]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
ab22d70733bf905a8ae5abc0f7bc980ff35244f2
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int ring_space(struct intel_ring_buffer *ring)
44 {
45         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += ring->size;
48         return space;
49 }
50
51 static bool intel_ring_stopped(struct intel_ring_buffer *ring)
52 {
53         struct drm_i915_private *dev_priv = ring->dev->dev_private;
54         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
55 }
56
57 void __intel_ring_advance(struct intel_ring_buffer *ring)
58 {
59         ring->tail &= ring->size - 1;
60         if (intel_ring_stopped(ring))
61                 return;
62         ring->write_tail(ring, ring->tail);
63 }
64
65 static int
66 gen2_render_ring_flush(struct intel_ring_buffer *ring,
67                        u32      invalidate_domains,
68                        u32      flush_domains)
69 {
70         u32 cmd;
71         int ret;
72
73         cmd = MI_FLUSH;
74         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
75                 cmd |= MI_NO_WRITE_FLUSH;
76
77         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
78                 cmd |= MI_READ_FLUSH;
79
80         ret = intel_ring_begin(ring, 2);
81         if (ret)
82                 return ret;
83
84         intel_ring_emit(ring, cmd);
85         intel_ring_emit(ring, MI_NOOP);
86         intel_ring_advance(ring);
87
88         return 0;
89 }
90
91 static int
92 gen4_render_ring_flush(struct intel_ring_buffer *ring,
93                        u32      invalidate_domains,
94                        u32      flush_domains)
95 {
96         struct drm_device *dev = ring->dev;
97         u32 cmd;
98         int ret;
99
100         /*
101          * read/write caches:
102          *
103          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
104          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
105          * also flushed at 2d versus 3d pipeline switches.
106          *
107          * read-only caches:
108          *
109          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
110          * MI_READ_FLUSH is set, and is always flushed on 965.
111          *
112          * I915_GEM_DOMAIN_COMMAND may not exist?
113          *
114          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
115          * invalidated when MI_EXE_FLUSH is set.
116          *
117          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
118          * invalidated with every MI_FLUSH.
119          *
120          * TLBs:
121          *
122          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
123          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
124          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
125          * are flushed at any MI_FLUSH.
126          */
127
128         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
129         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
130                 cmd &= ~MI_NO_WRITE_FLUSH;
131         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
132                 cmd |= MI_EXE_FLUSH;
133
134         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
135             (IS_G4X(dev) || IS_GEN5(dev)))
136                 cmd |= MI_INVALIDATE_ISP;
137
138         ret = intel_ring_begin(ring, 2);
139         if (ret)
140                 return ret;
141
142         intel_ring_emit(ring, cmd);
143         intel_ring_emit(ring, MI_NOOP);
144         intel_ring_advance(ring);
145
146         return 0;
147 }
148
149 /**
150  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
151  * implementing two workarounds on gen6.  From section 1.4.7.1
152  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
153  *
154  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
155  * produced by non-pipelined state commands), software needs to first
156  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
157  * 0.
158  *
159  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
160  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
161  *
162  * And the workaround for these two requires this workaround first:
163  *
164  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
165  * BEFORE the pipe-control with a post-sync op and no write-cache
166  * flushes.
167  *
168  * And this last workaround is tricky because of the requirements on
169  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
170  * volume 2 part 1:
171  *
172  *     "1 of the following must also be set:
173  *      - Render Target Cache Flush Enable ([12] of DW1)
174  *      - Depth Cache Flush Enable ([0] of DW1)
175  *      - Stall at Pixel Scoreboard ([1] of DW1)
176  *      - Depth Stall ([13] of DW1)
177  *      - Post-Sync Operation ([13] of DW1)
178  *      - Notify Enable ([8] of DW1)"
179  *
180  * The cache flushes require the workaround flush that triggered this
181  * one, so we can't use it.  Depth stall would trigger the same.
182  * Post-sync nonzero is what triggered this second workaround, so we
183  * can't use that one either.  Notify enable is IRQs, which aren't
184  * really our business.  That leaves only stall at scoreboard.
185  */
186 static int
187 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
188 {
189         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
190         int ret;
191
192
193         ret = intel_ring_begin(ring, 6);
194         if (ret)
195                 return ret;
196
197         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
199                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
200         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201         intel_ring_emit(ring, 0); /* low dword */
202         intel_ring_emit(ring, 0); /* high dword */
203         intel_ring_emit(ring, MI_NOOP);
204         intel_ring_advance(ring);
205
206         ret = intel_ring_begin(ring, 6);
207         if (ret)
208                 return ret;
209
210         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
211         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
212         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213         intel_ring_emit(ring, 0);
214         intel_ring_emit(ring, 0);
215         intel_ring_emit(ring, MI_NOOP);
216         intel_ring_advance(ring);
217
218         return 0;
219 }
220
221 static int
222 gen6_render_ring_flush(struct intel_ring_buffer *ring,
223                          u32 invalidate_domains, u32 flush_domains)
224 {
225         u32 flags = 0;
226         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
227         int ret;
228
229         /* Force SNB workarounds for PIPE_CONTROL flushes */
230         ret = intel_emit_post_sync_nonzero_flush(ring);
231         if (ret)
232                 return ret;
233
234         /* Just flush everything.  Experiments have shown that reducing the
235          * number of bits based on the write domains has little performance
236          * impact.
237          */
238         if (flush_domains) {
239                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
240                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
241                 /*
242                  * Ensure that any following seqno writes only happen
243                  * when the render cache is indeed flushed.
244                  */
245                 flags |= PIPE_CONTROL_CS_STALL;
246         }
247         if (invalidate_domains) {
248                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
249                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
250                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
251                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
252                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
253                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
254                 /*
255                  * TLB invalidate requires a post-sync write.
256                  */
257                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
258         }
259
260         ret = intel_ring_begin(ring, 4);
261         if (ret)
262                 return ret;
263
264         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
265         intel_ring_emit(ring, flags);
266         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
267         intel_ring_emit(ring, 0);
268         intel_ring_advance(ring);
269
270         return 0;
271 }
272
273 static int
274 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
275 {
276         int ret;
277
278         ret = intel_ring_begin(ring, 4);
279         if (ret)
280                 return ret;
281
282         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
283         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
284                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
285         intel_ring_emit(ring, 0);
286         intel_ring_emit(ring, 0);
287         intel_ring_advance(ring);
288
289         return 0;
290 }
291
292 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
293 {
294         int ret;
295
296         if (!ring->fbc_dirty)
297                 return 0;
298
299         ret = intel_ring_begin(ring, 6);
300         if (ret)
301                 return ret;
302         /* WaFbcNukeOn3DBlt:ivb/hsw */
303         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
304         intel_ring_emit(ring, MSG_FBC_REND_STATE);
305         intel_ring_emit(ring, value);
306         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
307         intel_ring_emit(ring, MSG_FBC_REND_STATE);
308         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
309         intel_ring_advance(ring);
310
311         ring->fbc_dirty = false;
312         return 0;
313 }
314
315 static int
316 gen7_render_ring_flush(struct intel_ring_buffer *ring,
317                        u32 invalidate_domains, u32 flush_domains)
318 {
319         u32 flags = 0;
320         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
321         int ret;
322
323         /*
324          * Ensure that any following seqno writes only happen when the render
325          * cache is indeed flushed.
326          *
327          * Workaround: 4th PIPE_CONTROL command (except the ones with only
328          * read-cache invalidate bits set) must have the CS_STALL bit set. We
329          * don't try to be clever and just set it unconditionally.
330          */
331         flags |= PIPE_CONTROL_CS_STALL;
332
333         /* Just flush everything.  Experiments have shown that reducing the
334          * number of bits based on the write domains has little performance
335          * impact.
336          */
337         if (flush_domains) {
338                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340         }
341         if (invalidate_domains) {
342                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
343                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
344                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
345                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
346                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
347                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
348                 /*
349                  * TLB invalidate requires a post-sync write.
350                  */
351                 flags |= PIPE_CONTROL_QW_WRITE;
352                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
353
354                 /* Workaround: we must issue a pipe_control with CS-stall bit
355                  * set before a pipe_control command that has the state cache
356                  * invalidate bit set. */
357                 gen7_render_ring_cs_stall_wa(ring);
358         }
359
360         ret = intel_ring_begin(ring, 4);
361         if (ret)
362                 return ret;
363
364         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
365         intel_ring_emit(ring, flags);
366         intel_ring_emit(ring, scratch_addr);
367         intel_ring_emit(ring, 0);
368         intel_ring_advance(ring);
369
370         if (!invalidate_domains && flush_domains)
371                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
372
373         return 0;
374 }
375
376 static int
377 gen8_render_ring_flush(struct intel_ring_buffer *ring,
378                        u32 invalidate_domains, u32 flush_domains)
379 {
380         u32 flags = 0;
381         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
382         int ret;
383
384         flags |= PIPE_CONTROL_CS_STALL;
385
386         if (flush_domains) {
387                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
388                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
389         }
390         if (invalidate_domains) {
391                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
392                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
394                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
395                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
396                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
397                 flags |= PIPE_CONTROL_QW_WRITE;
398                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
399         }
400
401         ret = intel_ring_begin(ring, 6);
402         if (ret)
403                 return ret;
404
405         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406         intel_ring_emit(ring, flags);
407         intel_ring_emit(ring, scratch_addr);
408         intel_ring_emit(ring, 0);
409         intel_ring_emit(ring, 0);
410         intel_ring_emit(ring, 0);
411         intel_ring_advance(ring);
412
413         return 0;
414
415 }
416
417 static void ring_write_tail(struct intel_ring_buffer *ring,
418                             u32 value)
419 {
420         struct drm_i915_private *dev_priv = ring->dev->dev_private;
421         I915_WRITE_TAIL(ring, value);
422 }
423
424 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
425 {
426         struct drm_i915_private *dev_priv = ring->dev->dev_private;
427         u64 acthd;
428
429         if (INTEL_INFO(ring->dev)->gen >= 8)
430                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
431                                          RING_ACTHD_UDW(ring->mmio_base));
432         else if (INTEL_INFO(ring->dev)->gen >= 4)
433                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
434         else
435                 acthd = I915_READ(ACTHD);
436
437         return acthd;
438 }
439
440 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
441 {
442         struct drm_i915_private *dev_priv = ring->dev->dev_private;
443         u32 addr;
444
445         addr = dev_priv->status_page_dmah->busaddr;
446         if (INTEL_INFO(ring->dev)->gen >= 4)
447                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
448         I915_WRITE(HWS_PGA, addr);
449 }
450
451 static bool stop_ring(struct intel_ring_buffer *ring)
452 {
453         struct drm_i915_private *dev_priv = to_i915(ring->dev);
454
455         if (!IS_GEN2(ring->dev)) {
456                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
457                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
458                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
459                         return false;
460                 }
461         }
462
463         I915_WRITE_CTL(ring, 0);
464         I915_WRITE_HEAD(ring, 0);
465         ring->write_tail(ring, 0);
466
467         if (!IS_GEN2(ring->dev)) {
468                 (void)I915_READ_CTL(ring);
469                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
470         }
471
472         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
473 }
474
475 static int init_ring_common(struct intel_ring_buffer *ring)
476 {
477         struct drm_device *dev = ring->dev;
478         struct drm_i915_private *dev_priv = dev->dev_private;
479         struct drm_i915_gem_object *obj = ring->obj;
480         int ret = 0;
481
482         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
483
484         if (!stop_ring(ring)) {
485                 /* G45 ring initialization often fails to reset head to zero */
486                 DRM_DEBUG_KMS("%s head not reset to zero "
487                               "ctl %08x head %08x tail %08x start %08x\n",
488                               ring->name,
489                               I915_READ_CTL(ring),
490                               I915_READ_HEAD(ring),
491                               I915_READ_TAIL(ring),
492                               I915_READ_START(ring));
493
494                 if (!stop_ring(ring)) {
495                         DRM_ERROR("failed to set %s head to zero "
496                                   "ctl %08x head %08x tail %08x start %08x\n",
497                                   ring->name,
498                                   I915_READ_CTL(ring),
499                                   I915_READ_HEAD(ring),
500                                   I915_READ_TAIL(ring),
501                                   I915_READ_START(ring));
502                         ret = -EIO;
503                         goto out;
504                 }
505         }
506
507         if (I915_NEED_GFX_HWS(dev))
508                 intel_ring_setup_status_page(ring);
509         else
510                 ring_setup_phys_status_page(ring);
511
512         /* Initialize the ring. This must happen _after_ we've cleared the ring
513          * registers with the above sequence (the readback of the HEAD registers
514          * also enforces ordering), otherwise the hw might lose the new ring
515          * register values. */
516         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
517         I915_WRITE_CTL(ring,
518                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
519                         | RING_VALID);
520
521         /* If the head is still not zero, the ring is dead */
522         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
523                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
524                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
525                 DRM_ERROR("%s initialization failed "
526                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
527                           ring->name,
528                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
529                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
530                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
531                 ret = -EIO;
532                 goto out;
533         }
534
535         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
536                 i915_kernel_lost_context(ring->dev);
537         else {
538                 ring->head = I915_READ_HEAD(ring);
539                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
540                 ring->space = ring_space(ring);
541                 ring->last_retired_head = -1;
542         }
543
544         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
545
546 out:
547         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
548
549         return ret;
550 }
551
552 static int
553 init_pipe_control(struct intel_ring_buffer *ring)
554 {
555         int ret;
556
557         if (ring->scratch.obj)
558                 return 0;
559
560         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
561         if (ring->scratch.obj == NULL) {
562                 DRM_ERROR("Failed to allocate seqno page\n");
563                 ret = -ENOMEM;
564                 goto err;
565         }
566
567         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
568         if (ret)
569                 goto err_unref;
570
571         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
572         if (ret)
573                 goto err_unref;
574
575         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
576         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
577         if (ring->scratch.cpu_page == NULL) {
578                 ret = -ENOMEM;
579                 goto err_unpin;
580         }
581
582         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
583                          ring->name, ring->scratch.gtt_offset);
584         return 0;
585
586 err_unpin:
587         i915_gem_object_ggtt_unpin(ring->scratch.obj);
588 err_unref:
589         drm_gem_object_unreference(&ring->scratch.obj->base);
590 err:
591         return ret;
592 }
593
594 static int init_render_ring(struct intel_ring_buffer *ring)
595 {
596         struct drm_device *dev = ring->dev;
597         struct drm_i915_private *dev_priv = dev->dev_private;
598         int ret = init_ring_common(ring);
599
600         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
601         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
602                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
603
604         /* We need to disable the AsyncFlip performance optimisations in order
605          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
606          * programmed to '1' on all products.
607          *
608          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
609          */
610         if (INTEL_INFO(dev)->gen >= 6)
611                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
612
613         /* Required for the hardware to program scanline values for waiting */
614         /* WaEnableFlushTlbInvalidationMode:snb */
615         if (INTEL_INFO(dev)->gen == 6)
616                 I915_WRITE(GFX_MODE,
617                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
618
619         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
620         if (IS_GEN7(dev))
621                 I915_WRITE(GFX_MODE_GEN7,
622                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
623                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
624
625         if (INTEL_INFO(dev)->gen >= 5) {
626                 ret = init_pipe_control(ring);
627                 if (ret)
628                         return ret;
629         }
630
631         if (IS_GEN6(dev)) {
632                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
633                  * "If this bit is set, STCunit will have LRA as replacement
634                  *  policy. [...] This bit must be reset.  LRA replacement
635                  *  policy is not supported."
636                  */
637                 I915_WRITE(CACHE_MODE_0,
638                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
639         }
640
641         if (INTEL_INFO(dev)->gen >= 6)
642                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
643
644         if (HAS_L3_DPF(dev))
645                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
646
647         return ret;
648 }
649
650 static void render_ring_cleanup(struct intel_ring_buffer *ring)
651 {
652         struct drm_device *dev = ring->dev;
653
654         if (ring->scratch.obj == NULL)
655                 return;
656
657         if (INTEL_INFO(dev)->gen >= 5) {
658                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
659                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
660         }
661
662         drm_gem_object_unreference(&ring->scratch.obj->base);
663         ring->scratch.obj = NULL;
664 }
665
666 static void
667 update_mboxes(struct intel_ring_buffer *ring,
668               u32 mmio_offset)
669 {
670 /* NB: In order to be able to do semaphore MBOX updates for varying number
671  * of rings, it's easiest if we round up each individual update to a
672  * multiple of 2 (since ring updates must always be a multiple of 2)
673  * even though the actual update only requires 3 dwords.
674  */
675 #define MBOX_UPDATE_DWORDS 4
676         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677         intel_ring_emit(ring, mmio_offset);
678         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
679         intel_ring_emit(ring, MI_NOOP);
680 }
681
682 /**
683  * gen6_add_request - Update the semaphore mailbox registers
684  * 
685  * @ring - ring that is adding a request
686  * @seqno - return seqno stuck into the ring
687  *
688  * Update the mailbox registers in the *other* rings with the current seqno.
689  * This acts like a signal in the canonical semaphore.
690  */
691 static int
692 gen6_add_request(struct intel_ring_buffer *ring)
693 {
694         struct drm_device *dev = ring->dev;
695         struct drm_i915_private *dev_priv = dev->dev_private;
696         struct intel_ring_buffer *useless;
697         int i, ret, num_dwords = 4;
698
699         if (i915_semaphore_is_enabled(dev))
700                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
701 #undef MBOX_UPDATE_DWORDS
702
703         ret = intel_ring_begin(ring, num_dwords);
704         if (ret)
705                 return ret;
706
707         if (i915_semaphore_is_enabled(dev)) {
708                 for_each_ring(useless, dev_priv, i) {
709                         u32 mbox_reg = ring->signal_mbox[i];
710                         if (mbox_reg != GEN6_NOSYNC)
711                                 update_mboxes(ring, mbox_reg);
712                 }
713         }
714
715         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
716         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
717         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
718         intel_ring_emit(ring, MI_USER_INTERRUPT);
719         __intel_ring_advance(ring);
720
721         return 0;
722 }
723
724 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
725                                               u32 seqno)
726 {
727         struct drm_i915_private *dev_priv = dev->dev_private;
728         return dev_priv->last_seqno < seqno;
729 }
730
731 /**
732  * intel_ring_sync - sync the waiter to the signaller on seqno
733  *
734  * @waiter - ring that is waiting
735  * @signaller - ring which has, or will signal
736  * @seqno - seqno which the waiter will block on
737  */
738 static int
739 gen6_ring_sync(struct intel_ring_buffer *waiter,
740                struct intel_ring_buffer *signaller,
741                u32 seqno)
742 {
743         int ret;
744         u32 dw1 = MI_SEMAPHORE_MBOX |
745                   MI_SEMAPHORE_COMPARE |
746                   MI_SEMAPHORE_REGISTER;
747
748         /* Throughout all of the GEM code, seqno passed implies our current
749          * seqno is >= the last seqno executed. However for hardware the
750          * comparison is strictly greater than.
751          */
752         seqno -= 1;
753
754         WARN_ON(signaller->semaphore_register[waiter->id] ==
755                 MI_SEMAPHORE_SYNC_INVALID);
756
757         ret = intel_ring_begin(waiter, 4);
758         if (ret)
759                 return ret;
760
761         /* If seqno wrap happened, omit the wait with no-ops */
762         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
763                 intel_ring_emit(waiter,
764                                 dw1 |
765                                 signaller->semaphore_register[waiter->id]);
766                 intel_ring_emit(waiter, seqno);
767                 intel_ring_emit(waiter, 0);
768                 intel_ring_emit(waiter, MI_NOOP);
769         } else {
770                 intel_ring_emit(waiter, MI_NOOP);
771                 intel_ring_emit(waiter, MI_NOOP);
772                 intel_ring_emit(waiter, MI_NOOP);
773                 intel_ring_emit(waiter, MI_NOOP);
774         }
775         intel_ring_advance(waiter);
776
777         return 0;
778 }
779
780 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
781 do {                                                                    \
782         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
783                  PIPE_CONTROL_DEPTH_STALL);                             \
784         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
785         intel_ring_emit(ring__, 0);                                                     \
786         intel_ring_emit(ring__, 0);                                                     \
787 } while (0)
788
789 static int
790 pc_render_add_request(struct intel_ring_buffer *ring)
791 {
792         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
793         int ret;
794
795         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
796          * incoherent with writes to memory, i.e. completely fubar,
797          * so we need to use PIPE_NOTIFY instead.
798          *
799          * However, we also need to workaround the qword write
800          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
801          * memory before requesting an interrupt.
802          */
803         ret = intel_ring_begin(ring, 32);
804         if (ret)
805                 return ret;
806
807         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
808                         PIPE_CONTROL_WRITE_FLUSH |
809                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
810         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
811         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
812         intel_ring_emit(ring, 0);
813         PIPE_CONTROL_FLUSH(ring, scratch_addr);
814         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
815         PIPE_CONTROL_FLUSH(ring, scratch_addr);
816         scratch_addr += 2 * CACHELINE_BYTES;
817         PIPE_CONTROL_FLUSH(ring, scratch_addr);
818         scratch_addr += 2 * CACHELINE_BYTES;
819         PIPE_CONTROL_FLUSH(ring, scratch_addr);
820         scratch_addr += 2 * CACHELINE_BYTES;
821         PIPE_CONTROL_FLUSH(ring, scratch_addr);
822         scratch_addr += 2 * CACHELINE_BYTES;
823         PIPE_CONTROL_FLUSH(ring, scratch_addr);
824
825         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
826                         PIPE_CONTROL_WRITE_FLUSH |
827                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
828                         PIPE_CONTROL_NOTIFY);
829         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
830         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
831         intel_ring_emit(ring, 0);
832         __intel_ring_advance(ring);
833
834         return 0;
835 }
836
837 static u32
838 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
839 {
840         /* Workaround to force correct ordering between irq and seqno writes on
841          * ivb (and maybe also on snb) by reading from a CS register (like
842          * ACTHD) before reading the status page. */
843         if (!lazy_coherency) {
844                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
845                 POSTING_READ(RING_ACTHD(ring->mmio_base));
846         }
847
848         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
849 }
850
851 static u32
852 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
853 {
854         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
855 }
856
857 static void
858 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
859 {
860         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
861 }
862
863 static u32
864 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
865 {
866         return ring->scratch.cpu_page[0];
867 }
868
869 static void
870 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
871 {
872         ring->scratch.cpu_page[0] = seqno;
873 }
874
875 static bool
876 gen5_ring_get_irq(struct intel_ring_buffer *ring)
877 {
878         struct drm_device *dev = ring->dev;
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         unsigned long flags;
881
882         if (!dev->irq_enabled)
883                 return false;
884
885         spin_lock_irqsave(&dev_priv->irq_lock, flags);
886         if (ring->irq_refcount++ == 0)
887                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
888         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
889
890         return true;
891 }
892
893 static void
894 gen5_ring_put_irq(struct intel_ring_buffer *ring)
895 {
896         struct drm_device *dev = ring->dev;
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         unsigned long flags;
899
900         spin_lock_irqsave(&dev_priv->irq_lock, flags);
901         if (--ring->irq_refcount == 0)
902                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
903         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
904 }
905
906 static bool
907 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
908 {
909         struct drm_device *dev = ring->dev;
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         unsigned long flags;
912
913         if (!dev->irq_enabled)
914                 return false;
915
916         spin_lock_irqsave(&dev_priv->irq_lock, flags);
917         if (ring->irq_refcount++ == 0) {
918                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
919                 I915_WRITE(IMR, dev_priv->irq_mask);
920                 POSTING_READ(IMR);
921         }
922         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
923
924         return true;
925 }
926
927 static void
928 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
929 {
930         struct drm_device *dev = ring->dev;
931         struct drm_i915_private *dev_priv = dev->dev_private;
932         unsigned long flags;
933
934         spin_lock_irqsave(&dev_priv->irq_lock, flags);
935         if (--ring->irq_refcount == 0) {
936                 dev_priv->irq_mask |= ring->irq_enable_mask;
937                 I915_WRITE(IMR, dev_priv->irq_mask);
938                 POSTING_READ(IMR);
939         }
940         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
941 }
942
943 static bool
944 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
945 {
946         struct drm_device *dev = ring->dev;
947         struct drm_i915_private *dev_priv = dev->dev_private;
948         unsigned long flags;
949
950         if (!dev->irq_enabled)
951                 return false;
952
953         spin_lock_irqsave(&dev_priv->irq_lock, flags);
954         if (ring->irq_refcount++ == 0) {
955                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
956                 I915_WRITE16(IMR, dev_priv->irq_mask);
957                 POSTING_READ16(IMR);
958         }
959         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
960
961         return true;
962 }
963
964 static void
965 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
966 {
967         struct drm_device *dev = ring->dev;
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         unsigned long flags;
970
971         spin_lock_irqsave(&dev_priv->irq_lock, flags);
972         if (--ring->irq_refcount == 0) {
973                 dev_priv->irq_mask |= ring->irq_enable_mask;
974                 I915_WRITE16(IMR, dev_priv->irq_mask);
975                 POSTING_READ16(IMR);
976         }
977         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
978 }
979
980 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
981 {
982         struct drm_device *dev = ring->dev;
983         struct drm_i915_private *dev_priv = ring->dev->dev_private;
984         u32 mmio = 0;
985
986         /* The ring status page addresses are no longer next to the rest of
987          * the ring registers as of gen7.
988          */
989         if (IS_GEN7(dev)) {
990                 switch (ring->id) {
991                 case RCS:
992                         mmio = RENDER_HWS_PGA_GEN7;
993                         break;
994                 case BCS:
995                         mmio = BLT_HWS_PGA_GEN7;
996                         break;
997                 /*
998                  * VCS2 actually doesn't exist on Gen7. Only shut up
999                  * gcc switch check warning
1000                  */
1001                 case VCS2:
1002                 case VCS:
1003                         mmio = BSD_HWS_PGA_GEN7;
1004                         break;
1005                 case VECS:
1006                         mmio = VEBOX_HWS_PGA_GEN7;
1007                         break;
1008                 }
1009         } else if (IS_GEN6(ring->dev)) {
1010                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1011         } else {
1012                 /* XXX: gen8 returns to sanity */
1013                 mmio = RING_HWS_PGA(ring->mmio_base);
1014         }
1015
1016         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1017         POSTING_READ(mmio);
1018
1019         /*
1020          * Flush the TLB for this page
1021          *
1022          * FIXME: These two bits have disappeared on gen8, so a question
1023          * arises: do we still need this and if so how should we go about
1024          * invalidating the TLB?
1025          */
1026         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1027                 u32 reg = RING_INSTPM(ring->mmio_base);
1028
1029                 /* ring should be idle before issuing a sync flush*/
1030                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1031
1032                 I915_WRITE(reg,
1033                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1034                                               INSTPM_SYNC_FLUSH));
1035                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1036                              1000))
1037                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1038                                   ring->name);
1039         }
1040 }
1041
1042 static int
1043 bsd_ring_flush(struct intel_ring_buffer *ring,
1044                u32     invalidate_domains,
1045                u32     flush_domains)
1046 {
1047         int ret;
1048
1049         ret = intel_ring_begin(ring, 2);
1050         if (ret)
1051                 return ret;
1052
1053         intel_ring_emit(ring, MI_FLUSH);
1054         intel_ring_emit(ring, MI_NOOP);
1055         intel_ring_advance(ring);
1056         return 0;
1057 }
1058
1059 static int
1060 i9xx_add_request(struct intel_ring_buffer *ring)
1061 {
1062         int ret;
1063
1064         ret = intel_ring_begin(ring, 4);
1065         if (ret)
1066                 return ret;
1067
1068         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1069         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1070         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1071         intel_ring_emit(ring, MI_USER_INTERRUPT);
1072         __intel_ring_advance(ring);
1073
1074         return 0;
1075 }
1076
1077 static bool
1078 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1079 {
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         unsigned long flags;
1083
1084         if (!dev->irq_enabled)
1085                return false;
1086
1087         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1088         if (ring->irq_refcount++ == 0) {
1089                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1090                         I915_WRITE_IMR(ring,
1091                                        ~(ring->irq_enable_mask |
1092                                          GT_PARITY_ERROR(dev)));
1093                 else
1094                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1095                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1096         }
1097         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1098
1099         return true;
1100 }
1101
1102 static void
1103 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1104 {
1105         struct drm_device *dev = ring->dev;
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         unsigned long flags;
1108
1109         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1110         if (--ring->irq_refcount == 0) {
1111                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1112                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1113                 else
1114                         I915_WRITE_IMR(ring, ~0);
1115                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1116         }
1117         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1118 }
1119
1120 static bool
1121 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1122 {
1123         struct drm_device *dev = ring->dev;
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         unsigned long flags;
1126
1127         if (!dev->irq_enabled)
1128                 return false;
1129
1130         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1131         if (ring->irq_refcount++ == 0) {
1132                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1133                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1134         }
1135         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1136
1137         return true;
1138 }
1139
1140 static void
1141 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1142 {
1143         struct drm_device *dev = ring->dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         unsigned long flags;
1146
1147         if (!dev->irq_enabled)
1148                 return;
1149
1150         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1151         if (--ring->irq_refcount == 0) {
1152                 I915_WRITE_IMR(ring, ~0);
1153                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1154         }
1155         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1156 }
1157
1158 static bool
1159 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1160 {
1161         struct drm_device *dev = ring->dev;
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163         unsigned long flags;
1164
1165         if (!dev->irq_enabled)
1166                 return false;
1167
1168         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1169         if (ring->irq_refcount++ == 0) {
1170                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1171                         I915_WRITE_IMR(ring,
1172                                        ~(ring->irq_enable_mask |
1173                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1174                 } else {
1175                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1176                 }
1177                 POSTING_READ(RING_IMR(ring->mmio_base));
1178         }
1179         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1180
1181         return true;
1182 }
1183
1184 static void
1185 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1186 {
1187         struct drm_device *dev = ring->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         unsigned long flags;
1190
1191         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1192         if (--ring->irq_refcount == 0) {
1193                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1194                         I915_WRITE_IMR(ring,
1195                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1196                 } else {
1197                         I915_WRITE_IMR(ring, ~0);
1198                 }
1199                 POSTING_READ(RING_IMR(ring->mmio_base));
1200         }
1201         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1202 }
1203
1204 static int
1205 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1206                          u32 offset, u32 length,
1207                          unsigned flags)
1208 {
1209         int ret;
1210
1211         ret = intel_ring_begin(ring, 2);
1212         if (ret)
1213                 return ret;
1214
1215         intel_ring_emit(ring,
1216                         MI_BATCH_BUFFER_START |
1217                         MI_BATCH_GTT |
1218                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1219         intel_ring_emit(ring, offset);
1220         intel_ring_advance(ring);
1221
1222         return 0;
1223 }
1224
1225 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1226 #define I830_BATCH_LIMIT (256*1024)
1227 static int
1228 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1229                                 u32 offset, u32 len,
1230                                 unsigned flags)
1231 {
1232         int ret;
1233
1234         if (flags & I915_DISPATCH_PINNED) {
1235                 ret = intel_ring_begin(ring, 4);
1236                 if (ret)
1237                         return ret;
1238
1239                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1240                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1241                 intel_ring_emit(ring, offset + len - 8);
1242                 intel_ring_emit(ring, MI_NOOP);
1243                 intel_ring_advance(ring);
1244         } else {
1245                 u32 cs_offset = ring->scratch.gtt_offset;
1246
1247                 if (len > I830_BATCH_LIMIT)
1248                         return -ENOSPC;
1249
1250                 ret = intel_ring_begin(ring, 9+3);
1251                 if (ret)
1252                         return ret;
1253                 /* Blit the batch (which has now all relocs applied) to the stable batch
1254                  * scratch bo area (so that the CS never stumbles over its tlb
1255                  * invalidation bug) ... */
1256                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1257                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1258                                 XY_SRC_COPY_BLT_WRITE_RGB);
1259                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1260                 intel_ring_emit(ring, 0);
1261                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1262                 intel_ring_emit(ring, cs_offset);
1263                 intel_ring_emit(ring, 0);
1264                 intel_ring_emit(ring, 4096);
1265                 intel_ring_emit(ring, offset);
1266                 intel_ring_emit(ring, MI_FLUSH);
1267
1268                 /* ... and execute it. */
1269                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1270                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1271                 intel_ring_emit(ring, cs_offset + len - 8);
1272                 intel_ring_advance(ring);
1273         }
1274
1275         return 0;
1276 }
1277
1278 static int
1279 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1280                          u32 offset, u32 len,
1281                          unsigned flags)
1282 {
1283         int ret;
1284
1285         ret = intel_ring_begin(ring, 2);
1286         if (ret)
1287                 return ret;
1288
1289         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1290         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1291         intel_ring_advance(ring);
1292
1293         return 0;
1294 }
1295
1296 static void cleanup_status_page(struct intel_ring_buffer *ring)
1297 {
1298         struct drm_i915_gem_object *obj;
1299
1300         obj = ring->status_page.obj;
1301         if (obj == NULL)
1302                 return;
1303
1304         kunmap(sg_page(obj->pages->sgl));
1305         i915_gem_object_ggtt_unpin(obj);
1306         drm_gem_object_unreference(&obj->base);
1307         ring->status_page.obj = NULL;
1308 }
1309
1310 static int init_status_page(struct intel_ring_buffer *ring)
1311 {
1312         struct drm_i915_gem_object *obj;
1313
1314         if ((obj = ring->status_page.obj) == NULL) {
1315                 int ret;
1316
1317                 obj = i915_gem_alloc_object(ring->dev, 4096);
1318                 if (obj == NULL) {
1319                         DRM_ERROR("Failed to allocate status page\n");
1320                         return -ENOMEM;
1321                 }
1322
1323                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1324                 if (ret)
1325                         goto err_unref;
1326
1327                 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1328                 if (ret) {
1329 err_unref:
1330                         drm_gem_object_unreference(&obj->base);
1331                         return ret;
1332                 }
1333
1334                 ring->status_page.obj = obj;
1335         }
1336
1337         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1338         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1339         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1340
1341         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1342                         ring->name, ring->status_page.gfx_addr);
1343
1344         return 0;
1345 }
1346
1347 static int init_phys_status_page(struct intel_ring_buffer *ring)
1348 {
1349         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1350
1351         if (!dev_priv->status_page_dmah) {
1352                 dev_priv->status_page_dmah =
1353                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1354                 if (!dev_priv->status_page_dmah)
1355                         return -ENOMEM;
1356         }
1357
1358         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1359         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1360
1361         return 0;
1362 }
1363
1364 static int allocate_ring_buffer(struct intel_ring_buffer *ring)
1365 {
1366         struct drm_device *dev = ring->dev;
1367         struct drm_i915_private *dev_priv = to_i915(dev);
1368         struct drm_i915_gem_object *obj;
1369         int ret;
1370
1371         if (ring->obj)
1372                 return 0;
1373
1374         obj = NULL;
1375         if (!HAS_LLC(dev))
1376                 obj = i915_gem_object_create_stolen(dev, ring->size);
1377         if (obj == NULL)
1378                 obj = i915_gem_alloc_object(dev, ring->size);
1379         if (obj == NULL)
1380                 return -ENOMEM;
1381
1382         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1383         if (ret)
1384                 goto err_unref;
1385
1386         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1387         if (ret)
1388                 goto err_unpin;
1389
1390         ring->virtual_start =
1391                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1392                            ring->size);
1393         if (ring->virtual_start == NULL) {
1394                 ret = -EINVAL;
1395                 goto err_unpin;
1396         }
1397
1398         ring->obj = obj;
1399         return 0;
1400
1401 err_unpin:
1402         i915_gem_object_ggtt_unpin(obj);
1403 err_unref:
1404         drm_gem_object_unreference(&obj->base);
1405         return ret;
1406 }
1407
1408 static int intel_init_ring_buffer(struct drm_device *dev,
1409                                   struct intel_ring_buffer *ring)
1410 {
1411         int ret;
1412
1413         ring->dev = dev;
1414         INIT_LIST_HEAD(&ring->active_list);
1415         INIT_LIST_HEAD(&ring->request_list);
1416         ring->size = 32 * PAGE_SIZE;
1417         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1418
1419         init_waitqueue_head(&ring->irq_queue);
1420
1421         if (I915_NEED_GFX_HWS(dev)) {
1422                 ret = init_status_page(ring);
1423                 if (ret)
1424                         return ret;
1425         } else {
1426                 BUG_ON(ring->id != RCS);
1427                 ret = init_phys_status_page(ring);
1428                 if (ret)
1429                         return ret;
1430         }
1431
1432         ret = allocate_ring_buffer(ring);
1433         if (ret) {
1434                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1435                 return ret;
1436         }
1437
1438         /* Workaround an erratum on the i830 which causes a hang if
1439          * the TAIL pointer points to within the last 2 cachelines
1440          * of the buffer.
1441          */
1442         ring->effective_size = ring->size;
1443         if (IS_I830(dev) || IS_845G(dev))
1444                 ring->effective_size -= 2 * CACHELINE_BYTES;
1445
1446         i915_cmd_parser_init_ring(ring);
1447
1448         return ring->init(ring);
1449 }
1450
1451 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1452 {
1453         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1454
1455         if (ring->obj == NULL)
1456                 return;
1457
1458         intel_stop_ring_buffer(ring);
1459         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1460
1461         iounmap(ring->virtual_start);
1462
1463         i915_gem_object_ggtt_unpin(ring->obj);
1464         drm_gem_object_unreference(&ring->obj->base);
1465         ring->obj = NULL;
1466         ring->preallocated_lazy_request = NULL;
1467         ring->outstanding_lazy_seqno = 0;
1468
1469         if (ring->cleanup)
1470                 ring->cleanup(ring);
1471
1472         cleanup_status_page(ring);
1473 }
1474
1475 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1476 {
1477         struct drm_i915_gem_request *request;
1478         u32 seqno = 0, tail;
1479         int ret;
1480
1481         if (ring->last_retired_head != -1) {
1482                 ring->head = ring->last_retired_head;
1483                 ring->last_retired_head = -1;
1484
1485                 ring->space = ring_space(ring);
1486                 if (ring->space >= n)
1487                         return 0;
1488         }
1489
1490         list_for_each_entry(request, &ring->request_list, list) {
1491                 int space;
1492
1493                 if (request->tail == -1)
1494                         continue;
1495
1496                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1497                 if (space < 0)
1498                         space += ring->size;
1499                 if (space >= n) {
1500                         seqno = request->seqno;
1501                         tail = request->tail;
1502                         break;
1503                 }
1504
1505                 /* Consume this request in case we need more space than
1506                  * is available and so need to prevent a race between
1507                  * updating last_retired_head and direct reads of
1508                  * I915_RING_HEAD. It also provides a nice sanity check.
1509                  */
1510                 request->tail = -1;
1511         }
1512
1513         if (seqno == 0)
1514                 return -ENOSPC;
1515
1516         ret = i915_wait_seqno(ring, seqno);
1517         if (ret)
1518                 return ret;
1519
1520         ring->head = tail;
1521         ring->space = ring_space(ring);
1522         if (WARN_ON(ring->space < n))
1523                 return -ENOSPC;
1524
1525         return 0;
1526 }
1527
1528 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1529 {
1530         struct drm_device *dev = ring->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         unsigned long end;
1533         int ret;
1534
1535         ret = intel_ring_wait_request(ring, n);
1536         if (ret != -ENOSPC)
1537                 return ret;
1538
1539         /* force the tail write in case we have been skipping them */
1540         __intel_ring_advance(ring);
1541
1542         trace_i915_ring_wait_begin(ring);
1543         /* With GEM the hangcheck timer should kick us out of the loop,
1544          * leaving it early runs the risk of corrupting GEM state (due
1545          * to running on almost untested codepaths). But on resume
1546          * timers don't work yet, so prevent a complete hang in that
1547          * case by choosing an insanely large timeout. */
1548         end = jiffies + 60 * HZ;
1549
1550         do {
1551                 ring->head = I915_READ_HEAD(ring);
1552                 ring->space = ring_space(ring);
1553                 if (ring->space >= n) {
1554                         trace_i915_ring_wait_end(ring);
1555                         return 0;
1556                 }
1557
1558                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1559                     dev->primary->master) {
1560                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1561                         if (master_priv->sarea_priv)
1562                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1563                 }
1564
1565                 msleep(1);
1566
1567                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1568                                            dev_priv->mm.interruptible);
1569                 if (ret)
1570                         return ret;
1571         } while (!time_after(jiffies, end));
1572         trace_i915_ring_wait_end(ring);
1573         return -EBUSY;
1574 }
1575
1576 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1577 {
1578         uint32_t __iomem *virt;
1579         int rem = ring->size - ring->tail;
1580
1581         if (ring->space < rem) {
1582                 int ret = ring_wait_for_space(ring, rem);
1583                 if (ret)
1584                         return ret;
1585         }
1586
1587         virt = ring->virtual_start + ring->tail;
1588         rem /= 4;
1589         while (rem--)
1590                 iowrite32(MI_NOOP, virt++);
1591
1592         ring->tail = 0;
1593         ring->space = ring_space(ring);
1594
1595         return 0;
1596 }
1597
1598 int intel_ring_idle(struct intel_ring_buffer *ring)
1599 {
1600         u32 seqno;
1601         int ret;
1602
1603         /* We need to add any requests required to flush the objects and ring */
1604         if (ring->outstanding_lazy_seqno) {
1605                 ret = i915_add_request(ring, NULL);
1606                 if (ret)
1607                         return ret;
1608         }
1609
1610         /* Wait upon the last request to be completed */
1611         if (list_empty(&ring->request_list))
1612                 return 0;
1613
1614         seqno = list_entry(ring->request_list.prev,
1615                            struct drm_i915_gem_request,
1616                            list)->seqno;
1617
1618         return i915_wait_seqno(ring, seqno);
1619 }
1620
1621 static int
1622 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1623 {
1624         if (ring->outstanding_lazy_seqno)
1625                 return 0;
1626
1627         if (ring->preallocated_lazy_request == NULL) {
1628                 struct drm_i915_gem_request *request;
1629
1630                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1631                 if (request == NULL)
1632                         return -ENOMEM;
1633
1634                 ring->preallocated_lazy_request = request;
1635         }
1636
1637         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1638 }
1639
1640 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1641                                 int bytes)
1642 {
1643         int ret;
1644
1645         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1646                 ret = intel_wrap_ring_buffer(ring);
1647                 if (unlikely(ret))
1648                         return ret;
1649         }
1650
1651         if (unlikely(ring->space < bytes)) {
1652                 ret = ring_wait_for_space(ring, bytes);
1653                 if (unlikely(ret))
1654                         return ret;
1655         }
1656
1657         return 0;
1658 }
1659
1660 int intel_ring_begin(struct intel_ring_buffer *ring,
1661                      int num_dwords)
1662 {
1663         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1664         int ret;
1665
1666         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1667                                    dev_priv->mm.interruptible);
1668         if (ret)
1669                 return ret;
1670
1671         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1672         if (ret)
1673                 return ret;
1674
1675         /* Preallocate the olr before touching the ring */
1676         ret = intel_ring_alloc_seqno(ring);
1677         if (ret)
1678                 return ret;
1679
1680         ring->space -= num_dwords * sizeof(uint32_t);
1681         return 0;
1682 }
1683
1684 /* Align the ring tail to a cacheline boundary */
1685 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1686 {
1687         int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1688         int ret;
1689
1690         if (num_dwords == 0)
1691                 return 0;
1692
1693         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1694         ret = intel_ring_begin(ring, num_dwords);
1695         if (ret)
1696                 return ret;
1697
1698         while (num_dwords--)
1699                 intel_ring_emit(ring, MI_NOOP);
1700
1701         intel_ring_advance(ring);
1702
1703         return 0;
1704 }
1705
1706 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1707 {
1708         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1709
1710         BUG_ON(ring->outstanding_lazy_seqno);
1711
1712         if (INTEL_INFO(ring->dev)->gen >= 6) {
1713                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1714                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1715                 if (HAS_VEBOX(ring->dev))
1716                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1717         }
1718
1719         ring->set_seqno(ring, seqno);
1720         ring->hangcheck.seqno = seqno;
1721 }
1722
1723 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1724                                      u32 value)
1725 {
1726         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1727
1728        /* Every tail move must follow the sequence below */
1729
1730         /* Disable notification that the ring is IDLE. The GT
1731          * will then assume that it is busy and bring it out of rc6.
1732          */
1733         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1734                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1735
1736         /* Clear the context id. Here be magic! */
1737         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1738
1739         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1740         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1741                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1742                      50))
1743                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1744
1745         /* Now that the ring is fully powered up, update the tail */
1746         I915_WRITE_TAIL(ring, value);
1747         POSTING_READ(RING_TAIL(ring->mmio_base));
1748
1749         /* Let the ring send IDLE messages to the GT again,
1750          * and so let it sleep to conserve power when idle.
1751          */
1752         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1753                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1754 }
1755
1756 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1757                                u32 invalidate, u32 flush)
1758 {
1759         uint32_t cmd;
1760         int ret;
1761
1762         ret = intel_ring_begin(ring, 4);
1763         if (ret)
1764                 return ret;
1765
1766         cmd = MI_FLUSH_DW;
1767         if (INTEL_INFO(ring->dev)->gen >= 8)
1768                 cmd += 1;
1769         /*
1770          * Bspec vol 1c.5 - video engine command streamer:
1771          * "If ENABLED, all TLBs will be invalidated once the flush
1772          * operation is complete. This bit is only valid when the
1773          * Post-Sync Operation field is a value of 1h or 3h."
1774          */
1775         if (invalidate & I915_GEM_GPU_DOMAINS)
1776                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1777                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1778         intel_ring_emit(ring, cmd);
1779         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1780         if (INTEL_INFO(ring->dev)->gen >= 8) {
1781                 intel_ring_emit(ring, 0); /* upper addr */
1782                 intel_ring_emit(ring, 0); /* value */
1783         } else  {
1784                 intel_ring_emit(ring, 0);
1785                 intel_ring_emit(ring, MI_NOOP);
1786         }
1787         intel_ring_advance(ring);
1788         return 0;
1789 }
1790
1791 static int
1792 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1793                               u32 offset, u32 len,
1794                               unsigned flags)
1795 {
1796         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1797         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1798                 !(flags & I915_DISPATCH_SECURE);
1799         int ret;
1800
1801         ret = intel_ring_begin(ring, 4);
1802         if (ret)
1803                 return ret;
1804
1805         /* FIXME(BDW): Address space and security selectors. */
1806         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1807         intel_ring_emit(ring, offset);
1808         intel_ring_emit(ring, 0);
1809         intel_ring_emit(ring, MI_NOOP);
1810         intel_ring_advance(ring);
1811
1812         return 0;
1813 }
1814
1815 static int
1816 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1817                               u32 offset, u32 len,
1818                               unsigned flags)
1819 {
1820         int ret;
1821
1822         ret = intel_ring_begin(ring, 2);
1823         if (ret)
1824                 return ret;
1825
1826         intel_ring_emit(ring,
1827                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1828                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1829         /* bit0-7 is the length on GEN6+ */
1830         intel_ring_emit(ring, offset);
1831         intel_ring_advance(ring);
1832
1833         return 0;
1834 }
1835
1836 static int
1837 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1838                               u32 offset, u32 len,
1839                               unsigned flags)
1840 {
1841         int ret;
1842
1843         ret = intel_ring_begin(ring, 2);
1844         if (ret)
1845                 return ret;
1846
1847         intel_ring_emit(ring,
1848                         MI_BATCH_BUFFER_START |
1849                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1850         /* bit0-7 is the length on GEN6+ */
1851         intel_ring_emit(ring, offset);
1852         intel_ring_advance(ring);
1853
1854         return 0;
1855 }
1856
1857 /* Blitter support (SandyBridge+) */
1858
1859 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1860                            u32 invalidate, u32 flush)
1861 {
1862         struct drm_device *dev = ring->dev;
1863         uint32_t cmd;
1864         int ret;
1865
1866         ret = intel_ring_begin(ring, 4);
1867         if (ret)
1868                 return ret;
1869
1870         cmd = MI_FLUSH_DW;
1871         if (INTEL_INFO(ring->dev)->gen >= 8)
1872                 cmd += 1;
1873         /*
1874          * Bspec vol 1c.3 - blitter engine command streamer:
1875          * "If ENABLED, all TLBs will be invalidated once the flush
1876          * operation is complete. This bit is only valid when the
1877          * Post-Sync Operation field is a value of 1h or 3h."
1878          */
1879         if (invalidate & I915_GEM_DOMAIN_RENDER)
1880                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1881                         MI_FLUSH_DW_OP_STOREDW;
1882         intel_ring_emit(ring, cmd);
1883         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1884         if (INTEL_INFO(ring->dev)->gen >= 8) {
1885                 intel_ring_emit(ring, 0); /* upper addr */
1886                 intel_ring_emit(ring, 0); /* value */
1887         } else  {
1888                 intel_ring_emit(ring, 0);
1889                 intel_ring_emit(ring, MI_NOOP);
1890         }
1891         intel_ring_advance(ring);
1892
1893         if (IS_GEN7(dev) && !invalidate && flush)
1894                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1895
1896         return 0;
1897 }
1898
1899 int intel_init_render_ring_buffer(struct drm_device *dev)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1903
1904         ring->name = "render ring";
1905         ring->id = RCS;
1906         ring->mmio_base = RENDER_RING_BASE;
1907
1908         if (INTEL_INFO(dev)->gen >= 6) {
1909                 ring->add_request = gen6_add_request;
1910                 ring->flush = gen7_render_ring_flush;
1911                 if (INTEL_INFO(dev)->gen == 6)
1912                         ring->flush = gen6_render_ring_flush;
1913                 if (INTEL_INFO(dev)->gen >= 8) {
1914                         ring->flush = gen8_render_ring_flush;
1915                         ring->irq_get = gen8_ring_get_irq;
1916                         ring->irq_put = gen8_ring_put_irq;
1917                 } else {
1918                         ring->irq_get = gen6_ring_get_irq;
1919                         ring->irq_put = gen6_ring_put_irq;
1920                 }
1921                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1922                 ring->get_seqno = gen6_ring_get_seqno;
1923                 ring->set_seqno = ring_set_seqno;
1924                 ring->sync_to = gen6_ring_sync;
1925                 /*
1926                  * The current semaphore is only applied on pre-gen8 platform.
1927                  * And there is no VCS2 ring on the pre-gen8 platform. So the
1928                  * semaphore between RCS and VCS2 is initialized as INVALID.
1929                  * Gen8 will initialize the sema between VCS2 and RCS later.
1930                  */
1931                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1932                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1933                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1934                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1935                 ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1936                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1937                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1938                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1939                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1940                 ring->signal_mbox[VCS2] = GEN6_NOSYNC;
1941         } else if (IS_GEN5(dev)) {
1942                 ring->add_request = pc_render_add_request;
1943                 ring->flush = gen4_render_ring_flush;
1944                 ring->get_seqno = pc_render_get_seqno;
1945                 ring->set_seqno = pc_render_set_seqno;
1946                 ring->irq_get = gen5_ring_get_irq;
1947                 ring->irq_put = gen5_ring_put_irq;
1948                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1949                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1950         } else {
1951                 ring->add_request = i9xx_add_request;
1952                 if (INTEL_INFO(dev)->gen < 4)
1953                         ring->flush = gen2_render_ring_flush;
1954                 else
1955                         ring->flush = gen4_render_ring_flush;
1956                 ring->get_seqno = ring_get_seqno;
1957                 ring->set_seqno = ring_set_seqno;
1958                 if (IS_GEN2(dev)) {
1959                         ring->irq_get = i8xx_ring_get_irq;
1960                         ring->irq_put = i8xx_ring_put_irq;
1961                 } else {
1962                         ring->irq_get = i9xx_ring_get_irq;
1963                         ring->irq_put = i9xx_ring_put_irq;
1964                 }
1965                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1966         }
1967         ring->write_tail = ring_write_tail;
1968         if (IS_HASWELL(dev))
1969                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1970         else if (IS_GEN8(dev))
1971                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1972         else if (INTEL_INFO(dev)->gen >= 6)
1973                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1974         else if (INTEL_INFO(dev)->gen >= 4)
1975                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1976         else if (IS_I830(dev) || IS_845G(dev))
1977                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1978         else
1979                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1980         ring->init = init_render_ring;
1981         ring->cleanup = render_ring_cleanup;
1982
1983         /* Workaround batchbuffer to combat CS tlb bug. */
1984         if (HAS_BROKEN_CS_TLB(dev)) {
1985                 struct drm_i915_gem_object *obj;
1986                 int ret;
1987
1988                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1989                 if (obj == NULL) {
1990                         DRM_ERROR("Failed to allocate batch bo\n");
1991                         return -ENOMEM;
1992                 }
1993
1994                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1995                 if (ret != 0) {
1996                         drm_gem_object_unreference(&obj->base);
1997                         DRM_ERROR("Failed to ping batch bo\n");
1998                         return ret;
1999                 }
2000
2001                 ring->scratch.obj = obj;
2002                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2003         }
2004
2005         return intel_init_ring_buffer(dev, ring);
2006 }
2007
2008 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2009 {
2010         struct drm_i915_private *dev_priv = dev->dev_private;
2011         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2012         int ret;
2013
2014         ring->name = "render ring";
2015         ring->id = RCS;
2016         ring->mmio_base = RENDER_RING_BASE;
2017
2018         if (INTEL_INFO(dev)->gen >= 6) {
2019                 /* non-kms not supported on gen6+ */
2020                 return -ENODEV;
2021         }
2022
2023         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2024          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2025          * the special gen5 functions. */
2026         ring->add_request = i9xx_add_request;
2027         if (INTEL_INFO(dev)->gen < 4)
2028                 ring->flush = gen2_render_ring_flush;
2029         else
2030                 ring->flush = gen4_render_ring_flush;
2031         ring->get_seqno = ring_get_seqno;
2032         ring->set_seqno = ring_set_seqno;
2033         if (IS_GEN2(dev)) {
2034                 ring->irq_get = i8xx_ring_get_irq;
2035                 ring->irq_put = i8xx_ring_put_irq;
2036         } else {
2037                 ring->irq_get = i9xx_ring_get_irq;
2038                 ring->irq_put = i9xx_ring_put_irq;
2039         }
2040         ring->irq_enable_mask = I915_USER_INTERRUPT;
2041         ring->write_tail = ring_write_tail;
2042         if (INTEL_INFO(dev)->gen >= 4)
2043                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2044         else if (IS_I830(dev) || IS_845G(dev))
2045                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2046         else
2047                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2048         ring->init = init_render_ring;
2049         ring->cleanup = render_ring_cleanup;
2050
2051         ring->dev = dev;
2052         INIT_LIST_HEAD(&ring->active_list);
2053         INIT_LIST_HEAD(&ring->request_list);
2054
2055         ring->size = size;
2056         ring->effective_size = ring->size;
2057         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2058                 ring->effective_size -= 2 * CACHELINE_BYTES;
2059
2060         ring->virtual_start = ioremap_wc(start, size);
2061         if (ring->virtual_start == NULL) {
2062                 DRM_ERROR("can not ioremap virtual address for"
2063                           " ring buffer\n");
2064                 return -ENOMEM;
2065         }
2066
2067         if (!I915_NEED_GFX_HWS(dev)) {
2068                 ret = init_phys_status_page(ring);
2069                 if (ret)
2070                         return ret;
2071         }
2072
2073         return 0;
2074 }
2075
2076 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2077 {
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2080
2081         ring->name = "bsd ring";
2082         ring->id = VCS;
2083
2084         ring->write_tail = ring_write_tail;
2085         if (INTEL_INFO(dev)->gen >= 6) {
2086                 ring->mmio_base = GEN6_BSD_RING_BASE;
2087                 /* gen6 bsd needs a special wa for tail updates */
2088                 if (IS_GEN6(dev))
2089                         ring->write_tail = gen6_bsd_ring_write_tail;
2090                 ring->flush = gen6_bsd_ring_flush;
2091                 ring->add_request = gen6_add_request;
2092                 ring->get_seqno = gen6_ring_get_seqno;
2093                 ring->set_seqno = ring_set_seqno;
2094                 if (INTEL_INFO(dev)->gen >= 8) {
2095                         ring->irq_enable_mask =
2096                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2097                         ring->irq_get = gen8_ring_get_irq;
2098                         ring->irq_put = gen8_ring_put_irq;
2099                         ring->dispatch_execbuffer =
2100                                 gen8_ring_dispatch_execbuffer;
2101                 } else {
2102                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2103                         ring->irq_get = gen6_ring_get_irq;
2104                         ring->irq_put = gen6_ring_put_irq;
2105                         ring->dispatch_execbuffer =
2106                                 gen6_ring_dispatch_execbuffer;
2107                 }
2108                 ring->sync_to = gen6_ring_sync;
2109                 /*
2110                  * The current semaphore is only applied on pre-gen8 platform.
2111                  * And there is no VCS2 ring on the pre-gen8 platform. So the
2112                  * semaphore between VCS and VCS2 is initialized as INVALID.
2113                  * Gen8 will initialize the sema between VCS2 and VCS later.
2114                  */
2115                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2116                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2117                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2118                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2119                 ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2120                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2121                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2122                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2123                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2124                 ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2125         } else {
2126                 ring->mmio_base = BSD_RING_BASE;
2127                 ring->flush = bsd_ring_flush;
2128                 ring->add_request = i9xx_add_request;
2129                 ring->get_seqno = ring_get_seqno;
2130                 ring->set_seqno = ring_set_seqno;
2131                 if (IS_GEN5(dev)) {
2132                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2133                         ring->irq_get = gen5_ring_get_irq;
2134                         ring->irq_put = gen5_ring_put_irq;
2135                 } else {
2136                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2137                         ring->irq_get = i9xx_ring_get_irq;
2138                         ring->irq_put = i9xx_ring_put_irq;
2139                 }
2140                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2141         }
2142         ring->init = init_ring_common;
2143
2144         return intel_init_ring_buffer(dev, ring);
2145 }
2146
2147 /**
2148  * Initialize the second BSD ring for Broadwell GT3.
2149  * It is noted that this only exists on Broadwell GT3.
2150  */
2151 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2152 {
2153         struct drm_i915_private *dev_priv = dev->dev_private;
2154         struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
2155
2156         if ((INTEL_INFO(dev)->gen != 8)) {
2157                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2158                 return -EINVAL;
2159         }
2160
2161         ring->name = "bds2_ring";
2162         ring->id = VCS2;
2163
2164         ring->write_tail = ring_write_tail;
2165         ring->mmio_base = GEN8_BSD2_RING_BASE;
2166         ring->flush = gen6_bsd_ring_flush;
2167         ring->add_request = gen6_add_request;
2168         ring->get_seqno = gen6_ring_get_seqno;
2169         ring->set_seqno = ring_set_seqno;
2170         ring->irq_enable_mask =
2171                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2172         ring->irq_get = gen8_ring_get_irq;
2173         ring->irq_put = gen8_ring_put_irq;
2174         ring->dispatch_execbuffer =
2175                         gen8_ring_dispatch_execbuffer;
2176         ring->sync_to = gen6_ring_sync;
2177         /*
2178          * The current semaphore is only applied on the pre-gen8. And there
2179          * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2180          * between VCS2 and other ring is initialized as invalid.
2181          * Gen8 will initialize the sema between VCS2 and other ring later.
2182          */
2183         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2184         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2185         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2186         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2187         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2188         ring->signal_mbox[RCS] = GEN6_NOSYNC;
2189         ring->signal_mbox[VCS] = GEN6_NOSYNC;
2190         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2191         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2192         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2193
2194         ring->init = init_ring_common;
2195
2196         return intel_init_ring_buffer(dev, ring);
2197 }
2198
2199 int intel_init_blt_ring_buffer(struct drm_device *dev)
2200 {
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2203
2204         ring->name = "blitter ring";
2205         ring->id = BCS;
2206
2207         ring->mmio_base = BLT_RING_BASE;
2208         ring->write_tail = ring_write_tail;
2209         ring->flush = gen6_ring_flush;
2210         ring->add_request = gen6_add_request;
2211         ring->get_seqno = gen6_ring_get_seqno;
2212         ring->set_seqno = ring_set_seqno;
2213         if (INTEL_INFO(dev)->gen >= 8) {
2214                 ring->irq_enable_mask =
2215                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2216                 ring->irq_get = gen8_ring_get_irq;
2217                 ring->irq_put = gen8_ring_put_irq;
2218                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2219         } else {
2220                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2221                 ring->irq_get = gen6_ring_get_irq;
2222                 ring->irq_put = gen6_ring_put_irq;
2223                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2224         }
2225         ring->sync_to = gen6_ring_sync;
2226         /*
2227          * The current semaphore is only applied on pre-gen8 platform. And
2228          * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2229          * between BCS and VCS2 is initialized as INVALID.
2230          * Gen8 will initialize the sema between BCS and VCS2 later.
2231          */
2232         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2233         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2234         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2235         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2236         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2237         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2238         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2239         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2240         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2241         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2242         ring->init = init_ring_common;
2243
2244         return intel_init_ring_buffer(dev, ring);
2245 }
2246
2247 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2248 {
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2251
2252         ring->name = "video enhancement ring";
2253         ring->id = VECS;
2254
2255         ring->mmio_base = VEBOX_RING_BASE;
2256         ring->write_tail = ring_write_tail;
2257         ring->flush = gen6_ring_flush;
2258         ring->add_request = gen6_add_request;
2259         ring->get_seqno = gen6_ring_get_seqno;
2260         ring->set_seqno = ring_set_seqno;
2261
2262         if (INTEL_INFO(dev)->gen >= 8) {
2263                 ring->irq_enable_mask =
2264                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2265                 ring->irq_get = gen8_ring_get_irq;
2266                 ring->irq_put = gen8_ring_put_irq;
2267                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2268         } else {
2269                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2270                 ring->irq_get = hsw_vebox_get_irq;
2271                 ring->irq_put = hsw_vebox_put_irq;
2272                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2273         }
2274         ring->sync_to = gen6_ring_sync;
2275         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2276         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2277         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2278         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2279         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2280         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2281         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2282         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2283         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2284         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2285         ring->init = init_ring_common;
2286
2287         return intel_init_ring_buffer(dev, ring);
2288 }
2289
2290 int
2291 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2292 {
2293         int ret;
2294
2295         if (!ring->gpu_caches_dirty)
2296                 return 0;
2297
2298         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2299         if (ret)
2300                 return ret;
2301
2302         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2303
2304         ring->gpu_caches_dirty = false;
2305         return 0;
2306 }
2307
2308 int
2309 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2310 {
2311         uint32_t flush_domains;
2312         int ret;
2313
2314         flush_domains = 0;
2315         if (ring->gpu_caches_dirty)
2316                 flush_domains = I915_GEM_GPU_DOMAINS;
2317
2318         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2319         if (ret)
2320                 return ret;
2321
2322         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2323
2324         ring->gpu_caches_dirty = false;
2325         return 0;
2326 }
2327
2328 void
2329 intel_stop_ring_buffer(struct intel_ring_buffer *ring)
2330 {
2331         int ret;
2332
2333         if (!intel_ring_initialized(ring))
2334                 return;
2335
2336         ret = intel_ring_idle(ring);
2337         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2338                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2339                           ring->name, ret);
2340
2341         stop_ring(ring);
2342 }