]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
b3d8f766fa7f56f42ec7b728b56e3a17799618b6
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58         struct drm_i915_private *dev_priv = ring->dev->dev_private;
59         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64         struct intel_ringbuffer *ringbuf = ring->buffer;
65         ringbuf->tail &= ringbuf->size - 1;
66         if (intel_ring_stopped(ring))
67                 return;
68         ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73                        u32      invalidate_domains,
74                        u32      flush_domains)
75 {
76         u32 cmd;
77         int ret;
78
79         cmd = MI_FLUSH;
80         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81                 cmd |= MI_NO_WRITE_FLUSH;
82
83         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84                 cmd |= MI_READ_FLUSH;
85
86         ret = intel_ring_begin(ring, 2);
87         if (ret)
88                 return ret;
89
90         intel_ring_emit(ring, cmd);
91         intel_ring_emit(ring, MI_NOOP);
92         intel_ring_advance(ring);
93
94         return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99                        u32      invalidate_domains,
100                        u32      flush_domains)
101 {
102         struct drm_device *dev = ring->dev;
103         u32 cmd;
104         int ret;
105
106         /*
107          * read/write caches:
108          *
109          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111          * also flushed at 2d versus 3d pipeline switches.
112          *
113          * read-only caches:
114          *
115          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116          * MI_READ_FLUSH is set, and is always flushed on 965.
117          *
118          * I915_GEM_DOMAIN_COMMAND may not exist?
119          *
120          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121          * invalidated when MI_EXE_FLUSH is set.
122          *
123          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124          * invalidated with every MI_FLUSH.
125          *
126          * TLBs:
127          *
128          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131          * are flushed at any MI_FLUSH.
132          */
133
134         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136                 cmd &= ~MI_NO_WRITE_FLUSH;
137         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138                 cmd |= MI_EXE_FLUSH;
139
140         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141             (IS_G4X(dev) || IS_GEN5(dev)))
142                 cmd |= MI_INVALIDATE_ISP;
143
144         ret = intel_ring_begin(ring, 2);
145         if (ret)
146                 return ret;
147
148         intel_ring_emit(ring, cmd);
149         intel_ring_emit(ring, MI_NOOP);
150         intel_ring_advance(ring);
151
152         return 0;
153 }
154
155 /**
156  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157  * implementing two workarounds on gen6.  From section 1.4.7.1
158  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159  *
160  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161  * produced by non-pipelined state commands), software needs to first
162  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163  * 0.
164  *
165  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167  *
168  * And the workaround for these two requires this workaround first:
169  *
170  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171  * BEFORE the pipe-control with a post-sync op and no write-cache
172  * flushes.
173  *
174  * And this last workaround is tricky because of the requirements on
175  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176  * volume 2 part 1:
177  *
178  *     "1 of the following must also be set:
179  *      - Render Target Cache Flush Enable ([12] of DW1)
180  *      - Depth Cache Flush Enable ([0] of DW1)
181  *      - Stall at Pixel Scoreboard ([1] of DW1)
182  *      - Depth Stall ([13] of DW1)
183  *      - Post-Sync Operation ([13] of DW1)
184  *      - Notify Enable ([8] of DW1)"
185  *
186  * The cache flushes require the workaround flush that triggered this
187  * one, so we can't use it.  Depth stall would trigger the same.
188  * Post-sync nonzero is what triggered this second workaround, so we
189  * can't use that one either.  Notify enable is IRQs, which aren't
190  * really our business.  That leaves only stall at scoreboard.
191  */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196         int ret;
197
198
199         ret = intel_ring_begin(ring, 6);
200         if (ret)
201                 return ret;
202
203         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
206         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207         intel_ring_emit(ring, 0); /* low dword */
208         intel_ring_emit(ring, 0); /* high dword */
209         intel_ring_emit(ring, MI_NOOP);
210         intel_ring_advance(ring);
211
212         ret = intel_ring_begin(ring, 6);
213         if (ret)
214                 return ret;
215
216         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219         intel_ring_emit(ring, 0);
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, MI_NOOP);
222         intel_ring_advance(ring);
223
224         return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229                          u32 invalidate_domains, u32 flush_domains)
230 {
231         u32 flags = 0;
232         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233         int ret;
234
235         /* Force SNB workarounds for PIPE_CONTROL flushes */
236         ret = intel_emit_post_sync_nonzero_flush(ring);
237         if (ret)
238                 return ret;
239
240         /* Just flush everything.  Experiments have shown that reducing the
241          * number of bits based on the write domains has little performance
242          * impact.
243          */
244         if (flush_domains) {
245                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247                 /*
248                  * Ensure that any following seqno writes only happen
249                  * when the render cache is indeed flushed.
250                  */
251                 flags |= PIPE_CONTROL_CS_STALL;
252         }
253         if (invalidate_domains) {
254                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260                 /*
261                  * TLB invalidate requires a post-sync write.
262                  */
263                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264         }
265
266         ret = intel_ring_begin(ring, 4);
267         if (ret)
268                 return ret;
269
270         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271         intel_ring_emit(ring, flags);
272         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273         intel_ring_emit(ring, 0);
274         intel_ring_advance(ring);
275
276         return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282         int ret;
283
284         ret = intel_ring_begin(ring, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(ring, 0);
292         intel_ring_emit(ring, 0);
293         intel_ring_advance(ring);
294
295         return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300         int ret;
301
302         if (!ring->fbc_dirty)
303                 return 0;
304
305         ret = intel_ring_begin(ring, 6);
306         if (ret)
307                 return ret;
308         /* WaFbcNukeOn3DBlt:ivb/hsw */
309         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310         intel_ring_emit(ring, MSG_FBC_REND_STATE);
311         intel_ring_emit(ring, value);
312         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313         intel_ring_emit(ring, MSG_FBC_REND_STATE);
314         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315         intel_ring_advance(ring);
316
317         ring->fbc_dirty = false;
318         return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323                        u32 invalidate_domains, u32 flush_domains)
324 {
325         u32 flags = 0;
326         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327         int ret;
328
329         /*
330          * Ensure that any following seqno writes only happen when the render
331          * cache is indeed flushed.
332          *
333          * Workaround: 4th PIPE_CONTROL command (except the ones with only
334          * read-cache invalidate bits set) must have the CS_STALL bit set. We
335          * don't try to be clever and just set it unconditionally.
336          */
337         flags |= PIPE_CONTROL_CS_STALL;
338
339         /* Just flush everything.  Experiments have shown that reducing the
340          * number of bits based on the write domains has little performance
341          * impact.
342          */
343         if (flush_domains) {
344                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346         }
347         if (invalidate_domains) {
348                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 /* Workaround: we must issue a pipe_control with CS-stall bit
361                  * set before a pipe_control command that has the state cache
362                  * invalidate bit set. */
363                 gen7_render_ring_cs_stall_wa(ring);
364         }
365
366         ret = intel_ring_begin(ring, 4);
367         if (ret)
368                 return ret;
369
370         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
371         intel_ring_emit(ring, flags);
372         intel_ring_emit(ring, scratch_addr);
373         intel_ring_emit(ring, 0);
374         intel_ring_advance(ring);
375
376         if (!invalidate_domains && flush_domains)
377                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
379         return 0;
380 }
381
382 static int
383 gen8_render_ring_flush(struct intel_engine_cs *ring,
384                        u32 invalidate_domains, u32 flush_domains)
385 {
386         u32 flags = 0;
387         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
388         int ret;
389
390         flags |= PIPE_CONTROL_CS_STALL;
391
392         if (flush_domains) {
393                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
394                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
395         }
396         if (invalidate_domains) {
397                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
398                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
399                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
400                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
401                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
402                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
403                 flags |= PIPE_CONTROL_QW_WRITE;
404                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
405         }
406
407         ret = intel_ring_begin(ring, 6);
408         if (ret)
409                 return ret;
410
411         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
412         intel_ring_emit(ring, flags);
413         intel_ring_emit(ring, scratch_addr);
414         intel_ring_emit(ring, 0);
415         intel_ring_emit(ring, 0);
416         intel_ring_emit(ring, 0);
417         intel_ring_advance(ring);
418
419         return 0;
420
421 }
422
423 static void ring_write_tail(struct intel_engine_cs *ring,
424                             u32 value)
425 {
426         struct drm_i915_private *dev_priv = ring->dev->dev_private;
427         I915_WRITE_TAIL(ring, value);
428 }
429
430 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
431 {
432         struct drm_i915_private *dev_priv = ring->dev->dev_private;
433         u64 acthd;
434
435         if (INTEL_INFO(ring->dev)->gen >= 8)
436                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
437                                          RING_ACTHD_UDW(ring->mmio_base));
438         else if (INTEL_INFO(ring->dev)->gen >= 4)
439                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
440         else
441                 acthd = I915_READ(ACTHD);
442
443         return acthd;
444 }
445
446 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
447 {
448         struct drm_i915_private *dev_priv = ring->dev->dev_private;
449         u32 addr;
450
451         addr = dev_priv->status_page_dmah->busaddr;
452         if (INTEL_INFO(ring->dev)->gen >= 4)
453                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
454         I915_WRITE(HWS_PGA, addr);
455 }
456
457 static bool stop_ring(struct intel_engine_cs *ring)
458 {
459         struct drm_i915_private *dev_priv = to_i915(ring->dev);
460
461         if (!IS_GEN2(ring->dev)) {
462                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
463                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
464                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
465                         return false;
466                 }
467         }
468
469         I915_WRITE_CTL(ring, 0);
470         I915_WRITE_HEAD(ring, 0);
471         ring->write_tail(ring, 0);
472
473         if (!IS_GEN2(ring->dev)) {
474                 (void)I915_READ_CTL(ring);
475                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
476         }
477
478         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
479 }
480
481 static int init_ring_common(struct intel_engine_cs *ring)
482 {
483         struct drm_device *dev = ring->dev;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct intel_ringbuffer *ringbuf = ring->buffer;
486         struct drm_i915_gem_object *obj = ringbuf->obj;
487         int ret = 0;
488
489         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
490
491         if (!stop_ring(ring)) {
492                 /* G45 ring initialization often fails to reset head to zero */
493                 DRM_DEBUG_KMS("%s head not reset to zero "
494                               "ctl %08x head %08x tail %08x start %08x\n",
495                               ring->name,
496                               I915_READ_CTL(ring),
497                               I915_READ_HEAD(ring),
498                               I915_READ_TAIL(ring),
499                               I915_READ_START(ring));
500
501                 if (!stop_ring(ring)) {
502                         DRM_ERROR("failed to set %s head to zero "
503                                   "ctl %08x head %08x tail %08x start %08x\n",
504                                   ring->name,
505                                   I915_READ_CTL(ring),
506                                   I915_READ_HEAD(ring),
507                                   I915_READ_TAIL(ring),
508                                   I915_READ_START(ring));
509                         ret = -EIO;
510                         goto out;
511                 }
512         }
513
514         if (I915_NEED_GFX_HWS(dev))
515                 intel_ring_setup_status_page(ring);
516         else
517                 ring_setup_phys_status_page(ring);
518
519         /* Initialize the ring. This must happen _after_ we've cleared the ring
520          * registers with the above sequence (the readback of the HEAD registers
521          * also enforces ordering), otherwise the hw might lose the new ring
522          * register values. */
523         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
524         I915_WRITE_CTL(ring,
525                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
526                         | RING_VALID);
527
528         /* If the head is still not zero, the ring is dead */
529         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
530                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
531                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
532                 DRM_ERROR("%s initialization failed "
533                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
534                           ring->name,
535                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
536                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
537                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
538                 ret = -EIO;
539                 goto out;
540         }
541
542         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
543                 i915_kernel_lost_context(ring->dev);
544         else {
545                 ringbuf->head = I915_READ_HEAD(ring);
546                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
547                 ringbuf->space = ring_space(ringbuf);
548                 ringbuf->last_retired_head = -1;
549         }
550
551         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
552
553 out:
554         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
555
556         return ret;
557 }
558
559 static int
560 init_pipe_control(struct intel_engine_cs *ring)
561 {
562         int ret;
563
564         if (ring->scratch.obj)
565                 return 0;
566
567         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
568         if (ring->scratch.obj == NULL) {
569                 DRM_ERROR("Failed to allocate seqno page\n");
570                 ret = -ENOMEM;
571                 goto err;
572         }
573
574         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
575         if (ret)
576                 goto err_unref;
577
578         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
579         if (ret)
580                 goto err_unref;
581
582         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
583         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
584         if (ring->scratch.cpu_page == NULL) {
585                 ret = -ENOMEM;
586                 goto err_unpin;
587         }
588
589         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
590                          ring->name, ring->scratch.gtt_offset);
591         return 0;
592
593 err_unpin:
594         i915_gem_object_ggtt_unpin(ring->scratch.obj);
595 err_unref:
596         drm_gem_object_unreference(&ring->scratch.obj->base);
597 err:
598         return ret;
599 }
600
601 static int init_render_ring(struct intel_engine_cs *ring)
602 {
603         struct drm_device *dev = ring->dev;
604         struct drm_i915_private *dev_priv = dev->dev_private;
605         int ret = init_ring_common(ring);
606         if (ret)
607                 return ret;
608
609         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
610         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
611                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
612
613         /* We need to disable the AsyncFlip performance optimisations in order
614          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
615          * programmed to '1' on all products.
616          *
617          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
618          */
619         if (INTEL_INFO(dev)->gen >= 6)
620                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
621
622         /* Required for the hardware to program scanline values for waiting */
623         /* WaEnableFlushTlbInvalidationMode:snb */
624         if (INTEL_INFO(dev)->gen == 6)
625                 I915_WRITE(GFX_MODE,
626                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
627
628         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
629         if (IS_GEN7(dev))
630                 I915_WRITE(GFX_MODE_GEN7,
631                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
632                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
633
634         if (INTEL_INFO(dev)->gen >= 5) {
635                 ret = init_pipe_control(ring);
636                 if (ret)
637                         return ret;
638         }
639
640         if (IS_GEN6(dev)) {
641                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
642                  * "If this bit is set, STCunit will have LRA as replacement
643                  *  policy. [...] This bit must be reset.  LRA replacement
644                  *  policy is not supported."
645                  */
646                 I915_WRITE(CACHE_MODE_0,
647                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
648         }
649
650         if (INTEL_INFO(dev)->gen >= 6)
651                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
652
653         if (HAS_L3_DPF(dev))
654                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
655
656         return ret;
657 }
658
659 static void render_ring_cleanup(struct intel_engine_cs *ring)
660 {
661         struct drm_device *dev = ring->dev;
662         struct drm_i915_private *dev_priv = dev->dev_private;
663
664         if (dev_priv->semaphore_obj) {
665                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
666                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
667                 dev_priv->semaphore_obj = NULL;
668         }
669
670         if (ring->scratch.obj == NULL)
671                 return;
672
673         if (INTEL_INFO(dev)->gen >= 5) {
674                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
675                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
676         }
677
678         drm_gem_object_unreference(&ring->scratch.obj->base);
679         ring->scratch.obj = NULL;
680 }
681
682 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
683                            unsigned int num_dwords)
684 {
685 #define MBOX_UPDATE_DWORDS 8
686         struct drm_device *dev = signaller->dev;
687         struct drm_i915_private *dev_priv = dev->dev_private;
688         struct intel_engine_cs *waiter;
689         int i, ret, num_rings;
690
691         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
692         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
693 #undef MBOX_UPDATE_DWORDS
694
695         ret = intel_ring_begin(signaller, num_dwords);
696         if (ret)
697                 return ret;
698
699         for_each_ring(waiter, dev_priv, i) {
700                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
701                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
702                         continue;
703
704                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
705                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
706                                            PIPE_CONTROL_QW_WRITE |
707                                            PIPE_CONTROL_FLUSH_ENABLE);
708                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
709                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
710                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
711                 intel_ring_emit(signaller, 0);
712                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
713                                            MI_SEMAPHORE_TARGET(waiter->id));
714                 intel_ring_emit(signaller, 0);
715         }
716
717         return 0;
718 }
719
720 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
721                            unsigned int num_dwords)
722 {
723 #define MBOX_UPDATE_DWORDS 6
724         struct drm_device *dev = signaller->dev;
725         struct drm_i915_private *dev_priv = dev->dev_private;
726         struct intel_engine_cs *waiter;
727         int i, ret, num_rings;
728
729         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
730         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
731 #undef MBOX_UPDATE_DWORDS
732
733         ret = intel_ring_begin(signaller, num_dwords);
734         if (ret)
735                 return ret;
736
737         for_each_ring(waiter, dev_priv, i) {
738                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
739                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
740                         continue;
741
742                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
743                                            MI_FLUSH_DW_OP_STOREDW);
744                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
745                                            MI_FLUSH_DW_USE_GTT);
746                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
747                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
748                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
749                                            MI_SEMAPHORE_TARGET(waiter->id));
750                 intel_ring_emit(signaller, 0);
751         }
752
753         return 0;
754 }
755
756 static int gen6_signal(struct intel_engine_cs *signaller,
757                        unsigned int num_dwords)
758 {
759         struct drm_device *dev = signaller->dev;
760         struct drm_i915_private *dev_priv = dev->dev_private;
761         struct intel_engine_cs *useless;
762         int i, ret, num_rings;
763
764 #define MBOX_UPDATE_DWORDS 3
765         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
766         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
767 #undef MBOX_UPDATE_DWORDS
768
769         ret = intel_ring_begin(signaller, num_dwords);
770         if (ret)
771                 return ret;
772
773         for_each_ring(useless, dev_priv, i) {
774                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
775                 if (mbox_reg != GEN6_NOSYNC) {
776                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
777                         intel_ring_emit(signaller, mbox_reg);
778                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
779                 }
780         }
781
782         /* If num_dwords was rounded, make sure the tail pointer is correct */
783         if (num_rings % 2 == 0)
784                 intel_ring_emit(signaller, MI_NOOP);
785
786         return 0;
787 }
788
789 /**
790  * gen6_add_request - Update the semaphore mailbox registers
791  * 
792  * @ring - ring that is adding a request
793  * @seqno - return seqno stuck into the ring
794  *
795  * Update the mailbox registers in the *other* rings with the current seqno.
796  * This acts like a signal in the canonical semaphore.
797  */
798 static int
799 gen6_add_request(struct intel_engine_cs *ring)
800 {
801         int ret;
802
803         if (ring->semaphore.signal)
804                 ret = ring->semaphore.signal(ring, 4);
805         else
806                 ret = intel_ring_begin(ring, 4);
807
808         if (ret)
809                 return ret;
810
811         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
812         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
813         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
814         intel_ring_emit(ring, MI_USER_INTERRUPT);
815         __intel_ring_advance(ring);
816
817         return 0;
818 }
819
820 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
821                                               u32 seqno)
822 {
823         struct drm_i915_private *dev_priv = dev->dev_private;
824         return dev_priv->last_seqno < seqno;
825 }
826
827 /**
828  * intel_ring_sync - sync the waiter to the signaller on seqno
829  *
830  * @waiter - ring that is waiting
831  * @signaller - ring which has, or will signal
832  * @seqno - seqno which the waiter will block on
833  */
834
835 static int
836 gen8_ring_sync(struct intel_engine_cs *waiter,
837                struct intel_engine_cs *signaller,
838                u32 seqno)
839 {
840         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
841         int ret;
842
843         ret = intel_ring_begin(waiter, 4);
844         if (ret)
845                 return ret;
846
847         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
848                                 MI_SEMAPHORE_GLOBAL_GTT |
849                                 MI_SEMAPHORE_POLL |
850                                 MI_SEMAPHORE_SAD_GTE_SDD);
851         intel_ring_emit(waiter, seqno);
852         intel_ring_emit(waiter,
853                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
854         intel_ring_emit(waiter,
855                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
856         intel_ring_advance(waiter);
857         return 0;
858 }
859
860 static int
861 gen6_ring_sync(struct intel_engine_cs *waiter,
862                struct intel_engine_cs *signaller,
863                u32 seqno)
864 {
865         u32 dw1 = MI_SEMAPHORE_MBOX |
866                   MI_SEMAPHORE_COMPARE |
867                   MI_SEMAPHORE_REGISTER;
868         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
869         int ret;
870
871         /* Throughout all of the GEM code, seqno passed implies our current
872          * seqno is >= the last seqno executed. However for hardware the
873          * comparison is strictly greater than.
874          */
875         seqno -= 1;
876
877         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
878
879         ret = intel_ring_begin(waiter, 4);
880         if (ret)
881                 return ret;
882
883         /* If seqno wrap happened, omit the wait with no-ops */
884         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
885                 intel_ring_emit(waiter, dw1 | wait_mbox);
886                 intel_ring_emit(waiter, seqno);
887                 intel_ring_emit(waiter, 0);
888                 intel_ring_emit(waiter, MI_NOOP);
889         } else {
890                 intel_ring_emit(waiter, MI_NOOP);
891                 intel_ring_emit(waiter, MI_NOOP);
892                 intel_ring_emit(waiter, MI_NOOP);
893                 intel_ring_emit(waiter, MI_NOOP);
894         }
895         intel_ring_advance(waiter);
896
897         return 0;
898 }
899
900 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
901 do {                                                                    \
902         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
903                  PIPE_CONTROL_DEPTH_STALL);                             \
904         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
905         intel_ring_emit(ring__, 0);                                                     \
906         intel_ring_emit(ring__, 0);                                                     \
907 } while (0)
908
909 static int
910 pc_render_add_request(struct intel_engine_cs *ring)
911 {
912         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
913         int ret;
914
915         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
916          * incoherent with writes to memory, i.e. completely fubar,
917          * so we need to use PIPE_NOTIFY instead.
918          *
919          * However, we also need to workaround the qword write
920          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
921          * memory before requesting an interrupt.
922          */
923         ret = intel_ring_begin(ring, 32);
924         if (ret)
925                 return ret;
926
927         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
928                         PIPE_CONTROL_WRITE_FLUSH |
929                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
930         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
931         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
932         intel_ring_emit(ring, 0);
933         PIPE_CONTROL_FLUSH(ring, scratch_addr);
934         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
935         PIPE_CONTROL_FLUSH(ring, scratch_addr);
936         scratch_addr += 2 * CACHELINE_BYTES;
937         PIPE_CONTROL_FLUSH(ring, scratch_addr);
938         scratch_addr += 2 * CACHELINE_BYTES;
939         PIPE_CONTROL_FLUSH(ring, scratch_addr);
940         scratch_addr += 2 * CACHELINE_BYTES;
941         PIPE_CONTROL_FLUSH(ring, scratch_addr);
942         scratch_addr += 2 * CACHELINE_BYTES;
943         PIPE_CONTROL_FLUSH(ring, scratch_addr);
944
945         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
946                         PIPE_CONTROL_WRITE_FLUSH |
947                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
948                         PIPE_CONTROL_NOTIFY);
949         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
950         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
951         intel_ring_emit(ring, 0);
952         __intel_ring_advance(ring);
953
954         return 0;
955 }
956
957 static u32
958 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
959 {
960         /* Workaround to force correct ordering between irq and seqno writes on
961          * ivb (and maybe also on snb) by reading from a CS register (like
962          * ACTHD) before reading the status page. */
963         if (!lazy_coherency) {
964                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
965                 POSTING_READ(RING_ACTHD(ring->mmio_base));
966         }
967
968         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
969 }
970
971 static u32
972 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
973 {
974         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
975 }
976
977 static void
978 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
979 {
980         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
981 }
982
983 static u32
984 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
985 {
986         return ring->scratch.cpu_page[0];
987 }
988
989 static void
990 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
991 {
992         ring->scratch.cpu_page[0] = seqno;
993 }
994
995 static bool
996 gen5_ring_get_irq(struct intel_engine_cs *ring)
997 {
998         struct drm_device *dev = ring->dev;
999         struct drm_i915_private *dev_priv = dev->dev_private;
1000         unsigned long flags;
1001
1002         if (!dev->irq_enabled)
1003                 return false;
1004
1005         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1006         if (ring->irq_refcount++ == 0)
1007                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1008         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1009
1010         return true;
1011 }
1012
1013 static void
1014 gen5_ring_put_irq(struct intel_engine_cs *ring)
1015 {
1016         struct drm_device *dev = ring->dev;
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018         unsigned long flags;
1019
1020         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1021         if (--ring->irq_refcount == 0)
1022                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1023         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1024 }
1025
1026 static bool
1027 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1028 {
1029         struct drm_device *dev = ring->dev;
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         unsigned long flags;
1032
1033         if (!dev->irq_enabled)
1034                 return false;
1035
1036         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1037         if (ring->irq_refcount++ == 0) {
1038                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1039                 I915_WRITE(IMR, dev_priv->irq_mask);
1040                 POSTING_READ(IMR);
1041         }
1042         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1043
1044         return true;
1045 }
1046
1047 static void
1048 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1049 {
1050         struct drm_device *dev = ring->dev;
1051         struct drm_i915_private *dev_priv = dev->dev_private;
1052         unsigned long flags;
1053
1054         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1055         if (--ring->irq_refcount == 0) {
1056                 dev_priv->irq_mask |= ring->irq_enable_mask;
1057                 I915_WRITE(IMR, dev_priv->irq_mask);
1058                 POSTING_READ(IMR);
1059         }
1060         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1061 }
1062
1063 static bool
1064 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1065 {
1066         struct drm_device *dev = ring->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         unsigned long flags;
1069
1070         if (!dev->irq_enabled)
1071                 return false;
1072
1073         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1074         if (ring->irq_refcount++ == 0) {
1075                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1076                 I915_WRITE16(IMR, dev_priv->irq_mask);
1077                 POSTING_READ16(IMR);
1078         }
1079         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1080
1081         return true;
1082 }
1083
1084 static void
1085 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1086 {
1087         struct drm_device *dev = ring->dev;
1088         struct drm_i915_private *dev_priv = dev->dev_private;
1089         unsigned long flags;
1090
1091         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1092         if (--ring->irq_refcount == 0) {
1093                 dev_priv->irq_mask |= ring->irq_enable_mask;
1094                 I915_WRITE16(IMR, dev_priv->irq_mask);
1095                 POSTING_READ16(IMR);
1096         }
1097         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1098 }
1099
1100 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1101 {
1102         struct drm_device *dev = ring->dev;
1103         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1104         u32 mmio = 0;
1105
1106         /* The ring status page addresses are no longer next to the rest of
1107          * the ring registers as of gen7.
1108          */
1109         if (IS_GEN7(dev)) {
1110                 switch (ring->id) {
1111                 case RCS:
1112                         mmio = RENDER_HWS_PGA_GEN7;
1113                         break;
1114                 case BCS:
1115                         mmio = BLT_HWS_PGA_GEN7;
1116                         break;
1117                 /*
1118                  * VCS2 actually doesn't exist on Gen7. Only shut up
1119                  * gcc switch check warning
1120                  */
1121                 case VCS2:
1122                 case VCS:
1123                         mmio = BSD_HWS_PGA_GEN7;
1124                         break;
1125                 case VECS:
1126                         mmio = VEBOX_HWS_PGA_GEN7;
1127                         break;
1128                 }
1129         } else if (IS_GEN6(ring->dev)) {
1130                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1131         } else {
1132                 /* XXX: gen8 returns to sanity */
1133                 mmio = RING_HWS_PGA(ring->mmio_base);
1134         }
1135
1136         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1137         POSTING_READ(mmio);
1138
1139         /*
1140          * Flush the TLB for this page
1141          *
1142          * FIXME: These two bits have disappeared on gen8, so a question
1143          * arises: do we still need this and if so how should we go about
1144          * invalidating the TLB?
1145          */
1146         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1147                 u32 reg = RING_INSTPM(ring->mmio_base);
1148
1149                 /* ring should be idle before issuing a sync flush*/
1150                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1151
1152                 I915_WRITE(reg,
1153                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1154                                               INSTPM_SYNC_FLUSH));
1155                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1156                              1000))
1157                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1158                                   ring->name);
1159         }
1160 }
1161
1162 static int
1163 bsd_ring_flush(struct intel_engine_cs *ring,
1164                u32     invalidate_domains,
1165                u32     flush_domains)
1166 {
1167         int ret;
1168
1169         ret = intel_ring_begin(ring, 2);
1170         if (ret)
1171                 return ret;
1172
1173         intel_ring_emit(ring, MI_FLUSH);
1174         intel_ring_emit(ring, MI_NOOP);
1175         intel_ring_advance(ring);
1176         return 0;
1177 }
1178
1179 static int
1180 i9xx_add_request(struct intel_engine_cs *ring)
1181 {
1182         int ret;
1183
1184         ret = intel_ring_begin(ring, 4);
1185         if (ret)
1186                 return ret;
1187
1188         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1189         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1190         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1191         intel_ring_emit(ring, MI_USER_INTERRUPT);
1192         __intel_ring_advance(ring);
1193
1194         return 0;
1195 }
1196
1197 static bool
1198 gen6_ring_get_irq(struct intel_engine_cs *ring)
1199 {
1200         struct drm_device *dev = ring->dev;
1201         struct drm_i915_private *dev_priv = dev->dev_private;
1202         unsigned long flags;
1203
1204         if (!dev->irq_enabled)
1205                return false;
1206
1207         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1208         if (ring->irq_refcount++ == 0) {
1209                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1210                         I915_WRITE_IMR(ring,
1211                                        ~(ring->irq_enable_mask |
1212                                          GT_PARITY_ERROR(dev)));
1213                 else
1214                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1215                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1216         }
1217         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1218
1219         return true;
1220 }
1221
1222 static void
1223 gen6_ring_put_irq(struct intel_engine_cs *ring)
1224 {
1225         struct drm_device *dev = ring->dev;
1226         struct drm_i915_private *dev_priv = dev->dev_private;
1227         unsigned long flags;
1228
1229         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1230         if (--ring->irq_refcount == 0) {
1231                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1232                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1233                 else
1234                         I915_WRITE_IMR(ring, ~0);
1235                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1236         }
1237         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1238 }
1239
1240 static bool
1241 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1242 {
1243         struct drm_device *dev = ring->dev;
1244         struct drm_i915_private *dev_priv = dev->dev_private;
1245         unsigned long flags;
1246
1247         if (!dev->irq_enabled)
1248                 return false;
1249
1250         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1251         if (ring->irq_refcount++ == 0) {
1252                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1253                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1254         }
1255         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1256
1257         return true;
1258 }
1259
1260 static void
1261 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1262 {
1263         struct drm_device *dev = ring->dev;
1264         struct drm_i915_private *dev_priv = dev->dev_private;
1265         unsigned long flags;
1266
1267         if (!dev->irq_enabled)
1268                 return;
1269
1270         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1271         if (--ring->irq_refcount == 0) {
1272                 I915_WRITE_IMR(ring, ~0);
1273                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1274         }
1275         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1276 }
1277
1278 static bool
1279 gen8_ring_get_irq(struct intel_engine_cs *ring)
1280 {
1281         struct drm_device *dev = ring->dev;
1282         struct drm_i915_private *dev_priv = dev->dev_private;
1283         unsigned long flags;
1284
1285         if (!dev->irq_enabled)
1286                 return false;
1287
1288         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1289         if (ring->irq_refcount++ == 0) {
1290                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1291                         I915_WRITE_IMR(ring,
1292                                        ~(ring->irq_enable_mask |
1293                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1294                 } else {
1295                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1296                 }
1297                 POSTING_READ(RING_IMR(ring->mmio_base));
1298         }
1299         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1300
1301         return true;
1302 }
1303
1304 static void
1305 gen8_ring_put_irq(struct intel_engine_cs *ring)
1306 {
1307         struct drm_device *dev = ring->dev;
1308         struct drm_i915_private *dev_priv = dev->dev_private;
1309         unsigned long flags;
1310
1311         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1312         if (--ring->irq_refcount == 0) {
1313                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1314                         I915_WRITE_IMR(ring,
1315                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1316                 } else {
1317                         I915_WRITE_IMR(ring, ~0);
1318                 }
1319                 POSTING_READ(RING_IMR(ring->mmio_base));
1320         }
1321         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1322 }
1323
1324 static int
1325 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1326                          u64 offset, u32 length,
1327                          unsigned flags)
1328 {
1329         int ret;
1330
1331         ret = intel_ring_begin(ring, 2);
1332         if (ret)
1333                 return ret;
1334
1335         intel_ring_emit(ring,
1336                         MI_BATCH_BUFFER_START |
1337                         MI_BATCH_GTT |
1338                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1339         intel_ring_emit(ring, offset);
1340         intel_ring_advance(ring);
1341
1342         return 0;
1343 }
1344
1345 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1346 #define I830_BATCH_LIMIT (256*1024)
1347 static int
1348 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1349                                 u64 offset, u32 len,
1350                                 unsigned flags)
1351 {
1352         int ret;
1353
1354         if (flags & I915_DISPATCH_PINNED) {
1355                 ret = intel_ring_begin(ring, 4);
1356                 if (ret)
1357                         return ret;
1358
1359                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1360                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1361                 intel_ring_emit(ring, offset + len - 8);
1362                 intel_ring_emit(ring, MI_NOOP);
1363                 intel_ring_advance(ring);
1364         } else {
1365                 u32 cs_offset = ring->scratch.gtt_offset;
1366
1367                 if (len > I830_BATCH_LIMIT)
1368                         return -ENOSPC;
1369
1370                 ret = intel_ring_begin(ring, 9+3);
1371                 if (ret)
1372                         return ret;
1373                 /* Blit the batch (which has now all relocs applied) to the stable batch
1374                  * scratch bo area (so that the CS never stumbles over its tlb
1375                  * invalidation bug) ... */
1376                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1377                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1378                                 XY_SRC_COPY_BLT_WRITE_RGB);
1379                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1380                 intel_ring_emit(ring, 0);
1381                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1382                 intel_ring_emit(ring, cs_offset);
1383                 intel_ring_emit(ring, 0);
1384                 intel_ring_emit(ring, 4096);
1385                 intel_ring_emit(ring, offset);
1386                 intel_ring_emit(ring, MI_FLUSH);
1387
1388                 /* ... and execute it. */
1389                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1390                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1391                 intel_ring_emit(ring, cs_offset + len - 8);
1392                 intel_ring_advance(ring);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int
1399 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1400                          u64 offset, u32 len,
1401                          unsigned flags)
1402 {
1403         int ret;
1404
1405         ret = intel_ring_begin(ring, 2);
1406         if (ret)
1407                 return ret;
1408
1409         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1410         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1411         intel_ring_advance(ring);
1412
1413         return 0;
1414 }
1415
1416 static void cleanup_status_page(struct intel_engine_cs *ring)
1417 {
1418         struct drm_i915_gem_object *obj;
1419
1420         obj = ring->status_page.obj;
1421         if (obj == NULL)
1422                 return;
1423
1424         kunmap(sg_page(obj->pages->sgl));
1425         i915_gem_object_ggtt_unpin(obj);
1426         drm_gem_object_unreference(&obj->base);
1427         ring->status_page.obj = NULL;
1428 }
1429
1430 static int init_status_page(struct intel_engine_cs *ring)
1431 {
1432         struct drm_i915_gem_object *obj;
1433
1434         if ((obj = ring->status_page.obj) == NULL) {
1435                 unsigned flags;
1436                 int ret;
1437
1438                 obj = i915_gem_alloc_object(ring->dev, 4096);
1439                 if (obj == NULL) {
1440                         DRM_ERROR("Failed to allocate status page\n");
1441                         return -ENOMEM;
1442                 }
1443
1444                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1445                 if (ret)
1446                         goto err_unref;
1447
1448                 flags = 0;
1449                 if (!HAS_LLC(ring->dev))
1450                         /* On g33, we cannot place HWS above 256MiB, so
1451                          * restrict its pinning to the low mappable arena.
1452                          * Though this restriction is not documented for
1453                          * gen4, gen5, or byt, they also behave similarly
1454                          * and hang if the HWS is placed at the top of the
1455                          * GTT. To generalise, it appears that all !llc
1456                          * platforms have issues with us placing the HWS
1457                          * above the mappable region (even though we never
1458                          * actualy map it).
1459                          */
1460                         flags |= PIN_MAPPABLE;
1461                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1462                 if (ret) {
1463 err_unref:
1464                         drm_gem_object_unreference(&obj->base);
1465                         return ret;
1466                 }
1467
1468                 ring->status_page.obj = obj;
1469         }
1470
1471         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1472         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1473         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1474
1475         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1476                         ring->name, ring->status_page.gfx_addr);
1477
1478         return 0;
1479 }
1480
1481 static int init_phys_status_page(struct intel_engine_cs *ring)
1482 {
1483         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1484
1485         if (!dev_priv->status_page_dmah) {
1486                 dev_priv->status_page_dmah =
1487                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1488                 if (!dev_priv->status_page_dmah)
1489                         return -ENOMEM;
1490         }
1491
1492         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1493         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1494
1495         return 0;
1496 }
1497
1498 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1499 {
1500         if (!ringbuf->obj)
1501                 return;
1502
1503         iounmap(ringbuf->virtual_start);
1504         i915_gem_object_ggtt_unpin(ringbuf->obj);
1505         drm_gem_object_unreference(&ringbuf->obj->base);
1506         ringbuf->obj = NULL;
1507 }
1508
1509 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1510                                       struct intel_ringbuffer *ringbuf)
1511 {
1512         struct drm_i915_private *dev_priv = to_i915(dev);
1513         struct drm_i915_gem_object *obj;
1514         int ret;
1515
1516         if (ringbuf->obj)
1517                 return 0;
1518
1519         obj = NULL;
1520         if (!HAS_LLC(dev))
1521                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1522         if (obj == NULL)
1523                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1524         if (obj == NULL)
1525                 return -ENOMEM;
1526
1527         /* mark ring buffers as read-only from GPU side by default */
1528         obj->gt_ro = 1;
1529
1530         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1531         if (ret)
1532                 goto err_unref;
1533
1534         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1535         if (ret)
1536                 goto err_unpin;
1537
1538         ringbuf->virtual_start =
1539                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1540                                 ringbuf->size);
1541         if (ringbuf->virtual_start == NULL) {
1542                 ret = -EINVAL;
1543                 goto err_unpin;
1544         }
1545
1546         ringbuf->obj = obj;
1547         return 0;
1548
1549 err_unpin:
1550         i915_gem_object_ggtt_unpin(obj);
1551 err_unref:
1552         drm_gem_object_unreference(&obj->base);
1553         return ret;
1554 }
1555
1556 static int intel_init_ring_buffer(struct drm_device *dev,
1557                                   struct intel_engine_cs *ring)
1558 {
1559         struct intel_ringbuffer *ringbuf = ring->buffer;
1560         int ret;
1561
1562         if (ringbuf == NULL) {
1563                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1564                 if (!ringbuf)
1565                         return -ENOMEM;
1566                 ring->buffer = ringbuf;
1567         }
1568
1569         ring->dev = dev;
1570         INIT_LIST_HEAD(&ring->active_list);
1571         INIT_LIST_HEAD(&ring->request_list);
1572         ringbuf->size = 32 * PAGE_SIZE;
1573         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1574
1575         init_waitqueue_head(&ring->irq_queue);
1576
1577         if (I915_NEED_GFX_HWS(dev)) {
1578                 ret = init_status_page(ring);
1579                 if (ret)
1580                         goto error;
1581         } else {
1582                 BUG_ON(ring->id != RCS);
1583                 ret = init_phys_status_page(ring);
1584                 if (ret)
1585                         goto error;
1586         }
1587
1588         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1589         if (ret) {
1590                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1591                 goto error;
1592         }
1593
1594         /* Workaround an erratum on the i830 which causes a hang if
1595          * the TAIL pointer points to within the last 2 cachelines
1596          * of the buffer.
1597          */
1598         ringbuf->effective_size = ringbuf->size;
1599         if (IS_I830(dev) || IS_845G(dev))
1600                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1601
1602         ret = i915_cmd_parser_init_ring(ring);
1603         if (ret)
1604                 goto error;
1605
1606         ret = ring->init(ring);
1607         if (ret)
1608                 goto error;
1609
1610         return 0;
1611
1612 error:
1613         kfree(ringbuf);
1614         ring->buffer = NULL;
1615         return ret;
1616 }
1617
1618 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1619 {
1620         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1621         struct intel_ringbuffer *ringbuf = ring->buffer;
1622
1623         if (!intel_ring_initialized(ring))
1624                 return;
1625
1626         intel_stop_ring_buffer(ring);
1627         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1628
1629         intel_destroy_ringbuffer_obj(ringbuf);
1630         ring->preallocated_lazy_request = NULL;
1631         ring->outstanding_lazy_seqno = 0;
1632
1633         if (ring->cleanup)
1634                 ring->cleanup(ring);
1635
1636         cleanup_status_page(ring);
1637
1638         i915_cmd_parser_fini_ring(ring);
1639
1640         kfree(ringbuf);
1641         ring->buffer = NULL;
1642 }
1643
1644 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1645 {
1646         struct intel_ringbuffer *ringbuf = ring->buffer;
1647         struct drm_i915_gem_request *request;
1648         u32 seqno = 0;
1649         int ret;
1650
1651         if (ringbuf->last_retired_head != -1) {
1652                 ringbuf->head = ringbuf->last_retired_head;
1653                 ringbuf->last_retired_head = -1;
1654
1655                 ringbuf->space = ring_space(ringbuf);
1656                 if (ringbuf->space >= n)
1657                         return 0;
1658         }
1659
1660         list_for_each_entry(request, &ring->request_list, list) {
1661                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1662                         seqno = request->seqno;
1663                         break;
1664                 }
1665         }
1666
1667         if (seqno == 0)
1668                 return -ENOSPC;
1669
1670         ret = i915_wait_seqno(ring, seqno);
1671         if (ret)
1672                 return ret;
1673
1674         i915_gem_retire_requests_ring(ring);
1675         ringbuf->head = ringbuf->last_retired_head;
1676         ringbuf->last_retired_head = -1;
1677
1678         ringbuf->space = ring_space(ringbuf);
1679         return 0;
1680 }
1681
1682 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1683 {
1684         struct drm_device *dev = ring->dev;
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686         struct intel_ringbuffer *ringbuf = ring->buffer;
1687         unsigned long end;
1688         int ret;
1689
1690         ret = intel_ring_wait_request(ring, n);
1691         if (ret != -ENOSPC)
1692                 return ret;
1693
1694         /* force the tail write in case we have been skipping them */
1695         __intel_ring_advance(ring);
1696
1697         /* With GEM the hangcheck timer should kick us out of the loop,
1698          * leaving it early runs the risk of corrupting GEM state (due
1699          * to running on almost untested codepaths). But on resume
1700          * timers don't work yet, so prevent a complete hang in that
1701          * case by choosing an insanely large timeout. */
1702         end = jiffies + 60 * HZ;
1703
1704         trace_i915_ring_wait_begin(ring);
1705         do {
1706                 ringbuf->head = I915_READ_HEAD(ring);
1707                 ringbuf->space = ring_space(ringbuf);
1708                 if (ringbuf->space >= n) {
1709                         ret = 0;
1710                         break;
1711                 }
1712
1713                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1714                     dev->primary->master) {
1715                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1716                         if (master_priv->sarea_priv)
1717                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1718                 }
1719
1720                 msleep(1);
1721
1722                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1723                         ret = -ERESTARTSYS;
1724                         break;
1725                 }
1726
1727                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1728                                            dev_priv->mm.interruptible);
1729                 if (ret)
1730                         break;
1731
1732                 if (time_after(jiffies, end)) {
1733                         ret = -EBUSY;
1734                         break;
1735                 }
1736         } while (1);
1737         trace_i915_ring_wait_end(ring);
1738         return ret;
1739 }
1740
1741 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1742 {
1743         uint32_t __iomem *virt;
1744         struct intel_ringbuffer *ringbuf = ring->buffer;
1745         int rem = ringbuf->size - ringbuf->tail;
1746
1747         if (ringbuf->space < rem) {
1748                 int ret = ring_wait_for_space(ring, rem);
1749                 if (ret)
1750                         return ret;
1751         }
1752
1753         virt = ringbuf->virtual_start + ringbuf->tail;
1754         rem /= 4;
1755         while (rem--)
1756                 iowrite32(MI_NOOP, virt++);
1757
1758         ringbuf->tail = 0;
1759         ringbuf->space = ring_space(ringbuf);
1760
1761         return 0;
1762 }
1763
1764 int intel_ring_idle(struct intel_engine_cs *ring)
1765 {
1766         u32 seqno;
1767         int ret;
1768
1769         /* We need to add any requests required to flush the objects and ring */
1770         if (ring->outstanding_lazy_seqno) {
1771                 ret = i915_add_request(ring, NULL);
1772                 if (ret)
1773                         return ret;
1774         }
1775
1776         /* Wait upon the last request to be completed */
1777         if (list_empty(&ring->request_list))
1778                 return 0;
1779
1780         seqno = list_entry(ring->request_list.prev,
1781                            struct drm_i915_gem_request,
1782                            list)->seqno;
1783
1784         return i915_wait_seqno(ring, seqno);
1785 }
1786
1787 static int
1788 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1789 {
1790         if (ring->outstanding_lazy_seqno)
1791                 return 0;
1792
1793         if (ring->preallocated_lazy_request == NULL) {
1794                 struct drm_i915_gem_request *request;
1795
1796                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1797                 if (request == NULL)
1798                         return -ENOMEM;
1799
1800                 ring->preallocated_lazy_request = request;
1801         }
1802
1803         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1804 }
1805
1806 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1807                                 int bytes)
1808 {
1809         struct intel_ringbuffer *ringbuf = ring->buffer;
1810         int ret;
1811
1812         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1813                 ret = intel_wrap_ring_buffer(ring);
1814                 if (unlikely(ret))
1815                         return ret;
1816         }
1817
1818         if (unlikely(ringbuf->space < bytes)) {
1819                 ret = ring_wait_for_space(ring, bytes);
1820                 if (unlikely(ret))
1821                         return ret;
1822         }
1823
1824         return 0;
1825 }
1826
1827 int intel_ring_begin(struct intel_engine_cs *ring,
1828                      int num_dwords)
1829 {
1830         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1831         int ret;
1832
1833         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1834                                    dev_priv->mm.interruptible);
1835         if (ret)
1836                 return ret;
1837
1838         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1839         if (ret)
1840                 return ret;
1841
1842         /* Preallocate the olr before touching the ring */
1843         ret = intel_ring_alloc_seqno(ring);
1844         if (ret)
1845                 return ret;
1846
1847         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1848         return 0;
1849 }
1850
1851 /* Align the ring tail to a cacheline boundary */
1852 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1853 {
1854         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1855         int ret;
1856
1857         if (num_dwords == 0)
1858                 return 0;
1859
1860         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1861         ret = intel_ring_begin(ring, num_dwords);
1862         if (ret)
1863                 return ret;
1864
1865         while (num_dwords--)
1866                 intel_ring_emit(ring, MI_NOOP);
1867
1868         intel_ring_advance(ring);
1869
1870         return 0;
1871 }
1872
1873 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1874 {
1875         struct drm_device *dev = ring->dev;
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878         BUG_ON(ring->outstanding_lazy_seqno);
1879
1880         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1881                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1882                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1883                 if (HAS_VEBOX(dev))
1884                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1885         }
1886
1887         ring->set_seqno(ring, seqno);
1888         ring->hangcheck.seqno = seqno;
1889 }
1890
1891 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1892                                      u32 value)
1893 {
1894         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1895
1896        /* Every tail move must follow the sequence below */
1897
1898         /* Disable notification that the ring is IDLE. The GT
1899          * will then assume that it is busy and bring it out of rc6.
1900          */
1901         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1902                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1903
1904         /* Clear the context id. Here be magic! */
1905         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1906
1907         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1908         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1909                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1910                      50))
1911                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1912
1913         /* Now that the ring is fully powered up, update the tail */
1914         I915_WRITE_TAIL(ring, value);
1915         POSTING_READ(RING_TAIL(ring->mmio_base));
1916
1917         /* Let the ring send IDLE messages to the GT again,
1918          * and so let it sleep to conserve power when idle.
1919          */
1920         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1921                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1922 }
1923
1924 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1925                                u32 invalidate, u32 flush)
1926 {
1927         uint32_t cmd;
1928         int ret;
1929
1930         ret = intel_ring_begin(ring, 4);
1931         if (ret)
1932                 return ret;
1933
1934         cmd = MI_FLUSH_DW;
1935         if (INTEL_INFO(ring->dev)->gen >= 8)
1936                 cmd += 1;
1937         /*
1938          * Bspec vol 1c.5 - video engine command streamer:
1939          * "If ENABLED, all TLBs will be invalidated once the flush
1940          * operation is complete. This bit is only valid when the
1941          * Post-Sync Operation field is a value of 1h or 3h."
1942          */
1943         if (invalidate & I915_GEM_GPU_DOMAINS)
1944                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1945                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1946         intel_ring_emit(ring, cmd);
1947         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1948         if (INTEL_INFO(ring->dev)->gen >= 8) {
1949                 intel_ring_emit(ring, 0); /* upper addr */
1950                 intel_ring_emit(ring, 0); /* value */
1951         } else  {
1952                 intel_ring_emit(ring, 0);
1953                 intel_ring_emit(ring, MI_NOOP);
1954         }
1955         intel_ring_advance(ring);
1956         return 0;
1957 }
1958
1959 static int
1960 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1961                               u64 offset, u32 len,
1962                               unsigned flags)
1963 {
1964         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1965         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1966                 !(flags & I915_DISPATCH_SECURE);
1967         int ret;
1968
1969         ret = intel_ring_begin(ring, 4);
1970         if (ret)
1971                 return ret;
1972
1973         /* FIXME(BDW): Address space and security selectors. */
1974         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1975         intel_ring_emit(ring, lower_32_bits(offset));
1976         intel_ring_emit(ring, upper_32_bits(offset));
1977         intel_ring_emit(ring, MI_NOOP);
1978         intel_ring_advance(ring);
1979
1980         return 0;
1981 }
1982
1983 static int
1984 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1985                               u64 offset, u32 len,
1986                               unsigned flags)
1987 {
1988         int ret;
1989
1990         ret = intel_ring_begin(ring, 2);
1991         if (ret)
1992                 return ret;
1993
1994         intel_ring_emit(ring,
1995                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1996                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1997         /* bit0-7 is the length on GEN6+ */
1998         intel_ring_emit(ring, offset);
1999         intel_ring_advance(ring);
2000
2001         return 0;
2002 }
2003
2004 static int
2005 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2006                               u64 offset, u32 len,
2007                               unsigned flags)
2008 {
2009         int ret;
2010
2011         ret = intel_ring_begin(ring, 2);
2012         if (ret)
2013                 return ret;
2014
2015         intel_ring_emit(ring,
2016                         MI_BATCH_BUFFER_START |
2017                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2018         /* bit0-7 is the length on GEN6+ */
2019         intel_ring_emit(ring, offset);
2020         intel_ring_advance(ring);
2021
2022         return 0;
2023 }
2024
2025 /* Blitter support (SandyBridge+) */
2026
2027 static int gen6_ring_flush(struct intel_engine_cs *ring,
2028                            u32 invalidate, u32 flush)
2029 {
2030         struct drm_device *dev = ring->dev;
2031         uint32_t cmd;
2032         int ret;
2033
2034         ret = intel_ring_begin(ring, 4);
2035         if (ret)
2036                 return ret;
2037
2038         cmd = MI_FLUSH_DW;
2039         if (INTEL_INFO(ring->dev)->gen >= 8)
2040                 cmd += 1;
2041         /*
2042          * Bspec vol 1c.3 - blitter engine command streamer:
2043          * "If ENABLED, all TLBs will be invalidated once the flush
2044          * operation is complete. This bit is only valid when the
2045          * Post-Sync Operation field is a value of 1h or 3h."
2046          */
2047         if (invalidate & I915_GEM_DOMAIN_RENDER)
2048                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2049                         MI_FLUSH_DW_OP_STOREDW;
2050         intel_ring_emit(ring, cmd);
2051         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2052         if (INTEL_INFO(ring->dev)->gen >= 8) {
2053                 intel_ring_emit(ring, 0); /* upper addr */
2054                 intel_ring_emit(ring, 0); /* value */
2055         } else  {
2056                 intel_ring_emit(ring, 0);
2057                 intel_ring_emit(ring, MI_NOOP);
2058         }
2059         intel_ring_advance(ring);
2060
2061         if (IS_GEN7(dev) && !invalidate && flush)
2062                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2063
2064         return 0;
2065 }
2066
2067 int intel_init_render_ring_buffer(struct drm_device *dev)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2071         struct drm_i915_gem_object *obj;
2072         int ret;
2073
2074         ring->name = "render ring";
2075         ring->id = RCS;
2076         ring->mmio_base = RENDER_RING_BASE;
2077
2078         if (INTEL_INFO(dev)->gen >= 8) {
2079                 if (i915_semaphore_is_enabled(dev)) {
2080                         obj = i915_gem_alloc_object(dev, 4096);
2081                         if (obj == NULL) {
2082                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2083                                 i915.semaphores = 0;
2084                         } else {
2085                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2086                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2087                                 if (ret != 0) {
2088                                         drm_gem_object_unreference(&obj->base);
2089                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2090                                         i915.semaphores = 0;
2091                                 } else
2092                                         dev_priv->semaphore_obj = obj;
2093                         }
2094                 }
2095                 ring->add_request = gen6_add_request;
2096                 ring->flush = gen8_render_ring_flush;
2097                 ring->irq_get = gen8_ring_get_irq;
2098                 ring->irq_put = gen8_ring_put_irq;
2099                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2100                 ring->get_seqno = gen6_ring_get_seqno;
2101                 ring->set_seqno = ring_set_seqno;
2102                 if (i915_semaphore_is_enabled(dev)) {
2103                         WARN_ON(!dev_priv->semaphore_obj);
2104                         ring->semaphore.sync_to = gen8_ring_sync;
2105                         ring->semaphore.signal = gen8_rcs_signal;
2106                         GEN8_RING_SEMAPHORE_INIT;
2107                 }
2108         } else if (INTEL_INFO(dev)->gen >= 6) {
2109                 ring->add_request = gen6_add_request;
2110                 ring->flush = gen7_render_ring_flush;
2111                 if (INTEL_INFO(dev)->gen == 6)
2112                         ring->flush = gen6_render_ring_flush;
2113                 ring->irq_get = gen6_ring_get_irq;
2114                 ring->irq_put = gen6_ring_put_irq;
2115                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2116                 ring->get_seqno = gen6_ring_get_seqno;
2117                 ring->set_seqno = ring_set_seqno;
2118                 if (i915_semaphore_is_enabled(dev)) {
2119                         ring->semaphore.sync_to = gen6_ring_sync;
2120                         ring->semaphore.signal = gen6_signal;
2121                         /*
2122                          * The current semaphore is only applied on pre-gen8
2123                          * platform.  And there is no VCS2 ring on the pre-gen8
2124                          * platform. So the semaphore between RCS and VCS2 is
2125                          * initialized as INVALID.  Gen8 will initialize the
2126                          * sema between VCS2 and RCS later.
2127                          */
2128                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2129                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2130                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2131                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2132                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2133                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2134                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2135                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2136                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2137                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2138                 }
2139         } else if (IS_GEN5(dev)) {
2140                 ring->add_request = pc_render_add_request;
2141                 ring->flush = gen4_render_ring_flush;
2142                 ring->get_seqno = pc_render_get_seqno;
2143                 ring->set_seqno = pc_render_set_seqno;
2144                 ring->irq_get = gen5_ring_get_irq;
2145                 ring->irq_put = gen5_ring_put_irq;
2146                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2147                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2148         } else {
2149                 ring->add_request = i9xx_add_request;
2150                 if (INTEL_INFO(dev)->gen < 4)
2151                         ring->flush = gen2_render_ring_flush;
2152                 else
2153                         ring->flush = gen4_render_ring_flush;
2154                 ring->get_seqno = ring_get_seqno;
2155                 ring->set_seqno = ring_set_seqno;
2156                 if (IS_GEN2(dev)) {
2157                         ring->irq_get = i8xx_ring_get_irq;
2158                         ring->irq_put = i8xx_ring_put_irq;
2159                 } else {
2160                         ring->irq_get = i9xx_ring_get_irq;
2161                         ring->irq_put = i9xx_ring_put_irq;
2162                 }
2163                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2164         }
2165         ring->write_tail = ring_write_tail;
2166
2167         if (IS_HASWELL(dev))
2168                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2169         else if (IS_GEN8(dev))
2170                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2171         else if (INTEL_INFO(dev)->gen >= 6)
2172                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2173         else if (INTEL_INFO(dev)->gen >= 4)
2174                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2175         else if (IS_I830(dev) || IS_845G(dev))
2176                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2177         else
2178                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2179         ring->init = init_render_ring;
2180         ring->cleanup = render_ring_cleanup;
2181
2182         /* Workaround batchbuffer to combat CS tlb bug. */
2183         if (HAS_BROKEN_CS_TLB(dev)) {
2184                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2185                 if (obj == NULL) {
2186                         DRM_ERROR("Failed to allocate batch bo\n");
2187                         return -ENOMEM;
2188                 }
2189
2190                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2191                 if (ret != 0) {
2192                         drm_gem_object_unreference(&obj->base);
2193                         DRM_ERROR("Failed to ping batch bo\n");
2194                         return ret;
2195                 }
2196
2197                 ring->scratch.obj = obj;
2198                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2199         }
2200
2201         return intel_init_ring_buffer(dev, ring);
2202 }
2203
2204 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2205 {
2206         struct drm_i915_private *dev_priv = dev->dev_private;
2207         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2208         struct intel_ringbuffer *ringbuf = ring->buffer;
2209         int ret;
2210
2211         if (ringbuf == NULL) {
2212                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2213                 if (!ringbuf)
2214                         return -ENOMEM;
2215                 ring->buffer = ringbuf;
2216         }
2217
2218         ring->name = "render ring";
2219         ring->id = RCS;
2220         ring->mmio_base = RENDER_RING_BASE;
2221
2222         if (INTEL_INFO(dev)->gen >= 6) {
2223                 /* non-kms not supported on gen6+ */
2224                 ret = -ENODEV;
2225                 goto err_ringbuf;
2226         }
2227
2228         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2229          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2230          * the special gen5 functions. */
2231         ring->add_request = i9xx_add_request;
2232         if (INTEL_INFO(dev)->gen < 4)
2233                 ring->flush = gen2_render_ring_flush;
2234         else
2235                 ring->flush = gen4_render_ring_flush;
2236         ring->get_seqno = ring_get_seqno;
2237         ring->set_seqno = ring_set_seqno;
2238         if (IS_GEN2(dev)) {
2239                 ring->irq_get = i8xx_ring_get_irq;
2240                 ring->irq_put = i8xx_ring_put_irq;
2241         } else {
2242                 ring->irq_get = i9xx_ring_get_irq;
2243                 ring->irq_put = i9xx_ring_put_irq;
2244         }
2245         ring->irq_enable_mask = I915_USER_INTERRUPT;
2246         ring->write_tail = ring_write_tail;
2247         if (INTEL_INFO(dev)->gen >= 4)
2248                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2249         else if (IS_I830(dev) || IS_845G(dev))
2250                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2251         else
2252                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2253         ring->init = init_render_ring;
2254         ring->cleanup = render_ring_cleanup;
2255
2256         ring->dev = dev;
2257         INIT_LIST_HEAD(&ring->active_list);
2258         INIT_LIST_HEAD(&ring->request_list);
2259
2260         ringbuf->size = size;
2261         ringbuf->effective_size = ringbuf->size;
2262         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2263                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2264
2265         ringbuf->virtual_start = ioremap_wc(start, size);
2266         if (ringbuf->virtual_start == NULL) {
2267                 DRM_ERROR("can not ioremap virtual address for"
2268                           " ring buffer\n");
2269                 ret = -ENOMEM;
2270                 goto err_ringbuf;
2271         }
2272
2273         if (!I915_NEED_GFX_HWS(dev)) {
2274                 ret = init_phys_status_page(ring);
2275                 if (ret)
2276                         goto err_vstart;
2277         }
2278
2279         return 0;
2280
2281 err_vstart:
2282         iounmap(ringbuf->virtual_start);
2283 err_ringbuf:
2284         kfree(ringbuf);
2285         ring->buffer = NULL;
2286         return ret;
2287 }
2288
2289 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2290 {
2291         struct drm_i915_private *dev_priv = dev->dev_private;
2292         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2293
2294         ring->name = "bsd ring";
2295         ring->id = VCS;
2296
2297         ring->write_tail = ring_write_tail;
2298         if (INTEL_INFO(dev)->gen >= 6) {
2299                 ring->mmio_base = GEN6_BSD_RING_BASE;
2300                 /* gen6 bsd needs a special wa for tail updates */
2301                 if (IS_GEN6(dev))
2302                         ring->write_tail = gen6_bsd_ring_write_tail;
2303                 ring->flush = gen6_bsd_ring_flush;
2304                 ring->add_request = gen6_add_request;
2305                 ring->get_seqno = gen6_ring_get_seqno;
2306                 ring->set_seqno = ring_set_seqno;
2307                 if (INTEL_INFO(dev)->gen >= 8) {
2308                         ring->irq_enable_mask =
2309                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2310                         ring->irq_get = gen8_ring_get_irq;
2311                         ring->irq_put = gen8_ring_put_irq;
2312                         ring->dispatch_execbuffer =
2313                                 gen8_ring_dispatch_execbuffer;
2314                         if (i915_semaphore_is_enabled(dev)) {
2315                                 ring->semaphore.sync_to = gen8_ring_sync;
2316                                 ring->semaphore.signal = gen8_xcs_signal;
2317                                 GEN8_RING_SEMAPHORE_INIT;
2318                         }
2319                 } else {
2320                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2321                         ring->irq_get = gen6_ring_get_irq;
2322                         ring->irq_put = gen6_ring_put_irq;
2323                         ring->dispatch_execbuffer =
2324                                 gen6_ring_dispatch_execbuffer;
2325                         if (i915_semaphore_is_enabled(dev)) {
2326                                 ring->semaphore.sync_to = gen6_ring_sync;
2327                                 ring->semaphore.signal = gen6_signal;
2328                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2329                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2330                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2331                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2332                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2333                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2334                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2335                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2336                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2337                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2338                         }
2339                 }
2340         } else {
2341                 ring->mmio_base = BSD_RING_BASE;
2342                 ring->flush = bsd_ring_flush;
2343                 ring->add_request = i9xx_add_request;
2344                 ring->get_seqno = ring_get_seqno;
2345                 ring->set_seqno = ring_set_seqno;
2346                 if (IS_GEN5(dev)) {
2347                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2348                         ring->irq_get = gen5_ring_get_irq;
2349                         ring->irq_put = gen5_ring_put_irq;
2350                 } else {
2351                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2352                         ring->irq_get = i9xx_ring_get_irq;
2353                         ring->irq_put = i9xx_ring_put_irq;
2354                 }
2355                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2356         }
2357         ring->init = init_ring_common;
2358
2359         return intel_init_ring_buffer(dev, ring);
2360 }
2361
2362 /**
2363  * Initialize the second BSD ring for Broadwell GT3.
2364  * It is noted that this only exists on Broadwell GT3.
2365  */
2366 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2367 {
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2370
2371         if ((INTEL_INFO(dev)->gen != 8)) {
2372                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2373                 return -EINVAL;
2374         }
2375
2376         ring->name = "bsd2 ring";
2377         ring->id = VCS2;
2378
2379         ring->write_tail = ring_write_tail;
2380         ring->mmio_base = GEN8_BSD2_RING_BASE;
2381         ring->flush = gen6_bsd_ring_flush;
2382         ring->add_request = gen6_add_request;
2383         ring->get_seqno = gen6_ring_get_seqno;
2384         ring->set_seqno = ring_set_seqno;
2385         ring->irq_enable_mask =
2386                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2387         ring->irq_get = gen8_ring_get_irq;
2388         ring->irq_put = gen8_ring_put_irq;
2389         ring->dispatch_execbuffer =
2390                         gen8_ring_dispatch_execbuffer;
2391         if (i915_semaphore_is_enabled(dev)) {
2392                 ring->semaphore.sync_to = gen8_ring_sync;
2393                 ring->semaphore.signal = gen8_xcs_signal;
2394                 GEN8_RING_SEMAPHORE_INIT;
2395         }
2396         ring->init = init_ring_common;
2397
2398         return intel_init_ring_buffer(dev, ring);
2399 }
2400
2401 int intel_init_blt_ring_buffer(struct drm_device *dev)
2402 {
2403         struct drm_i915_private *dev_priv = dev->dev_private;
2404         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2405
2406         ring->name = "blitter ring";
2407         ring->id = BCS;
2408
2409         ring->mmio_base = BLT_RING_BASE;
2410         ring->write_tail = ring_write_tail;
2411         ring->flush = gen6_ring_flush;
2412         ring->add_request = gen6_add_request;
2413         ring->get_seqno = gen6_ring_get_seqno;
2414         ring->set_seqno = ring_set_seqno;
2415         if (INTEL_INFO(dev)->gen >= 8) {
2416                 ring->irq_enable_mask =
2417                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2418                 ring->irq_get = gen8_ring_get_irq;
2419                 ring->irq_put = gen8_ring_put_irq;
2420                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2421                 if (i915_semaphore_is_enabled(dev)) {
2422                         ring->semaphore.sync_to = gen8_ring_sync;
2423                         ring->semaphore.signal = gen8_xcs_signal;
2424                         GEN8_RING_SEMAPHORE_INIT;
2425                 }
2426         } else {
2427                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2428                 ring->irq_get = gen6_ring_get_irq;
2429                 ring->irq_put = gen6_ring_put_irq;
2430                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2431                 if (i915_semaphore_is_enabled(dev)) {
2432                         ring->semaphore.signal = gen6_signal;
2433                         ring->semaphore.sync_to = gen6_ring_sync;
2434                         /*
2435                          * The current semaphore is only applied on pre-gen8
2436                          * platform.  And there is no VCS2 ring on the pre-gen8
2437                          * platform. So the semaphore between BCS and VCS2 is
2438                          * initialized as INVALID.  Gen8 will initialize the
2439                          * sema between BCS and VCS2 later.
2440                          */
2441                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2442                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2443                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2444                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2445                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2446                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2447                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2448                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2449                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2450                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2451                 }
2452         }
2453         ring->init = init_ring_common;
2454
2455         return intel_init_ring_buffer(dev, ring);
2456 }
2457
2458 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2459 {
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2462
2463         ring->name = "video enhancement ring";
2464         ring->id = VECS;
2465
2466         ring->mmio_base = VEBOX_RING_BASE;
2467         ring->write_tail = ring_write_tail;
2468         ring->flush = gen6_ring_flush;
2469         ring->add_request = gen6_add_request;
2470         ring->get_seqno = gen6_ring_get_seqno;
2471         ring->set_seqno = ring_set_seqno;
2472
2473         if (INTEL_INFO(dev)->gen >= 8) {
2474                 ring->irq_enable_mask =
2475                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2476                 ring->irq_get = gen8_ring_get_irq;
2477                 ring->irq_put = gen8_ring_put_irq;
2478                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2479                 if (i915_semaphore_is_enabled(dev)) {
2480                         ring->semaphore.sync_to = gen8_ring_sync;
2481                         ring->semaphore.signal = gen8_xcs_signal;
2482                         GEN8_RING_SEMAPHORE_INIT;
2483                 }
2484         } else {
2485                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2486                 ring->irq_get = hsw_vebox_get_irq;
2487                 ring->irq_put = hsw_vebox_put_irq;
2488                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2489                 if (i915_semaphore_is_enabled(dev)) {
2490                         ring->semaphore.sync_to = gen6_ring_sync;
2491                         ring->semaphore.signal = gen6_signal;
2492                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2493                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2494                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2495                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2496                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2497                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2498                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2499                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2500                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2501                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2502                 }
2503         }
2504         ring->init = init_ring_common;
2505
2506         return intel_init_ring_buffer(dev, ring);
2507 }
2508
2509 int
2510 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2511 {
2512         int ret;
2513
2514         if (!ring->gpu_caches_dirty)
2515                 return 0;
2516
2517         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2518         if (ret)
2519                 return ret;
2520
2521         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2522
2523         ring->gpu_caches_dirty = false;
2524         return 0;
2525 }
2526
2527 int
2528 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2529 {
2530         uint32_t flush_domains;
2531         int ret;
2532
2533         flush_domains = 0;
2534         if (ring->gpu_caches_dirty)
2535                 flush_domains = I915_GEM_GPU_DOMAINS;
2536
2537         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2538         if (ret)
2539                 return ret;
2540
2541         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2542
2543         ring->gpu_caches_dirty = false;
2544         return 0;
2545 }
2546
2547 void
2548 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2549 {
2550         int ret;
2551
2552         if (!intel_ring_initialized(ring))
2553                 return;
2554
2555         ret = intel_ring_idle(ring);
2556         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2557                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2558                           ring->name, ret);
2559
2560         stop_ring(ring);
2561 }