]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
f05cceac5a52326ad203bb234816cbd2f6c4bb04
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41         struct drm_i915_gem_object *obj;
42         volatile u32 *cpu_page;
43         u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49         if (space < 0)
50                 space += ring->size;
51         return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         struct pipe_control *pc = ring->private;
179         u32 scratch_addr = pc->gtt_offset + 128;
180         int ret;
181
182
183         ret = intel_ring_begin(ring, 6);
184         if (ret)
185                 return ret;
186
187         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
190         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191         intel_ring_emit(ring, 0); /* low dword */
192         intel_ring_emit(ring, 0); /* high dword */
193         intel_ring_emit(ring, MI_NOOP);
194         intel_ring_advance(ring);
195
196         ret = intel_ring_begin(ring, 6);
197         if (ret)
198                 return ret;
199
200         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, MI_NOOP);
206         intel_ring_advance(ring);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215         u32 flags = 0;
216         struct pipe_control *pc = ring->private;
217         u32 scratch_addr = pc->gtt_offset + 128;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(ring);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (flush_domains) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (invalidate_domains) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         ret = intel_ring_begin(ring, 4);
252         if (ret)
253                 return ret;
254
255         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256         intel_ring_emit(ring, flags);
257         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258         intel_ring_emit(ring, 0);
259         intel_ring_advance(ring);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267         int ret;
268
269         ret = intel_ring_begin(ring, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
276         intel_ring_emit(ring, 0);
277         intel_ring_emit(ring, 0);
278         intel_ring_advance(ring);
279
280         return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285         int ret;
286
287         if (!ring->fbc_dirty)
288                 return 0;
289
290         ret = intel_ring_begin(ring, 4);
291         if (ret)
292                 return ret;
293         intel_ring_emit(ring, MI_NOOP);
294         /* WaFbcNukeOn3DBlt:ivb/hsw */
295         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, value);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         struct pipe_control *pc = ring->private;
310         u32 scratch_addr = pc->gtt_offset + 128;
311         int ret;
312
313         /*
314          * Ensure that any following seqno writes only happen when the render
315          * cache is indeed flushed.
316          *
317          * Workaround: 4th PIPE_CONTROL command (except the ones with only
318          * read-cache invalidate bits set) must have the CS_STALL bit set. We
319          * don't try to be clever and just set it unconditionally.
320          */
321         flags |= PIPE_CONTROL_CS_STALL;
322
323         /* Just flush everything.  Experiments have shown that reducing the
324          * number of bits based on the write domains has little performance
325          * impact.
326          */
327         if (flush_domains) {
328                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330         }
331         if (invalidate_domains) {
332                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338                 /*
339                  * TLB invalidate requires a post-sync write.
340                  */
341                 flags |= PIPE_CONTROL_QW_WRITE;
342                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344                 /* Workaround: we must issue a pipe_control with CS-stall bit
345                  * set before a pipe_control command that has the state cache
346                  * invalidate bit set. */
347                 gen7_render_ring_cs_stall_wa(ring);
348         }
349
350         ret = intel_ring_begin(ring, 4);
351         if (ret)
352                 return ret;
353
354         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355         intel_ring_emit(ring, flags);
356         intel_ring_emit(ring, scratch_addr);
357         intel_ring_emit(ring, 0);
358         intel_ring_advance(ring);
359
360         if (flush_domains)
361                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363         return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367                             u32 value)
368 {
369         drm_i915_private_t *dev_priv = ring->dev->dev_private;
370         I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375         drm_i915_private_t *dev_priv = ring->dev->dev_private;
376         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377                         RING_ACTHD(ring->mmio_base) : ACTHD;
378
379         return I915_READ(acthd_reg);
380 }
381
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384         struct drm_i915_private *dev_priv = ring->dev->dev_private;
385         u32 addr;
386
387         addr = dev_priv->status_page_dmah->busaddr;
388         if (INTEL_INFO(ring->dev)->gen >= 4)
389                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390         I915_WRITE(HWS_PGA, addr);
391 }
392
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395         struct drm_device *dev = ring->dev;
396         drm_i915_private_t *dev_priv = dev->dev_private;
397         struct drm_i915_gem_object *obj = ring->obj;
398         int ret = 0;
399         u32 head;
400
401         if (HAS_FORCE_WAKE(dev))
402                 gen6_gt_force_wake_get(dev_priv);
403
404         if (I915_NEED_GFX_HWS(dev))
405                 intel_ring_setup_status_page(ring);
406         else
407                 ring_setup_phys_status_page(ring);
408
409         /* Stop the ring if it's running. */
410         I915_WRITE_CTL(ring, 0);
411         I915_WRITE_HEAD(ring, 0);
412         ring->write_tail(ring, 0);
413
414         head = I915_READ_HEAD(ring) & HEAD_ADDR;
415
416         /* G45 ring initialization fails to reset head to zero */
417         if (head != 0) {
418                 DRM_DEBUG_KMS("%s head not reset to zero "
419                               "ctl %08x head %08x tail %08x start %08x\n",
420                               ring->name,
421                               I915_READ_CTL(ring),
422                               I915_READ_HEAD(ring),
423                               I915_READ_TAIL(ring),
424                               I915_READ_START(ring));
425
426                 I915_WRITE_HEAD(ring, 0);
427
428                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429                         DRM_ERROR("failed to set %s head to zero "
430                                   "ctl %08x head %08x tail %08x start %08x\n",
431                                   ring->name,
432                                   I915_READ_CTL(ring),
433                                   I915_READ_HEAD(ring),
434                                   I915_READ_TAIL(ring),
435                                   I915_READ_START(ring));
436                 }
437         }
438
439         /* Initialize the ring. This must happen _after_ we've cleared the ring
440          * registers with the above sequence (the readback of the HEAD registers
441          * also enforces ordering), otherwise the hw might lose the new ring
442          * register values. */
443         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
444         I915_WRITE_CTL(ring,
445                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446                         | RING_VALID);
447
448         /* If the head is still not zero, the ring is dead */
449         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
451                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452                 DRM_ERROR("%s initialization failed "
453                                 "ctl %08x head %08x tail %08x start %08x\n",
454                                 ring->name,
455                                 I915_READ_CTL(ring),
456                                 I915_READ_HEAD(ring),
457                                 I915_READ_TAIL(ring),
458                                 I915_READ_START(ring));
459                 ret = -EIO;
460                 goto out;
461         }
462
463         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464                 i915_kernel_lost_context(ring->dev);
465         else {
466                 ring->head = I915_READ_HEAD(ring);
467                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468                 ring->space = ring_space(ring);
469                 ring->last_retired_head = -1;
470         }
471
472         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473
474 out:
475         if (HAS_FORCE_WAKE(dev))
476                 gen6_gt_force_wake_put(dev_priv);
477
478         return ret;
479 }
480
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484         struct pipe_control *pc;
485         struct drm_i915_gem_object *obj;
486         int ret;
487
488         if (ring->private)
489                 return 0;
490
491         pc = kmalloc(sizeof(*pc), GFP_KERNEL);
492         if (!pc)
493                 return -ENOMEM;
494
495         obj = i915_gem_alloc_object(ring->dev, 4096);
496         if (obj == NULL) {
497                 DRM_ERROR("Failed to allocate seqno page\n");
498                 ret = -ENOMEM;
499                 goto err;
500         }
501
502         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503
504         ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
505         if (ret)
506                 goto err_unref;
507
508         pc->gtt_offset = i915_gem_obj_ggtt_offset(obj);
509         pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510         if (pc->cpu_page == NULL) {
511                 ret = -ENOMEM;
512                 goto err_unpin;
513         }
514
515         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516                          ring->name, pc->gtt_offset);
517
518         pc->obj = obj;
519         ring->private = pc;
520         return 0;
521
522 err_unpin:
523         i915_gem_object_unpin(obj);
524 err_unref:
525         drm_gem_object_unreference(&obj->base);
526 err:
527         kfree(pc);
528         return ret;
529 }
530
531 static void
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
533 {
534         struct pipe_control *pc = ring->private;
535         struct drm_i915_gem_object *obj;
536
537         obj = pc->obj;
538
539         kunmap(sg_page(obj->pages->sgl));
540         i915_gem_object_unpin(obj);
541         drm_gem_object_unreference(&obj->base);
542
543         kfree(pc);
544 }
545
546 static int init_render_ring(struct intel_ring_buffer *ring)
547 {
548         struct drm_device *dev = ring->dev;
549         struct drm_i915_private *dev_priv = dev->dev_private;
550         int ret = init_ring_common(ring);
551
552         if (INTEL_INFO(dev)->gen > 3)
553                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
554
555         /* We need to disable the AsyncFlip performance optimisations in order
556          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557          * programmed to '1' on all products.
558          *
559          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
560          */
561         if (INTEL_INFO(dev)->gen >= 6)
562                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
563
564         /* Required for the hardware to program scanline values for waiting */
565         if (INTEL_INFO(dev)->gen == 6)
566                 I915_WRITE(GFX_MODE,
567                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
568
569         if (IS_GEN7(dev))
570                 I915_WRITE(GFX_MODE_GEN7,
571                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
573
574         if (INTEL_INFO(dev)->gen >= 5) {
575                 ret = init_pipe_control(ring);
576                 if (ret)
577                         return ret;
578         }
579
580         if (IS_GEN6(dev)) {
581                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582                  * "If this bit is set, STCunit will have LRA as replacement
583                  *  policy. [...] This bit must be reset.  LRA replacement
584                  *  policy is not supported."
585                  */
586                 I915_WRITE(CACHE_MODE_0,
587                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
588
589                 /* This is not explicitly set for GEN6, so read the register.
590                  * see intel_ring_mi_set_context() for why we care.
591                  * TODO: consider explicitly setting the bit for GEN5
592                  */
593                 ring->itlb_before_ctx_switch =
594                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
595         }
596
597         if (INTEL_INFO(dev)->gen >= 6)
598                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
599
600         if (HAS_L3_GPU_CACHE(dev))
601                 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
602
603         return ret;
604 }
605
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
607 {
608         struct drm_device *dev = ring->dev;
609
610         if (!ring->private)
611                 return;
612
613         if (HAS_BROKEN_CS_TLB(dev))
614                 drm_gem_object_unreference(to_gem_object(ring->private));
615
616         if (INTEL_INFO(dev)->gen >= 5)
617                 cleanup_pipe_control(ring);
618
619         ring->private = NULL;
620 }
621
622 static void
623 update_mboxes(struct intel_ring_buffer *ring,
624               u32 mmio_offset)
625 {
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627  * of rings, it's easiest if we round up each individual update to a
628  * multiple of 2 (since ring updates must always be a multiple of 2)
629  * even though the actual update only requires 3 dwords.
630  */
631 #define MBOX_UPDATE_DWORDS 4
632         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633         intel_ring_emit(ring, mmio_offset);
634         intel_ring_emit(ring, ring->outstanding_lazy_request);
635         intel_ring_emit(ring, MI_NOOP);
636 }
637
638 /**
639  * gen6_add_request - Update the semaphore mailbox registers
640  * 
641  * @ring - ring that is adding a request
642  * @seqno - return seqno stuck into the ring
643  *
644  * Update the mailbox registers in the *other* rings with the current seqno.
645  * This acts like a signal in the canonical semaphore.
646  */
647 static int
648 gen6_add_request(struct intel_ring_buffer *ring)
649 {
650         struct drm_device *dev = ring->dev;
651         struct drm_i915_private *dev_priv = dev->dev_private;
652         struct intel_ring_buffer *useless;
653         int i, ret;
654
655         ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656                                       MBOX_UPDATE_DWORDS) +
657                                       4);
658         if (ret)
659                 return ret;
660 #undef MBOX_UPDATE_DWORDS
661
662         for_each_ring(useless, dev_priv, i) {
663                 u32 mbox_reg = ring->signal_mbox[i];
664                 if (mbox_reg != GEN6_NOSYNC)
665                         update_mboxes(ring, mbox_reg);
666         }
667
668         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670         intel_ring_emit(ring, ring->outstanding_lazy_request);
671         intel_ring_emit(ring, MI_USER_INTERRUPT);
672         intel_ring_advance(ring);
673
674         return 0;
675 }
676
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
678                                               u32 seqno)
679 {
680         struct drm_i915_private *dev_priv = dev->dev_private;
681         return dev_priv->last_seqno < seqno;
682 }
683
684 /**
685  * intel_ring_sync - sync the waiter to the signaller on seqno
686  *
687  * @waiter - ring that is waiting
688  * @signaller - ring which has, or will signal
689  * @seqno - seqno which the waiter will block on
690  */
691 static int
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693                struct intel_ring_buffer *signaller,
694                u32 seqno)
695 {
696         int ret;
697         u32 dw1 = MI_SEMAPHORE_MBOX |
698                   MI_SEMAPHORE_COMPARE |
699                   MI_SEMAPHORE_REGISTER;
700
701         /* Throughout all of the GEM code, seqno passed implies our current
702          * seqno is >= the last seqno executed. However for hardware the
703          * comparison is strictly greater than.
704          */
705         seqno -= 1;
706
707         WARN_ON(signaller->semaphore_register[waiter->id] ==
708                 MI_SEMAPHORE_SYNC_INVALID);
709
710         ret = intel_ring_begin(waiter, 4);
711         if (ret)
712                 return ret;
713
714         /* If seqno wrap happened, omit the wait with no-ops */
715         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716                 intel_ring_emit(waiter,
717                                 dw1 |
718                                 signaller->semaphore_register[waiter->id]);
719                 intel_ring_emit(waiter, seqno);
720                 intel_ring_emit(waiter, 0);
721                 intel_ring_emit(waiter, MI_NOOP);
722         } else {
723                 intel_ring_emit(waiter, MI_NOOP);
724                 intel_ring_emit(waiter, MI_NOOP);
725                 intel_ring_emit(waiter, MI_NOOP);
726                 intel_ring_emit(waiter, MI_NOOP);
727         }
728         intel_ring_advance(waiter);
729
730         return 0;
731 }
732
733 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
734 do {                                                                    \
735         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
736                  PIPE_CONTROL_DEPTH_STALL);                             \
737         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
738         intel_ring_emit(ring__, 0);                                                     \
739         intel_ring_emit(ring__, 0);                                                     \
740 } while (0)
741
742 static int
743 pc_render_add_request(struct intel_ring_buffer *ring)
744 {
745         struct pipe_control *pc = ring->private;
746         u32 scratch_addr = pc->gtt_offset + 128;
747         int ret;
748
749         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750          * incoherent with writes to memory, i.e. completely fubar,
751          * so we need to use PIPE_NOTIFY instead.
752          *
753          * However, we also need to workaround the qword write
754          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755          * memory before requesting an interrupt.
756          */
757         ret = intel_ring_begin(ring, 32);
758         if (ret)
759                 return ret;
760
761         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762                         PIPE_CONTROL_WRITE_FLUSH |
763                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765         intel_ring_emit(ring, ring->outstanding_lazy_request);
766         intel_ring_emit(ring, 0);
767         PIPE_CONTROL_FLUSH(ring, scratch_addr);
768         scratch_addr += 128; /* write to separate cachelines */
769         PIPE_CONTROL_FLUSH(ring, scratch_addr);
770         scratch_addr += 128;
771         PIPE_CONTROL_FLUSH(ring, scratch_addr);
772         scratch_addr += 128;
773         PIPE_CONTROL_FLUSH(ring, scratch_addr);
774         scratch_addr += 128;
775         PIPE_CONTROL_FLUSH(ring, scratch_addr);
776         scratch_addr += 128;
777         PIPE_CONTROL_FLUSH(ring, scratch_addr);
778
779         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780                         PIPE_CONTROL_WRITE_FLUSH |
781                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782                         PIPE_CONTROL_NOTIFY);
783         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784         intel_ring_emit(ring, ring->outstanding_lazy_request);
785         intel_ring_emit(ring, 0);
786         intel_ring_advance(ring);
787
788         return 0;
789 }
790
791 static u32
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
793 {
794         /* Workaround to force correct ordering between irq and seqno writes on
795          * ivb (and maybe also on snb) by reading from a CS register (like
796          * ACTHD) before reading the status page. */
797         if (!lazy_coherency)
798                 intel_ring_get_active_head(ring);
799         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
800 }
801
802 static u32
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
804 {
805         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
806 }
807
808 static void
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
810 {
811         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
812 }
813
814 static u32
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817         struct pipe_control *pc = ring->private;
818         return pc->cpu_page[0];
819 }
820
821 static void
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
823 {
824         struct pipe_control *pc = ring->private;
825         pc->cpu_page[0] = seqno;
826 }
827
828 static bool
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
830 {
831         struct drm_device *dev = ring->dev;
832         drm_i915_private_t *dev_priv = dev->dev_private;
833         unsigned long flags;
834
835         if (!dev->irq_enabled)
836                 return false;
837
838         spin_lock_irqsave(&dev_priv->irq_lock, flags);
839         if (ring->irq_refcount++ == 0)
840                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
841         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
842
843         return true;
844 }
845
846 static void
847 gen5_ring_put_irq(struct intel_ring_buffer *ring)
848 {
849         struct drm_device *dev = ring->dev;
850         drm_i915_private_t *dev_priv = dev->dev_private;
851         unsigned long flags;
852
853         spin_lock_irqsave(&dev_priv->irq_lock, flags);
854         if (--ring->irq_refcount == 0)
855                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
856         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
857 }
858
859 static bool
860 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
861 {
862         struct drm_device *dev = ring->dev;
863         drm_i915_private_t *dev_priv = dev->dev_private;
864         unsigned long flags;
865
866         if (!dev->irq_enabled)
867                 return false;
868
869         spin_lock_irqsave(&dev_priv->irq_lock, flags);
870         if (ring->irq_refcount++ == 0) {
871                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
872                 I915_WRITE(IMR, dev_priv->irq_mask);
873                 POSTING_READ(IMR);
874         }
875         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
876
877         return true;
878 }
879
880 static void
881 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
882 {
883         struct drm_device *dev = ring->dev;
884         drm_i915_private_t *dev_priv = dev->dev_private;
885         unsigned long flags;
886
887         spin_lock_irqsave(&dev_priv->irq_lock, flags);
888         if (--ring->irq_refcount == 0) {
889                 dev_priv->irq_mask |= ring->irq_enable_mask;
890                 I915_WRITE(IMR, dev_priv->irq_mask);
891                 POSTING_READ(IMR);
892         }
893         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
894 }
895
896 static bool
897 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
898 {
899         struct drm_device *dev = ring->dev;
900         drm_i915_private_t *dev_priv = dev->dev_private;
901         unsigned long flags;
902
903         if (!dev->irq_enabled)
904                 return false;
905
906         spin_lock_irqsave(&dev_priv->irq_lock, flags);
907         if (ring->irq_refcount++ == 0) {
908                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
909                 I915_WRITE16(IMR, dev_priv->irq_mask);
910                 POSTING_READ16(IMR);
911         }
912         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913
914         return true;
915 }
916
917 static void
918 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
919 {
920         struct drm_device *dev = ring->dev;
921         drm_i915_private_t *dev_priv = dev->dev_private;
922         unsigned long flags;
923
924         spin_lock_irqsave(&dev_priv->irq_lock, flags);
925         if (--ring->irq_refcount == 0) {
926                 dev_priv->irq_mask |= ring->irq_enable_mask;
927                 I915_WRITE16(IMR, dev_priv->irq_mask);
928                 POSTING_READ16(IMR);
929         }
930         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
931 }
932
933 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
934 {
935         struct drm_device *dev = ring->dev;
936         drm_i915_private_t *dev_priv = ring->dev->dev_private;
937         u32 mmio = 0;
938
939         /* The ring status page addresses are no longer next to the rest of
940          * the ring registers as of gen7.
941          */
942         if (IS_GEN7(dev)) {
943                 switch (ring->id) {
944                 case RCS:
945                         mmio = RENDER_HWS_PGA_GEN7;
946                         break;
947                 case BCS:
948                         mmio = BLT_HWS_PGA_GEN7;
949                         break;
950                 case VCS:
951                         mmio = BSD_HWS_PGA_GEN7;
952                         break;
953                 case VECS:
954                         mmio = VEBOX_HWS_PGA_GEN7;
955                         break;
956                 }
957         } else if (IS_GEN6(ring->dev)) {
958                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
959         } else {
960                 mmio = RING_HWS_PGA(ring->mmio_base);
961         }
962
963         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
964         POSTING_READ(mmio);
965
966         /* Flush the TLB for this page */
967         if (INTEL_INFO(dev)->gen >= 6) {
968                 u32 reg = RING_INSTPM(ring->mmio_base);
969                 I915_WRITE(reg,
970                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
971                                               INSTPM_SYNC_FLUSH));
972                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
973                              1000))
974                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
975                                   ring->name);
976         }
977 }
978
979 static int
980 bsd_ring_flush(struct intel_ring_buffer *ring,
981                u32     invalidate_domains,
982                u32     flush_domains)
983 {
984         int ret;
985
986         ret = intel_ring_begin(ring, 2);
987         if (ret)
988                 return ret;
989
990         intel_ring_emit(ring, MI_FLUSH);
991         intel_ring_emit(ring, MI_NOOP);
992         intel_ring_advance(ring);
993         return 0;
994 }
995
996 static int
997 i9xx_add_request(struct intel_ring_buffer *ring)
998 {
999         int ret;
1000
1001         ret = intel_ring_begin(ring, 4);
1002         if (ret)
1003                 return ret;
1004
1005         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1006         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1007         intel_ring_emit(ring, ring->outstanding_lazy_request);
1008         intel_ring_emit(ring, MI_USER_INTERRUPT);
1009         intel_ring_advance(ring);
1010
1011         return 0;
1012 }
1013
1014 static bool
1015 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1016 {
1017         struct drm_device *dev = ring->dev;
1018         drm_i915_private_t *dev_priv = dev->dev_private;
1019         unsigned long flags;
1020
1021         if (!dev->irq_enabled)
1022                return false;
1023
1024         /* It looks like we need to prevent the gt from suspending while waiting
1025          * for an notifiy irq, otherwise irqs seem to get lost on at least the
1026          * blt/bsd rings on ivb. */
1027         gen6_gt_force_wake_get(dev_priv);
1028
1029         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1030         if (ring->irq_refcount++ == 0) {
1031                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1032                         I915_WRITE_IMR(ring,
1033                                        ~(ring->irq_enable_mask |
1034                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1035                 else
1036                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1037                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1038         }
1039         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1040
1041         return true;
1042 }
1043
1044 static void
1045 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1046 {
1047         struct drm_device *dev = ring->dev;
1048         drm_i915_private_t *dev_priv = dev->dev_private;
1049         unsigned long flags;
1050
1051         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1052         if (--ring->irq_refcount == 0) {
1053                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1054                         I915_WRITE_IMR(ring,
1055                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1056                 else
1057                         I915_WRITE_IMR(ring, ~0);
1058                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1059         }
1060         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1061
1062         gen6_gt_force_wake_put(dev_priv);
1063 }
1064
1065 static bool
1066 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1067 {
1068         struct drm_device *dev = ring->dev;
1069         struct drm_i915_private *dev_priv = dev->dev_private;
1070         unsigned long flags;
1071
1072         if (!dev->irq_enabled)
1073                 return false;
1074
1075         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1076         if (ring->irq_refcount++ == 0) {
1077                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1078                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1079         }
1080         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1081
1082         return true;
1083 }
1084
1085 static void
1086 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1087 {
1088         struct drm_device *dev = ring->dev;
1089         struct drm_i915_private *dev_priv = dev->dev_private;
1090         unsigned long flags;
1091
1092         if (!dev->irq_enabled)
1093                 return;
1094
1095         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1096         if (--ring->irq_refcount == 0) {
1097                 I915_WRITE_IMR(ring, ~0);
1098                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1099         }
1100         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1101 }
1102
1103 static int
1104 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1105                          u32 offset, u32 length,
1106                          unsigned flags)
1107 {
1108         int ret;
1109
1110         ret = intel_ring_begin(ring, 2);
1111         if (ret)
1112                 return ret;
1113
1114         intel_ring_emit(ring,
1115                         MI_BATCH_BUFFER_START |
1116                         MI_BATCH_GTT |
1117                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1118         intel_ring_emit(ring, offset);
1119         intel_ring_advance(ring);
1120
1121         return 0;
1122 }
1123
1124 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1125 #define I830_BATCH_LIMIT (256*1024)
1126 static int
1127 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1128                                 u32 offset, u32 len,
1129                                 unsigned flags)
1130 {
1131         int ret;
1132
1133         if (flags & I915_DISPATCH_PINNED) {
1134                 ret = intel_ring_begin(ring, 4);
1135                 if (ret)
1136                         return ret;
1137
1138                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1139                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1140                 intel_ring_emit(ring, offset + len - 8);
1141                 intel_ring_emit(ring, MI_NOOP);
1142                 intel_ring_advance(ring);
1143         } else {
1144                 struct drm_i915_gem_object *obj = ring->private;
1145                 u32 cs_offset = i915_gem_obj_ggtt_offset(obj);
1146
1147                 if (len > I830_BATCH_LIMIT)
1148                         return -ENOSPC;
1149
1150                 ret = intel_ring_begin(ring, 9+3);
1151                 if (ret)
1152                         return ret;
1153                 /* Blit the batch (which has now all relocs applied) to the stable batch
1154                  * scratch bo area (so that the CS never stumbles over its tlb
1155                  * invalidation bug) ... */
1156                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1157                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1158                                 XY_SRC_COPY_BLT_WRITE_RGB);
1159                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1160                 intel_ring_emit(ring, 0);
1161                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1162                 intel_ring_emit(ring, cs_offset);
1163                 intel_ring_emit(ring, 0);
1164                 intel_ring_emit(ring, 4096);
1165                 intel_ring_emit(ring, offset);
1166                 intel_ring_emit(ring, MI_FLUSH);
1167
1168                 /* ... and execute it. */
1169                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1170                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1171                 intel_ring_emit(ring, cs_offset + len - 8);
1172                 intel_ring_advance(ring);
1173         }
1174
1175         return 0;
1176 }
1177
1178 static int
1179 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1180                          u32 offset, u32 len,
1181                          unsigned flags)
1182 {
1183         int ret;
1184
1185         ret = intel_ring_begin(ring, 2);
1186         if (ret)
1187                 return ret;
1188
1189         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1190         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1191         intel_ring_advance(ring);
1192
1193         return 0;
1194 }
1195
1196 static void cleanup_status_page(struct intel_ring_buffer *ring)
1197 {
1198         struct drm_i915_gem_object *obj;
1199
1200         obj = ring->status_page.obj;
1201         if (obj == NULL)
1202                 return;
1203
1204         kunmap(sg_page(obj->pages->sgl));
1205         i915_gem_object_unpin(obj);
1206         drm_gem_object_unreference(&obj->base);
1207         ring->status_page.obj = NULL;
1208 }
1209
1210 static int init_status_page(struct intel_ring_buffer *ring)
1211 {
1212         struct drm_device *dev = ring->dev;
1213         struct drm_i915_gem_object *obj;
1214         int ret;
1215
1216         obj = i915_gem_alloc_object(dev, 4096);
1217         if (obj == NULL) {
1218                 DRM_ERROR("Failed to allocate status page\n");
1219                 ret = -ENOMEM;
1220                 goto err;
1221         }
1222
1223         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1224
1225         ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1226         if (ret != 0) {
1227                 goto err_unref;
1228         }
1229
1230         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1231         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1232         if (ring->status_page.page_addr == NULL) {
1233                 ret = -ENOMEM;
1234                 goto err_unpin;
1235         }
1236         ring->status_page.obj = obj;
1237         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1238
1239         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1240                         ring->name, ring->status_page.gfx_addr);
1241
1242         return 0;
1243
1244 err_unpin:
1245         i915_gem_object_unpin(obj);
1246 err_unref:
1247         drm_gem_object_unreference(&obj->base);
1248 err:
1249         return ret;
1250 }
1251
1252 static int init_phys_status_page(struct intel_ring_buffer *ring)
1253 {
1254         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1255
1256         if (!dev_priv->status_page_dmah) {
1257                 dev_priv->status_page_dmah =
1258                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1259                 if (!dev_priv->status_page_dmah)
1260                         return -ENOMEM;
1261         }
1262
1263         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1264         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1265
1266         return 0;
1267 }
1268
1269 static int intel_init_ring_buffer(struct drm_device *dev,
1270                                   struct intel_ring_buffer *ring)
1271 {
1272         struct drm_i915_gem_object *obj;
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         int ret;
1275
1276         ring->dev = dev;
1277         INIT_LIST_HEAD(&ring->active_list);
1278         INIT_LIST_HEAD(&ring->request_list);
1279         ring->size = 32 * PAGE_SIZE;
1280         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1281
1282         init_waitqueue_head(&ring->irq_queue);
1283
1284         if (I915_NEED_GFX_HWS(dev)) {
1285                 ret = init_status_page(ring);
1286                 if (ret)
1287                         return ret;
1288         } else {
1289                 BUG_ON(ring->id != RCS);
1290                 ret = init_phys_status_page(ring);
1291                 if (ret)
1292                         return ret;
1293         }
1294
1295         obj = NULL;
1296         if (!HAS_LLC(dev))
1297                 obj = i915_gem_object_create_stolen(dev, ring->size);
1298         if (obj == NULL)
1299                 obj = i915_gem_alloc_object(dev, ring->size);
1300         if (obj == NULL) {
1301                 DRM_ERROR("Failed to allocate ringbuffer\n");
1302                 ret = -ENOMEM;
1303                 goto err_hws;
1304         }
1305
1306         ring->obj = obj;
1307
1308         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1309         if (ret)
1310                 goto err_unref;
1311
1312         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1313         if (ret)
1314                 goto err_unpin;
1315
1316         ring->virtual_start =
1317                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1318                            ring->size);
1319         if (ring->virtual_start == NULL) {
1320                 DRM_ERROR("Failed to map ringbuffer.\n");
1321                 ret = -EINVAL;
1322                 goto err_unpin;
1323         }
1324
1325         ret = ring->init(ring);
1326         if (ret)
1327                 goto err_unmap;
1328
1329         /* Workaround an erratum on the i830 which causes a hang if
1330          * the TAIL pointer points to within the last 2 cachelines
1331          * of the buffer.
1332          */
1333         ring->effective_size = ring->size;
1334         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1335                 ring->effective_size -= 128;
1336
1337         return 0;
1338
1339 err_unmap:
1340         iounmap(ring->virtual_start);
1341 err_unpin:
1342         i915_gem_object_unpin(obj);
1343 err_unref:
1344         drm_gem_object_unreference(&obj->base);
1345         ring->obj = NULL;
1346 err_hws:
1347         cleanup_status_page(ring);
1348         return ret;
1349 }
1350
1351 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1352 {
1353         struct drm_i915_private *dev_priv;
1354         int ret;
1355
1356         if (ring->obj == NULL)
1357                 return;
1358
1359         /* Disable the ring buffer. The ring must be idle at this point */
1360         dev_priv = ring->dev->dev_private;
1361         ret = intel_ring_idle(ring);
1362         if (ret)
1363                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1364                           ring->name, ret);
1365
1366         I915_WRITE_CTL(ring, 0);
1367
1368         iounmap(ring->virtual_start);
1369
1370         i915_gem_object_unpin(ring->obj);
1371         drm_gem_object_unreference(&ring->obj->base);
1372         ring->obj = NULL;
1373
1374         if (ring->cleanup)
1375                 ring->cleanup(ring);
1376
1377         cleanup_status_page(ring);
1378 }
1379
1380 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1381 {
1382         int ret;
1383
1384         ret = i915_wait_seqno(ring, seqno);
1385         if (!ret)
1386                 i915_gem_retire_requests_ring(ring);
1387
1388         return ret;
1389 }
1390
1391 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1392 {
1393         struct drm_i915_gem_request *request;
1394         u32 seqno = 0;
1395         int ret;
1396
1397         i915_gem_retire_requests_ring(ring);
1398
1399         if (ring->last_retired_head != -1) {
1400                 ring->head = ring->last_retired_head;
1401                 ring->last_retired_head = -1;
1402                 ring->space = ring_space(ring);
1403                 if (ring->space >= n)
1404                         return 0;
1405         }
1406
1407         list_for_each_entry(request, &ring->request_list, list) {
1408                 int space;
1409
1410                 if (request->tail == -1)
1411                         continue;
1412
1413                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1414                 if (space < 0)
1415                         space += ring->size;
1416                 if (space >= n) {
1417                         seqno = request->seqno;
1418                         break;
1419                 }
1420
1421                 /* Consume this request in case we need more space than
1422                  * is available and so need to prevent a race between
1423                  * updating last_retired_head and direct reads of
1424                  * I915_RING_HEAD. It also provides a nice sanity check.
1425                  */
1426                 request->tail = -1;
1427         }
1428
1429         if (seqno == 0)
1430                 return -ENOSPC;
1431
1432         ret = intel_ring_wait_seqno(ring, seqno);
1433         if (ret)
1434                 return ret;
1435
1436         if (WARN_ON(ring->last_retired_head == -1))
1437                 return -ENOSPC;
1438
1439         ring->head = ring->last_retired_head;
1440         ring->last_retired_head = -1;
1441         ring->space = ring_space(ring);
1442         if (WARN_ON(ring->space < n))
1443                 return -ENOSPC;
1444
1445         return 0;
1446 }
1447
1448 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1449 {
1450         struct drm_device *dev = ring->dev;
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452         unsigned long end;
1453         int ret;
1454
1455         ret = intel_ring_wait_request(ring, n);
1456         if (ret != -ENOSPC)
1457                 return ret;
1458
1459         trace_i915_ring_wait_begin(ring);
1460         /* With GEM the hangcheck timer should kick us out of the loop,
1461          * leaving it early runs the risk of corrupting GEM state (due
1462          * to running on almost untested codepaths). But on resume
1463          * timers don't work yet, so prevent a complete hang in that
1464          * case by choosing an insanely large timeout. */
1465         end = jiffies + 60 * HZ;
1466
1467         do {
1468                 ring->head = I915_READ_HEAD(ring);
1469                 ring->space = ring_space(ring);
1470                 if (ring->space >= n) {
1471                         trace_i915_ring_wait_end(ring);
1472                         return 0;
1473                 }
1474
1475                 if (dev->primary->master) {
1476                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1477                         if (master_priv->sarea_priv)
1478                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1479                 }
1480
1481                 msleep(1);
1482
1483                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1484                                            dev_priv->mm.interruptible);
1485                 if (ret)
1486                         return ret;
1487         } while (!time_after(jiffies, end));
1488         trace_i915_ring_wait_end(ring);
1489         return -EBUSY;
1490 }
1491
1492 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1493 {
1494         uint32_t __iomem *virt;
1495         int rem = ring->size - ring->tail;
1496
1497         if (ring->space < rem) {
1498                 int ret = ring_wait_for_space(ring, rem);
1499                 if (ret)
1500                         return ret;
1501         }
1502
1503         virt = ring->virtual_start + ring->tail;
1504         rem /= 4;
1505         while (rem--)
1506                 iowrite32(MI_NOOP, virt++);
1507
1508         ring->tail = 0;
1509         ring->space = ring_space(ring);
1510
1511         return 0;
1512 }
1513
1514 int intel_ring_idle(struct intel_ring_buffer *ring)
1515 {
1516         u32 seqno;
1517         int ret;
1518
1519         /* We need to add any requests required to flush the objects and ring */
1520         if (ring->outstanding_lazy_request) {
1521                 ret = i915_add_request(ring, NULL);
1522                 if (ret)
1523                         return ret;
1524         }
1525
1526         /* Wait upon the last request to be completed */
1527         if (list_empty(&ring->request_list))
1528                 return 0;
1529
1530         seqno = list_entry(ring->request_list.prev,
1531                            struct drm_i915_gem_request,
1532                            list)->seqno;
1533
1534         return i915_wait_seqno(ring, seqno);
1535 }
1536
1537 static int
1538 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1539 {
1540         if (ring->outstanding_lazy_request)
1541                 return 0;
1542
1543         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1544 }
1545
1546 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1547                               int bytes)
1548 {
1549         int ret;
1550
1551         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1552                 ret = intel_wrap_ring_buffer(ring);
1553                 if (unlikely(ret))
1554                         return ret;
1555         }
1556
1557         if (unlikely(ring->space < bytes)) {
1558                 ret = ring_wait_for_space(ring, bytes);
1559                 if (unlikely(ret))
1560                         return ret;
1561         }
1562
1563         ring->space -= bytes;
1564         return 0;
1565 }
1566
1567 int intel_ring_begin(struct intel_ring_buffer *ring,
1568                      int num_dwords)
1569 {
1570         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1571         int ret;
1572
1573         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1574                                    dev_priv->mm.interruptible);
1575         if (ret)
1576                 return ret;
1577
1578         /* Preallocate the olr before touching the ring */
1579         ret = intel_ring_alloc_seqno(ring);
1580         if (ret)
1581                 return ret;
1582
1583         return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1584 }
1585
1586 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1587 {
1588         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1589
1590         BUG_ON(ring->outstanding_lazy_request);
1591
1592         if (INTEL_INFO(ring->dev)->gen >= 6) {
1593                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1594                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1595                 if (HAS_VEBOX(ring->dev))
1596                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1597         }
1598
1599         ring->set_seqno(ring, seqno);
1600         ring->hangcheck.seqno = seqno;
1601 }
1602
1603 void intel_ring_advance(struct intel_ring_buffer *ring)
1604 {
1605         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1606
1607         ring->tail &= ring->size - 1;
1608         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1609                 return;
1610         ring->write_tail(ring, ring->tail);
1611 }
1612
1613
1614 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1615                                      u32 value)
1616 {
1617         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1618
1619        /* Every tail move must follow the sequence below */
1620
1621         /* Disable notification that the ring is IDLE. The GT
1622          * will then assume that it is busy and bring it out of rc6.
1623          */
1624         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1625                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1626
1627         /* Clear the context id. Here be magic! */
1628         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1629
1630         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1631         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1632                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1633                      50))
1634                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1635
1636         /* Now that the ring is fully powered up, update the tail */
1637         I915_WRITE_TAIL(ring, value);
1638         POSTING_READ(RING_TAIL(ring->mmio_base));
1639
1640         /* Let the ring send IDLE messages to the GT again,
1641          * and so let it sleep to conserve power when idle.
1642          */
1643         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1644                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1645 }
1646
1647 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1648                                u32 invalidate, u32 flush)
1649 {
1650         uint32_t cmd;
1651         int ret;
1652
1653         ret = intel_ring_begin(ring, 4);
1654         if (ret)
1655                 return ret;
1656
1657         cmd = MI_FLUSH_DW;
1658         /*
1659          * Bspec vol 1c.5 - video engine command streamer:
1660          * "If ENABLED, all TLBs will be invalidated once the flush
1661          * operation is complete. This bit is only valid when the
1662          * Post-Sync Operation field is a value of 1h or 3h."
1663          */
1664         if (invalidate & I915_GEM_GPU_DOMAINS)
1665                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1666                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667         intel_ring_emit(ring, cmd);
1668         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1669         intel_ring_emit(ring, 0);
1670         intel_ring_emit(ring, MI_NOOP);
1671         intel_ring_advance(ring);
1672         return 0;
1673 }
1674
1675 static int
1676 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1677                               u32 offset, u32 len,
1678                               unsigned flags)
1679 {
1680         int ret;
1681
1682         ret = intel_ring_begin(ring, 2);
1683         if (ret)
1684                 return ret;
1685
1686         intel_ring_emit(ring,
1687                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1688                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1689         /* bit0-7 is the length on GEN6+ */
1690         intel_ring_emit(ring, offset);
1691         intel_ring_advance(ring);
1692
1693         return 0;
1694 }
1695
1696 static int
1697 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1698                               u32 offset, u32 len,
1699                               unsigned flags)
1700 {
1701         int ret;
1702
1703         ret = intel_ring_begin(ring, 2);
1704         if (ret)
1705                 return ret;
1706
1707         intel_ring_emit(ring,
1708                         MI_BATCH_BUFFER_START |
1709                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1710         /* bit0-7 is the length on GEN6+ */
1711         intel_ring_emit(ring, offset);
1712         intel_ring_advance(ring);
1713
1714         return 0;
1715 }
1716
1717 /* Blitter support (SandyBridge+) */
1718
1719 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1720                            u32 invalidate, u32 flush)
1721 {
1722         struct drm_device *dev = ring->dev;
1723         uint32_t cmd;
1724         int ret;
1725
1726         ret = intel_ring_begin(ring, 4);
1727         if (ret)
1728                 return ret;
1729
1730         cmd = MI_FLUSH_DW;
1731         /*
1732          * Bspec vol 1c.3 - blitter engine command streamer:
1733          * "If ENABLED, all TLBs will be invalidated once the flush
1734          * operation is complete. This bit is only valid when the
1735          * Post-Sync Operation field is a value of 1h or 3h."
1736          */
1737         if (invalidate & I915_GEM_DOMAIN_RENDER)
1738                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1739                         MI_FLUSH_DW_OP_STOREDW;
1740         intel_ring_emit(ring, cmd);
1741         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1742         intel_ring_emit(ring, 0);
1743         intel_ring_emit(ring, MI_NOOP);
1744         intel_ring_advance(ring);
1745
1746         if (IS_GEN7(dev) && flush)
1747                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1748
1749         return 0;
1750 }
1751
1752 int intel_init_render_ring_buffer(struct drm_device *dev)
1753 {
1754         drm_i915_private_t *dev_priv = dev->dev_private;
1755         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1756
1757         ring->name = "render ring";
1758         ring->id = RCS;
1759         ring->mmio_base = RENDER_RING_BASE;
1760
1761         if (INTEL_INFO(dev)->gen >= 6) {
1762                 ring->add_request = gen6_add_request;
1763                 ring->flush = gen7_render_ring_flush;
1764                 if (INTEL_INFO(dev)->gen == 6)
1765                         ring->flush = gen6_render_ring_flush;
1766                 ring->irq_get = gen6_ring_get_irq;
1767                 ring->irq_put = gen6_ring_put_irq;
1768                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1769                 ring->get_seqno = gen6_ring_get_seqno;
1770                 ring->set_seqno = ring_set_seqno;
1771                 ring->sync_to = gen6_ring_sync;
1772                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1773                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1774                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1775                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1776                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1777                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1778                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1779                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1780         } else if (IS_GEN5(dev)) {
1781                 ring->add_request = pc_render_add_request;
1782                 ring->flush = gen4_render_ring_flush;
1783                 ring->get_seqno = pc_render_get_seqno;
1784                 ring->set_seqno = pc_render_set_seqno;
1785                 ring->irq_get = gen5_ring_get_irq;
1786                 ring->irq_put = gen5_ring_put_irq;
1787                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1788                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1789         } else {
1790                 ring->add_request = i9xx_add_request;
1791                 if (INTEL_INFO(dev)->gen < 4)
1792                         ring->flush = gen2_render_ring_flush;
1793                 else
1794                         ring->flush = gen4_render_ring_flush;
1795                 ring->get_seqno = ring_get_seqno;
1796                 ring->set_seqno = ring_set_seqno;
1797                 if (IS_GEN2(dev)) {
1798                         ring->irq_get = i8xx_ring_get_irq;
1799                         ring->irq_put = i8xx_ring_put_irq;
1800                 } else {
1801                         ring->irq_get = i9xx_ring_get_irq;
1802                         ring->irq_put = i9xx_ring_put_irq;
1803                 }
1804                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1805         }
1806         ring->write_tail = ring_write_tail;
1807         if (IS_HASWELL(dev))
1808                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1809         else if (INTEL_INFO(dev)->gen >= 6)
1810                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1811         else if (INTEL_INFO(dev)->gen >= 4)
1812                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1813         else if (IS_I830(dev) || IS_845G(dev))
1814                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1815         else
1816                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1817         ring->init = init_render_ring;
1818         ring->cleanup = render_ring_cleanup;
1819
1820         /* Workaround batchbuffer to combat CS tlb bug. */
1821         if (HAS_BROKEN_CS_TLB(dev)) {
1822                 struct drm_i915_gem_object *obj;
1823                 int ret;
1824
1825                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1826                 if (obj == NULL) {
1827                         DRM_ERROR("Failed to allocate batch bo\n");
1828                         return -ENOMEM;
1829                 }
1830
1831                 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1832                 if (ret != 0) {
1833                         drm_gem_object_unreference(&obj->base);
1834                         DRM_ERROR("Failed to ping batch bo\n");
1835                         return ret;
1836                 }
1837
1838                 ring->private = obj;
1839         }
1840
1841         return intel_init_ring_buffer(dev, ring);
1842 }
1843
1844 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1845 {
1846         drm_i915_private_t *dev_priv = dev->dev_private;
1847         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1848         int ret;
1849
1850         ring->name = "render ring";
1851         ring->id = RCS;
1852         ring->mmio_base = RENDER_RING_BASE;
1853
1854         if (INTEL_INFO(dev)->gen >= 6) {
1855                 /* non-kms not supported on gen6+ */
1856                 return -ENODEV;
1857         }
1858
1859         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1860          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1861          * the special gen5 functions. */
1862         ring->add_request = i9xx_add_request;
1863         if (INTEL_INFO(dev)->gen < 4)
1864                 ring->flush = gen2_render_ring_flush;
1865         else
1866                 ring->flush = gen4_render_ring_flush;
1867         ring->get_seqno = ring_get_seqno;
1868         ring->set_seqno = ring_set_seqno;
1869         if (IS_GEN2(dev)) {
1870                 ring->irq_get = i8xx_ring_get_irq;
1871                 ring->irq_put = i8xx_ring_put_irq;
1872         } else {
1873                 ring->irq_get = i9xx_ring_get_irq;
1874                 ring->irq_put = i9xx_ring_put_irq;
1875         }
1876         ring->irq_enable_mask = I915_USER_INTERRUPT;
1877         ring->write_tail = ring_write_tail;
1878         if (INTEL_INFO(dev)->gen >= 4)
1879                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1880         else if (IS_I830(dev) || IS_845G(dev))
1881                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1882         else
1883                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1884         ring->init = init_render_ring;
1885         ring->cleanup = render_ring_cleanup;
1886
1887         ring->dev = dev;
1888         INIT_LIST_HEAD(&ring->active_list);
1889         INIT_LIST_HEAD(&ring->request_list);
1890
1891         ring->size = size;
1892         ring->effective_size = ring->size;
1893         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1894                 ring->effective_size -= 128;
1895
1896         ring->virtual_start = ioremap_wc(start, size);
1897         if (ring->virtual_start == NULL) {
1898                 DRM_ERROR("can not ioremap virtual address for"
1899                           " ring buffer\n");
1900                 return -ENOMEM;
1901         }
1902
1903         if (!I915_NEED_GFX_HWS(dev)) {
1904                 ret = init_phys_status_page(ring);
1905                 if (ret)
1906                         return ret;
1907         }
1908
1909         return 0;
1910 }
1911
1912 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1913 {
1914         drm_i915_private_t *dev_priv = dev->dev_private;
1915         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1916
1917         ring->name = "bsd ring";
1918         ring->id = VCS;
1919
1920         ring->write_tail = ring_write_tail;
1921         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1922                 ring->mmio_base = GEN6_BSD_RING_BASE;
1923                 /* gen6 bsd needs a special wa for tail updates */
1924                 if (IS_GEN6(dev))
1925                         ring->write_tail = gen6_bsd_ring_write_tail;
1926                 ring->flush = gen6_bsd_ring_flush;
1927                 ring->add_request = gen6_add_request;
1928                 ring->get_seqno = gen6_ring_get_seqno;
1929                 ring->set_seqno = ring_set_seqno;
1930                 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1931                 ring->irq_get = gen6_ring_get_irq;
1932                 ring->irq_put = gen6_ring_put_irq;
1933                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934                 ring->sync_to = gen6_ring_sync;
1935                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1936                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1937                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1938                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1939                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1940                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1941                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1942                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1943         } else {
1944                 ring->mmio_base = BSD_RING_BASE;
1945                 ring->flush = bsd_ring_flush;
1946                 ring->add_request = i9xx_add_request;
1947                 ring->get_seqno = ring_get_seqno;
1948                 ring->set_seqno = ring_set_seqno;
1949                 if (IS_GEN5(dev)) {
1950                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1951                         ring->irq_get = gen5_ring_get_irq;
1952                         ring->irq_put = gen5_ring_put_irq;
1953                 } else {
1954                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1955                         ring->irq_get = i9xx_ring_get_irq;
1956                         ring->irq_put = i9xx_ring_put_irq;
1957                 }
1958                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1959         }
1960         ring->init = init_ring_common;
1961
1962         return intel_init_ring_buffer(dev, ring);
1963 }
1964
1965 int intel_init_blt_ring_buffer(struct drm_device *dev)
1966 {
1967         drm_i915_private_t *dev_priv = dev->dev_private;
1968         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1969
1970         ring->name = "blitter ring";
1971         ring->id = BCS;
1972
1973         ring->mmio_base = BLT_RING_BASE;
1974         ring->write_tail = ring_write_tail;
1975         ring->flush = gen6_ring_flush;
1976         ring->add_request = gen6_add_request;
1977         ring->get_seqno = gen6_ring_get_seqno;
1978         ring->set_seqno = ring_set_seqno;
1979         ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1980         ring->irq_get = gen6_ring_get_irq;
1981         ring->irq_put = gen6_ring_put_irq;
1982         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1983         ring->sync_to = gen6_ring_sync;
1984         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1985         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1986         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1987         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1988         ring->signal_mbox[RCS] = GEN6_RBSYNC;
1989         ring->signal_mbox[VCS] = GEN6_VBSYNC;
1990         ring->signal_mbox[BCS] = GEN6_NOSYNC;
1991         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1992         ring->init = init_ring_common;
1993
1994         return intel_init_ring_buffer(dev, ring);
1995 }
1996
1997 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1998 {
1999         drm_i915_private_t *dev_priv = dev->dev_private;
2000         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2001
2002         ring->name = "video enhancement ring";
2003         ring->id = VECS;
2004
2005         ring->mmio_base = VEBOX_RING_BASE;
2006         ring->write_tail = ring_write_tail;
2007         ring->flush = gen6_ring_flush;
2008         ring->add_request = gen6_add_request;
2009         ring->get_seqno = gen6_ring_get_seqno;
2010         ring->set_seqno = ring_set_seqno;
2011         ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2012         ring->irq_get = hsw_vebox_get_irq;
2013         ring->irq_put = hsw_vebox_put_irq;
2014         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2015         ring->sync_to = gen6_ring_sync;
2016         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2017         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2018         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2019         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2020         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2021         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2022         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2023         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2024         ring->init = init_ring_common;
2025
2026         return intel_init_ring_buffer(dev, ring);
2027 }
2028
2029 int
2030 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2031 {
2032         int ret;
2033
2034         if (!ring->gpu_caches_dirty)
2035                 return 0;
2036
2037         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2038         if (ret)
2039                 return ret;
2040
2041         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2042
2043         ring->gpu_caches_dirty = false;
2044         return 0;
2045 }
2046
2047 int
2048 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2049 {
2050         uint32_t flush_domains;
2051         int ret;
2052
2053         flush_domains = 0;
2054         if (ring->gpu_caches_dirty)
2055                 flush_domains = I915_GEM_GPU_DOMAINS;
2056
2057         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2058         if (ret)
2059                 return ret;
2060
2061         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2062
2063         ring->gpu_caches_dirty = false;
2064         return 0;
2065 }