]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Support 64b execbuf
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int ring_space(struct intel_ring_buffer *ring)
44 {
45         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += ring->size;
48         return space;
49 }
50
51 static bool intel_ring_stopped(struct intel_ring_buffer *ring)
52 {
53         struct drm_i915_private *dev_priv = ring->dev->dev_private;
54         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
55 }
56
57 void __intel_ring_advance(struct intel_ring_buffer *ring)
58 {
59         ring->tail &= ring->size - 1;
60         if (intel_ring_stopped(ring))
61                 return;
62         ring->write_tail(ring, ring->tail);
63 }
64
65 static int
66 gen2_render_ring_flush(struct intel_ring_buffer *ring,
67                        u32      invalidate_domains,
68                        u32      flush_domains)
69 {
70         u32 cmd;
71         int ret;
72
73         cmd = MI_FLUSH;
74         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
75                 cmd |= MI_NO_WRITE_FLUSH;
76
77         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
78                 cmd |= MI_READ_FLUSH;
79
80         ret = intel_ring_begin(ring, 2);
81         if (ret)
82                 return ret;
83
84         intel_ring_emit(ring, cmd);
85         intel_ring_emit(ring, MI_NOOP);
86         intel_ring_advance(ring);
87
88         return 0;
89 }
90
91 static int
92 gen4_render_ring_flush(struct intel_ring_buffer *ring,
93                        u32      invalidate_domains,
94                        u32      flush_domains)
95 {
96         struct drm_device *dev = ring->dev;
97         u32 cmd;
98         int ret;
99
100         /*
101          * read/write caches:
102          *
103          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
104          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
105          * also flushed at 2d versus 3d pipeline switches.
106          *
107          * read-only caches:
108          *
109          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
110          * MI_READ_FLUSH is set, and is always flushed on 965.
111          *
112          * I915_GEM_DOMAIN_COMMAND may not exist?
113          *
114          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
115          * invalidated when MI_EXE_FLUSH is set.
116          *
117          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
118          * invalidated with every MI_FLUSH.
119          *
120          * TLBs:
121          *
122          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
123          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
124          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
125          * are flushed at any MI_FLUSH.
126          */
127
128         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
129         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
130                 cmd &= ~MI_NO_WRITE_FLUSH;
131         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
132                 cmd |= MI_EXE_FLUSH;
133
134         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
135             (IS_G4X(dev) || IS_GEN5(dev)))
136                 cmd |= MI_INVALIDATE_ISP;
137
138         ret = intel_ring_begin(ring, 2);
139         if (ret)
140                 return ret;
141
142         intel_ring_emit(ring, cmd);
143         intel_ring_emit(ring, MI_NOOP);
144         intel_ring_advance(ring);
145
146         return 0;
147 }
148
149 /**
150  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
151  * implementing two workarounds on gen6.  From section 1.4.7.1
152  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
153  *
154  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
155  * produced by non-pipelined state commands), software needs to first
156  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
157  * 0.
158  *
159  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
160  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
161  *
162  * And the workaround for these two requires this workaround first:
163  *
164  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
165  * BEFORE the pipe-control with a post-sync op and no write-cache
166  * flushes.
167  *
168  * And this last workaround is tricky because of the requirements on
169  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
170  * volume 2 part 1:
171  *
172  *     "1 of the following must also be set:
173  *      - Render Target Cache Flush Enable ([12] of DW1)
174  *      - Depth Cache Flush Enable ([0] of DW1)
175  *      - Stall at Pixel Scoreboard ([1] of DW1)
176  *      - Depth Stall ([13] of DW1)
177  *      - Post-Sync Operation ([13] of DW1)
178  *      - Notify Enable ([8] of DW1)"
179  *
180  * The cache flushes require the workaround flush that triggered this
181  * one, so we can't use it.  Depth stall would trigger the same.
182  * Post-sync nonzero is what triggered this second workaround, so we
183  * can't use that one either.  Notify enable is IRQs, which aren't
184  * really our business.  That leaves only stall at scoreboard.
185  */
186 static int
187 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
188 {
189         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
190         int ret;
191
192
193         ret = intel_ring_begin(ring, 6);
194         if (ret)
195                 return ret;
196
197         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
199                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
200         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201         intel_ring_emit(ring, 0); /* low dword */
202         intel_ring_emit(ring, 0); /* high dword */
203         intel_ring_emit(ring, MI_NOOP);
204         intel_ring_advance(ring);
205
206         ret = intel_ring_begin(ring, 6);
207         if (ret)
208                 return ret;
209
210         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
211         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
212         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213         intel_ring_emit(ring, 0);
214         intel_ring_emit(ring, 0);
215         intel_ring_emit(ring, MI_NOOP);
216         intel_ring_advance(ring);
217
218         return 0;
219 }
220
221 static int
222 gen6_render_ring_flush(struct intel_ring_buffer *ring,
223                          u32 invalidate_domains, u32 flush_domains)
224 {
225         u32 flags = 0;
226         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
227         int ret;
228
229         /* Force SNB workarounds for PIPE_CONTROL flushes */
230         ret = intel_emit_post_sync_nonzero_flush(ring);
231         if (ret)
232                 return ret;
233
234         /* Just flush everything.  Experiments have shown that reducing the
235          * number of bits based on the write domains has little performance
236          * impact.
237          */
238         if (flush_domains) {
239                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
240                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
241                 /*
242                  * Ensure that any following seqno writes only happen
243                  * when the render cache is indeed flushed.
244                  */
245                 flags |= PIPE_CONTROL_CS_STALL;
246         }
247         if (invalidate_domains) {
248                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
249                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
250                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
251                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
252                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
253                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
254                 /*
255                  * TLB invalidate requires a post-sync write.
256                  */
257                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
258         }
259
260         ret = intel_ring_begin(ring, 4);
261         if (ret)
262                 return ret;
263
264         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
265         intel_ring_emit(ring, flags);
266         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
267         intel_ring_emit(ring, 0);
268         intel_ring_advance(ring);
269
270         return 0;
271 }
272
273 static int
274 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
275 {
276         int ret;
277
278         ret = intel_ring_begin(ring, 4);
279         if (ret)
280                 return ret;
281
282         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
283         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
284                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
285         intel_ring_emit(ring, 0);
286         intel_ring_emit(ring, 0);
287         intel_ring_advance(ring);
288
289         return 0;
290 }
291
292 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
293 {
294         int ret;
295
296         if (!ring->fbc_dirty)
297                 return 0;
298
299         ret = intel_ring_begin(ring, 6);
300         if (ret)
301                 return ret;
302         /* WaFbcNukeOn3DBlt:ivb/hsw */
303         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
304         intel_ring_emit(ring, MSG_FBC_REND_STATE);
305         intel_ring_emit(ring, value);
306         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
307         intel_ring_emit(ring, MSG_FBC_REND_STATE);
308         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
309         intel_ring_advance(ring);
310
311         ring->fbc_dirty = false;
312         return 0;
313 }
314
315 static int
316 gen7_render_ring_flush(struct intel_ring_buffer *ring,
317                        u32 invalidate_domains, u32 flush_domains)
318 {
319         u32 flags = 0;
320         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
321         int ret;
322
323         /*
324          * Ensure that any following seqno writes only happen when the render
325          * cache is indeed flushed.
326          *
327          * Workaround: 4th PIPE_CONTROL command (except the ones with only
328          * read-cache invalidate bits set) must have the CS_STALL bit set. We
329          * don't try to be clever and just set it unconditionally.
330          */
331         flags |= PIPE_CONTROL_CS_STALL;
332
333         /* Just flush everything.  Experiments have shown that reducing the
334          * number of bits based on the write domains has little performance
335          * impact.
336          */
337         if (flush_domains) {
338                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340         }
341         if (invalidate_domains) {
342                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
343                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
344                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
345                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
346                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
347                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
348                 /*
349                  * TLB invalidate requires a post-sync write.
350                  */
351                 flags |= PIPE_CONTROL_QW_WRITE;
352                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
353
354                 /* Workaround: we must issue a pipe_control with CS-stall bit
355                  * set before a pipe_control command that has the state cache
356                  * invalidate bit set. */
357                 gen7_render_ring_cs_stall_wa(ring);
358         }
359
360         ret = intel_ring_begin(ring, 4);
361         if (ret)
362                 return ret;
363
364         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
365         intel_ring_emit(ring, flags);
366         intel_ring_emit(ring, scratch_addr);
367         intel_ring_emit(ring, 0);
368         intel_ring_advance(ring);
369
370         if (!invalidate_domains && flush_domains)
371                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
372
373         return 0;
374 }
375
376 static int
377 gen8_render_ring_flush(struct intel_ring_buffer *ring,
378                        u32 invalidate_domains, u32 flush_domains)
379 {
380         u32 flags = 0;
381         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
382         int ret;
383
384         flags |= PIPE_CONTROL_CS_STALL;
385
386         if (flush_domains) {
387                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
388                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
389         }
390         if (invalidate_domains) {
391                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
392                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
394                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
395                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
396                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
397                 flags |= PIPE_CONTROL_QW_WRITE;
398                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
399         }
400
401         ret = intel_ring_begin(ring, 6);
402         if (ret)
403                 return ret;
404
405         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406         intel_ring_emit(ring, flags);
407         intel_ring_emit(ring, scratch_addr);
408         intel_ring_emit(ring, 0);
409         intel_ring_emit(ring, 0);
410         intel_ring_emit(ring, 0);
411         intel_ring_advance(ring);
412
413         return 0;
414
415 }
416
417 static void ring_write_tail(struct intel_ring_buffer *ring,
418                             u32 value)
419 {
420         struct drm_i915_private *dev_priv = ring->dev->dev_private;
421         I915_WRITE_TAIL(ring, value);
422 }
423
424 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
425 {
426         struct drm_i915_private *dev_priv = ring->dev->dev_private;
427         u64 acthd;
428
429         if (INTEL_INFO(ring->dev)->gen >= 8)
430                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
431                                          RING_ACTHD_UDW(ring->mmio_base));
432         else if (INTEL_INFO(ring->dev)->gen >= 4)
433                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
434         else
435                 acthd = I915_READ(ACTHD);
436
437         return acthd;
438 }
439
440 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
441 {
442         struct drm_i915_private *dev_priv = ring->dev->dev_private;
443         u32 addr;
444
445         addr = dev_priv->status_page_dmah->busaddr;
446         if (INTEL_INFO(ring->dev)->gen >= 4)
447                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
448         I915_WRITE(HWS_PGA, addr);
449 }
450
451 static bool stop_ring(struct intel_ring_buffer *ring)
452 {
453         struct drm_i915_private *dev_priv = to_i915(ring->dev);
454
455         if (!IS_GEN2(ring->dev)) {
456                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
457                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
458                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
459                         return false;
460                 }
461         }
462
463         I915_WRITE_CTL(ring, 0);
464         I915_WRITE_HEAD(ring, 0);
465         ring->write_tail(ring, 0);
466
467         if (!IS_GEN2(ring->dev)) {
468                 (void)I915_READ_CTL(ring);
469                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
470         }
471
472         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
473 }
474
475 static int init_ring_common(struct intel_ring_buffer *ring)
476 {
477         struct drm_device *dev = ring->dev;
478         struct drm_i915_private *dev_priv = dev->dev_private;
479         struct drm_i915_gem_object *obj = ring->obj;
480         int ret = 0;
481
482         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
483
484         if (!stop_ring(ring)) {
485                 /* G45 ring initialization often fails to reset head to zero */
486                 DRM_DEBUG_KMS("%s head not reset to zero "
487                               "ctl %08x head %08x tail %08x start %08x\n",
488                               ring->name,
489                               I915_READ_CTL(ring),
490                               I915_READ_HEAD(ring),
491                               I915_READ_TAIL(ring),
492                               I915_READ_START(ring));
493
494                 if (!stop_ring(ring)) {
495                         DRM_ERROR("failed to set %s head to zero "
496                                   "ctl %08x head %08x tail %08x start %08x\n",
497                                   ring->name,
498                                   I915_READ_CTL(ring),
499                                   I915_READ_HEAD(ring),
500                                   I915_READ_TAIL(ring),
501                                   I915_READ_START(ring));
502                         ret = -EIO;
503                         goto out;
504                 }
505         }
506
507         if (I915_NEED_GFX_HWS(dev))
508                 intel_ring_setup_status_page(ring);
509         else
510                 ring_setup_phys_status_page(ring);
511
512         /* Initialize the ring. This must happen _after_ we've cleared the ring
513          * registers with the above sequence (the readback of the HEAD registers
514          * also enforces ordering), otherwise the hw might lose the new ring
515          * register values. */
516         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
517         I915_WRITE_CTL(ring,
518                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
519                         | RING_VALID);
520
521         /* If the head is still not zero, the ring is dead */
522         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
523                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
524                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
525                 DRM_ERROR("%s initialization failed "
526                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
527                           ring->name,
528                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
529                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
530                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
531                 ret = -EIO;
532                 goto out;
533         }
534
535         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
536                 i915_kernel_lost_context(ring->dev);
537         else {
538                 ring->head = I915_READ_HEAD(ring);
539                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
540                 ring->space = ring_space(ring);
541                 ring->last_retired_head = -1;
542         }
543
544         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
545
546 out:
547         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
548
549         return ret;
550 }
551
552 static int
553 init_pipe_control(struct intel_ring_buffer *ring)
554 {
555         int ret;
556
557         if (ring->scratch.obj)
558                 return 0;
559
560         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
561         if (ring->scratch.obj == NULL) {
562                 DRM_ERROR("Failed to allocate seqno page\n");
563                 ret = -ENOMEM;
564                 goto err;
565         }
566
567         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
568         if (ret)
569                 goto err_unref;
570
571         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
572         if (ret)
573                 goto err_unref;
574
575         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
576         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
577         if (ring->scratch.cpu_page == NULL) {
578                 ret = -ENOMEM;
579                 goto err_unpin;
580         }
581
582         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
583                          ring->name, ring->scratch.gtt_offset);
584         return 0;
585
586 err_unpin:
587         i915_gem_object_ggtt_unpin(ring->scratch.obj);
588 err_unref:
589         drm_gem_object_unreference(&ring->scratch.obj->base);
590 err:
591         return ret;
592 }
593
594 static int init_render_ring(struct intel_ring_buffer *ring)
595 {
596         struct drm_device *dev = ring->dev;
597         struct drm_i915_private *dev_priv = dev->dev_private;
598         int ret = init_ring_common(ring);
599
600         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
601         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
602                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
603
604         /* We need to disable the AsyncFlip performance optimisations in order
605          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
606          * programmed to '1' on all products.
607          *
608          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
609          */
610         if (INTEL_INFO(dev)->gen >= 6)
611                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
612
613         /* Required for the hardware to program scanline values for waiting */
614         /* WaEnableFlushTlbInvalidationMode:snb */
615         if (INTEL_INFO(dev)->gen == 6)
616                 I915_WRITE(GFX_MODE,
617                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
618
619         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
620         if (IS_GEN7(dev))
621                 I915_WRITE(GFX_MODE_GEN7,
622                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
623                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
624
625         if (INTEL_INFO(dev)->gen >= 5) {
626                 ret = init_pipe_control(ring);
627                 if (ret)
628                         return ret;
629         }
630
631         if (IS_GEN6(dev)) {
632                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
633                  * "If this bit is set, STCunit will have LRA as replacement
634                  *  policy. [...] This bit must be reset.  LRA replacement
635                  *  policy is not supported."
636                  */
637                 I915_WRITE(CACHE_MODE_0,
638                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
639         }
640
641         if (INTEL_INFO(dev)->gen >= 6)
642                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
643
644         if (HAS_L3_DPF(dev))
645                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
646
647         return ret;
648 }
649
650 static void render_ring_cleanup(struct intel_ring_buffer *ring)
651 {
652         struct drm_device *dev = ring->dev;
653
654         if (ring->scratch.obj == NULL)
655                 return;
656
657         if (INTEL_INFO(dev)->gen >= 5) {
658                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
659                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
660         }
661
662         drm_gem_object_unreference(&ring->scratch.obj->base);
663         ring->scratch.obj = NULL;
664 }
665
666 static int gen6_signal(struct intel_ring_buffer *signaller,
667                        unsigned int num_dwords)
668 {
669         struct drm_device *dev = signaller->dev;
670         struct drm_i915_private *dev_priv = dev->dev_private;
671         struct intel_ring_buffer *useless;
672         int i, ret;
673
674         /* NB: In order to be able to do semaphore MBOX updates for varying
675          * number of rings, it's easiest if we round up each individual update
676          * to a multiple of 2 (since ring updates must always be a multiple of
677          * 2) even though the actual update only requires 3 dwords.
678          */
679 #define MBOX_UPDATE_DWORDS 4
680         if (i915_semaphore_is_enabled(dev))
681                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
682
683         ret = intel_ring_begin(signaller, num_dwords);
684         if (ret)
685                 return ret;
686 #undef MBOX_UPDATE_DWORDS
687
688         for_each_ring(useless, dev_priv, i) {
689                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
690                 if (mbox_reg != GEN6_NOSYNC) {
691                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
692                         intel_ring_emit(signaller, mbox_reg);
693                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
694                         intel_ring_emit(signaller, MI_NOOP);
695                 } else {
696                         intel_ring_emit(signaller, MI_NOOP);
697                         intel_ring_emit(signaller, MI_NOOP);
698                         intel_ring_emit(signaller, MI_NOOP);
699                         intel_ring_emit(signaller, MI_NOOP);
700                 }
701         }
702
703         return 0;
704 }
705
706 /**
707  * gen6_add_request - Update the semaphore mailbox registers
708  * 
709  * @ring - ring that is adding a request
710  * @seqno - return seqno stuck into the ring
711  *
712  * Update the mailbox registers in the *other* rings with the current seqno.
713  * This acts like a signal in the canonical semaphore.
714  */
715 static int
716 gen6_add_request(struct intel_ring_buffer *ring)
717 {
718         int ret;
719
720         ret = ring->semaphore.signal(ring, 4);
721         if (ret)
722                 return ret;
723
724         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
725         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
726         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
727         intel_ring_emit(ring, MI_USER_INTERRUPT);
728         __intel_ring_advance(ring);
729
730         return 0;
731 }
732
733 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
734                                               u32 seqno)
735 {
736         struct drm_i915_private *dev_priv = dev->dev_private;
737         return dev_priv->last_seqno < seqno;
738 }
739
740 /**
741  * intel_ring_sync - sync the waiter to the signaller on seqno
742  *
743  * @waiter - ring that is waiting
744  * @signaller - ring which has, or will signal
745  * @seqno - seqno which the waiter will block on
746  */
747 static int
748 gen6_ring_sync(struct intel_ring_buffer *waiter,
749                struct intel_ring_buffer *signaller,
750                u32 seqno)
751 {
752         u32 dw1 = MI_SEMAPHORE_MBOX |
753                   MI_SEMAPHORE_COMPARE |
754                   MI_SEMAPHORE_REGISTER;
755         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
756         int ret;
757
758         /* Throughout all of the GEM code, seqno passed implies our current
759          * seqno is >= the last seqno executed. However for hardware the
760          * comparison is strictly greater than.
761          */
762         seqno -= 1;
763
764         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
765
766         ret = intel_ring_begin(waiter, 4);
767         if (ret)
768                 return ret;
769
770         /* If seqno wrap happened, omit the wait with no-ops */
771         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
772                 intel_ring_emit(waiter, dw1 | wait_mbox);
773                 intel_ring_emit(waiter, seqno);
774                 intel_ring_emit(waiter, 0);
775                 intel_ring_emit(waiter, MI_NOOP);
776         } else {
777                 intel_ring_emit(waiter, MI_NOOP);
778                 intel_ring_emit(waiter, MI_NOOP);
779                 intel_ring_emit(waiter, MI_NOOP);
780                 intel_ring_emit(waiter, MI_NOOP);
781         }
782         intel_ring_advance(waiter);
783
784         return 0;
785 }
786
787 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
788 do {                                                                    \
789         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
790                  PIPE_CONTROL_DEPTH_STALL);                             \
791         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
792         intel_ring_emit(ring__, 0);                                                     \
793         intel_ring_emit(ring__, 0);                                                     \
794 } while (0)
795
796 static int
797 pc_render_add_request(struct intel_ring_buffer *ring)
798 {
799         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
800         int ret;
801
802         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
803          * incoherent with writes to memory, i.e. completely fubar,
804          * so we need to use PIPE_NOTIFY instead.
805          *
806          * However, we also need to workaround the qword write
807          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
808          * memory before requesting an interrupt.
809          */
810         ret = intel_ring_begin(ring, 32);
811         if (ret)
812                 return ret;
813
814         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
815                         PIPE_CONTROL_WRITE_FLUSH |
816                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
817         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
818         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
819         intel_ring_emit(ring, 0);
820         PIPE_CONTROL_FLUSH(ring, scratch_addr);
821         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
822         PIPE_CONTROL_FLUSH(ring, scratch_addr);
823         scratch_addr += 2 * CACHELINE_BYTES;
824         PIPE_CONTROL_FLUSH(ring, scratch_addr);
825         scratch_addr += 2 * CACHELINE_BYTES;
826         PIPE_CONTROL_FLUSH(ring, scratch_addr);
827         scratch_addr += 2 * CACHELINE_BYTES;
828         PIPE_CONTROL_FLUSH(ring, scratch_addr);
829         scratch_addr += 2 * CACHELINE_BYTES;
830         PIPE_CONTROL_FLUSH(ring, scratch_addr);
831
832         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
833                         PIPE_CONTROL_WRITE_FLUSH |
834                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
835                         PIPE_CONTROL_NOTIFY);
836         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
837         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
838         intel_ring_emit(ring, 0);
839         __intel_ring_advance(ring);
840
841         return 0;
842 }
843
844 static u32
845 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
846 {
847         /* Workaround to force correct ordering between irq and seqno writes on
848          * ivb (and maybe also on snb) by reading from a CS register (like
849          * ACTHD) before reading the status page. */
850         if (!lazy_coherency) {
851                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
852                 POSTING_READ(RING_ACTHD(ring->mmio_base));
853         }
854
855         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
856 }
857
858 static u32
859 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
860 {
861         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
862 }
863
864 static void
865 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
866 {
867         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
868 }
869
870 static u32
871 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
872 {
873         return ring->scratch.cpu_page[0];
874 }
875
876 static void
877 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
878 {
879         ring->scratch.cpu_page[0] = seqno;
880 }
881
882 static bool
883 gen5_ring_get_irq(struct intel_ring_buffer *ring)
884 {
885         struct drm_device *dev = ring->dev;
886         struct drm_i915_private *dev_priv = dev->dev_private;
887         unsigned long flags;
888
889         if (!dev->irq_enabled)
890                 return false;
891
892         spin_lock_irqsave(&dev_priv->irq_lock, flags);
893         if (ring->irq_refcount++ == 0)
894                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
895         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
896
897         return true;
898 }
899
900 static void
901 gen5_ring_put_irq(struct intel_ring_buffer *ring)
902 {
903         struct drm_device *dev = ring->dev;
904         struct drm_i915_private *dev_priv = dev->dev_private;
905         unsigned long flags;
906
907         spin_lock_irqsave(&dev_priv->irq_lock, flags);
908         if (--ring->irq_refcount == 0)
909                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
910         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
911 }
912
913 static bool
914 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
915 {
916         struct drm_device *dev = ring->dev;
917         struct drm_i915_private *dev_priv = dev->dev_private;
918         unsigned long flags;
919
920         if (!dev->irq_enabled)
921                 return false;
922
923         spin_lock_irqsave(&dev_priv->irq_lock, flags);
924         if (ring->irq_refcount++ == 0) {
925                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
926                 I915_WRITE(IMR, dev_priv->irq_mask);
927                 POSTING_READ(IMR);
928         }
929         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
930
931         return true;
932 }
933
934 static void
935 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
936 {
937         struct drm_device *dev = ring->dev;
938         struct drm_i915_private *dev_priv = dev->dev_private;
939         unsigned long flags;
940
941         spin_lock_irqsave(&dev_priv->irq_lock, flags);
942         if (--ring->irq_refcount == 0) {
943                 dev_priv->irq_mask |= ring->irq_enable_mask;
944                 I915_WRITE(IMR, dev_priv->irq_mask);
945                 POSTING_READ(IMR);
946         }
947         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
948 }
949
950 static bool
951 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
952 {
953         struct drm_device *dev = ring->dev;
954         struct drm_i915_private *dev_priv = dev->dev_private;
955         unsigned long flags;
956
957         if (!dev->irq_enabled)
958                 return false;
959
960         spin_lock_irqsave(&dev_priv->irq_lock, flags);
961         if (ring->irq_refcount++ == 0) {
962                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
963                 I915_WRITE16(IMR, dev_priv->irq_mask);
964                 POSTING_READ16(IMR);
965         }
966         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
967
968         return true;
969 }
970
971 static void
972 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
973 {
974         struct drm_device *dev = ring->dev;
975         struct drm_i915_private *dev_priv = dev->dev_private;
976         unsigned long flags;
977
978         spin_lock_irqsave(&dev_priv->irq_lock, flags);
979         if (--ring->irq_refcount == 0) {
980                 dev_priv->irq_mask |= ring->irq_enable_mask;
981                 I915_WRITE16(IMR, dev_priv->irq_mask);
982                 POSTING_READ16(IMR);
983         }
984         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
985 }
986
987 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
988 {
989         struct drm_device *dev = ring->dev;
990         struct drm_i915_private *dev_priv = ring->dev->dev_private;
991         u32 mmio = 0;
992
993         /* The ring status page addresses are no longer next to the rest of
994          * the ring registers as of gen7.
995          */
996         if (IS_GEN7(dev)) {
997                 switch (ring->id) {
998                 case RCS:
999                         mmio = RENDER_HWS_PGA_GEN7;
1000                         break;
1001                 case BCS:
1002                         mmio = BLT_HWS_PGA_GEN7;
1003                         break;
1004                 /*
1005                  * VCS2 actually doesn't exist on Gen7. Only shut up
1006                  * gcc switch check warning
1007                  */
1008                 case VCS2:
1009                 case VCS:
1010                         mmio = BSD_HWS_PGA_GEN7;
1011                         break;
1012                 case VECS:
1013                         mmio = VEBOX_HWS_PGA_GEN7;
1014                         break;
1015                 }
1016         } else if (IS_GEN6(ring->dev)) {
1017                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1018         } else {
1019                 /* XXX: gen8 returns to sanity */
1020                 mmio = RING_HWS_PGA(ring->mmio_base);
1021         }
1022
1023         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1024         POSTING_READ(mmio);
1025
1026         /*
1027          * Flush the TLB for this page
1028          *
1029          * FIXME: These two bits have disappeared on gen8, so a question
1030          * arises: do we still need this and if so how should we go about
1031          * invalidating the TLB?
1032          */
1033         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1034                 u32 reg = RING_INSTPM(ring->mmio_base);
1035
1036                 /* ring should be idle before issuing a sync flush*/
1037                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1038
1039                 I915_WRITE(reg,
1040                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1041                                               INSTPM_SYNC_FLUSH));
1042                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1043                              1000))
1044                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1045                                   ring->name);
1046         }
1047 }
1048
1049 static int
1050 bsd_ring_flush(struct intel_ring_buffer *ring,
1051                u32     invalidate_domains,
1052                u32     flush_domains)
1053 {
1054         int ret;
1055
1056         ret = intel_ring_begin(ring, 2);
1057         if (ret)
1058                 return ret;
1059
1060         intel_ring_emit(ring, MI_FLUSH);
1061         intel_ring_emit(ring, MI_NOOP);
1062         intel_ring_advance(ring);
1063         return 0;
1064 }
1065
1066 static int
1067 i9xx_add_request(struct intel_ring_buffer *ring)
1068 {
1069         int ret;
1070
1071         ret = intel_ring_begin(ring, 4);
1072         if (ret)
1073                 return ret;
1074
1075         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1076         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1077         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1078         intel_ring_emit(ring, MI_USER_INTERRUPT);
1079         __intel_ring_advance(ring);
1080
1081         return 0;
1082 }
1083
1084 static bool
1085 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1086 {
1087         struct drm_device *dev = ring->dev;
1088         struct drm_i915_private *dev_priv = dev->dev_private;
1089         unsigned long flags;
1090
1091         if (!dev->irq_enabled)
1092                return false;
1093
1094         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1095         if (ring->irq_refcount++ == 0) {
1096                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1097                         I915_WRITE_IMR(ring,
1098                                        ~(ring->irq_enable_mask |
1099                                          GT_PARITY_ERROR(dev)));
1100                 else
1101                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1102                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1103         }
1104         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1105
1106         return true;
1107 }
1108
1109 static void
1110 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1111 {
1112         struct drm_device *dev = ring->dev;
1113         struct drm_i915_private *dev_priv = dev->dev_private;
1114         unsigned long flags;
1115
1116         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1117         if (--ring->irq_refcount == 0) {
1118                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1119                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1120                 else
1121                         I915_WRITE_IMR(ring, ~0);
1122                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1123         }
1124         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1125 }
1126
1127 static bool
1128 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1129 {
1130         struct drm_device *dev = ring->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         unsigned long flags;
1133
1134         if (!dev->irq_enabled)
1135                 return false;
1136
1137         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1138         if (ring->irq_refcount++ == 0) {
1139                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1140                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1141         }
1142         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1143
1144         return true;
1145 }
1146
1147 static void
1148 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1149 {
1150         struct drm_device *dev = ring->dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         unsigned long flags;
1153
1154         if (!dev->irq_enabled)
1155                 return;
1156
1157         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1158         if (--ring->irq_refcount == 0) {
1159                 I915_WRITE_IMR(ring, ~0);
1160                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1161         }
1162         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1163 }
1164
1165 static bool
1166 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1167 {
1168         struct drm_device *dev = ring->dev;
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         unsigned long flags;
1171
1172         if (!dev->irq_enabled)
1173                 return false;
1174
1175         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1176         if (ring->irq_refcount++ == 0) {
1177                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1178                         I915_WRITE_IMR(ring,
1179                                        ~(ring->irq_enable_mask |
1180                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1181                 } else {
1182                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1183                 }
1184                 POSTING_READ(RING_IMR(ring->mmio_base));
1185         }
1186         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1187
1188         return true;
1189 }
1190
1191 static void
1192 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1193 {
1194         struct drm_device *dev = ring->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         unsigned long flags;
1197
1198         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1199         if (--ring->irq_refcount == 0) {
1200                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1201                         I915_WRITE_IMR(ring,
1202                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1203                 } else {
1204                         I915_WRITE_IMR(ring, ~0);
1205                 }
1206                 POSTING_READ(RING_IMR(ring->mmio_base));
1207         }
1208         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 }
1210
1211 static int
1212 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1213                          u64 offset, u32 length,
1214                          unsigned flags)
1215 {
1216         int ret;
1217
1218         ret = intel_ring_begin(ring, 2);
1219         if (ret)
1220                 return ret;
1221
1222         intel_ring_emit(ring,
1223                         MI_BATCH_BUFFER_START |
1224                         MI_BATCH_GTT |
1225                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1226         intel_ring_emit(ring, offset);
1227         intel_ring_advance(ring);
1228
1229         return 0;
1230 }
1231
1232 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1233 #define I830_BATCH_LIMIT (256*1024)
1234 static int
1235 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1236                                 u64 offset, u32 len,
1237                                 unsigned flags)
1238 {
1239         int ret;
1240
1241         if (flags & I915_DISPATCH_PINNED) {
1242                 ret = intel_ring_begin(ring, 4);
1243                 if (ret)
1244                         return ret;
1245
1246                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1247                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1248                 intel_ring_emit(ring, offset + len - 8);
1249                 intel_ring_emit(ring, MI_NOOP);
1250                 intel_ring_advance(ring);
1251         } else {
1252                 u32 cs_offset = ring->scratch.gtt_offset;
1253
1254                 if (len > I830_BATCH_LIMIT)
1255                         return -ENOSPC;
1256
1257                 ret = intel_ring_begin(ring, 9+3);
1258                 if (ret)
1259                         return ret;
1260                 /* Blit the batch (which has now all relocs applied) to the stable batch
1261                  * scratch bo area (so that the CS never stumbles over its tlb
1262                  * invalidation bug) ... */
1263                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1264                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1265                                 XY_SRC_COPY_BLT_WRITE_RGB);
1266                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1267                 intel_ring_emit(ring, 0);
1268                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1269                 intel_ring_emit(ring, cs_offset);
1270                 intel_ring_emit(ring, 0);
1271                 intel_ring_emit(ring, 4096);
1272                 intel_ring_emit(ring, offset);
1273                 intel_ring_emit(ring, MI_FLUSH);
1274
1275                 /* ... and execute it. */
1276                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1277                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1278                 intel_ring_emit(ring, cs_offset + len - 8);
1279                 intel_ring_advance(ring);
1280         }
1281
1282         return 0;
1283 }
1284
1285 static int
1286 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1287                          u64 offset, u32 len,
1288                          unsigned flags)
1289 {
1290         int ret;
1291
1292         ret = intel_ring_begin(ring, 2);
1293         if (ret)
1294                 return ret;
1295
1296         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1297         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1298         intel_ring_advance(ring);
1299
1300         return 0;
1301 }
1302
1303 static void cleanup_status_page(struct intel_ring_buffer *ring)
1304 {
1305         struct drm_i915_gem_object *obj;
1306
1307         obj = ring->status_page.obj;
1308         if (obj == NULL)
1309                 return;
1310
1311         kunmap(sg_page(obj->pages->sgl));
1312         i915_gem_object_ggtt_unpin(obj);
1313         drm_gem_object_unreference(&obj->base);
1314         ring->status_page.obj = NULL;
1315 }
1316
1317 static int init_status_page(struct intel_ring_buffer *ring)
1318 {
1319         struct drm_i915_gem_object *obj;
1320
1321         if ((obj = ring->status_page.obj) == NULL) {
1322                 int ret;
1323
1324                 obj = i915_gem_alloc_object(ring->dev, 4096);
1325                 if (obj == NULL) {
1326                         DRM_ERROR("Failed to allocate status page\n");
1327                         return -ENOMEM;
1328                 }
1329
1330                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1331                 if (ret)
1332                         goto err_unref;
1333
1334                 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1335                 if (ret) {
1336 err_unref:
1337                         drm_gem_object_unreference(&obj->base);
1338                         return ret;
1339                 }
1340
1341                 ring->status_page.obj = obj;
1342         }
1343
1344         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1345         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1346         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1347
1348         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1349                         ring->name, ring->status_page.gfx_addr);
1350
1351         return 0;
1352 }
1353
1354 static int init_phys_status_page(struct intel_ring_buffer *ring)
1355 {
1356         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1357
1358         if (!dev_priv->status_page_dmah) {
1359                 dev_priv->status_page_dmah =
1360                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1361                 if (!dev_priv->status_page_dmah)
1362                         return -ENOMEM;
1363         }
1364
1365         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1366         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1367
1368         return 0;
1369 }
1370
1371 static int allocate_ring_buffer(struct intel_ring_buffer *ring)
1372 {
1373         struct drm_device *dev = ring->dev;
1374         struct drm_i915_private *dev_priv = to_i915(dev);
1375         struct drm_i915_gem_object *obj;
1376         int ret;
1377
1378         if (ring->obj)
1379                 return 0;
1380
1381         obj = NULL;
1382         if (!HAS_LLC(dev))
1383                 obj = i915_gem_object_create_stolen(dev, ring->size);
1384         if (obj == NULL)
1385                 obj = i915_gem_alloc_object(dev, ring->size);
1386         if (obj == NULL)
1387                 return -ENOMEM;
1388
1389         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1390         if (ret)
1391                 goto err_unref;
1392
1393         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1394         if (ret)
1395                 goto err_unpin;
1396
1397         ring->virtual_start =
1398                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1399                            ring->size);
1400         if (ring->virtual_start == NULL) {
1401                 ret = -EINVAL;
1402                 goto err_unpin;
1403         }
1404
1405         ring->obj = obj;
1406         return 0;
1407
1408 err_unpin:
1409         i915_gem_object_ggtt_unpin(obj);
1410 err_unref:
1411         drm_gem_object_unreference(&obj->base);
1412         return ret;
1413 }
1414
1415 static int intel_init_ring_buffer(struct drm_device *dev,
1416                                   struct intel_ring_buffer *ring)
1417 {
1418         int ret;
1419
1420         ring->dev = dev;
1421         INIT_LIST_HEAD(&ring->active_list);
1422         INIT_LIST_HEAD(&ring->request_list);
1423         ring->size = 32 * PAGE_SIZE;
1424         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1425
1426         init_waitqueue_head(&ring->irq_queue);
1427
1428         if (I915_NEED_GFX_HWS(dev)) {
1429                 ret = init_status_page(ring);
1430                 if (ret)
1431                         return ret;
1432         } else {
1433                 BUG_ON(ring->id != RCS);
1434                 ret = init_phys_status_page(ring);
1435                 if (ret)
1436                         return ret;
1437         }
1438
1439         ret = allocate_ring_buffer(ring);
1440         if (ret) {
1441                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1442                 return ret;
1443         }
1444
1445         /* Workaround an erratum on the i830 which causes a hang if
1446          * the TAIL pointer points to within the last 2 cachelines
1447          * of the buffer.
1448          */
1449         ring->effective_size = ring->size;
1450         if (IS_I830(dev) || IS_845G(dev))
1451                 ring->effective_size -= 2 * CACHELINE_BYTES;
1452
1453         i915_cmd_parser_init_ring(ring);
1454
1455         return ring->init(ring);
1456 }
1457
1458 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1459 {
1460         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1461
1462         if (ring->obj == NULL)
1463                 return;
1464
1465         intel_stop_ring_buffer(ring);
1466         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1467
1468         iounmap(ring->virtual_start);
1469
1470         i915_gem_object_ggtt_unpin(ring->obj);
1471         drm_gem_object_unreference(&ring->obj->base);
1472         ring->obj = NULL;
1473         ring->preallocated_lazy_request = NULL;
1474         ring->outstanding_lazy_seqno = 0;
1475
1476         if (ring->cleanup)
1477                 ring->cleanup(ring);
1478
1479         cleanup_status_page(ring);
1480 }
1481
1482 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1483 {
1484         struct drm_i915_gem_request *request;
1485         u32 seqno = 0, tail;
1486         int ret;
1487
1488         if (ring->last_retired_head != -1) {
1489                 ring->head = ring->last_retired_head;
1490                 ring->last_retired_head = -1;
1491
1492                 ring->space = ring_space(ring);
1493                 if (ring->space >= n)
1494                         return 0;
1495         }
1496
1497         list_for_each_entry(request, &ring->request_list, list) {
1498                 int space;
1499
1500                 if (request->tail == -1)
1501                         continue;
1502
1503                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1504                 if (space < 0)
1505                         space += ring->size;
1506                 if (space >= n) {
1507                         seqno = request->seqno;
1508                         tail = request->tail;
1509                         break;
1510                 }
1511
1512                 /* Consume this request in case we need more space than
1513                  * is available and so need to prevent a race between
1514                  * updating last_retired_head and direct reads of
1515                  * I915_RING_HEAD. It also provides a nice sanity check.
1516                  */
1517                 request->tail = -1;
1518         }
1519
1520         if (seqno == 0)
1521                 return -ENOSPC;
1522
1523         ret = i915_wait_seqno(ring, seqno);
1524         if (ret)
1525                 return ret;
1526
1527         ring->head = tail;
1528         ring->space = ring_space(ring);
1529         if (WARN_ON(ring->space < n))
1530                 return -ENOSPC;
1531
1532         return 0;
1533 }
1534
1535 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1536 {
1537         struct drm_device *dev = ring->dev;
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         unsigned long end;
1540         int ret;
1541
1542         ret = intel_ring_wait_request(ring, n);
1543         if (ret != -ENOSPC)
1544                 return ret;
1545
1546         /* force the tail write in case we have been skipping them */
1547         __intel_ring_advance(ring);
1548
1549         trace_i915_ring_wait_begin(ring);
1550         /* With GEM the hangcheck timer should kick us out of the loop,
1551          * leaving it early runs the risk of corrupting GEM state (due
1552          * to running on almost untested codepaths). But on resume
1553          * timers don't work yet, so prevent a complete hang in that
1554          * case by choosing an insanely large timeout. */
1555         end = jiffies + 60 * HZ;
1556
1557         do {
1558                 ring->head = I915_READ_HEAD(ring);
1559                 ring->space = ring_space(ring);
1560                 if (ring->space >= n) {
1561                         trace_i915_ring_wait_end(ring);
1562                         return 0;
1563                 }
1564
1565                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1566                     dev->primary->master) {
1567                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1568                         if (master_priv->sarea_priv)
1569                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1570                 }
1571
1572                 msleep(1);
1573
1574                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1575                                            dev_priv->mm.interruptible);
1576                 if (ret)
1577                         return ret;
1578         } while (!time_after(jiffies, end));
1579         trace_i915_ring_wait_end(ring);
1580         return -EBUSY;
1581 }
1582
1583 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1584 {
1585         uint32_t __iomem *virt;
1586         int rem = ring->size - ring->tail;
1587
1588         if (ring->space < rem) {
1589                 int ret = ring_wait_for_space(ring, rem);
1590                 if (ret)
1591                         return ret;
1592         }
1593
1594         virt = ring->virtual_start + ring->tail;
1595         rem /= 4;
1596         while (rem--)
1597                 iowrite32(MI_NOOP, virt++);
1598
1599         ring->tail = 0;
1600         ring->space = ring_space(ring);
1601
1602         return 0;
1603 }
1604
1605 int intel_ring_idle(struct intel_ring_buffer *ring)
1606 {
1607         u32 seqno;
1608         int ret;
1609
1610         /* We need to add any requests required to flush the objects and ring */
1611         if (ring->outstanding_lazy_seqno) {
1612                 ret = i915_add_request(ring, NULL);
1613                 if (ret)
1614                         return ret;
1615         }
1616
1617         /* Wait upon the last request to be completed */
1618         if (list_empty(&ring->request_list))
1619                 return 0;
1620
1621         seqno = list_entry(ring->request_list.prev,
1622                            struct drm_i915_gem_request,
1623                            list)->seqno;
1624
1625         return i915_wait_seqno(ring, seqno);
1626 }
1627
1628 static int
1629 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1630 {
1631         if (ring->outstanding_lazy_seqno)
1632                 return 0;
1633
1634         if (ring->preallocated_lazy_request == NULL) {
1635                 struct drm_i915_gem_request *request;
1636
1637                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1638                 if (request == NULL)
1639                         return -ENOMEM;
1640
1641                 ring->preallocated_lazy_request = request;
1642         }
1643
1644         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1645 }
1646
1647 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1648                                 int bytes)
1649 {
1650         int ret;
1651
1652         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1653                 ret = intel_wrap_ring_buffer(ring);
1654                 if (unlikely(ret))
1655                         return ret;
1656         }
1657
1658         if (unlikely(ring->space < bytes)) {
1659                 ret = ring_wait_for_space(ring, bytes);
1660                 if (unlikely(ret))
1661                         return ret;
1662         }
1663
1664         return 0;
1665 }
1666
1667 int intel_ring_begin(struct intel_ring_buffer *ring,
1668                      int num_dwords)
1669 {
1670         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1671         int ret;
1672
1673         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1674                                    dev_priv->mm.interruptible);
1675         if (ret)
1676                 return ret;
1677
1678         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1679         if (ret)
1680                 return ret;
1681
1682         /* Preallocate the olr before touching the ring */
1683         ret = intel_ring_alloc_seqno(ring);
1684         if (ret)
1685                 return ret;
1686
1687         ring->space -= num_dwords * sizeof(uint32_t);
1688         return 0;
1689 }
1690
1691 /* Align the ring tail to a cacheline boundary */
1692 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1693 {
1694         int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1695         int ret;
1696
1697         if (num_dwords == 0)
1698                 return 0;
1699
1700         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1701         ret = intel_ring_begin(ring, num_dwords);
1702         if (ret)
1703                 return ret;
1704
1705         while (num_dwords--)
1706                 intel_ring_emit(ring, MI_NOOP);
1707
1708         intel_ring_advance(ring);
1709
1710         return 0;
1711 }
1712
1713 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1714 {
1715         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1716
1717         BUG_ON(ring->outstanding_lazy_seqno);
1718
1719         if (INTEL_INFO(ring->dev)->gen >= 6) {
1720                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1721                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1722                 if (HAS_VEBOX(ring->dev))
1723                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1724         }
1725
1726         ring->set_seqno(ring, seqno);
1727         ring->hangcheck.seqno = seqno;
1728 }
1729
1730 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1731                                      u32 value)
1732 {
1733         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1734
1735        /* Every tail move must follow the sequence below */
1736
1737         /* Disable notification that the ring is IDLE. The GT
1738          * will then assume that it is busy and bring it out of rc6.
1739          */
1740         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1741                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1742
1743         /* Clear the context id. Here be magic! */
1744         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1745
1746         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1747         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1748                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1749                      50))
1750                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1751
1752         /* Now that the ring is fully powered up, update the tail */
1753         I915_WRITE_TAIL(ring, value);
1754         POSTING_READ(RING_TAIL(ring->mmio_base));
1755
1756         /* Let the ring send IDLE messages to the GT again,
1757          * and so let it sleep to conserve power when idle.
1758          */
1759         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1760                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1761 }
1762
1763 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1764                                u32 invalidate, u32 flush)
1765 {
1766         uint32_t cmd;
1767         int ret;
1768
1769         ret = intel_ring_begin(ring, 4);
1770         if (ret)
1771                 return ret;
1772
1773         cmd = MI_FLUSH_DW;
1774         if (INTEL_INFO(ring->dev)->gen >= 8)
1775                 cmd += 1;
1776         /*
1777          * Bspec vol 1c.5 - video engine command streamer:
1778          * "If ENABLED, all TLBs will be invalidated once the flush
1779          * operation is complete. This bit is only valid when the
1780          * Post-Sync Operation field is a value of 1h or 3h."
1781          */
1782         if (invalidate & I915_GEM_GPU_DOMAINS)
1783                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1784                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1785         intel_ring_emit(ring, cmd);
1786         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1787         if (INTEL_INFO(ring->dev)->gen >= 8) {
1788                 intel_ring_emit(ring, 0); /* upper addr */
1789                 intel_ring_emit(ring, 0); /* value */
1790         } else  {
1791                 intel_ring_emit(ring, 0);
1792                 intel_ring_emit(ring, MI_NOOP);
1793         }
1794         intel_ring_advance(ring);
1795         return 0;
1796 }
1797
1798 static int
1799 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1800                               u64 offset, u32 len,
1801                               unsigned flags)
1802 {
1803         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1804         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1805                 !(flags & I915_DISPATCH_SECURE);
1806         int ret;
1807
1808         ret = intel_ring_begin(ring, 4);
1809         if (ret)
1810                 return ret;
1811
1812         /* FIXME(BDW): Address space and security selectors. */
1813         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1814         intel_ring_emit(ring, lower_32_bits(offset));
1815         intel_ring_emit(ring, upper_32_bits(offset));
1816         intel_ring_emit(ring, MI_NOOP);
1817         intel_ring_advance(ring);
1818
1819         return 0;
1820 }
1821
1822 static int
1823 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1824                               u64 offset, u32 len,
1825                               unsigned flags)
1826 {
1827         int ret;
1828
1829         ret = intel_ring_begin(ring, 2);
1830         if (ret)
1831                 return ret;
1832
1833         intel_ring_emit(ring,
1834                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1835                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1836         /* bit0-7 is the length on GEN6+ */
1837         intel_ring_emit(ring, offset);
1838         intel_ring_advance(ring);
1839
1840         return 0;
1841 }
1842
1843 static int
1844 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1845                               u64 offset, u32 len,
1846                               unsigned flags)
1847 {
1848         int ret;
1849
1850         ret = intel_ring_begin(ring, 2);
1851         if (ret)
1852                 return ret;
1853
1854         intel_ring_emit(ring,
1855                         MI_BATCH_BUFFER_START |
1856                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1857         /* bit0-7 is the length on GEN6+ */
1858         intel_ring_emit(ring, offset);
1859         intel_ring_advance(ring);
1860
1861         return 0;
1862 }
1863
1864 /* Blitter support (SandyBridge+) */
1865
1866 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1867                            u32 invalidate, u32 flush)
1868 {
1869         struct drm_device *dev = ring->dev;
1870         uint32_t cmd;
1871         int ret;
1872
1873         ret = intel_ring_begin(ring, 4);
1874         if (ret)
1875                 return ret;
1876
1877         cmd = MI_FLUSH_DW;
1878         if (INTEL_INFO(ring->dev)->gen >= 8)
1879                 cmd += 1;
1880         /*
1881          * Bspec vol 1c.3 - blitter engine command streamer:
1882          * "If ENABLED, all TLBs will be invalidated once the flush
1883          * operation is complete. This bit is only valid when the
1884          * Post-Sync Operation field is a value of 1h or 3h."
1885          */
1886         if (invalidate & I915_GEM_DOMAIN_RENDER)
1887                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1888                         MI_FLUSH_DW_OP_STOREDW;
1889         intel_ring_emit(ring, cmd);
1890         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1891         if (INTEL_INFO(ring->dev)->gen >= 8) {
1892                 intel_ring_emit(ring, 0); /* upper addr */
1893                 intel_ring_emit(ring, 0); /* value */
1894         } else  {
1895                 intel_ring_emit(ring, 0);
1896                 intel_ring_emit(ring, MI_NOOP);
1897         }
1898         intel_ring_advance(ring);
1899
1900         if (IS_GEN7(dev) && !invalidate && flush)
1901                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1902
1903         return 0;
1904 }
1905
1906 int intel_init_render_ring_buffer(struct drm_device *dev)
1907 {
1908         struct drm_i915_private *dev_priv = dev->dev_private;
1909         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1910
1911         ring->name = "render ring";
1912         ring->id = RCS;
1913         ring->mmio_base = RENDER_RING_BASE;
1914
1915         if (INTEL_INFO(dev)->gen >= 6) {
1916                 ring->add_request = gen6_add_request;
1917                 ring->flush = gen7_render_ring_flush;
1918                 if (INTEL_INFO(dev)->gen == 6)
1919                         ring->flush = gen6_render_ring_flush;
1920                 if (INTEL_INFO(dev)->gen >= 8) {
1921                         ring->flush = gen8_render_ring_flush;
1922                         ring->irq_get = gen8_ring_get_irq;
1923                         ring->irq_put = gen8_ring_put_irq;
1924                 } else {
1925                         ring->irq_get = gen6_ring_get_irq;
1926                         ring->irq_put = gen6_ring_put_irq;
1927                 }
1928                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1929                 ring->get_seqno = gen6_ring_get_seqno;
1930                 ring->set_seqno = ring_set_seqno;
1931                 ring->semaphore.sync_to = gen6_ring_sync;
1932                 ring->semaphore.signal = gen6_signal;
1933                 /*
1934                  * The current semaphore is only applied on pre-gen8 platform.
1935                  * And there is no VCS2 ring on the pre-gen8 platform. So the
1936                  * semaphore between RCS and VCS2 is initialized as INVALID.
1937                  * Gen8 will initialize the sema between VCS2 and RCS later.
1938                  */
1939                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1940                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1941                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1942                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1943                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1944                 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1945                 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1946                 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1947                 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1948                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1949         } else if (IS_GEN5(dev)) {
1950                 ring->add_request = pc_render_add_request;
1951                 ring->flush = gen4_render_ring_flush;
1952                 ring->get_seqno = pc_render_get_seqno;
1953                 ring->set_seqno = pc_render_set_seqno;
1954                 ring->irq_get = gen5_ring_get_irq;
1955                 ring->irq_put = gen5_ring_put_irq;
1956                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1957                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1958         } else {
1959                 ring->add_request = i9xx_add_request;
1960                 if (INTEL_INFO(dev)->gen < 4)
1961                         ring->flush = gen2_render_ring_flush;
1962                 else
1963                         ring->flush = gen4_render_ring_flush;
1964                 ring->get_seqno = ring_get_seqno;
1965                 ring->set_seqno = ring_set_seqno;
1966                 if (IS_GEN2(dev)) {
1967                         ring->irq_get = i8xx_ring_get_irq;
1968                         ring->irq_put = i8xx_ring_put_irq;
1969                 } else {
1970                         ring->irq_get = i9xx_ring_get_irq;
1971                         ring->irq_put = i9xx_ring_put_irq;
1972                 }
1973                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1974         }
1975         ring->write_tail = ring_write_tail;
1976         if (IS_HASWELL(dev))
1977                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1978         else if (IS_GEN8(dev))
1979                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1980         else if (INTEL_INFO(dev)->gen >= 6)
1981                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1982         else if (INTEL_INFO(dev)->gen >= 4)
1983                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1984         else if (IS_I830(dev) || IS_845G(dev))
1985                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1986         else
1987                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1988         ring->init = init_render_ring;
1989         ring->cleanup = render_ring_cleanup;
1990
1991         /* Workaround batchbuffer to combat CS tlb bug. */
1992         if (HAS_BROKEN_CS_TLB(dev)) {
1993                 struct drm_i915_gem_object *obj;
1994                 int ret;
1995
1996                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1997                 if (obj == NULL) {
1998                         DRM_ERROR("Failed to allocate batch bo\n");
1999                         return -ENOMEM;
2000                 }
2001
2002                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2003                 if (ret != 0) {
2004                         drm_gem_object_unreference(&obj->base);
2005                         DRM_ERROR("Failed to ping batch bo\n");
2006                         return ret;
2007                 }
2008
2009                 ring->scratch.obj = obj;
2010                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2011         }
2012
2013         return intel_init_ring_buffer(dev, ring);
2014 }
2015
2016 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2017 {
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2020         int ret;
2021
2022         ring->name = "render ring";
2023         ring->id = RCS;
2024         ring->mmio_base = RENDER_RING_BASE;
2025
2026         if (INTEL_INFO(dev)->gen >= 6) {
2027                 /* non-kms not supported on gen6+ */
2028                 return -ENODEV;
2029         }
2030
2031         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2032          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2033          * the special gen5 functions. */
2034         ring->add_request = i9xx_add_request;
2035         if (INTEL_INFO(dev)->gen < 4)
2036                 ring->flush = gen2_render_ring_flush;
2037         else
2038                 ring->flush = gen4_render_ring_flush;
2039         ring->get_seqno = ring_get_seqno;
2040         ring->set_seqno = ring_set_seqno;
2041         if (IS_GEN2(dev)) {
2042                 ring->irq_get = i8xx_ring_get_irq;
2043                 ring->irq_put = i8xx_ring_put_irq;
2044         } else {
2045                 ring->irq_get = i9xx_ring_get_irq;
2046                 ring->irq_put = i9xx_ring_put_irq;
2047         }
2048         ring->irq_enable_mask = I915_USER_INTERRUPT;
2049         ring->write_tail = ring_write_tail;
2050         if (INTEL_INFO(dev)->gen >= 4)
2051                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2052         else if (IS_I830(dev) || IS_845G(dev))
2053                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2054         else
2055                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2056         ring->init = init_render_ring;
2057         ring->cleanup = render_ring_cleanup;
2058
2059         ring->dev = dev;
2060         INIT_LIST_HEAD(&ring->active_list);
2061         INIT_LIST_HEAD(&ring->request_list);
2062
2063         ring->size = size;
2064         ring->effective_size = ring->size;
2065         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2066                 ring->effective_size -= 2 * CACHELINE_BYTES;
2067
2068         ring->virtual_start = ioremap_wc(start, size);
2069         if (ring->virtual_start == NULL) {
2070                 DRM_ERROR("can not ioremap virtual address for"
2071                           " ring buffer\n");
2072                 return -ENOMEM;
2073         }
2074
2075         if (!I915_NEED_GFX_HWS(dev)) {
2076                 ret = init_phys_status_page(ring);
2077                 if (ret)
2078                         return ret;
2079         }
2080
2081         return 0;
2082 }
2083
2084 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2085 {
2086         struct drm_i915_private *dev_priv = dev->dev_private;
2087         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2088
2089         ring->name = "bsd ring";
2090         ring->id = VCS;
2091
2092         ring->write_tail = ring_write_tail;
2093         if (INTEL_INFO(dev)->gen >= 6) {
2094                 ring->mmio_base = GEN6_BSD_RING_BASE;
2095                 /* gen6 bsd needs a special wa for tail updates */
2096                 if (IS_GEN6(dev))
2097                         ring->write_tail = gen6_bsd_ring_write_tail;
2098                 ring->flush = gen6_bsd_ring_flush;
2099                 ring->add_request = gen6_add_request;
2100                 ring->get_seqno = gen6_ring_get_seqno;
2101                 ring->set_seqno = ring_set_seqno;
2102                 if (INTEL_INFO(dev)->gen >= 8) {
2103                         ring->irq_enable_mask =
2104                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2105                         ring->irq_get = gen8_ring_get_irq;
2106                         ring->irq_put = gen8_ring_put_irq;
2107                         ring->dispatch_execbuffer =
2108                                 gen8_ring_dispatch_execbuffer;
2109                 } else {
2110                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2111                         ring->irq_get = gen6_ring_get_irq;
2112                         ring->irq_put = gen6_ring_put_irq;
2113                         ring->dispatch_execbuffer =
2114                                 gen6_ring_dispatch_execbuffer;
2115                 }
2116                 ring->semaphore.sync_to = gen6_ring_sync;
2117                 ring->semaphore.signal = gen6_signal;
2118                 /*
2119                  * The current semaphore is only applied on pre-gen8 platform.
2120                  * And there is no VCS2 ring on the pre-gen8 platform. So the
2121                  * semaphore between VCS and VCS2 is initialized as INVALID.
2122                  * Gen8 will initialize the sema between VCS2 and VCS later.
2123                  */
2124                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2125                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2126                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2127                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2128                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2129                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2130                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2131                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2132                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2133                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2134         } else {
2135                 ring->mmio_base = BSD_RING_BASE;
2136                 ring->flush = bsd_ring_flush;
2137                 ring->add_request = i9xx_add_request;
2138                 ring->get_seqno = ring_get_seqno;
2139                 ring->set_seqno = ring_set_seqno;
2140                 if (IS_GEN5(dev)) {
2141                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2142                         ring->irq_get = gen5_ring_get_irq;
2143                         ring->irq_put = gen5_ring_put_irq;
2144                 } else {
2145                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2146                         ring->irq_get = i9xx_ring_get_irq;
2147                         ring->irq_put = i9xx_ring_put_irq;
2148                 }
2149                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2150         }
2151         ring->init = init_ring_common;
2152
2153         return intel_init_ring_buffer(dev, ring);
2154 }
2155
2156 /**
2157  * Initialize the second BSD ring for Broadwell GT3.
2158  * It is noted that this only exists on Broadwell GT3.
2159  */
2160 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2161 {
2162         struct drm_i915_private *dev_priv = dev->dev_private;
2163         struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
2164
2165         if ((INTEL_INFO(dev)->gen != 8)) {
2166                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2167                 return -EINVAL;
2168         }
2169
2170         ring->name = "bds2_ring";
2171         ring->id = VCS2;
2172
2173         ring->write_tail = ring_write_tail;
2174         ring->mmio_base = GEN8_BSD2_RING_BASE;
2175         ring->flush = gen6_bsd_ring_flush;
2176         ring->add_request = gen6_add_request;
2177         ring->get_seqno = gen6_ring_get_seqno;
2178         ring->set_seqno = ring_set_seqno;
2179         ring->irq_enable_mask =
2180                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2181         ring->irq_get = gen8_ring_get_irq;
2182         ring->irq_put = gen8_ring_put_irq;
2183         ring->dispatch_execbuffer =
2184                         gen8_ring_dispatch_execbuffer;
2185         ring->semaphore.sync_to = gen6_ring_sync;
2186         /*
2187          * The current semaphore is only applied on the pre-gen8. And there
2188          * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2189          * between VCS2 and other ring is initialized as invalid.
2190          * Gen8 will initialize the sema between VCS2 and other ring later.
2191          */
2192         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2193         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2194         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2195         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2196         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2197         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2198         ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2199         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2200         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2201         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2202
2203         ring->init = init_ring_common;
2204
2205         return intel_init_ring_buffer(dev, ring);
2206 }
2207
2208 int intel_init_blt_ring_buffer(struct drm_device *dev)
2209 {
2210         struct drm_i915_private *dev_priv = dev->dev_private;
2211         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2212
2213         ring->name = "blitter ring";
2214         ring->id = BCS;
2215
2216         ring->mmio_base = BLT_RING_BASE;
2217         ring->write_tail = ring_write_tail;
2218         ring->flush = gen6_ring_flush;
2219         ring->add_request = gen6_add_request;
2220         ring->get_seqno = gen6_ring_get_seqno;
2221         ring->set_seqno = ring_set_seqno;
2222         if (INTEL_INFO(dev)->gen >= 8) {
2223                 ring->irq_enable_mask =
2224                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2225                 ring->irq_get = gen8_ring_get_irq;
2226                 ring->irq_put = gen8_ring_put_irq;
2227                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2228         } else {
2229                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2230                 ring->irq_get = gen6_ring_get_irq;
2231                 ring->irq_put = gen6_ring_put_irq;
2232                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2233         }
2234         ring->semaphore.sync_to = gen6_ring_sync;
2235         ring->semaphore.signal = gen6_signal;
2236         /*
2237          * The current semaphore is only applied on pre-gen8 platform. And
2238          * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2239          * between BCS and VCS2 is initialized as INVALID.
2240          * Gen8 will initialize the sema between BCS and VCS2 later.
2241          */
2242         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2243         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2244         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2245         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2246         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2247         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2248         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2249         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2250         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2251         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2252         ring->init = init_ring_common;
2253
2254         return intel_init_ring_buffer(dev, ring);
2255 }
2256
2257 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2258 {
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2261
2262         ring->name = "video enhancement ring";
2263         ring->id = VECS;
2264
2265         ring->mmio_base = VEBOX_RING_BASE;
2266         ring->write_tail = ring_write_tail;
2267         ring->flush = gen6_ring_flush;
2268         ring->add_request = gen6_add_request;
2269         ring->get_seqno = gen6_ring_get_seqno;
2270         ring->set_seqno = ring_set_seqno;
2271
2272         if (INTEL_INFO(dev)->gen >= 8) {
2273                 ring->irq_enable_mask =
2274                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2275                 ring->irq_get = gen8_ring_get_irq;
2276                 ring->irq_put = gen8_ring_put_irq;
2277                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2278         } else {
2279                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2280                 ring->irq_get = hsw_vebox_get_irq;
2281                 ring->irq_put = hsw_vebox_put_irq;
2282                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2283         }
2284         ring->semaphore.sync_to = gen6_ring_sync;
2285         ring->semaphore.signal = gen6_signal;
2286         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2287         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2288         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2289         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2290         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2291         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2292         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2293         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2294         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2295         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2296         ring->init = init_ring_common;
2297
2298         return intel_init_ring_buffer(dev, ring);
2299 }
2300
2301 int
2302 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2303 {
2304         int ret;
2305
2306         if (!ring->gpu_caches_dirty)
2307                 return 0;
2308
2309         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2310         if (ret)
2311                 return ret;
2312
2313         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2314
2315         ring->gpu_caches_dirty = false;
2316         return 0;
2317 }
2318
2319 int
2320 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2321 {
2322         uint32_t flush_domains;
2323         int ret;
2324
2325         flush_domains = 0;
2326         if (ring->gpu_caches_dirty)
2327                 flush_domains = I915_GEM_GPU_DOMAINS;
2328
2329         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2330         if (ret)
2331                 return ret;
2332
2333         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2334
2335         ring->gpu_caches_dirty = false;
2336         return 0;
2337 }
2338
2339 void
2340 intel_stop_ring_buffer(struct intel_ring_buffer *ring)
2341 {
2342         int ret;
2343
2344         if (!intel_ring_initialized(ring))
2345                 return;
2346
2347         ret = intel_ring_idle(ring);
2348         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2349                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2350                           ring->name, ret);
2351
2352         stop_ring(ring);
2353 }