]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53         struct intel_ringbuffer *ringbuf = ring->buffer;
54         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59         struct drm_i915_private *dev_priv = ring->dev->dev_private;
60         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65         struct intel_ringbuffer *ringbuf = ring->buffer;
66         ringbuf->tail &= ringbuf->size - 1;
67         if (intel_ring_stopped(ring))
68                 return;
69         ring->write_tail(ring, ringbuf->tail);
70 }
71
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74                        u32      invalidate_domains,
75                        u32      flush_domains)
76 {
77         u32 cmd;
78         int ret;
79
80         cmd = MI_FLUSH;
81         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82                 cmd |= MI_NO_WRITE_FLUSH;
83
84         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85                 cmd |= MI_READ_FLUSH;
86
87         ret = intel_ring_begin(ring, 2);
88         if (ret)
89                 return ret;
90
91         intel_ring_emit(ring, cmd);
92         intel_ring_emit(ring, MI_NOOP);
93         intel_ring_advance(ring);
94
95         return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100                        u32      invalidate_domains,
101                        u32      flush_domains)
102 {
103         struct drm_device *dev = ring->dev;
104         u32 cmd;
105         int ret;
106
107         /*
108          * read/write caches:
109          *
110          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
112          * also flushed at 2d versus 3d pipeline switches.
113          *
114          * read-only caches:
115          *
116          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117          * MI_READ_FLUSH is set, and is always flushed on 965.
118          *
119          * I915_GEM_DOMAIN_COMMAND may not exist?
120          *
121          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122          * invalidated when MI_EXE_FLUSH is set.
123          *
124          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125          * invalidated with every MI_FLUSH.
126          *
127          * TLBs:
128          *
129          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132          * are flushed at any MI_FLUSH.
133          */
134
135         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137                 cmd &= ~MI_NO_WRITE_FLUSH;
138         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139                 cmd |= MI_EXE_FLUSH;
140
141         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142             (IS_G4X(dev) || IS_GEN5(dev)))
143                 cmd |= MI_INVALIDATE_ISP;
144
145         ret = intel_ring_begin(ring, 2);
146         if (ret)
147                 return ret;
148
149         intel_ring_emit(ring, cmd);
150         intel_ring_emit(ring, MI_NOOP);
151         intel_ring_advance(ring);
152
153         return 0;
154 }
155
156 /**
157  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158  * implementing two workarounds on gen6.  From section 1.4.7.1
159  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160  *
161  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162  * produced by non-pipelined state commands), software needs to first
163  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164  * 0.
165  *
166  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168  *
169  * And the workaround for these two requires this workaround first:
170  *
171  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172  * BEFORE the pipe-control with a post-sync op and no write-cache
173  * flushes.
174  *
175  * And this last workaround is tricky because of the requirements on
176  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177  * volume 2 part 1:
178  *
179  *     "1 of the following must also be set:
180  *      - Render Target Cache Flush Enable ([12] of DW1)
181  *      - Depth Cache Flush Enable ([0] of DW1)
182  *      - Stall at Pixel Scoreboard ([1] of DW1)
183  *      - Depth Stall ([13] of DW1)
184  *      - Post-Sync Operation ([13] of DW1)
185  *      - Notify Enable ([8] of DW1)"
186  *
187  * The cache flushes require the workaround flush that triggered this
188  * one, so we can't use it.  Depth stall would trigger the same.
189  * Post-sync nonzero is what triggered this second workaround, so we
190  * can't use that one either.  Notify enable is IRQs, which aren't
191  * really our business.  That leaves only stall at scoreboard.
192  */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197         int ret;
198
199
200         ret = intel_ring_begin(ring, 6);
201         if (ret)
202                 return ret;
203
204         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
207         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208         intel_ring_emit(ring, 0); /* low dword */
209         intel_ring_emit(ring, 0); /* high dword */
210         intel_ring_emit(ring, MI_NOOP);
211         intel_ring_advance(ring);
212
213         ret = intel_ring_begin(ring, 6);
214         if (ret)
215                 return ret;
216
217         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, 0);
222         intel_ring_emit(ring, MI_NOOP);
223         intel_ring_advance(ring);
224
225         return 0;
226 }
227
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230                          u32 invalidate_domains, u32 flush_domains)
231 {
232         u32 flags = 0;
233         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234         int ret;
235
236         /* Force SNB workarounds for PIPE_CONTROL flushes */
237         ret = intel_emit_post_sync_nonzero_flush(ring);
238         if (ret)
239                 return ret;
240
241         /* Just flush everything.  Experiments have shown that reducing the
242          * number of bits based on the write domains has little performance
243          * impact.
244          */
245         if (flush_domains) {
246                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248                 /*
249                  * Ensure that any following seqno writes only happen
250                  * when the render cache is indeed flushed.
251                  */
252                 flags |= PIPE_CONTROL_CS_STALL;
253         }
254         if (invalidate_domains) {
255                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
256                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261                 /*
262                  * TLB invalidate requires a post-sync write.
263                  */
264                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265         }
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, flags);
273         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274         intel_ring_emit(ring, 0);
275         intel_ring_advance(ring);
276
277         return 0;
278 }
279
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283         int ret;
284
285         ret = intel_ring_begin(ring, 4);
286         if (ret)
287                 return ret;
288
289         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
292         intel_ring_emit(ring, 0);
293         intel_ring_emit(ring, 0);
294         intel_ring_advance(ring);
295
296         return 0;
297 }
298
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301         int ret;
302
303         if (!ring->fbc_dirty)
304                 return 0;
305
306         ret = intel_ring_begin(ring, 6);
307         if (ret)
308                 return ret;
309         /* WaFbcNukeOn3DBlt:ivb/hsw */
310         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311         intel_ring_emit(ring, MSG_FBC_REND_STATE);
312         intel_ring_emit(ring, value);
313         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314         intel_ring_emit(ring, MSG_FBC_REND_STATE);
315         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316         intel_ring_advance(ring);
317
318         ring->fbc_dirty = false;
319         return 0;
320 }
321
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324                        u32 invalidate_domains, u32 flush_domains)
325 {
326         u32 flags = 0;
327         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328         int ret;
329
330         /*
331          * Ensure that any following seqno writes only happen when the render
332          * cache is indeed flushed.
333          *
334          * Workaround: 4th PIPE_CONTROL command (except the ones with only
335          * read-cache invalidate bits set) must have the CS_STALL bit set. We
336          * don't try to be clever and just set it unconditionally.
337          */
338         flags |= PIPE_CONTROL_CS_STALL;
339
340         /* Just flush everything.  Experiments have shown that reducing the
341          * number of bits based on the write domains has little performance
342          * impact.
343          */
344         if (flush_domains) {
345                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347         }
348         if (invalidate_domains) {
349                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
350                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355                 /*
356                  * TLB invalidate requires a post-sync write.
357                  */
358                 flags |= PIPE_CONTROL_QW_WRITE;
359                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360
361                 /* Workaround: we must issue a pipe_control with CS-stall bit
362                  * set before a pipe_control command that has the state cache
363                  * invalidate bit set. */
364                 gen7_render_ring_cs_stall_wa(ring);
365         }
366
367         ret = intel_ring_begin(ring, 4);
368         if (ret)
369                 return ret;
370
371         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372         intel_ring_emit(ring, flags);
373         intel_ring_emit(ring, scratch_addr);
374         intel_ring_emit(ring, 0);
375         intel_ring_advance(ring);
376
377         if (!invalidate_domains && flush_domains)
378                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
379
380         return 0;
381 }
382
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385                        u32 invalidate_domains, u32 flush_domains)
386 {
387         u32 flags = 0;
388         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389         int ret;
390
391         flags |= PIPE_CONTROL_CS_STALL;
392
393         if (flush_domains) {
394                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
396         }
397         if (invalidate_domains) {
398                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
399                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404                 flags |= PIPE_CONTROL_QW_WRITE;
405                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
406         }
407
408         ret = intel_ring_begin(ring, 6);
409         if (ret)
410                 return ret;
411
412         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413         intel_ring_emit(ring, flags);
414         intel_ring_emit(ring, scratch_addr);
415         intel_ring_emit(ring, 0);
416         intel_ring_emit(ring, 0);
417         intel_ring_emit(ring, 0);
418         intel_ring_advance(ring);
419
420         return 0;
421
422 }
423
424 static void ring_write_tail(struct intel_engine_cs *ring,
425                             u32 value)
426 {
427         struct drm_i915_private *dev_priv = ring->dev->dev_private;
428         I915_WRITE_TAIL(ring, value);
429 }
430
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
432 {
433         struct drm_i915_private *dev_priv = ring->dev->dev_private;
434         u64 acthd;
435
436         if (INTEL_INFO(ring->dev)->gen >= 8)
437                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438                                          RING_ACTHD_UDW(ring->mmio_base));
439         else if (INTEL_INFO(ring->dev)->gen >= 4)
440                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441         else
442                 acthd = I915_READ(ACTHD);
443
444         return acthd;
445 }
446
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
448 {
449         struct drm_i915_private *dev_priv = ring->dev->dev_private;
450         u32 addr;
451
452         addr = dev_priv->status_page_dmah->busaddr;
453         if (INTEL_INFO(ring->dev)->gen >= 4)
454                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455         I915_WRITE(HWS_PGA, addr);
456 }
457
458 static bool stop_ring(struct intel_engine_cs *ring)
459 {
460         struct drm_i915_private *dev_priv = to_i915(ring->dev);
461
462         if (!IS_GEN2(ring->dev)) {
463                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466                         return false;
467                 }
468         }
469
470         I915_WRITE_CTL(ring, 0);
471         I915_WRITE_HEAD(ring, 0);
472         ring->write_tail(ring, 0);
473
474         if (!IS_GEN2(ring->dev)) {
475                 (void)I915_READ_CTL(ring);
476                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
477         }
478
479         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
480 }
481
482 static int init_ring_common(struct intel_engine_cs *ring)
483 {
484         struct drm_device *dev = ring->dev;
485         struct drm_i915_private *dev_priv = dev->dev_private;
486         struct intel_ringbuffer *ringbuf = ring->buffer;
487         struct drm_i915_gem_object *obj = ringbuf->obj;
488         int ret = 0;
489
490         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
491
492         if (!stop_ring(ring)) {
493                 /* G45 ring initialization often fails to reset head to zero */
494                 DRM_DEBUG_KMS("%s head not reset to zero "
495                               "ctl %08x head %08x tail %08x start %08x\n",
496                               ring->name,
497                               I915_READ_CTL(ring),
498                               I915_READ_HEAD(ring),
499                               I915_READ_TAIL(ring),
500                               I915_READ_START(ring));
501
502                 if (!stop_ring(ring)) {
503                         DRM_ERROR("failed to set %s head to zero "
504                                   "ctl %08x head %08x tail %08x start %08x\n",
505                                   ring->name,
506                                   I915_READ_CTL(ring),
507                                   I915_READ_HEAD(ring),
508                                   I915_READ_TAIL(ring),
509                                   I915_READ_START(ring));
510                         ret = -EIO;
511                         goto out;
512                 }
513         }
514
515         if (I915_NEED_GFX_HWS(dev))
516                 intel_ring_setup_status_page(ring);
517         else
518                 ring_setup_phys_status_page(ring);
519
520         /* Initialize the ring. This must happen _after_ we've cleared the ring
521          * registers with the above sequence (the readback of the HEAD registers
522          * also enforces ordering), otherwise the hw might lose the new ring
523          * register values. */
524         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
525         I915_WRITE_CTL(ring,
526                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
527                         | RING_VALID);
528
529         /* If the head is still not zero, the ring is dead */
530         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
531                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
532                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
533                 DRM_ERROR("%s initialization failed "
534                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
535                           ring->name,
536                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
537                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
538                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
539                 ret = -EIO;
540                 goto out;
541         }
542
543         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
544                 i915_kernel_lost_context(ring->dev);
545         else {
546                 ringbuf->head = I915_READ_HEAD(ring);
547                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
548                 ringbuf->space = ring_space(ring);
549                 ringbuf->last_retired_head = -1;
550         }
551
552         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
553
554 out:
555         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
556
557         return ret;
558 }
559
560 static int
561 init_pipe_control(struct intel_engine_cs *ring)
562 {
563         int ret;
564
565         if (ring->scratch.obj)
566                 return 0;
567
568         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
569         if (ring->scratch.obj == NULL) {
570                 DRM_ERROR("Failed to allocate seqno page\n");
571                 ret = -ENOMEM;
572                 goto err;
573         }
574
575         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
576         if (ret)
577                 goto err_unref;
578
579         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
580         if (ret)
581                 goto err_unref;
582
583         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
584         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
585         if (ring->scratch.cpu_page == NULL) {
586                 ret = -ENOMEM;
587                 goto err_unpin;
588         }
589
590         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
591                          ring->name, ring->scratch.gtt_offset);
592         return 0;
593
594 err_unpin:
595         i915_gem_object_ggtt_unpin(ring->scratch.obj);
596 err_unref:
597         drm_gem_object_unreference(&ring->scratch.obj->base);
598 err:
599         return ret;
600 }
601
602 static int init_render_ring(struct intel_engine_cs *ring)
603 {
604         struct drm_device *dev = ring->dev;
605         struct drm_i915_private *dev_priv = dev->dev_private;
606         int ret = init_ring_common(ring);
607
608         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
609         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
610                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
611
612         /* We need to disable the AsyncFlip performance optimisations in order
613          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
614          * programmed to '1' on all products.
615          *
616          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
617          */
618         if (INTEL_INFO(dev)->gen >= 6)
619                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
620
621         /* Required for the hardware to program scanline values for waiting */
622         /* WaEnableFlushTlbInvalidationMode:snb */
623         if (INTEL_INFO(dev)->gen == 6)
624                 I915_WRITE(GFX_MODE,
625                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
626
627         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
628         if (IS_GEN7(dev))
629                 I915_WRITE(GFX_MODE_GEN7,
630                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
631                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
632
633         if (INTEL_INFO(dev)->gen >= 5) {
634                 ret = init_pipe_control(ring);
635                 if (ret)
636                         return ret;
637         }
638
639         if (IS_GEN6(dev)) {
640                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
641                  * "If this bit is set, STCunit will have LRA as replacement
642                  *  policy. [...] This bit must be reset.  LRA replacement
643                  *  policy is not supported."
644                  */
645                 I915_WRITE(CACHE_MODE_0,
646                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
647         }
648
649         if (INTEL_INFO(dev)->gen >= 6)
650                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
651
652         if (HAS_L3_DPF(dev))
653                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
654
655         return ret;
656 }
657
658 static void render_ring_cleanup(struct intel_engine_cs *ring)
659 {
660         struct drm_device *dev = ring->dev;
661
662         if (ring->scratch.obj == NULL)
663                 return;
664
665         if (INTEL_INFO(dev)->gen >= 5) {
666                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
667                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
668         }
669
670         drm_gem_object_unreference(&ring->scratch.obj->base);
671         ring->scratch.obj = NULL;
672 }
673
674 static int gen6_signal(struct intel_engine_cs *signaller,
675                        unsigned int num_dwords)
676 {
677         struct drm_device *dev = signaller->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         struct intel_engine_cs *useless;
680         int i, ret;
681
682         /* NB: In order to be able to do semaphore MBOX updates for varying
683          * number of rings, it's easiest if we round up each individual update
684          * to a multiple of 2 (since ring updates must always be a multiple of
685          * 2) even though the actual update only requires 3 dwords.
686          */
687 #define MBOX_UPDATE_DWORDS 4
688         if (i915_semaphore_is_enabled(dev))
689                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
690         else
691                 return intel_ring_begin(signaller, num_dwords);
692
693         ret = intel_ring_begin(signaller, num_dwords);
694         if (ret)
695                 return ret;
696 #undef MBOX_UPDATE_DWORDS
697
698         for_each_ring(useless, dev_priv, i) {
699                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
700                 if (mbox_reg != GEN6_NOSYNC) {
701                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
702                         intel_ring_emit(signaller, mbox_reg);
703                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
704                         intel_ring_emit(signaller, MI_NOOP);
705                 } else {
706                         intel_ring_emit(signaller, MI_NOOP);
707                         intel_ring_emit(signaller, MI_NOOP);
708                         intel_ring_emit(signaller, MI_NOOP);
709                         intel_ring_emit(signaller, MI_NOOP);
710                 }
711         }
712
713         return 0;
714 }
715
716 /**
717  * gen6_add_request - Update the semaphore mailbox registers
718  * 
719  * @ring - ring that is adding a request
720  * @seqno - return seqno stuck into the ring
721  *
722  * Update the mailbox registers in the *other* rings with the current seqno.
723  * This acts like a signal in the canonical semaphore.
724  */
725 static int
726 gen6_add_request(struct intel_engine_cs *ring)
727 {
728         int ret;
729
730         ret = ring->semaphore.signal(ring, 4);
731         if (ret)
732                 return ret;
733
734         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
735         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
736         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
737         intel_ring_emit(ring, MI_USER_INTERRUPT);
738         __intel_ring_advance(ring);
739
740         return 0;
741 }
742
743 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
744                                               u32 seqno)
745 {
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         return dev_priv->last_seqno < seqno;
748 }
749
750 /**
751  * intel_ring_sync - sync the waiter to the signaller on seqno
752  *
753  * @waiter - ring that is waiting
754  * @signaller - ring which has, or will signal
755  * @seqno - seqno which the waiter will block on
756  */
757 static int
758 gen6_ring_sync(struct intel_engine_cs *waiter,
759                struct intel_engine_cs *signaller,
760                u32 seqno)
761 {
762         u32 dw1 = MI_SEMAPHORE_MBOX |
763                   MI_SEMAPHORE_COMPARE |
764                   MI_SEMAPHORE_REGISTER;
765         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
766         int ret;
767
768         /* Throughout all of the GEM code, seqno passed implies our current
769          * seqno is >= the last seqno executed. However for hardware the
770          * comparison is strictly greater than.
771          */
772         seqno -= 1;
773
774         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
775
776         ret = intel_ring_begin(waiter, 4);
777         if (ret)
778                 return ret;
779
780         /* If seqno wrap happened, omit the wait with no-ops */
781         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
782                 intel_ring_emit(waiter, dw1 | wait_mbox);
783                 intel_ring_emit(waiter, seqno);
784                 intel_ring_emit(waiter, 0);
785                 intel_ring_emit(waiter, MI_NOOP);
786         } else {
787                 intel_ring_emit(waiter, MI_NOOP);
788                 intel_ring_emit(waiter, MI_NOOP);
789                 intel_ring_emit(waiter, MI_NOOP);
790                 intel_ring_emit(waiter, MI_NOOP);
791         }
792         intel_ring_advance(waiter);
793
794         return 0;
795 }
796
797 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
798 do {                                                                    \
799         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
800                  PIPE_CONTROL_DEPTH_STALL);                             \
801         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
802         intel_ring_emit(ring__, 0);                                                     \
803         intel_ring_emit(ring__, 0);                                                     \
804 } while (0)
805
806 static int
807 pc_render_add_request(struct intel_engine_cs *ring)
808 {
809         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
810         int ret;
811
812         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
813          * incoherent with writes to memory, i.e. completely fubar,
814          * so we need to use PIPE_NOTIFY instead.
815          *
816          * However, we also need to workaround the qword write
817          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
818          * memory before requesting an interrupt.
819          */
820         ret = intel_ring_begin(ring, 32);
821         if (ret)
822                 return ret;
823
824         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
825                         PIPE_CONTROL_WRITE_FLUSH |
826                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
827         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
828         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
829         intel_ring_emit(ring, 0);
830         PIPE_CONTROL_FLUSH(ring, scratch_addr);
831         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
832         PIPE_CONTROL_FLUSH(ring, scratch_addr);
833         scratch_addr += 2 * CACHELINE_BYTES;
834         PIPE_CONTROL_FLUSH(ring, scratch_addr);
835         scratch_addr += 2 * CACHELINE_BYTES;
836         PIPE_CONTROL_FLUSH(ring, scratch_addr);
837         scratch_addr += 2 * CACHELINE_BYTES;
838         PIPE_CONTROL_FLUSH(ring, scratch_addr);
839         scratch_addr += 2 * CACHELINE_BYTES;
840         PIPE_CONTROL_FLUSH(ring, scratch_addr);
841
842         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
843                         PIPE_CONTROL_WRITE_FLUSH |
844                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
845                         PIPE_CONTROL_NOTIFY);
846         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
847         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
848         intel_ring_emit(ring, 0);
849         __intel_ring_advance(ring);
850
851         return 0;
852 }
853
854 static u32
855 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
856 {
857         /* Workaround to force correct ordering between irq and seqno writes on
858          * ivb (and maybe also on snb) by reading from a CS register (like
859          * ACTHD) before reading the status page. */
860         if (!lazy_coherency) {
861                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
862                 POSTING_READ(RING_ACTHD(ring->mmio_base));
863         }
864
865         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
866 }
867
868 static u32
869 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
870 {
871         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
872 }
873
874 static void
875 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
876 {
877         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
878 }
879
880 static u32
881 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
882 {
883         return ring->scratch.cpu_page[0];
884 }
885
886 static void
887 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
888 {
889         ring->scratch.cpu_page[0] = seqno;
890 }
891
892 static bool
893 gen5_ring_get_irq(struct intel_engine_cs *ring)
894 {
895         struct drm_device *dev = ring->dev;
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         unsigned long flags;
898
899         if (!dev->irq_enabled)
900                 return false;
901
902         spin_lock_irqsave(&dev_priv->irq_lock, flags);
903         if (ring->irq_refcount++ == 0)
904                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
905         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
906
907         return true;
908 }
909
910 static void
911 gen5_ring_put_irq(struct intel_engine_cs *ring)
912 {
913         struct drm_device *dev = ring->dev;
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         unsigned long flags;
916
917         spin_lock_irqsave(&dev_priv->irq_lock, flags);
918         if (--ring->irq_refcount == 0)
919                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
920         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
921 }
922
923 static bool
924 i9xx_ring_get_irq(struct intel_engine_cs *ring)
925 {
926         struct drm_device *dev = ring->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         unsigned long flags;
929
930         if (!dev->irq_enabled)
931                 return false;
932
933         spin_lock_irqsave(&dev_priv->irq_lock, flags);
934         if (ring->irq_refcount++ == 0) {
935                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
936                 I915_WRITE(IMR, dev_priv->irq_mask);
937                 POSTING_READ(IMR);
938         }
939         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
940
941         return true;
942 }
943
944 static void
945 i9xx_ring_put_irq(struct intel_engine_cs *ring)
946 {
947         struct drm_device *dev = ring->dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         unsigned long flags;
950
951         spin_lock_irqsave(&dev_priv->irq_lock, flags);
952         if (--ring->irq_refcount == 0) {
953                 dev_priv->irq_mask |= ring->irq_enable_mask;
954                 I915_WRITE(IMR, dev_priv->irq_mask);
955                 POSTING_READ(IMR);
956         }
957         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
958 }
959
960 static bool
961 i8xx_ring_get_irq(struct intel_engine_cs *ring)
962 {
963         struct drm_device *dev = ring->dev;
964         struct drm_i915_private *dev_priv = dev->dev_private;
965         unsigned long flags;
966
967         if (!dev->irq_enabled)
968                 return false;
969
970         spin_lock_irqsave(&dev_priv->irq_lock, flags);
971         if (ring->irq_refcount++ == 0) {
972                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
973                 I915_WRITE16(IMR, dev_priv->irq_mask);
974                 POSTING_READ16(IMR);
975         }
976         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
977
978         return true;
979 }
980
981 static void
982 i8xx_ring_put_irq(struct intel_engine_cs *ring)
983 {
984         struct drm_device *dev = ring->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         unsigned long flags;
987
988         spin_lock_irqsave(&dev_priv->irq_lock, flags);
989         if (--ring->irq_refcount == 0) {
990                 dev_priv->irq_mask |= ring->irq_enable_mask;
991                 I915_WRITE16(IMR, dev_priv->irq_mask);
992                 POSTING_READ16(IMR);
993         }
994         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
995 }
996
997 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
998 {
999         struct drm_device *dev = ring->dev;
1000         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1001         u32 mmio = 0;
1002
1003         /* The ring status page addresses are no longer next to the rest of
1004          * the ring registers as of gen7.
1005          */
1006         if (IS_GEN7(dev)) {
1007                 switch (ring->id) {
1008                 case RCS:
1009                         mmio = RENDER_HWS_PGA_GEN7;
1010                         break;
1011                 case BCS:
1012                         mmio = BLT_HWS_PGA_GEN7;
1013                         break;
1014                 /*
1015                  * VCS2 actually doesn't exist on Gen7. Only shut up
1016                  * gcc switch check warning
1017                  */
1018                 case VCS2:
1019                 case VCS:
1020                         mmio = BSD_HWS_PGA_GEN7;
1021                         break;
1022                 case VECS:
1023                         mmio = VEBOX_HWS_PGA_GEN7;
1024                         break;
1025                 }
1026         } else if (IS_GEN6(ring->dev)) {
1027                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1028         } else {
1029                 /* XXX: gen8 returns to sanity */
1030                 mmio = RING_HWS_PGA(ring->mmio_base);
1031         }
1032
1033         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1034         POSTING_READ(mmio);
1035
1036         /*
1037          * Flush the TLB for this page
1038          *
1039          * FIXME: These two bits have disappeared on gen8, so a question
1040          * arises: do we still need this and if so how should we go about
1041          * invalidating the TLB?
1042          */
1043         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1044                 u32 reg = RING_INSTPM(ring->mmio_base);
1045
1046                 /* ring should be idle before issuing a sync flush*/
1047                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1048
1049                 I915_WRITE(reg,
1050                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1051                                               INSTPM_SYNC_FLUSH));
1052                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1053                              1000))
1054                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1055                                   ring->name);
1056         }
1057 }
1058
1059 static int
1060 bsd_ring_flush(struct intel_engine_cs *ring,
1061                u32     invalidate_domains,
1062                u32     flush_domains)
1063 {
1064         int ret;
1065
1066         ret = intel_ring_begin(ring, 2);
1067         if (ret)
1068                 return ret;
1069
1070         intel_ring_emit(ring, MI_FLUSH);
1071         intel_ring_emit(ring, MI_NOOP);
1072         intel_ring_advance(ring);
1073         return 0;
1074 }
1075
1076 static int
1077 i9xx_add_request(struct intel_engine_cs *ring)
1078 {
1079         int ret;
1080
1081         ret = intel_ring_begin(ring, 4);
1082         if (ret)
1083                 return ret;
1084
1085         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1086         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1087         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1088         intel_ring_emit(ring, MI_USER_INTERRUPT);
1089         __intel_ring_advance(ring);
1090
1091         return 0;
1092 }
1093
1094 static bool
1095 gen6_ring_get_irq(struct intel_engine_cs *ring)
1096 {
1097         struct drm_device *dev = ring->dev;
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         unsigned long flags;
1100
1101         if (!dev->irq_enabled)
1102                return false;
1103
1104         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1105         if (ring->irq_refcount++ == 0) {
1106                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1107                         I915_WRITE_IMR(ring,
1108                                        ~(ring->irq_enable_mask |
1109                                          GT_PARITY_ERROR(dev)));
1110                 else
1111                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1112                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1113         }
1114         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1115
1116         return true;
1117 }
1118
1119 static void
1120 gen6_ring_put_irq(struct intel_engine_cs *ring)
1121 {
1122         struct drm_device *dev = ring->dev;
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         unsigned long flags;
1125
1126         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1127         if (--ring->irq_refcount == 0) {
1128                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1129                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1130                 else
1131                         I915_WRITE_IMR(ring, ~0);
1132                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1133         }
1134         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1135 }
1136
1137 static bool
1138 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1139 {
1140         struct drm_device *dev = ring->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         unsigned long flags;
1143
1144         if (!dev->irq_enabled)
1145                 return false;
1146
1147         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1148         if (ring->irq_refcount++ == 0) {
1149                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1150                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1151         }
1152         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1153
1154         return true;
1155 }
1156
1157 static void
1158 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1159 {
1160         struct drm_device *dev = ring->dev;
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         unsigned long flags;
1163
1164         if (!dev->irq_enabled)
1165                 return;
1166
1167         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1168         if (--ring->irq_refcount == 0) {
1169                 I915_WRITE_IMR(ring, ~0);
1170                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1171         }
1172         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1173 }
1174
1175 static bool
1176 gen8_ring_get_irq(struct intel_engine_cs *ring)
1177 {
1178         struct drm_device *dev = ring->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         unsigned long flags;
1181
1182         if (!dev->irq_enabled)
1183                 return false;
1184
1185         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1186         if (ring->irq_refcount++ == 0) {
1187                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1188                         I915_WRITE_IMR(ring,
1189                                        ~(ring->irq_enable_mask |
1190                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1191                 } else {
1192                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1193                 }
1194                 POSTING_READ(RING_IMR(ring->mmio_base));
1195         }
1196         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1197
1198         return true;
1199 }
1200
1201 static void
1202 gen8_ring_put_irq(struct intel_engine_cs *ring)
1203 {
1204         struct drm_device *dev = ring->dev;
1205         struct drm_i915_private *dev_priv = dev->dev_private;
1206         unsigned long flags;
1207
1208         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1209         if (--ring->irq_refcount == 0) {
1210                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1211                         I915_WRITE_IMR(ring,
1212                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1213                 } else {
1214                         I915_WRITE_IMR(ring, ~0);
1215                 }
1216                 POSTING_READ(RING_IMR(ring->mmio_base));
1217         }
1218         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1219 }
1220
1221 static int
1222 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1223                          u64 offset, u32 length,
1224                          unsigned flags)
1225 {
1226         int ret;
1227
1228         ret = intel_ring_begin(ring, 2);
1229         if (ret)
1230                 return ret;
1231
1232         intel_ring_emit(ring,
1233                         MI_BATCH_BUFFER_START |
1234                         MI_BATCH_GTT |
1235                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1236         intel_ring_emit(ring, offset);
1237         intel_ring_advance(ring);
1238
1239         return 0;
1240 }
1241
1242 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1243 #define I830_BATCH_LIMIT (256*1024)
1244 static int
1245 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1246                                 u64 offset, u32 len,
1247                                 unsigned flags)
1248 {
1249         int ret;
1250
1251         if (flags & I915_DISPATCH_PINNED) {
1252                 ret = intel_ring_begin(ring, 4);
1253                 if (ret)
1254                         return ret;
1255
1256                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1257                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1258                 intel_ring_emit(ring, offset + len - 8);
1259                 intel_ring_emit(ring, MI_NOOP);
1260                 intel_ring_advance(ring);
1261         } else {
1262                 u32 cs_offset = ring->scratch.gtt_offset;
1263
1264                 if (len > I830_BATCH_LIMIT)
1265                         return -ENOSPC;
1266
1267                 ret = intel_ring_begin(ring, 9+3);
1268                 if (ret)
1269                         return ret;
1270                 /* Blit the batch (which has now all relocs applied) to the stable batch
1271                  * scratch bo area (so that the CS never stumbles over its tlb
1272                  * invalidation bug) ... */
1273                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1274                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1275                                 XY_SRC_COPY_BLT_WRITE_RGB);
1276                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1277                 intel_ring_emit(ring, 0);
1278                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1279                 intel_ring_emit(ring, cs_offset);
1280                 intel_ring_emit(ring, 0);
1281                 intel_ring_emit(ring, 4096);
1282                 intel_ring_emit(ring, offset);
1283                 intel_ring_emit(ring, MI_FLUSH);
1284
1285                 /* ... and execute it. */
1286                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1287                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1288                 intel_ring_emit(ring, cs_offset + len - 8);
1289                 intel_ring_advance(ring);
1290         }
1291
1292         return 0;
1293 }
1294
1295 static int
1296 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1297                          u64 offset, u32 len,
1298                          unsigned flags)
1299 {
1300         int ret;
1301
1302         ret = intel_ring_begin(ring, 2);
1303         if (ret)
1304                 return ret;
1305
1306         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1307         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1308         intel_ring_advance(ring);
1309
1310         return 0;
1311 }
1312
1313 static void cleanup_status_page(struct intel_engine_cs *ring)
1314 {
1315         struct drm_i915_gem_object *obj;
1316
1317         obj = ring->status_page.obj;
1318         if (obj == NULL)
1319                 return;
1320
1321         kunmap(sg_page(obj->pages->sgl));
1322         i915_gem_object_ggtt_unpin(obj);
1323         drm_gem_object_unreference(&obj->base);
1324         ring->status_page.obj = NULL;
1325 }
1326
1327 static int init_status_page(struct intel_engine_cs *ring)
1328 {
1329         struct drm_i915_gem_object *obj;
1330
1331         if ((obj = ring->status_page.obj) == NULL) {
1332                 int ret;
1333
1334                 obj = i915_gem_alloc_object(ring->dev, 4096);
1335                 if (obj == NULL) {
1336                         DRM_ERROR("Failed to allocate status page\n");
1337                         return -ENOMEM;
1338                 }
1339
1340                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1341                 if (ret)
1342                         goto err_unref;
1343
1344                 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1345                 if (ret) {
1346 err_unref:
1347                         drm_gem_object_unreference(&obj->base);
1348                         return ret;
1349                 }
1350
1351                 ring->status_page.obj = obj;
1352         }
1353
1354         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1355         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1356         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1357
1358         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1359                         ring->name, ring->status_page.gfx_addr);
1360
1361         return 0;
1362 }
1363
1364 static int init_phys_status_page(struct intel_engine_cs *ring)
1365 {
1366         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1367
1368         if (!dev_priv->status_page_dmah) {
1369                 dev_priv->status_page_dmah =
1370                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1371                 if (!dev_priv->status_page_dmah)
1372                         return -ENOMEM;
1373         }
1374
1375         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1376         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1377
1378         return 0;
1379 }
1380
1381 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1382 {
1383         struct drm_device *dev = ring->dev;
1384         struct drm_i915_private *dev_priv = to_i915(dev);
1385         struct intel_ringbuffer *ringbuf = ring->buffer;
1386         struct drm_i915_gem_object *obj;
1387         int ret;
1388
1389         if (intel_ring_initialized(ring))
1390                 return 0;
1391
1392         obj = NULL;
1393         if (!HAS_LLC(dev))
1394                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1395         if (obj == NULL)
1396                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1397         if (obj == NULL)
1398                 return -ENOMEM;
1399
1400         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1401         if (ret)
1402                 goto err_unref;
1403
1404         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1405         if (ret)
1406                 goto err_unpin;
1407
1408         ringbuf->virtual_start =
1409                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1410                                 ringbuf->size);
1411         if (ringbuf->virtual_start == NULL) {
1412                 ret = -EINVAL;
1413                 goto err_unpin;
1414         }
1415
1416         ringbuf->obj = obj;
1417         return 0;
1418
1419 err_unpin:
1420         i915_gem_object_ggtt_unpin(obj);
1421 err_unref:
1422         drm_gem_object_unreference(&obj->base);
1423         return ret;
1424 }
1425
1426 static int intel_init_ring_buffer(struct drm_device *dev,
1427                                   struct intel_engine_cs *ring)
1428 {
1429         struct intel_ringbuffer *ringbuf = ring->buffer;
1430         int ret;
1431
1432         if (ringbuf == NULL) {
1433                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1434                 if (!ringbuf)
1435                         return -ENOMEM;
1436                 ring->buffer = ringbuf;
1437         }
1438
1439         ring->dev = dev;
1440         INIT_LIST_HEAD(&ring->active_list);
1441         INIT_LIST_HEAD(&ring->request_list);
1442         ringbuf->size = 32 * PAGE_SIZE;
1443         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1444
1445         init_waitqueue_head(&ring->irq_queue);
1446
1447         if (I915_NEED_GFX_HWS(dev)) {
1448                 ret = init_status_page(ring);
1449                 if (ret)
1450                         goto error;
1451         } else {
1452                 BUG_ON(ring->id != RCS);
1453                 ret = init_phys_status_page(ring);
1454                 if (ret)
1455                         goto error;
1456         }
1457
1458         ret = allocate_ring_buffer(ring);
1459         if (ret) {
1460                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1461                 goto error;
1462         }
1463
1464         /* Workaround an erratum on the i830 which causes a hang if
1465          * the TAIL pointer points to within the last 2 cachelines
1466          * of the buffer.
1467          */
1468         ringbuf->effective_size = ringbuf->size;
1469         if (IS_I830(dev) || IS_845G(dev))
1470                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1471
1472         ret = i915_cmd_parser_init_ring(ring);
1473         if (ret)
1474                 goto error;
1475
1476         ret = ring->init(ring);
1477         if (ret)
1478                 goto error;
1479
1480         return 0;
1481
1482 error:
1483         kfree(ringbuf);
1484         ring->buffer = NULL;
1485         return ret;
1486 }
1487
1488 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1489 {
1490         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1491         struct intel_ringbuffer *ringbuf = ring->buffer;
1492
1493         if (!intel_ring_initialized(ring))
1494                 return;
1495
1496         intel_stop_ring_buffer(ring);
1497         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1498
1499         iounmap(ringbuf->virtual_start);
1500
1501         i915_gem_object_ggtt_unpin(ringbuf->obj);
1502         drm_gem_object_unreference(&ringbuf->obj->base);
1503         ringbuf->obj = NULL;
1504         ring->preallocated_lazy_request = NULL;
1505         ring->outstanding_lazy_seqno = 0;
1506
1507         if (ring->cleanup)
1508                 ring->cleanup(ring);
1509
1510         cleanup_status_page(ring);
1511
1512         i915_cmd_parser_fini_ring(ring);
1513
1514         kfree(ringbuf);
1515         ring->buffer = NULL;
1516 }
1517
1518 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1519 {
1520         struct intel_ringbuffer *ringbuf = ring->buffer;
1521         struct drm_i915_gem_request *request;
1522         u32 seqno = 0;
1523         int ret;
1524
1525         if (ringbuf->last_retired_head != -1) {
1526                 ringbuf->head = ringbuf->last_retired_head;
1527                 ringbuf->last_retired_head = -1;
1528
1529                 ringbuf->space = ring_space(ring);
1530                 if (ringbuf->space >= n)
1531                         return 0;
1532         }
1533
1534         list_for_each_entry(request, &ring->request_list, list) {
1535                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1536                         seqno = request->seqno;
1537                         break;
1538                 }
1539         }
1540
1541         if (seqno == 0)
1542                 return -ENOSPC;
1543
1544         ret = i915_wait_seqno(ring, seqno);
1545         if (ret)
1546                 return ret;
1547
1548         i915_gem_retire_requests_ring(ring);
1549         ringbuf->head = ringbuf->last_retired_head;
1550         ringbuf->last_retired_head = -1;
1551
1552         ringbuf->space = ring_space(ring);
1553         return 0;
1554 }
1555
1556 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1557 {
1558         struct drm_device *dev = ring->dev;
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         struct intel_ringbuffer *ringbuf = ring->buffer;
1561         unsigned long end;
1562         int ret;
1563
1564         ret = intel_ring_wait_request(ring, n);
1565         if (ret != -ENOSPC)
1566                 return ret;
1567
1568         /* force the tail write in case we have been skipping them */
1569         __intel_ring_advance(ring);
1570
1571         /* With GEM the hangcheck timer should kick us out of the loop,
1572          * leaving it early runs the risk of corrupting GEM state (due
1573          * to running on almost untested codepaths). But on resume
1574          * timers don't work yet, so prevent a complete hang in that
1575          * case by choosing an insanely large timeout. */
1576         end = jiffies + 60 * HZ;
1577
1578         trace_i915_ring_wait_begin(ring);
1579         do {
1580                 ringbuf->head = I915_READ_HEAD(ring);
1581                 ringbuf->space = ring_space(ring);
1582                 if (ringbuf->space >= n) {
1583                         ret = 0;
1584                         break;
1585                 }
1586
1587                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1588                     dev->primary->master) {
1589                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1590                         if (master_priv->sarea_priv)
1591                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1592                 }
1593
1594                 msleep(1);
1595
1596                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1597                         ret = -ERESTARTSYS;
1598                         break;
1599                 }
1600
1601                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1602                                            dev_priv->mm.interruptible);
1603                 if (ret)
1604                         break;
1605
1606                 if (time_after(jiffies, end)) {
1607                         ret = -EBUSY;
1608                         break;
1609                 }
1610         } while (1);
1611         trace_i915_ring_wait_end(ring);
1612         return ret;
1613 }
1614
1615 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1616 {
1617         uint32_t __iomem *virt;
1618         struct intel_ringbuffer *ringbuf = ring->buffer;
1619         int rem = ringbuf->size - ringbuf->tail;
1620
1621         if (ringbuf->space < rem) {
1622                 int ret = ring_wait_for_space(ring, rem);
1623                 if (ret)
1624                         return ret;
1625         }
1626
1627         virt = ringbuf->virtual_start + ringbuf->tail;
1628         rem /= 4;
1629         while (rem--)
1630                 iowrite32(MI_NOOP, virt++);
1631
1632         ringbuf->tail = 0;
1633         ringbuf->space = ring_space(ring);
1634
1635         return 0;
1636 }
1637
1638 int intel_ring_idle(struct intel_engine_cs *ring)
1639 {
1640         u32 seqno;
1641         int ret;
1642
1643         /* We need to add any requests required to flush the objects and ring */
1644         if (ring->outstanding_lazy_seqno) {
1645                 ret = i915_add_request(ring, NULL);
1646                 if (ret)
1647                         return ret;
1648         }
1649
1650         /* Wait upon the last request to be completed */
1651         if (list_empty(&ring->request_list))
1652                 return 0;
1653
1654         seqno = list_entry(ring->request_list.prev,
1655                            struct drm_i915_gem_request,
1656                            list)->seqno;
1657
1658         return i915_wait_seqno(ring, seqno);
1659 }
1660
1661 static int
1662 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1663 {
1664         if (ring->outstanding_lazy_seqno)
1665                 return 0;
1666
1667         if (ring->preallocated_lazy_request == NULL) {
1668                 struct drm_i915_gem_request *request;
1669
1670                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1671                 if (request == NULL)
1672                         return -ENOMEM;
1673
1674                 ring->preallocated_lazy_request = request;
1675         }
1676
1677         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1678 }
1679
1680 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1681                                 int bytes)
1682 {
1683         struct intel_ringbuffer *ringbuf = ring->buffer;
1684         int ret;
1685
1686         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1687                 ret = intel_wrap_ring_buffer(ring);
1688                 if (unlikely(ret))
1689                         return ret;
1690         }
1691
1692         if (unlikely(ringbuf->space < bytes)) {
1693                 ret = ring_wait_for_space(ring, bytes);
1694                 if (unlikely(ret))
1695                         return ret;
1696         }
1697
1698         return 0;
1699 }
1700
1701 int intel_ring_begin(struct intel_engine_cs *ring,
1702                      int num_dwords)
1703 {
1704         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1705         int ret;
1706
1707         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1708                                    dev_priv->mm.interruptible);
1709         if (ret)
1710                 return ret;
1711
1712         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1713         if (ret)
1714                 return ret;
1715
1716         /* Preallocate the olr before touching the ring */
1717         ret = intel_ring_alloc_seqno(ring);
1718         if (ret)
1719                 return ret;
1720
1721         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1722         return 0;
1723 }
1724
1725 /* Align the ring tail to a cacheline boundary */
1726 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1727 {
1728         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1729         int ret;
1730
1731         if (num_dwords == 0)
1732                 return 0;
1733
1734         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1735         ret = intel_ring_begin(ring, num_dwords);
1736         if (ret)
1737                 return ret;
1738
1739         while (num_dwords--)
1740                 intel_ring_emit(ring, MI_NOOP);
1741
1742         intel_ring_advance(ring);
1743
1744         return 0;
1745 }
1746
1747 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1748 {
1749         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1750
1751         BUG_ON(ring->outstanding_lazy_seqno);
1752
1753         if (INTEL_INFO(ring->dev)->gen >= 6) {
1754                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1755                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1756                 if (HAS_VEBOX(ring->dev))
1757                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1758         }
1759
1760         ring->set_seqno(ring, seqno);
1761         ring->hangcheck.seqno = seqno;
1762 }
1763
1764 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1765                                      u32 value)
1766 {
1767         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1768
1769        /* Every tail move must follow the sequence below */
1770
1771         /* Disable notification that the ring is IDLE. The GT
1772          * will then assume that it is busy and bring it out of rc6.
1773          */
1774         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1775                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1776
1777         /* Clear the context id. Here be magic! */
1778         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1779
1780         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1781         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1782                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1783                      50))
1784                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1785
1786         /* Now that the ring is fully powered up, update the tail */
1787         I915_WRITE_TAIL(ring, value);
1788         POSTING_READ(RING_TAIL(ring->mmio_base));
1789
1790         /* Let the ring send IDLE messages to the GT again,
1791          * and so let it sleep to conserve power when idle.
1792          */
1793         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1794                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1795 }
1796
1797 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1798                                u32 invalidate, u32 flush)
1799 {
1800         uint32_t cmd;
1801         int ret;
1802
1803         ret = intel_ring_begin(ring, 4);
1804         if (ret)
1805                 return ret;
1806
1807         cmd = MI_FLUSH_DW;
1808         if (INTEL_INFO(ring->dev)->gen >= 8)
1809                 cmd += 1;
1810         /*
1811          * Bspec vol 1c.5 - video engine command streamer:
1812          * "If ENABLED, all TLBs will be invalidated once the flush
1813          * operation is complete. This bit is only valid when the
1814          * Post-Sync Operation field is a value of 1h or 3h."
1815          */
1816         if (invalidate & I915_GEM_GPU_DOMAINS)
1817                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1818                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1819         intel_ring_emit(ring, cmd);
1820         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1821         if (INTEL_INFO(ring->dev)->gen >= 8) {
1822                 intel_ring_emit(ring, 0); /* upper addr */
1823                 intel_ring_emit(ring, 0); /* value */
1824         } else  {
1825                 intel_ring_emit(ring, 0);
1826                 intel_ring_emit(ring, MI_NOOP);
1827         }
1828         intel_ring_advance(ring);
1829         return 0;
1830 }
1831
1832 static int
1833 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1834                               u64 offset, u32 len,
1835                               unsigned flags)
1836 {
1837         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1838         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1839                 !(flags & I915_DISPATCH_SECURE);
1840         int ret;
1841
1842         ret = intel_ring_begin(ring, 4);
1843         if (ret)
1844                 return ret;
1845
1846         /* FIXME(BDW): Address space and security selectors. */
1847         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1848         intel_ring_emit(ring, lower_32_bits(offset));
1849         intel_ring_emit(ring, upper_32_bits(offset));
1850         intel_ring_emit(ring, MI_NOOP);
1851         intel_ring_advance(ring);
1852
1853         return 0;
1854 }
1855
1856 static int
1857 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1858                               u64 offset, u32 len,
1859                               unsigned flags)
1860 {
1861         int ret;
1862
1863         ret = intel_ring_begin(ring, 2);
1864         if (ret)
1865                 return ret;
1866
1867         intel_ring_emit(ring,
1868                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1869                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1870         /* bit0-7 is the length on GEN6+ */
1871         intel_ring_emit(ring, offset);
1872         intel_ring_advance(ring);
1873
1874         return 0;
1875 }
1876
1877 static int
1878 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1879                               u64 offset, u32 len,
1880                               unsigned flags)
1881 {
1882         int ret;
1883
1884         ret = intel_ring_begin(ring, 2);
1885         if (ret)
1886                 return ret;
1887
1888         intel_ring_emit(ring,
1889                         MI_BATCH_BUFFER_START |
1890                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1891         /* bit0-7 is the length on GEN6+ */
1892         intel_ring_emit(ring, offset);
1893         intel_ring_advance(ring);
1894
1895         return 0;
1896 }
1897
1898 /* Blitter support (SandyBridge+) */
1899
1900 static int gen6_ring_flush(struct intel_engine_cs *ring,
1901                            u32 invalidate, u32 flush)
1902 {
1903         struct drm_device *dev = ring->dev;
1904         uint32_t cmd;
1905         int ret;
1906
1907         ret = intel_ring_begin(ring, 4);
1908         if (ret)
1909                 return ret;
1910
1911         cmd = MI_FLUSH_DW;
1912         if (INTEL_INFO(ring->dev)->gen >= 8)
1913                 cmd += 1;
1914         /*
1915          * Bspec vol 1c.3 - blitter engine command streamer:
1916          * "If ENABLED, all TLBs will be invalidated once the flush
1917          * operation is complete. This bit is only valid when the
1918          * Post-Sync Operation field is a value of 1h or 3h."
1919          */
1920         if (invalidate & I915_GEM_DOMAIN_RENDER)
1921                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1922                         MI_FLUSH_DW_OP_STOREDW;
1923         intel_ring_emit(ring, cmd);
1924         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1925         if (INTEL_INFO(ring->dev)->gen >= 8) {
1926                 intel_ring_emit(ring, 0); /* upper addr */
1927                 intel_ring_emit(ring, 0); /* value */
1928         } else  {
1929                 intel_ring_emit(ring, 0);
1930                 intel_ring_emit(ring, MI_NOOP);
1931         }
1932         intel_ring_advance(ring);
1933
1934         if (IS_GEN7(dev) && !invalidate && flush)
1935                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1936
1937         return 0;
1938 }
1939
1940 int intel_init_render_ring_buffer(struct drm_device *dev)
1941 {
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1944
1945         ring->name = "render ring";
1946         ring->id = RCS;
1947         ring->mmio_base = RENDER_RING_BASE;
1948
1949         if (INTEL_INFO(dev)->gen >= 6) {
1950                 ring->add_request = gen6_add_request;
1951                 ring->flush = gen7_render_ring_flush;
1952                 if (INTEL_INFO(dev)->gen == 6)
1953                         ring->flush = gen6_render_ring_flush;
1954                 if (INTEL_INFO(dev)->gen >= 8) {
1955                         ring->flush = gen8_render_ring_flush;
1956                         ring->irq_get = gen8_ring_get_irq;
1957                         ring->irq_put = gen8_ring_put_irq;
1958                 } else {
1959                         ring->irq_get = gen6_ring_get_irq;
1960                         ring->irq_put = gen6_ring_put_irq;
1961                 }
1962                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1963                 ring->get_seqno = gen6_ring_get_seqno;
1964                 ring->set_seqno = ring_set_seqno;
1965                 ring->semaphore.sync_to = gen6_ring_sync;
1966                 ring->semaphore.signal = gen6_signal;
1967                 /*
1968                  * The current semaphore is only applied on pre-gen8 platform.
1969                  * And there is no VCS2 ring on the pre-gen8 platform. So the
1970                  * semaphore between RCS and VCS2 is initialized as INVALID.
1971                  * Gen8 will initialize the sema between VCS2 and RCS later.
1972                  */
1973                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1974                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1975                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1976                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1977                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1978                 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1979                 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1980                 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1981                 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1982                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1983         } else if (IS_GEN5(dev)) {
1984                 ring->add_request = pc_render_add_request;
1985                 ring->flush = gen4_render_ring_flush;
1986                 ring->get_seqno = pc_render_get_seqno;
1987                 ring->set_seqno = pc_render_set_seqno;
1988                 ring->irq_get = gen5_ring_get_irq;
1989                 ring->irq_put = gen5_ring_put_irq;
1990                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1991                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1992         } else {
1993                 ring->add_request = i9xx_add_request;
1994                 if (INTEL_INFO(dev)->gen < 4)
1995                         ring->flush = gen2_render_ring_flush;
1996                 else
1997                         ring->flush = gen4_render_ring_flush;
1998                 ring->get_seqno = ring_get_seqno;
1999                 ring->set_seqno = ring_set_seqno;
2000                 if (IS_GEN2(dev)) {
2001                         ring->irq_get = i8xx_ring_get_irq;
2002                         ring->irq_put = i8xx_ring_put_irq;
2003                 } else {
2004                         ring->irq_get = i9xx_ring_get_irq;
2005                         ring->irq_put = i9xx_ring_put_irq;
2006                 }
2007                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2008         }
2009         ring->write_tail = ring_write_tail;
2010         if (IS_HASWELL(dev))
2011                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2012         else if (IS_GEN8(dev))
2013                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2014         else if (INTEL_INFO(dev)->gen >= 6)
2015                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2016         else if (INTEL_INFO(dev)->gen >= 4)
2017                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2018         else if (IS_I830(dev) || IS_845G(dev))
2019                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2020         else
2021                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2022         ring->init = init_render_ring;
2023         ring->cleanup = render_ring_cleanup;
2024
2025         /* Workaround batchbuffer to combat CS tlb bug. */
2026         if (HAS_BROKEN_CS_TLB(dev)) {
2027                 struct drm_i915_gem_object *obj;
2028                 int ret;
2029
2030                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2031                 if (obj == NULL) {
2032                         DRM_ERROR("Failed to allocate batch bo\n");
2033                         return -ENOMEM;
2034                 }
2035
2036                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2037                 if (ret != 0) {
2038                         drm_gem_object_unreference(&obj->base);
2039                         DRM_ERROR("Failed to ping batch bo\n");
2040                         return ret;
2041                 }
2042
2043                 ring->scratch.obj = obj;
2044                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2045         }
2046
2047         return intel_init_ring_buffer(dev, ring);
2048 }
2049
2050 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2051 {
2052         struct drm_i915_private *dev_priv = dev->dev_private;
2053         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2054         struct intel_ringbuffer *ringbuf = ring->buffer;
2055         int ret;
2056
2057         if (ringbuf == NULL) {
2058                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2059                 if (!ringbuf)
2060                         return -ENOMEM;
2061                 ring->buffer = ringbuf;
2062         }
2063
2064         ring->name = "render ring";
2065         ring->id = RCS;
2066         ring->mmio_base = RENDER_RING_BASE;
2067
2068         if (INTEL_INFO(dev)->gen >= 6) {
2069                 /* non-kms not supported on gen6+ */
2070                 ret = -ENODEV;
2071                 goto err_ringbuf;
2072         }
2073
2074         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2075          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2076          * the special gen5 functions. */
2077         ring->add_request = i9xx_add_request;
2078         if (INTEL_INFO(dev)->gen < 4)
2079                 ring->flush = gen2_render_ring_flush;
2080         else
2081                 ring->flush = gen4_render_ring_flush;
2082         ring->get_seqno = ring_get_seqno;
2083         ring->set_seqno = ring_set_seqno;
2084         if (IS_GEN2(dev)) {
2085                 ring->irq_get = i8xx_ring_get_irq;
2086                 ring->irq_put = i8xx_ring_put_irq;
2087         } else {
2088                 ring->irq_get = i9xx_ring_get_irq;
2089                 ring->irq_put = i9xx_ring_put_irq;
2090         }
2091         ring->irq_enable_mask = I915_USER_INTERRUPT;
2092         ring->write_tail = ring_write_tail;
2093         if (INTEL_INFO(dev)->gen >= 4)
2094                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2095         else if (IS_I830(dev) || IS_845G(dev))
2096                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2097         else
2098                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2099         ring->init = init_render_ring;
2100         ring->cleanup = render_ring_cleanup;
2101
2102         ring->dev = dev;
2103         INIT_LIST_HEAD(&ring->active_list);
2104         INIT_LIST_HEAD(&ring->request_list);
2105
2106         ringbuf->size = size;
2107         ringbuf->effective_size = ringbuf->size;
2108         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2109                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2110
2111         ringbuf->virtual_start = ioremap_wc(start, size);
2112         if (ringbuf->virtual_start == NULL) {
2113                 DRM_ERROR("can not ioremap virtual address for"
2114                           " ring buffer\n");
2115                 ret = -ENOMEM;
2116                 goto err_ringbuf;
2117         }
2118
2119         if (!I915_NEED_GFX_HWS(dev)) {
2120                 ret = init_phys_status_page(ring);
2121                 if (ret)
2122                         goto err_vstart;
2123         }
2124
2125         return 0;
2126
2127 err_vstart:
2128         iounmap(ringbuf->virtual_start);
2129 err_ringbuf:
2130         kfree(ringbuf);
2131         ring->buffer = NULL;
2132         return ret;
2133 }
2134
2135 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2139
2140         ring->name = "bsd ring";
2141         ring->id = VCS;
2142
2143         ring->write_tail = ring_write_tail;
2144         if (INTEL_INFO(dev)->gen >= 6) {
2145                 ring->mmio_base = GEN6_BSD_RING_BASE;
2146                 /* gen6 bsd needs a special wa for tail updates */
2147                 if (IS_GEN6(dev))
2148                         ring->write_tail = gen6_bsd_ring_write_tail;
2149                 ring->flush = gen6_bsd_ring_flush;
2150                 ring->add_request = gen6_add_request;
2151                 ring->get_seqno = gen6_ring_get_seqno;
2152                 ring->set_seqno = ring_set_seqno;
2153                 if (INTEL_INFO(dev)->gen >= 8) {
2154                         ring->irq_enable_mask =
2155                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2156                         ring->irq_get = gen8_ring_get_irq;
2157                         ring->irq_put = gen8_ring_put_irq;
2158                         ring->dispatch_execbuffer =
2159                                 gen8_ring_dispatch_execbuffer;
2160                 } else {
2161                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2162                         ring->irq_get = gen6_ring_get_irq;
2163                         ring->irq_put = gen6_ring_put_irq;
2164                         ring->dispatch_execbuffer =
2165                                 gen6_ring_dispatch_execbuffer;
2166                 }
2167                 ring->semaphore.sync_to = gen6_ring_sync;
2168                 ring->semaphore.signal = gen6_signal;
2169                 /*
2170                  * The current semaphore is only applied on pre-gen8 platform.
2171                  * And there is no VCS2 ring on the pre-gen8 platform. So the
2172                  * semaphore between VCS and VCS2 is initialized as INVALID.
2173                  * Gen8 will initialize the sema between VCS2 and VCS later.
2174                  */
2175                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2176                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2177                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2178                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2179                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2180                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2181                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2182                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2183                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2184                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2185         } else {
2186                 ring->mmio_base = BSD_RING_BASE;
2187                 ring->flush = bsd_ring_flush;
2188                 ring->add_request = i9xx_add_request;
2189                 ring->get_seqno = ring_get_seqno;
2190                 ring->set_seqno = ring_set_seqno;
2191                 if (IS_GEN5(dev)) {
2192                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2193                         ring->irq_get = gen5_ring_get_irq;
2194                         ring->irq_put = gen5_ring_put_irq;
2195                 } else {
2196                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2197                         ring->irq_get = i9xx_ring_get_irq;
2198                         ring->irq_put = i9xx_ring_put_irq;
2199                 }
2200                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2201         }
2202         ring->init = init_ring_common;
2203
2204         return intel_init_ring_buffer(dev, ring);
2205 }
2206
2207 /**
2208  * Initialize the second BSD ring for Broadwell GT3.
2209  * It is noted that this only exists on Broadwell GT3.
2210  */
2211 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2212 {
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2215
2216         if ((INTEL_INFO(dev)->gen != 8)) {
2217                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2218                 return -EINVAL;
2219         }
2220
2221         ring->name = "bds2_ring";
2222         ring->id = VCS2;
2223
2224         ring->write_tail = ring_write_tail;
2225         ring->mmio_base = GEN8_BSD2_RING_BASE;
2226         ring->flush = gen6_bsd_ring_flush;
2227         ring->add_request = gen6_add_request;
2228         ring->get_seqno = gen6_ring_get_seqno;
2229         ring->set_seqno = ring_set_seqno;
2230         ring->irq_enable_mask =
2231                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2232         ring->irq_get = gen8_ring_get_irq;
2233         ring->irq_put = gen8_ring_put_irq;
2234         ring->dispatch_execbuffer =
2235                         gen8_ring_dispatch_execbuffer;
2236         ring->semaphore.sync_to = gen6_ring_sync;
2237         ring->semaphore.signal = gen6_signal;
2238         /*
2239          * The current semaphore is only applied on the pre-gen8. And there
2240          * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2241          * between VCS2 and other ring is initialized as invalid.
2242          * Gen8 will initialize the sema between VCS2 and other ring later.
2243          */
2244         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2245         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2246         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2247         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2248         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2249         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2250         ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2251         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2252         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2253         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2254
2255         ring->init = init_ring_common;
2256
2257         return intel_init_ring_buffer(dev, ring);
2258 }
2259
2260 int intel_init_blt_ring_buffer(struct drm_device *dev)
2261 {
2262         struct drm_i915_private *dev_priv = dev->dev_private;
2263         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2264
2265         ring->name = "blitter ring";
2266         ring->id = BCS;
2267
2268         ring->mmio_base = BLT_RING_BASE;
2269         ring->write_tail = ring_write_tail;
2270         ring->flush = gen6_ring_flush;
2271         ring->add_request = gen6_add_request;
2272         ring->get_seqno = gen6_ring_get_seqno;
2273         ring->set_seqno = ring_set_seqno;
2274         if (INTEL_INFO(dev)->gen >= 8) {
2275                 ring->irq_enable_mask =
2276                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2277                 ring->irq_get = gen8_ring_get_irq;
2278                 ring->irq_put = gen8_ring_put_irq;
2279                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2280         } else {
2281                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2282                 ring->irq_get = gen6_ring_get_irq;
2283                 ring->irq_put = gen6_ring_put_irq;
2284                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2285         }
2286         ring->semaphore.sync_to = gen6_ring_sync;
2287         ring->semaphore.signal = gen6_signal;
2288         /*
2289          * The current semaphore is only applied on pre-gen8 platform. And
2290          * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2291          * between BCS and VCS2 is initialized as INVALID.
2292          * Gen8 will initialize the sema between BCS and VCS2 later.
2293          */
2294         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2295         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2296         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2297         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2298         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2299         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2300         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2301         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2302         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2303         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2304         ring->init = init_ring_common;
2305
2306         return intel_init_ring_buffer(dev, ring);
2307 }
2308
2309 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2310 {
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2313
2314         ring->name = "video enhancement ring";
2315         ring->id = VECS;
2316
2317         ring->mmio_base = VEBOX_RING_BASE;
2318         ring->write_tail = ring_write_tail;
2319         ring->flush = gen6_ring_flush;
2320         ring->add_request = gen6_add_request;
2321         ring->get_seqno = gen6_ring_get_seqno;
2322         ring->set_seqno = ring_set_seqno;
2323
2324         if (INTEL_INFO(dev)->gen >= 8) {
2325                 ring->irq_enable_mask =
2326                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2327                 ring->irq_get = gen8_ring_get_irq;
2328                 ring->irq_put = gen8_ring_put_irq;
2329                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2330         } else {
2331                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2332                 ring->irq_get = hsw_vebox_get_irq;
2333                 ring->irq_put = hsw_vebox_put_irq;
2334                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2335         }
2336         ring->semaphore.sync_to = gen6_ring_sync;
2337         ring->semaphore.signal = gen6_signal;
2338         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2339         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2340         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2341         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2342         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2343         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2344         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2345         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2346         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2347         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2348         ring->init = init_ring_common;
2349
2350         return intel_init_ring_buffer(dev, ring);
2351 }
2352
2353 int
2354 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2355 {
2356         int ret;
2357
2358         if (!ring->gpu_caches_dirty)
2359                 return 0;
2360
2361         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2362         if (ret)
2363                 return ret;
2364
2365         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2366
2367         ring->gpu_caches_dirty = false;
2368         return 0;
2369 }
2370
2371 int
2372 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2373 {
2374         uint32_t flush_domains;
2375         int ret;
2376
2377         flush_domains = 0;
2378         if (ring->gpu_caches_dirty)
2379                 flush_domains = I915_GEM_GPU_DOMAINS;
2380
2381         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2382         if (ret)
2383                 return ret;
2384
2385         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2386
2387         ring->gpu_caches_dirty = false;
2388         return 0;
2389 }
2390
2391 void
2392 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2393 {
2394         int ret;
2395
2396         if (!intel_ring_initialized(ring))
2397                 return;
2398
2399         ret = intel_ring_idle(ring);
2400         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2401                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2402                           ring->name, ret);
2403
2404         stop_ring(ring);
2405 }