaphore = vma;
2471         }
2472
2473         if (INTEL_GEN(dev_priv) >= 8) {
2474                 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2475
2476                 engine->semaphore.sync_to = gen8_ring_sync_to;
2477                 engine->semaphore.signal = gen8_xcs_signal;
2478
2479                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2480                         u32 ring_offset;
2481
2482                         if (i != engine->id)
2483                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2484                         else
2485                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2486
2487                         engine->semaphore.signal_ggtt[i] = ring_offset;
2488                 }
2489         } else if (INTEL_GEN(dev_priv) >= 6) {
2490                 engine->semaphore.sync_to = gen6_ring_sync_to;
2491                 engine->semaphore.signal = gen6_signal;
2492
2493                 /*
2494                  * The current semaphore is only applied on pre-gen8
2495                  * platform.  And there is no VCS2 ring on the pre-gen8
2496                  * platform. So the semaphore between RCS and VCS2 is
2497                  * initialized as INVALID.  Gen8 will initialize the
2498                  * sema between VCS2 and RCS later.
2499                  */
2500                 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2501                         static const struct {
2502                                 u32 wait_mbox;
2503                                 i915_reg_t mbox_reg;
2504                         } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2505                                 [RCS_HW] = {
2506                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2507                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2508                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2509                                 },
2510                                 [VCS_HW] = {
2511                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2512                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2513                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2514                                 },
2515                                 [BCS_HW] = {
2516                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2517                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2518                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2519                                 },
2520                                 [VECS_HW] = {
2521                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2522                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2523                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2524                                 },
2525                         };
2526                         u32 wait_mbox;
2527                         i915_reg_t mbox_reg;
2528
2529                         if (i == engine->hw_id) {
2530                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2531                                 mbox_reg = GEN6_NOSYNC;
2532                         } else {
2533                                 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2534                                 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2535                         }
2536
2537                         engine->semaphore.mbox.wait[i] = wait_mbox;
2538                         engine->semaphore.mbox.signal[i] = mbox_reg;
2539                 }
2540         }
2541
2542         return;
2543
2544 err_obj:
2545         i915_gem_object_put(obj);
2546 err:
2547         DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2548         i915.semaphores = 0;
2549 }
2550
2551 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2552                                 struct intel_engine_cs *engine)
2553 {
2554         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2555
2556         if (INTEL_GEN(dev_priv) >= 8) {
2557                 engine->irq_enable = gen8_irq_enable;
2558                 engine->irq_disable = gen8_irq_disable;
2559                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2560         } else if (INTEL_GEN(dev_priv) >= 6) {
2561                 engine->irq_enable = gen6_irq_enable;
2562                 engine->irq_disable = gen6_irq_disable;
2563                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2564         } else if (INTEL_GEN(dev_priv) >= 5) {
2565                 engine->irq_enable = gen5_irq_enable;
2566                 engine->irq_disable = gen5_irq_disable;
2567                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2568         } else if (INTEL_GEN(dev_priv) >= 3) {
2569                 engine->irq_enable = i9xx_irq_enable;
2570                 engine->irq_disable = i9xx_irq_disable;
2571         } else {
2572                 engine->irq_enable = i8xx_irq_enable;
2573                 engine->irq_disable = i8xx_irq_disable;
2574         }
2575 }
2576
2577 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2578                                       struct intel_engine_cs *engine)
2579 {
2580         intel_ring_init_irq(dev_priv, engine);
2581         intel_ring_init_semaphores(dev_priv, engine);
2582
2583         engine->init_hw = init_ring_common;
2584         engine->reset_hw = reset_ring_common;
2585
2586         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2587         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2588         if (i915.semaphores) {
2589                 int num_rings;
2590
2591                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2592
2593                 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2594                 if (INTEL_GEN(dev_priv) >= 8) {
2595                         engine->emit_breadcrumb_sz += num_rings * 6;
2596                 } else {
2597                         engine->emit_breadcrumb_sz += num_rings * 3;
2598                         if (num_rings & 1)
2599                                 engine->emit_breadcrumb_sz++;
2600                 }
2601         }
2602         engine->submit_request = i9xx_submit_request;
2603
2604         if (INTEL_GEN(dev_priv) >= 8)
2605                 engine->emit_bb_start = gen8_emit_bb_start;
2606         else if (INTEL_GEN(dev_priv) >= 6)
2607                 engine->emit_bb_start = gen6_emit_bb_start;
2608         else if (INTEL_GEN(dev_priv) >= 4)
2609                 engine->emit_bb_start = i965_emit_bb_start;
2610         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2611                 engine->emit_bb_start = i830_emit_bb_start;
2612         else
2613                 engine->emit_bb_start = i915_emit_bb_start;
2614 }
2615
2616 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2617 {
2618         struct drm_i915_private *dev_priv = engine->i915;
2619         int ret;
2620
2621         intel_ring_default_vfuncs(dev_priv, engine);
2622
2623         if (HAS_L3_DPF(dev_priv))
2624                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2625
2626         if (INTEL_GEN(dev_priv) >= 8) {
2627                 engine->init_context = intel_rcs_ctx_init;
2628                 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2629                 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2630                 engine->emit_flush = gen8_render_ring_flush;
2631                 if (i915.semaphores) {
2632                         int num_rings;
2633
2634                         engine->semaphore.signal = gen8_rcs_signal;
2635
2636                         num_rings =
2637                                 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2638                         engine->emit_breadcrumb_sz += num_rings * 6;
2639                 }
2640         } else if (INTEL_GEN(dev_priv) >= 6) {
2641                 engine->init_context = intel_rcs_ctx_init;
2642                 engine->emit_flush = gen7_render_ring_flush;
2643                 if (IS_GEN6(dev_priv))
2644                         engine->emit_flush = gen6_render_ring_flush;
2645         } else if (IS_GEN5(dev_priv)) {
2646                 engine->emit_flush = gen4_render_ring_flush;
2647         } else {
2648                 if (INTEL_GEN(dev_priv) < 4)
2649                         engine->emit_flush = gen2_render_ring_flush;
2650                 else
2651                         engine->emit_flush = gen4_render_ring_flush;
2652                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2653         }
2654
2655         if (IS_HASWELL(dev_priv))
2656                 engine->emit_bb_start = hsw_emit_bb_start;
2657
2658         engine->init_hw = init_render_ring;
2659         engine->cleanup = render_ring_cleanup;
2660
2661         ret = intel_init_ring_buffer(engine);
2662         if (ret)
2663                 return ret;
2664
2665         if (INTEL_GEN(dev_priv) >= 6) {
2666                 ret = intel_engine_create_scratch(engine, 4096);
2667                 if (ret)
2668                         return ret;
2669         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2670                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2671                 if (ret)
2672                         return ret;
2673         }
2674
2675         return 0;
2676 }
2677
2678 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2679 {
2680         struct drm_i915_private *dev_priv = engine->i915;
2681
2682         intel_ring_default_vfuncs(dev_priv, engine);
2683
2684         if (INTEL_GEN(dev_priv) >= 6) {
2685                 /* gen6 bsd needs a special wa for tail updates */
2686                 if (IS_GEN6(dev_priv))
2687                         engine->submit_request = gen6_bsd_submit_request;
2688                 engine->emit_flush = gen6_bsd_ring_flush;
2689                 if (INTEL_GEN(dev_priv) < 8)
2690                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2691         } else {
2692                 engine->mmio_base = BSD_RING_BASE;
2693                 engine->emit_flush = bsd_ring_flush;
2694                 if (IS_GEN5(dev_priv))
2695                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2696                 else
2697                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2698         }
2699
2700         return intel_init_ring_buffer(engine);
2701 }
2702
2703 /**
2704  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2705  */
2706 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2707 {
2708         struct drm_i915_private *dev_priv = engine->i915;
2709
2710         intel_ring_default_vfuncs(dev_priv, engine);
2711
2712         engine->emit_flush = gen6_bsd_ring_flush;
2713
2714         return intel_init_ring_buffer(engine);
2715 }
2716
2717 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2718 {
2719         struct drm_i915_private *dev_priv = engine->i915;
2720
2721         intel_ring_default_vfuncs(dev_priv, engine);
2722
2723         engine->emit_flush = gen6_ring_flush;
2724         if (INTEL_GEN(dev_priv) < 8)
2725                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2726
2727         return intel_init_ring_buffer(engine);
2728 }
2729
2730 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2731 {
2732         struct drm_i915_private *dev_priv = engine->i915;
2733
2734         intel_ring_default_vfuncs(dev_priv, engine);
2735
2736         engine->emit_flush = gen6_ring_flush;
2737
2738         if (INTEL_GEN(dev_priv) < 8) {
2739                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2740                 engine->irq_enable = hsw_vebox_irq_enable;
2741                 engine->irq_disable = hsw_vebox_irq_disable;
2742         }
2743
2744         return intel_init_ring_buffer(engine);
2745 }