]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Initialize workarounds in logical ring mode too
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 /* Workaround: we must issue a pipe_control with CS-stall bit
372                  * set before a pipe_control command that has the state cache
373                  * invalidate bit set. */
374                 gen7_render_ring_cs_stall_wa(ring);
375         }
376
377         ret = intel_ring_begin(ring, 4);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382         intel_ring_emit(ring, flags);
383         intel_ring_emit(ring, scratch_addr);
384         intel_ring_emit(ring, 0);
385         intel_ring_advance(ring);
386
387         if (!invalidate_domains && flush_domains)
388                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390         return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395                        u32 flags, u32 scratch_addr)
396 {
397         int ret;
398
399         ret = intel_ring_begin(ring, 6);
400         if (ret)
401                 return ret;
402
403         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404         intel_ring_emit(ring, flags);
405         intel_ring_emit(ring, scratch_addr);
406         intel_ring_emit(ring, 0);
407         intel_ring_emit(ring, 0);
408         intel_ring_emit(ring, 0);
409         intel_ring_advance(ring);
410
411         return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416                        u32 invalidate_domains, u32 flush_domains)
417 {
418         u32 flags = 0;
419         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420         int ret;
421
422         flags |= PIPE_CONTROL_CS_STALL;
423
424         if (flush_domains) {
425                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427         }
428         if (invalidate_domains) {
429                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_QW_WRITE;
436                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439                 ret = gen8_emit_pipe_control(ring,
440                                              PIPE_CONTROL_CS_STALL |
441                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
442                                              0);
443                 if (ret)
444                         return ret;
445         }
446
447         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448         if (ret)
449                 return ret;
450
451         if (!invalidate_domains && flush_domains)
452                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454         return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458                             u32 value)
459 {
460         struct drm_i915_private *dev_priv = ring->dev->dev_private;
461         I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u64 acthd;
468
469         if (INTEL_INFO(ring->dev)->gen >= 8)
470                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471                                          RING_ACTHD_UDW(ring->mmio_base));
472         else if (INTEL_INFO(ring->dev)->gen >= 4)
473                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474         else
475                 acthd = I915_READ(ACTHD);
476
477         return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 addr;
484
485         addr = dev_priv->status_page_dmah->busaddr;
486         if (INTEL_INFO(ring->dev)->gen >= 4)
487                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488         I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493         struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495         if (!IS_GEN2(ring->dev)) {
496                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499                         /* Sometimes we observe that the idle flag is not
500                          * set even though the ring is empty. So double
501                          * check before giving up.
502                          */
503                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504                                 return false;
505                 }
506         }
507
508         I915_WRITE_CTL(ring, 0);
509         I915_WRITE_HEAD(ring, 0);
510         ring->write_tail(ring, 0);
511
512         if (!IS_GEN2(ring->dev)) {
513                 (void)I915_READ_CTL(ring);
514                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515         }
516
517         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522         struct drm_device *dev = ring->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         struct intel_ringbuffer *ringbuf = ring->buffer;
525         struct drm_i915_gem_object *obj = ringbuf->obj;
526         int ret = 0;
527
528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530         if (!stop_ring(ring)) {
531                 /* G45 ring initialization often fails to reset head to zero */
532                 DRM_DEBUG_KMS("%s head not reset to zero "
533                               "ctl %08x head %08x tail %08x start %08x\n",
534                               ring->name,
535                               I915_READ_CTL(ring),
536                               I915_READ_HEAD(ring),
537                               I915_READ_TAIL(ring),
538                               I915_READ_START(ring));
539
540                 if (!stop_ring(ring)) {
541                         DRM_ERROR("failed to set %s head to zero "
542                                   "ctl %08x head %08x tail %08x start %08x\n",
543                                   ring->name,
544                                   I915_READ_CTL(ring),
545                                   I915_READ_HEAD(ring),
546                                   I915_READ_TAIL(ring),
547                                   I915_READ_START(ring));
548                         ret = -EIO;
549                         goto out;
550                 }
551         }
552
553         if (I915_NEED_GFX_HWS(dev))
554                 intel_ring_setup_status_page(ring);
555         else
556                 ring_setup_phys_status_page(ring);
557
558         /* Enforce ordering by reading HEAD register back */
559         I915_READ_HEAD(ring);
560
561         /* Initialize the ring. This must happen _after_ we've cleared the ring
562          * registers with the above sequence (the readback of the HEAD registers
563          * also enforces ordering), otherwise the hw might lose the new ring
564          * register values. */
565         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567         /* WaClearRingBufHeadRegAtInit:ctg,elk */
568         if (I915_READ_HEAD(ring))
569                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570                           ring->name, I915_READ_HEAD(ring));
571         I915_WRITE_HEAD(ring, 0);
572         (void)I915_READ_HEAD(ring);
573
574         I915_WRITE_CTL(ring,
575                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576                         | RING_VALID);
577
578         /* If the head is still not zero, the ring is dead */
579         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582                 DRM_ERROR("%s initialization failed "
583                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584                           ring->name,
585                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588                 ret = -EIO;
589                 goto out;
590         }
591
592         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593                 i915_kernel_lost_context(ring->dev);
594         else {
595                 ringbuf->head = I915_READ_HEAD(ring);
596                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597                 ringbuf->space = intel_ring_space(ringbuf);
598                 ringbuf->last_retired_head = -1;
599         }
600
601         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606         return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612         struct drm_device *dev = ring->dev;
613
614         if (ring->scratch.obj == NULL)
615                 return;
616
617         if (INTEL_INFO(dev)->gen >= 5) {
618                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620         }
621
622         drm_gem_object_unreference(&ring->scratch.obj->base);
623         ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629         int ret;
630
631         if (ring->scratch.obj)
632                 return 0;
633
634         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635         if (ring->scratch.obj == NULL) {
636                 DRM_ERROR("Failed to allocate seqno page\n");
637                 ret = -ENOMEM;
638                 goto err;
639         }
640
641         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642         if (ret)
643                 goto err_unref;
644
645         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646         if (ret)
647                 goto err_unref;
648
649         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651         if (ring->scratch.cpu_page == NULL) {
652                 ret = -ENOMEM;
653                 goto err_unpin;
654         }
655
656         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657                          ring->name, ring->scratch.gtt_offset);
658         return 0;
659
660 err_unpin:
661         i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663         drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665         return ret;
666 }
667
668 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
669                                        struct intel_context *ctx)
670 {
671         int ret, i;
672         struct drm_device *dev = ring->dev;
673         struct drm_i915_private *dev_priv = dev->dev_private;
674         struct i915_workarounds *w = &dev_priv->workarounds;
675
676         if (WARN_ON(w->count == 0))
677                 return 0;
678
679         ring->gpu_caches_dirty = true;
680         ret = intel_ring_flush_all_caches(ring);
681         if (ret)
682                 return ret;
683
684         ret = intel_ring_begin(ring, (w->count * 2 + 2));
685         if (ret)
686                 return ret;
687
688         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
689         for (i = 0; i < w->count; i++) {
690                 intel_ring_emit(ring, w->reg[i].addr);
691                 intel_ring_emit(ring, w->reg[i].value);
692         }
693         intel_ring_emit(ring, MI_NOOP);
694
695         intel_ring_advance(ring);
696
697         ring->gpu_caches_dirty = true;
698         ret = intel_ring_flush_all_caches(ring);
699         if (ret)
700                 return ret;
701
702         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
703
704         return 0;
705 }
706
707 static int wa_add(struct drm_i915_private *dev_priv,
708                   const u32 addr, const u32 val, const u32 mask)
709 {
710         const u32 idx = dev_priv->workarounds.count;
711
712         if (WARN_ON(idx >= I915_MAX_WA_REGS))
713                 return -ENOSPC;
714
715         dev_priv->workarounds.reg[idx].addr = addr;
716         dev_priv->workarounds.reg[idx].value = val;
717         dev_priv->workarounds.reg[idx].mask = mask;
718
719         dev_priv->workarounds.count++;
720
721         return 0;
722 }
723
724 #define WA_REG(addr, val, mask) { \
725                 const int r = wa_add(dev_priv, (addr), (val), (mask)); \
726                 if (r) \
727                         return r; \
728         }
729
730 #define WA_SET_BIT_MASKED(addr, mask) \
731         WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
732
733 #define WA_CLR_BIT_MASKED(addr, mask) \
734         WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
735
736 #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
737 #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
738
739 #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
740
741 static int bdw_init_workarounds(struct intel_engine_cs *ring)
742 {
743         struct drm_device *dev = ring->dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745
746         /* WaDisablePartialInstShootdown:bdw */
747         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
748         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
749                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
750                           STALL_DOP_GATING_DISABLE);
751
752         /* WaDisableDopClockGating:bdw */
753         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
754                           DOP_CLOCK_GATING_DISABLE);
755
756         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
757                           GEN8_SAMPLER_POWER_BYPASS_DIS);
758
759         /* Use Force Non-Coherent whenever executing a 3D context. This is a
760          * workaround for for a possible hang in the unlikely event a TLB
761          * invalidation occurs during a PSD flush.
762          */
763         /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
764         WA_SET_BIT_MASKED(HDC_CHICKEN0,
765                           HDC_FORCE_NON_COHERENT |
766                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
767
768         /* Wa4x4STCOptimizationDisable:bdw */
769         WA_SET_BIT_MASKED(CACHE_MODE_1,
770                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
771
772         /*
773          * BSpec recommends 8x4 when MSAA is used,
774          * however in practice 16x4 seems fastest.
775          *
776          * Note that PS/WM thread counts depend on the WIZ hashing
777          * disable bit, which we don't touch here, but it's good
778          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
779          */
780         WA_SET_BIT_MASKED(GEN7_GT_MODE,
781                           GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
782
783         return 0;
784 }
785
786 static int chv_init_workarounds(struct intel_engine_cs *ring)
787 {
788         struct drm_device *dev = ring->dev;
789         struct drm_i915_private *dev_priv = dev->dev_private;
790
791         /* WaDisablePartialInstShootdown:chv */
792         /* WaDisableThreadStallDopClockGating:chv */
793         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
794                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
795                           STALL_DOP_GATING_DISABLE);
796
797         /* Use Force Non-Coherent whenever executing a 3D context. This is a
798          * workaround for a possible hang in the unlikely event a TLB
799          * invalidation occurs during a PSD flush.
800          */
801         /* WaForceEnableNonCoherent:chv */
802         /* WaHdcDisableFetchWhenMasked:chv */
803         WA_SET_BIT_MASKED(HDC_CHICKEN0,
804                           HDC_FORCE_NON_COHERENT |
805                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
806
807         return 0;
808 }
809
810 int init_workarounds_ring(struct intel_engine_cs *ring)
811 {
812         struct drm_device *dev = ring->dev;
813         struct drm_i915_private *dev_priv = dev->dev_private;
814
815         WARN_ON(ring->id != RCS);
816
817         dev_priv->workarounds.count = 0;
818
819         if (IS_BROADWELL(dev))
820                 return bdw_init_workarounds(ring);
821
822         if (IS_CHERRYVIEW(dev))
823                 return chv_init_workarounds(ring);
824
825         return 0;
826 }
827
828 static int init_render_ring(struct intel_engine_cs *ring)
829 {
830         struct drm_device *dev = ring->dev;
831         struct drm_i915_private *dev_priv = dev->dev_private;
832         int ret = init_ring_common(ring);
833         if (ret)
834                 return ret;
835
836         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
837         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
838                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
839
840         /* We need to disable the AsyncFlip performance optimisations in order
841          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
842          * programmed to '1' on all products.
843          *
844          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
845          */
846         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
847                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
848
849         /* Required for the hardware to program scanline values for waiting */
850         /* WaEnableFlushTlbInvalidationMode:snb */
851         if (INTEL_INFO(dev)->gen == 6)
852                 I915_WRITE(GFX_MODE,
853                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
854
855         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
856         if (IS_GEN7(dev))
857                 I915_WRITE(GFX_MODE_GEN7,
858                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
859                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
860
861         if (INTEL_INFO(dev)->gen >= 5) {
862                 ret = intel_init_pipe_control(ring);
863                 if (ret)
864                         return ret;
865         }
866
867         if (IS_GEN6(dev)) {
868                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
869                  * "If this bit is set, STCunit will have LRA as replacement
870                  *  policy. [...] This bit must be reset.  LRA replacement
871                  *  policy is not supported."
872                  */
873                 I915_WRITE(CACHE_MODE_0,
874                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
875         }
876
877         if (INTEL_INFO(dev)->gen >= 6)
878                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
879
880         if (HAS_L3_DPF(dev))
881                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
882
883         return init_workarounds_ring(ring);
884 }
885
886 static void render_ring_cleanup(struct intel_engine_cs *ring)
887 {
888         struct drm_device *dev = ring->dev;
889         struct drm_i915_private *dev_priv = dev->dev_private;
890
891         if (dev_priv->semaphore_obj) {
892                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
893                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
894                 dev_priv->semaphore_obj = NULL;
895         }
896
897         intel_fini_pipe_control(ring);
898 }
899
900 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
901                            unsigned int num_dwords)
902 {
903 #define MBOX_UPDATE_DWORDS 8
904         struct drm_device *dev = signaller->dev;
905         struct drm_i915_private *dev_priv = dev->dev_private;
906         struct intel_engine_cs *waiter;
907         int i, ret, num_rings;
908
909         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
910         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
911 #undef MBOX_UPDATE_DWORDS
912
913         ret = intel_ring_begin(signaller, num_dwords);
914         if (ret)
915                 return ret;
916
917         for_each_ring(waiter, dev_priv, i) {
918                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
919                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
920                         continue;
921
922                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
923                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
924                                            PIPE_CONTROL_QW_WRITE |
925                                            PIPE_CONTROL_FLUSH_ENABLE);
926                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
927                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
928                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
929                 intel_ring_emit(signaller, 0);
930                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
931                                            MI_SEMAPHORE_TARGET(waiter->id));
932                 intel_ring_emit(signaller, 0);
933         }
934
935         return 0;
936 }
937
938 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
939                            unsigned int num_dwords)
940 {
941 #define MBOX_UPDATE_DWORDS 6
942         struct drm_device *dev = signaller->dev;
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         struct intel_engine_cs *waiter;
945         int i, ret, num_rings;
946
947         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
948         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
949 #undef MBOX_UPDATE_DWORDS
950
951         ret = intel_ring_begin(signaller, num_dwords);
952         if (ret)
953                 return ret;
954
955         for_each_ring(waiter, dev_priv, i) {
956                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
957                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
958                         continue;
959
960                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
961                                            MI_FLUSH_DW_OP_STOREDW);
962                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
963                                            MI_FLUSH_DW_USE_GTT);
964                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
965                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
966                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
967                                            MI_SEMAPHORE_TARGET(waiter->id));
968                 intel_ring_emit(signaller, 0);
969         }
970
971         return 0;
972 }
973
974 static int gen6_signal(struct intel_engine_cs *signaller,
975                        unsigned int num_dwords)
976 {
977         struct drm_device *dev = signaller->dev;
978         struct drm_i915_private *dev_priv = dev->dev_private;
979         struct intel_engine_cs *useless;
980         int i, ret, num_rings;
981
982 #define MBOX_UPDATE_DWORDS 3
983         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
984         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
985 #undef MBOX_UPDATE_DWORDS
986
987         ret = intel_ring_begin(signaller, num_dwords);
988         if (ret)
989                 return ret;
990
991         for_each_ring(useless, dev_priv, i) {
992                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
993                 if (mbox_reg != GEN6_NOSYNC) {
994                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
995                         intel_ring_emit(signaller, mbox_reg);
996                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
997                 }
998         }
999
1000         /* If num_dwords was rounded, make sure the tail pointer is correct */
1001         if (num_rings % 2 == 0)
1002                 intel_ring_emit(signaller, MI_NOOP);
1003
1004         return 0;
1005 }
1006
1007 /**
1008  * gen6_add_request - Update the semaphore mailbox registers
1009  * 
1010  * @ring - ring that is adding a request
1011  * @seqno - return seqno stuck into the ring
1012  *
1013  * Update the mailbox registers in the *other* rings with the current seqno.
1014  * This acts like a signal in the canonical semaphore.
1015  */
1016 static int
1017 gen6_add_request(struct intel_engine_cs *ring)
1018 {
1019         int ret;
1020
1021         if (ring->semaphore.signal)
1022                 ret = ring->semaphore.signal(ring, 4);
1023         else
1024                 ret = intel_ring_begin(ring, 4);
1025
1026         if (ret)
1027                 return ret;
1028
1029         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1030         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1031         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1032         intel_ring_emit(ring, MI_USER_INTERRUPT);
1033         __intel_ring_advance(ring);
1034
1035         return 0;
1036 }
1037
1038 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1039                                               u32 seqno)
1040 {
1041         struct drm_i915_private *dev_priv = dev->dev_private;
1042         return dev_priv->last_seqno < seqno;
1043 }
1044
1045 /**
1046  * intel_ring_sync - sync the waiter to the signaller on seqno
1047  *
1048  * @waiter - ring that is waiting
1049  * @signaller - ring which has, or will signal
1050  * @seqno - seqno which the waiter will block on
1051  */
1052
1053 static int
1054 gen8_ring_sync(struct intel_engine_cs *waiter,
1055                struct intel_engine_cs *signaller,
1056                u32 seqno)
1057 {
1058         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1059         int ret;
1060
1061         ret = intel_ring_begin(waiter, 4);
1062         if (ret)
1063                 return ret;
1064
1065         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1066                                 MI_SEMAPHORE_GLOBAL_GTT |
1067                                 MI_SEMAPHORE_POLL |
1068                                 MI_SEMAPHORE_SAD_GTE_SDD);
1069         intel_ring_emit(waiter, seqno);
1070         intel_ring_emit(waiter,
1071                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1072         intel_ring_emit(waiter,
1073                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1074         intel_ring_advance(waiter);
1075         return 0;
1076 }
1077
1078 static int
1079 gen6_ring_sync(struct intel_engine_cs *waiter,
1080                struct intel_engine_cs *signaller,
1081                u32 seqno)
1082 {
1083         u32 dw1 = MI_SEMAPHORE_MBOX |
1084                   MI_SEMAPHORE_COMPARE |
1085                   MI_SEMAPHORE_REGISTER;
1086         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1087         int ret;
1088
1089         /* Throughout all of the GEM code, seqno passed implies our current
1090          * seqno is >= the last seqno executed. However for hardware the
1091          * comparison is strictly greater than.
1092          */
1093         seqno -= 1;
1094
1095         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1096
1097         ret = intel_ring_begin(waiter, 4);
1098         if (ret)
1099                 return ret;
1100
1101         /* If seqno wrap happened, omit the wait with no-ops */
1102         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1103                 intel_ring_emit(waiter, dw1 | wait_mbox);
1104                 intel_ring_emit(waiter, seqno);
1105                 intel_ring_emit(waiter, 0);
1106                 intel_ring_emit(waiter, MI_NOOP);
1107         } else {
1108                 intel_ring_emit(waiter, MI_NOOP);
1109                 intel_ring_emit(waiter, MI_NOOP);
1110                 intel_ring_emit(waiter, MI_NOOP);
1111                 intel_ring_emit(waiter, MI_NOOP);
1112         }
1113         intel_ring_advance(waiter);
1114
1115         return 0;
1116 }
1117
1118 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1119 do {                                                                    \
1120         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1121                  PIPE_CONTROL_DEPTH_STALL);                             \
1122         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1123         intel_ring_emit(ring__, 0);                                                     \
1124         intel_ring_emit(ring__, 0);                                                     \
1125 } while (0)
1126
1127 static int
1128 pc_render_add_request(struct intel_engine_cs *ring)
1129 {
1130         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1131         int ret;
1132
1133         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1134          * incoherent with writes to memory, i.e. completely fubar,
1135          * so we need to use PIPE_NOTIFY instead.
1136          *
1137          * However, we also need to workaround the qword write
1138          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1139          * memory before requesting an interrupt.
1140          */
1141         ret = intel_ring_begin(ring, 32);
1142         if (ret)
1143                 return ret;
1144
1145         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1146                         PIPE_CONTROL_WRITE_FLUSH |
1147                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1148         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1149         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1150         intel_ring_emit(ring, 0);
1151         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1152         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1153         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1154         scratch_addr += 2 * CACHELINE_BYTES;
1155         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1156         scratch_addr += 2 * CACHELINE_BYTES;
1157         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1158         scratch_addr += 2 * CACHELINE_BYTES;
1159         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1160         scratch_addr += 2 * CACHELINE_BYTES;
1161         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1162
1163         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1164                         PIPE_CONTROL_WRITE_FLUSH |
1165                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1166                         PIPE_CONTROL_NOTIFY);
1167         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1168         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1169         intel_ring_emit(ring, 0);
1170         __intel_ring_advance(ring);
1171
1172         return 0;
1173 }
1174
1175 static u32
1176 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1177 {
1178         /* Workaround to force correct ordering between irq and seqno writes on
1179          * ivb (and maybe also on snb) by reading from a CS register (like
1180          * ACTHD) before reading the status page. */
1181         if (!lazy_coherency) {
1182                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1183                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1184         }
1185
1186         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1187 }
1188
1189 static u32
1190 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1191 {
1192         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1193 }
1194
1195 static void
1196 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1197 {
1198         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1199 }
1200
1201 static u32
1202 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1203 {
1204         return ring->scratch.cpu_page[0];
1205 }
1206
1207 static void
1208 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1209 {
1210         ring->scratch.cpu_page[0] = seqno;
1211 }
1212
1213 static bool
1214 gen5_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         unsigned long flags;
1219
1220         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1221                 return false;
1222
1223         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1224         if (ring->irq_refcount++ == 0)
1225                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1226         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1227
1228         return true;
1229 }
1230
1231 static void
1232 gen5_ring_put_irq(struct intel_engine_cs *ring)
1233 {
1234         struct drm_device *dev = ring->dev;
1235         struct drm_i915_private *dev_priv = dev->dev_private;
1236         unsigned long flags;
1237
1238         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1239         if (--ring->irq_refcount == 0)
1240                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1241         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1242 }
1243
1244 static bool
1245 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1246 {
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         unsigned long flags;
1250
1251         if (!intel_irqs_enabled(dev_priv))
1252                 return false;
1253
1254         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1255         if (ring->irq_refcount++ == 0) {
1256                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1257                 I915_WRITE(IMR, dev_priv->irq_mask);
1258                 POSTING_READ(IMR);
1259         }
1260         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1261
1262         return true;
1263 }
1264
1265 static void
1266 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1267 {
1268         struct drm_device *dev = ring->dev;
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         unsigned long flags;
1271
1272         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1273         if (--ring->irq_refcount == 0) {
1274                 dev_priv->irq_mask |= ring->irq_enable_mask;
1275                 I915_WRITE(IMR, dev_priv->irq_mask);
1276                 POSTING_READ(IMR);
1277         }
1278         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1279 }
1280
1281 static bool
1282 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1283 {
1284         struct drm_device *dev = ring->dev;
1285         struct drm_i915_private *dev_priv = dev->dev_private;
1286         unsigned long flags;
1287
1288         if (!intel_irqs_enabled(dev_priv))
1289                 return false;
1290
1291         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1292         if (ring->irq_refcount++ == 0) {
1293                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1294                 I915_WRITE16(IMR, dev_priv->irq_mask);
1295                 POSTING_READ16(IMR);
1296         }
1297         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1298
1299         return true;
1300 }
1301
1302 static void
1303 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1304 {
1305         struct drm_device *dev = ring->dev;
1306         struct drm_i915_private *dev_priv = dev->dev_private;
1307         unsigned long flags;
1308
1309         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1310         if (--ring->irq_refcount == 0) {
1311                 dev_priv->irq_mask |= ring->irq_enable_mask;
1312                 I915_WRITE16(IMR, dev_priv->irq_mask);
1313                 POSTING_READ16(IMR);
1314         }
1315         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1316 }
1317
1318 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1319 {
1320         struct drm_device *dev = ring->dev;
1321         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1322         u32 mmio = 0;
1323
1324         /* The ring status page addresses are no longer next to the rest of
1325          * the ring registers as of gen7.
1326          */
1327         if (IS_GEN7(dev)) {
1328                 switch (ring->id) {
1329                 case RCS:
1330                         mmio = RENDER_HWS_PGA_GEN7;
1331                         break;
1332                 case BCS:
1333                         mmio = BLT_HWS_PGA_GEN7;
1334                         break;
1335                 /*
1336                  * VCS2 actually doesn't exist on Gen7. Only shut up
1337                  * gcc switch check warning
1338                  */
1339                 case VCS2:
1340                 case VCS:
1341                         mmio = BSD_HWS_PGA_GEN7;
1342                         break;
1343                 case VECS:
1344                         mmio = VEBOX_HWS_PGA_GEN7;
1345                         break;
1346                 }
1347         } else if (IS_GEN6(ring->dev)) {
1348                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1349         } else {
1350                 /* XXX: gen8 returns to sanity */
1351                 mmio = RING_HWS_PGA(ring->mmio_base);
1352         }
1353
1354         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1355         POSTING_READ(mmio);
1356
1357         /*
1358          * Flush the TLB for this page
1359          *
1360          * FIXME: These two bits have disappeared on gen8, so a question
1361          * arises: do we still need this and if so how should we go about
1362          * invalidating the TLB?
1363          */
1364         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1365                 u32 reg = RING_INSTPM(ring->mmio_base);
1366
1367                 /* ring should be idle before issuing a sync flush*/
1368                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1369
1370                 I915_WRITE(reg,
1371                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1372                                               INSTPM_SYNC_FLUSH));
1373                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1374                              1000))
1375                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1376                                   ring->name);
1377         }
1378 }
1379
1380 static int
1381 bsd_ring_flush(struct intel_engine_cs *ring,
1382                u32     invalidate_domains,
1383                u32     flush_domains)
1384 {
1385         int ret;
1386
1387         ret = intel_ring_begin(ring, 2);
1388         if (ret)
1389                 return ret;
1390
1391         intel_ring_emit(ring, MI_FLUSH);
1392         intel_ring_emit(ring, MI_NOOP);
1393         intel_ring_advance(ring);
1394         return 0;
1395 }
1396
1397 static int
1398 i9xx_add_request(struct intel_engine_cs *ring)
1399 {
1400         int ret;
1401
1402         ret = intel_ring_begin(ring, 4);
1403         if (ret)
1404                 return ret;
1405
1406         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1407         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1408         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1409         intel_ring_emit(ring, MI_USER_INTERRUPT);
1410         __intel_ring_advance(ring);
1411
1412         return 0;
1413 }
1414
1415 static bool
1416 gen6_ring_get_irq(struct intel_engine_cs *ring)
1417 {
1418         struct drm_device *dev = ring->dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         unsigned long flags;
1421
1422         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1423                 return false;
1424
1425         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1426         if (ring->irq_refcount++ == 0) {
1427                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1428                         I915_WRITE_IMR(ring,
1429                                        ~(ring->irq_enable_mask |
1430                                          GT_PARITY_ERROR(dev)));
1431                 else
1432                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1433                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1434         }
1435         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1436
1437         return true;
1438 }
1439
1440 static void
1441 gen6_ring_put_irq(struct intel_engine_cs *ring)
1442 {
1443         struct drm_device *dev = ring->dev;
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         unsigned long flags;
1446
1447         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1448         if (--ring->irq_refcount == 0) {
1449                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1450                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1451                 else
1452                         I915_WRITE_IMR(ring, ~0);
1453                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1454         }
1455         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1456 }
1457
1458 static bool
1459 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1460 {
1461         struct drm_device *dev = ring->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         unsigned long flags;
1464
1465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1466                 return false;
1467
1468         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469         if (ring->irq_refcount++ == 0) {
1470                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1471                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1472         }
1473         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1474
1475         return true;
1476 }
1477
1478 static void
1479 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1480 {
1481         struct drm_device *dev = ring->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         unsigned long flags;
1484
1485         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1486         if (--ring->irq_refcount == 0) {
1487                 I915_WRITE_IMR(ring, ~0);
1488                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1489         }
1490         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1491 }
1492
1493 static bool
1494 gen8_ring_get_irq(struct intel_engine_cs *ring)
1495 {
1496         struct drm_device *dev = ring->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         unsigned long flags;
1499
1500         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1501                 return false;
1502
1503         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1504         if (ring->irq_refcount++ == 0) {
1505                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1506                         I915_WRITE_IMR(ring,
1507                                        ~(ring->irq_enable_mask |
1508                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1509                 } else {
1510                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1511                 }
1512                 POSTING_READ(RING_IMR(ring->mmio_base));
1513         }
1514         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1515
1516         return true;
1517 }
1518
1519 static void
1520 gen8_ring_put_irq(struct intel_engine_cs *ring)
1521 {
1522         struct drm_device *dev = ring->dev;
1523         struct drm_i915_private *dev_priv = dev->dev_private;
1524         unsigned long flags;
1525
1526         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1527         if (--ring->irq_refcount == 0) {
1528                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1529                         I915_WRITE_IMR(ring,
1530                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1531                 } else {
1532                         I915_WRITE_IMR(ring, ~0);
1533                 }
1534                 POSTING_READ(RING_IMR(ring->mmio_base));
1535         }
1536         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1537 }
1538
1539 static int
1540 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1541                          u64 offset, u32 length,
1542                          unsigned flags)
1543 {
1544         int ret;
1545
1546         ret = intel_ring_begin(ring, 2);
1547         if (ret)
1548                 return ret;
1549
1550         intel_ring_emit(ring,
1551                         MI_BATCH_BUFFER_START |
1552                         MI_BATCH_GTT |
1553                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1554         intel_ring_emit(ring, offset);
1555         intel_ring_advance(ring);
1556
1557         return 0;
1558 }
1559
1560 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1561 #define I830_BATCH_LIMIT (256*1024)
1562 #define I830_TLB_ENTRIES (2)
1563 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1564 static int
1565 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1566                                 u64 offset, u32 len,
1567                                 unsigned flags)
1568 {
1569         u32 cs_offset = ring->scratch.gtt_offset;
1570         int ret;
1571
1572         ret = intel_ring_begin(ring, 6);
1573         if (ret)
1574                 return ret;
1575
1576         /* Evict the invalid PTE TLBs */
1577         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1578         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1579         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1580         intel_ring_emit(ring, cs_offset);
1581         intel_ring_emit(ring, 0xdeadbeef);
1582         intel_ring_emit(ring, MI_NOOP);
1583         intel_ring_advance(ring);
1584
1585         if ((flags & I915_DISPATCH_PINNED) == 0) {
1586                 if (len > I830_BATCH_LIMIT)
1587                         return -ENOSPC;
1588
1589                 ret = intel_ring_begin(ring, 6 + 2);
1590                 if (ret)
1591                         return ret;
1592
1593                 /* Blit the batch (which has now all relocs applied) to the
1594                  * stable batch scratch bo area (so that the CS never
1595                  * stumbles over its tlb invalidation bug) ...
1596                  */
1597                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1598                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1599                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1600                 intel_ring_emit(ring, cs_offset);
1601                 intel_ring_emit(ring, 4096);
1602                 intel_ring_emit(ring, offset);
1603
1604                 intel_ring_emit(ring, MI_FLUSH);
1605                 intel_ring_emit(ring, MI_NOOP);
1606                 intel_ring_advance(ring);
1607
1608                 /* ... and execute it. */
1609                 offset = cs_offset;
1610         }
1611
1612         ret = intel_ring_begin(ring, 4);
1613         if (ret)
1614                 return ret;
1615
1616         intel_ring_emit(ring, MI_BATCH_BUFFER);
1617         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1618         intel_ring_emit(ring, offset + len - 8);
1619         intel_ring_emit(ring, MI_NOOP);
1620         intel_ring_advance(ring);
1621
1622         return 0;
1623 }
1624
1625 static int
1626 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1627                          u64 offset, u32 len,
1628                          unsigned flags)
1629 {
1630         int ret;
1631
1632         ret = intel_ring_begin(ring, 2);
1633         if (ret)
1634                 return ret;
1635
1636         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1637         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1638         intel_ring_advance(ring);
1639
1640         return 0;
1641 }
1642
1643 static void cleanup_status_page(struct intel_engine_cs *ring)
1644 {
1645         struct drm_i915_gem_object *obj;
1646
1647         obj = ring->status_page.obj;
1648         if (obj == NULL)
1649                 return;
1650
1651         kunmap(sg_page(obj->pages->sgl));
1652         i915_gem_object_ggtt_unpin(obj);
1653         drm_gem_object_unreference(&obj->base);
1654         ring->status_page.obj = NULL;
1655 }
1656
1657 static int init_status_page(struct intel_engine_cs *ring)
1658 {
1659         struct drm_i915_gem_object *obj;
1660
1661         if ((obj = ring->status_page.obj) == NULL) {
1662                 unsigned flags;
1663                 int ret;
1664
1665                 obj = i915_gem_alloc_object(ring->dev, 4096);
1666                 if (obj == NULL) {
1667                         DRM_ERROR("Failed to allocate status page\n");
1668                         return -ENOMEM;
1669                 }
1670
1671                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1672                 if (ret)
1673                         goto err_unref;
1674
1675                 flags = 0;
1676                 if (!HAS_LLC(ring->dev))
1677                         /* On g33, we cannot place HWS above 256MiB, so
1678                          * restrict its pinning to the low mappable arena.
1679                          * Though this restriction is not documented for
1680                          * gen4, gen5, or byt, they also behave similarly
1681                          * and hang if the HWS is placed at the top of the
1682                          * GTT. To generalise, it appears that all !llc
1683                          * platforms have issues with us placing the HWS
1684                          * above the mappable region (even though we never
1685                          * actualy map it).
1686                          */
1687                         flags |= PIN_MAPPABLE;
1688                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1689                 if (ret) {
1690 err_unref:
1691                         drm_gem_object_unreference(&obj->base);
1692                         return ret;
1693                 }
1694
1695                 ring->status_page.obj = obj;
1696         }
1697
1698         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1699         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1700         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1701
1702         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1703                         ring->name, ring->status_page.gfx_addr);
1704
1705         return 0;
1706 }
1707
1708 static int init_phys_status_page(struct intel_engine_cs *ring)
1709 {
1710         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1711
1712         if (!dev_priv->status_page_dmah) {
1713                 dev_priv->status_page_dmah =
1714                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1715                 if (!dev_priv->status_page_dmah)
1716                         return -ENOMEM;
1717         }
1718
1719         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1720         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1721
1722         return 0;
1723 }
1724
1725 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1726 {
1727         if (!ringbuf->obj)
1728                 return;
1729
1730         iounmap(ringbuf->virtual_start);
1731         i915_gem_object_ggtt_unpin(ringbuf->obj);
1732         drm_gem_object_unreference(&ringbuf->obj->base);
1733         ringbuf->obj = NULL;
1734 }
1735
1736 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1737                                struct intel_ringbuffer *ringbuf)
1738 {
1739         struct drm_i915_private *dev_priv = to_i915(dev);
1740         struct drm_i915_gem_object *obj;
1741         int ret;
1742
1743         if (ringbuf->obj)
1744                 return 0;
1745
1746         obj = NULL;
1747         if (!HAS_LLC(dev))
1748                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1749         if (obj == NULL)
1750                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1751         if (obj == NULL)
1752                 return -ENOMEM;
1753
1754         /* mark ring buffers as read-only from GPU side by default */
1755         obj->gt_ro = 1;
1756
1757         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1758         if (ret)
1759                 goto err_unref;
1760
1761         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1762         if (ret)
1763                 goto err_unpin;
1764
1765         ringbuf->virtual_start =
1766                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1767                                 ringbuf->size);
1768         if (ringbuf->virtual_start == NULL) {
1769                 ret = -EINVAL;
1770                 goto err_unpin;
1771         }
1772
1773         ringbuf->obj = obj;
1774         return 0;
1775
1776 err_unpin:
1777         i915_gem_object_ggtt_unpin(obj);
1778 err_unref:
1779         drm_gem_object_unreference(&obj->base);
1780         return ret;
1781 }
1782
1783 static int intel_init_ring_buffer(struct drm_device *dev,
1784                                   struct intel_engine_cs *ring)
1785 {
1786         struct intel_ringbuffer *ringbuf = ring->buffer;
1787         int ret;
1788
1789         if (ringbuf == NULL) {
1790                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1791                 if (!ringbuf)
1792                         return -ENOMEM;
1793                 ring->buffer = ringbuf;
1794         }
1795
1796         ring->dev = dev;
1797         INIT_LIST_HEAD(&ring->active_list);
1798         INIT_LIST_HEAD(&ring->request_list);
1799         INIT_LIST_HEAD(&ring->execlist_queue);
1800         ringbuf->size = 32 * PAGE_SIZE;
1801         ringbuf->ring = ring;
1802         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1803
1804         init_waitqueue_head(&ring->irq_queue);
1805
1806         if (I915_NEED_GFX_HWS(dev)) {
1807                 ret = init_status_page(ring);
1808                 if (ret)
1809                         goto error;
1810         } else {
1811                 BUG_ON(ring->id != RCS);
1812                 ret = init_phys_status_page(ring);
1813                 if (ret)
1814                         goto error;
1815         }
1816
1817         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1818         if (ret) {
1819                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1820                 goto error;
1821         }
1822
1823         /* Workaround an erratum on the i830 which causes a hang if
1824          * the TAIL pointer points to within the last 2 cachelines
1825          * of the buffer.
1826          */
1827         ringbuf->effective_size = ringbuf->size;
1828         if (IS_I830(dev) || IS_845G(dev))
1829                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1830
1831         ret = i915_cmd_parser_init_ring(ring);
1832         if (ret)
1833                 goto error;
1834
1835         ret = ring->init(ring);
1836         if (ret)
1837                 goto error;
1838
1839         return 0;
1840
1841 error:
1842         kfree(ringbuf);
1843         ring->buffer = NULL;
1844         return ret;
1845 }
1846
1847 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1848 {
1849         struct drm_i915_private *dev_priv;
1850         struct intel_ringbuffer *ringbuf;
1851
1852         if (!intel_ring_initialized(ring))
1853                 return;
1854
1855         dev_priv = to_i915(ring->dev);
1856         ringbuf = ring->buffer;
1857
1858         intel_stop_ring_buffer(ring);
1859         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1860
1861         intel_destroy_ringbuffer_obj(ringbuf);
1862         ring->preallocated_lazy_request = NULL;
1863         ring->outstanding_lazy_seqno = 0;
1864
1865         if (ring->cleanup)
1866                 ring->cleanup(ring);
1867
1868         cleanup_status_page(ring);
1869
1870         i915_cmd_parser_fini_ring(ring);
1871
1872         kfree(ringbuf);
1873         ring->buffer = NULL;
1874 }
1875
1876 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1877 {
1878         struct intel_ringbuffer *ringbuf = ring->buffer;
1879         struct drm_i915_gem_request *request;
1880         u32 seqno = 0;
1881         int ret;
1882
1883         if (ringbuf->last_retired_head != -1) {
1884                 ringbuf->head = ringbuf->last_retired_head;
1885                 ringbuf->last_retired_head = -1;
1886
1887                 ringbuf->space = intel_ring_space(ringbuf);
1888                 if (ringbuf->space >= n)
1889                         return 0;
1890         }
1891
1892         list_for_each_entry(request, &ring->request_list, list) {
1893                 if (__intel_ring_space(request->tail, ringbuf->tail,
1894                                        ringbuf->size) >= n) {
1895                         seqno = request->seqno;
1896                         break;
1897                 }
1898         }
1899
1900         if (seqno == 0)
1901                 return -ENOSPC;
1902
1903         ret = i915_wait_seqno(ring, seqno);
1904         if (ret)
1905                 return ret;
1906
1907         i915_gem_retire_requests_ring(ring);
1908         ringbuf->head = ringbuf->last_retired_head;
1909         ringbuf->last_retired_head = -1;
1910
1911         ringbuf->space = intel_ring_space(ringbuf);
1912         return 0;
1913 }
1914
1915 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1916 {
1917         struct drm_device *dev = ring->dev;
1918         struct drm_i915_private *dev_priv = dev->dev_private;
1919         struct intel_ringbuffer *ringbuf = ring->buffer;
1920         unsigned long end;
1921         int ret;
1922
1923         ret = intel_ring_wait_request(ring, n);
1924         if (ret != -ENOSPC)
1925                 return ret;
1926
1927         /* force the tail write in case we have been skipping them */
1928         __intel_ring_advance(ring);
1929
1930         /* With GEM the hangcheck timer should kick us out of the loop,
1931          * leaving it early runs the risk of corrupting GEM state (due
1932          * to running on almost untested codepaths). But on resume
1933          * timers don't work yet, so prevent a complete hang in that
1934          * case by choosing an insanely large timeout. */
1935         end = jiffies + 60 * HZ;
1936
1937         trace_i915_ring_wait_begin(ring);
1938         do {
1939                 ringbuf->head = I915_READ_HEAD(ring);
1940                 ringbuf->space = intel_ring_space(ringbuf);
1941                 if (ringbuf->space >= n) {
1942                         ret = 0;
1943                         break;
1944                 }
1945
1946                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1947                     dev->primary->master) {
1948                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1949                         if (master_priv->sarea_priv)
1950                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1951                 }
1952
1953                 msleep(1);
1954
1955                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1956                         ret = -ERESTARTSYS;
1957                         break;
1958                 }
1959
1960                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1961                                            dev_priv->mm.interruptible);
1962                 if (ret)
1963                         break;
1964
1965                 if (time_after(jiffies, end)) {
1966                         ret = -EBUSY;
1967                         break;
1968                 }
1969         } while (1);
1970         trace_i915_ring_wait_end(ring);
1971         return ret;
1972 }
1973
1974 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1975 {
1976         uint32_t __iomem *virt;
1977         struct intel_ringbuffer *ringbuf = ring->buffer;
1978         int rem = ringbuf->size - ringbuf->tail;
1979
1980         if (ringbuf->space < rem) {
1981                 int ret = ring_wait_for_space(ring, rem);
1982                 if (ret)
1983                         return ret;
1984         }
1985
1986         virt = ringbuf->virtual_start + ringbuf->tail;
1987         rem /= 4;
1988         while (rem--)
1989                 iowrite32(MI_NOOP, virt++);
1990
1991         ringbuf->tail = 0;
1992         ringbuf->space = intel_ring_space(ringbuf);
1993
1994         return 0;
1995 }
1996
1997 int intel_ring_idle(struct intel_engine_cs *ring)
1998 {
1999         u32 seqno;
2000         int ret;
2001
2002         /* We need to add any requests required to flush the objects and ring */
2003         if (ring->outstanding_lazy_seqno) {
2004                 ret = i915_add_request(ring, NULL);
2005                 if (ret)
2006                         return ret;
2007         }
2008
2009         /* Wait upon the last request to be completed */
2010         if (list_empty(&ring->request_list))
2011                 return 0;
2012
2013         seqno = list_entry(ring->request_list.prev,
2014                            struct drm_i915_gem_request,
2015                            list)->seqno;
2016
2017         return i915_wait_seqno(ring, seqno);
2018 }
2019
2020 static int
2021 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
2022 {
2023         if (ring->outstanding_lazy_seqno)
2024                 return 0;
2025
2026         if (ring->preallocated_lazy_request == NULL) {
2027                 struct drm_i915_gem_request *request;
2028
2029                 request = kmalloc(sizeof(*request), GFP_KERNEL);
2030                 if (request == NULL)
2031                         return -ENOMEM;
2032
2033                 ring->preallocated_lazy_request = request;
2034         }
2035
2036         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2037 }
2038
2039 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2040                                 int bytes)
2041 {
2042         struct intel_ringbuffer *ringbuf = ring->buffer;
2043         int ret;
2044
2045         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2046                 ret = intel_wrap_ring_buffer(ring);
2047                 if (unlikely(ret))
2048                         return ret;
2049         }
2050
2051         if (unlikely(ringbuf->space < bytes)) {
2052                 ret = ring_wait_for_space(ring, bytes);
2053                 if (unlikely(ret))
2054                         return ret;
2055         }
2056
2057         return 0;
2058 }
2059
2060 int intel_ring_begin(struct intel_engine_cs *ring,
2061                      int num_dwords)
2062 {
2063         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2064         int ret;
2065
2066         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2067                                    dev_priv->mm.interruptible);
2068         if (ret)
2069                 return ret;
2070
2071         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2072         if (ret)
2073                 return ret;
2074
2075         /* Preallocate the olr before touching the ring */
2076         ret = intel_ring_alloc_seqno(ring);
2077         if (ret)
2078                 return ret;
2079
2080         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2081         return 0;
2082 }
2083
2084 /* Align the ring tail to a cacheline boundary */
2085 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2086 {
2087         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2088         int ret;
2089
2090         if (num_dwords == 0)
2091                 return 0;
2092
2093         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2094         ret = intel_ring_begin(ring, num_dwords);
2095         if (ret)
2096                 return ret;
2097
2098         while (num_dwords--)
2099                 intel_ring_emit(ring, MI_NOOP);
2100
2101         intel_ring_advance(ring);
2102
2103         return 0;
2104 }
2105
2106 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2107 {
2108         struct drm_device *dev = ring->dev;
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110
2111         BUG_ON(ring->outstanding_lazy_seqno);
2112
2113         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2114                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2115                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2116                 if (HAS_VEBOX(dev))
2117                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2118         }
2119
2120         ring->set_seqno(ring, seqno);
2121         ring->hangcheck.seqno = seqno;
2122 }
2123
2124 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2125                                      u32 value)
2126 {
2127         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2128
2129        /* Every tail move must follow the sequence below */
2130
2131         /* Disable notification that the ring is IDLE. The GT
2132          * will then assume that it is busy and bring it out of rc6.
2133          */
2134         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2135                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2136
2137         /* Clear the context id. Here be magic! */
2138         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2139
2140         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2141         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2142                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2143                      50))
2144                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2145
2146         /* Now that the ring is fully powered up, update the tail */
2147         I915_WRITE_TAIL(ring, value);
2148         POSTING_READ(RING_TAIL(ring->mmio_base));
2149
2150         /* Let the ring send IDLE messages to the GT again,
2151          * and so let it sleep to conserve power when idle.
2152          */
2153         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2154                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2155 }
2156
2157 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2158                                u32 invalidate, u32 flush)
2159 {
2160         uint32_t cmd;
2161         int ret;
2162
2163         ret = intel_ring_begin(ring, 4);
2164         if (ret)
2165                 return ret;
2166
2167         cmd = MI_FLUSH_DW;
2168         if (INTEL_INFO(ring->dev)->gen >= 8)
2169                 cmd += 1;
2170         /*
2171          * Bspec vol 1c.5 - video engine command streamer:
2172          * "If ENABLED, all TLBs will be invalidated once the flush
2173          * operation is complete. This bit is only valid when the
2174          * Post-Sync Operation field is a value of 1h or 3h."
2175          */
2176         if (invalidate & I915_GEM_GPU_DOMAINS)
2177                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2178                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2179         intel_ring_emit(ring, cmd);
2180         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2181         if (INTEL_INFO(ring->dev)->gen >= 8) {
2182                 intel_ring_emit(ring, 0); /* upper addr */
2183                 intel_ring_emit(ring, 0); /* value */
2184         } else  {
2185                 intel_ring_emit(ring, 0);
2186                 intel_ring_emit(ring, MI_NOOP);
2187         }
2188         intel_ring_advance(ring);
2189         return 0;
2190 }
2191
2192 static int
2193 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2194                               u64 offset, u32 len,
2195                               unsigned flags)
2196 {
2197         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2198         int ret;
2199
2200         ret = intel_ring_begin(ring, 4);
2201         if (ret)
2202                 return ret;
2203
2204         /* FIXME(BDW): Address space and security selectors. */
2205         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2206         intel_ring_emit(ring, lower_32_bits(offset));
2207         intel_ring_emit(ring, upper_32_bits(offset));
2208         intel_ring_emit(ring, MI_NOOP);
2209         intel_ring_advance(ring);
2210
2211         return 0;
2212 }
2213
2214 static int
2215 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2216                               u64 offset, u32 len,
2217                               unsigned flags)
2218 {
2219         int ret;
2220
2221         ret = intel_ring_begin(ring, 2);
2222         if (ret)
2223                 return ret;
2224
2225         intel_ring_emit(ring,
2226                         MI_BATCH_BUFFER_START |
2227                         (flags & I915_DISPATCH_SECURE ?
2228                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2229         /* bit0-7 is the length on GEN6+ */
2230         intel_ring_emit(ring, offset);
2231         intel_ring_advance(ring);
2232
2233         return 0;
2234 }
2235
2236 static int
2237 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2238                               u64 offset, u32 len,
2239                               unsigned flags)
2240 {
2241         int ret;
2242
2243         ret = intel_ring_begin(ring, 2);
2244         if (ret)
2245                 return ret;
2246
2247         intel_ring_emit(ring,
2248                         MI_BATCH_BUFFER_START |
2249                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2250         /* bit0-7 is the length on GEN6+ */
2251         intel_ring_emit(ring, offset);
2252         intel_ring_advance(ring);
2253
2254         return 0;
2255 }
2256
2257 /* Blitter support (SandyBridge+) */
2258
2259 static int gen6_ring_flush(struct intel_engine_cs *ring,
2260                            u32 invalidate, u32 flush)
2261 {
2262         struct drm_device *dev = ring->dev;
2263         struct drm_i915_private *dev_priv = dev->dev_private;
2264         uint32_t cmd;
2265         int ret;
2266
2267         ret = intel_ring_begin(ring, 4);
2268         if (ret)
2269                 return ret;
2270
2271         cmd = MI_FLUSH_DW;
2272         if (INTEL_INFO(ring->dev)->gen >= 8)
2273                 cmd += 1;
2274         /*
2275          * Bspec vol 1c.3 - blitter engine command streamer:
2276          * "If ENABLED, all TLBs will be invalidated once the flush
2277          * operation is complete. This bit is only valid when the
2278          * Post-Sync Operation field is a value of 1h or 3h."
2279          */
2280         if (invalidate & I915_GEM_DOMAIN_RENDER)
2281                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2282                         MI_FLUSH_DW_OP_STOREDW;
2283         intel_ring_emit(ring, cmd);
2284         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2285         if (INTEL_INFO(ring->dev)->gen >= 8) {
2286                 intel_ring_emit(ring, 0); /* upper addr */
2287                 intel_ring_emit(ring, 0); /* value */
2288         } else  {
2289                 intel_ring_emit(ring, 0);
2290                 intel_ring_emit(ring, MI_NOOP);
2291         }
2292         intel_ring_advance(ring);
2293
2294         if (!invalidate && flush) {
2295                 if (IS_GEN7(dev))
2296                         return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2297                 else if (IS_BROADWELL(dev))
2298                         dev_priv->fbc.need_sw_cache_clean = true;
2299         }
2300
2301         return 0;
2302 }
2303
2304 int intel_init_render_ring_buffer(struct drm_device *dev)
2305 {
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2308         struct drm_i915_gem_object *obj;
2309         int ret;
2310
2311         ring->name = "render ring";
2312         ring->id = RCS;
2313         ring->mmio_base = RENDER_RING_BASE;
2314
2315         if (INTEL_INFO(dev)->gen >= 8) {
2316                 if (i915_semaphore_is_enabled(dev)) {
2317                         obj = i915_gem_alloc_object(dev, 4096);
2318                         if (obj == NULL) {
2319                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2320                                 i915.semaphores = 0;
2321                         } else {
2322                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2323                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2324                                 if (ret != 0) {
2325                                         drm_gem_object_unreference(&obj->base);
2326                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2327                                         i915.semaphores = 0;
2328                                 } else
2329                                         dev_priv->semaphore_obj = obj;
2330                         }
2331                 }
2332
2333                 ring->init_context = intel_ring_workarounds_emit;
2334                 ring->add_request = gen6_add_request;
2335                 ring->flush = gen8_render_ring_flush;
2336                 ring->irq_get = gen8_ring_get_irq;
2337                 ring->irq_put = gen8_ring_put_irq;
2338                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2339                 ring->get_seqno = gen6_ring_get_seqno;
2340                 ring->set_seqno = ring_set_seqno;
2341                 if (i915_semaphore_is_enabled(dev)) {
2342                         WARN_ON(!dev_priv->semaphore_obj);
2343                         ring->semaphore.sync_to = gen8_ring_sync;
2344                         ring->semaphore.signal = gen8_rcs_signal;
2345                         GEN8_RING_SEMAPHORE_INIT;
2346                 }
2347         } else if (INTEL_INFO(dev)->gen >= 6) {
2348                 ring->add_request = gen6_add_request;
2349                 ring->flush = gen7_render_ring_flush;
2350                 if (INTEL_INFO(dev)->gen == 6)
2351                         ring->flush = gen6_render_ring_flush;
2352                 ring->irq_get = gen6_ring_get_irq;
2353                 ring->irq_put = gen6_ring_put_irq;
2354                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2355                 ring->get_seqno = gen6_ring_get_seqno;
2356                 ring->set_seqno = ring_set_seqno;
2357                 if (i915_semaphore_is_enabled(dev)) {
2358                         ring->semaphore.sync_to = gen6_ring_sync;
2359                         ring->semaphore.signal = gen6_signal;
2360                         /*
2361                          * The current semaphore is only applied on pre-gen8
2362                          * platform.  And there is no VCS2 ring on the pre-gen8
2363                          * platform. So the semaphore between RCS and VCS2 is
2364                          * initialized as INVALID.  Gen8 will initialize the
2365                          * sema between VCS2 and RCS later.
2366                          */
2367                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2368                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2369                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2370                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2371                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2372                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2373                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2374                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2375                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2376                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2377                 }
2378         } else if (IS_GEN5(dev)) {
2379                 ring->add_request = pc_render_add_request;
2380                 ring->flush = gen4_render_ring_flush;
2381                 ring->get_seqno = pc_render_get_seqno;
2382                 ring->set_seqno = pc_render_set_seqno;
2383                 ring->irq_get = gen5_ring_get_irq;
2384                 ring->irq_put = gen5_ring_put_irq;
2385                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2386                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2387         } else {
2388                 ring->add_request = i9xx_add_request;
2389                 if (INTEL_INFO(dev)->gen < 4)
2390                         ring->flush = gen2_render_ring_flush;
2391                 else
2392                         ring->flush = gen4_render_ring_flush;
2393                 ring->get_seqno = ring_get_seqno;
2394                 ring->set_seqno = ring_set_seqno;
2395                 if (IS_GEN2(dev)) {
2396                         ring->irq_get = i8xx_ring_get_irq;
2397                         ring->irq_put = i8xx_ring_put_irq;
2398                 } else {
2399                         ring->irq_get = i9xx_ring_get_irq;
2400                         ring->irq_put = i9xx_ring_put_irq;
2401                 }
2402                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2403         }
2404         ring->write_tail = ring_write_tail;
2405
2406         if (IS_HASWELL(dev))
2407                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2408         else if (IS_GEN8(dev))
2409                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2410         else if (INTEL_INFO(dev)->gen >= 6)
2411                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2412         else if (INTEL_INFO(dev)->gen >= 4)
2413                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2414         else if (IS_I830(dev) || IS_845G(dev))
2415                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2416         else
2417                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2418         ring->init = init_render_ring;
2419         ring->cleanup = render_ring_cleanup;
2420
2421         /* Workaround batchbuffer to combat CS tlb bug. */
2422         if (HAS_BROKEN_CS_TLB(dev)) {
2423                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2424                 if (obj == NULL) {
2425                         DRM_ERROR("Failed to allocate batch bo\n");
2426                         return -ENOMEM;
2427                 }
2428
2429                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2430                 if (ret != 0) {
2431                         drm_gem_object_unreference(&obj->base);
2432                         DRM_ERROR("Failed to ping batch bo\n");
2433                         return ret;
2434                 }
2435
2436                 ring->scratch.obj = obj;
2437                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2438         }
2439
2440         return intel_init_ring_buffer(dev, ring);
2441 }
2442
2443 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2444 {
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2447         struct intel_ringbuffer *ringbuf = ring->buffer;
2448         int ret;
2449
2450         if (ringbuf == NULL) {
2451                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2452                 if (!ringbuf)
2453                         return -ENOMEM;
2454                 ring->buffer = ringbuf;
2455         }
2456
2457         ring->name = "render ring";
2458         ring->id = RCS;
2459         ring->mmio_base = RENDER_RING_BASE;
2460
2461         if (INTEL_INFO(dev)->gen >= 6) {
2462                 /* non-kms not supported on gen6+ */
2463                 ret = -ENODEV;
2464                 goto err_ringbuf;
2465         }
2466
2467         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2468          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2469          * the special gen5 functions. */
2470         ring->add_request = i9xx_add_request;
2471         if (INTEL_INFO(dev)->gen < 4)
2472                 ring->flush = gen2_render_ring_flush;
2473         else
2474                 ring->flush = gen4_render_ring_flush;
2475         ring->get_seqno = ring_get_seqno;
2476         ring->set_seqno = ring_set_seqno;
2477         if (IS_GEN2(dev)) {
2478                 ring->irq_get = i8xx_ring_get_irq;
2479                 ring->irq_put = i8xx_ring_put_irq;
2480         } else {
2481                 ring->irq_get = i9xx_ring_get_irq;
2482                 ring->irq_put = i9xx_ring_put_irq;
2483         }
2484         ring->irq_enable_mask = I915_USER_INTERRUPT;
2485         ring->write_tail = ring_write_tail;
2486         if (INTEL_INFO(dev)->gen >= 4)
2487                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2488         else if (IS_I830(dev) || IS_845G(dev))
2489                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2490         else
2491                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2492         ring->init = init_render_ring;
2493         ring->cleanup = render_ring_cleanup;
2494
2495         ring->dev = dev;
2496         INIT_LIST_HEAD(&ring->active_list);
2497         INIT_LIST_HEAD(&ring->request_list);
2498
2499         ringbuf->size = size;
2500         ringbuf->effective_size = ringbuf->size;
2501         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2502                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2503
2504         ringbuf->virtual_start = ioremap_wc(start, size);
2505         if (ringbuf->virtual_start == NULL) {
2506                 DRM_ERROR("can not ioremap virtual address for"
2507                           " ring buffer\n");
2508                 ret = -ENOMEM;
2509                 goto err_ringbuf;
2510         }
2511
2512         if (!I915_NEED_GFX_HWS(dev)) {
2513                 ret = init_phys_status_page(ring);
2514                 if (ret)
2515                         goto err_vstart;
2516         }
2517
2518         return 0;
2519
2520 err_vstart:
2521         iounmap(ringbuf->virtual_start);
2522 err_ringbuf:
2523         kfree(ringbuf);
2524         ring->buffer = NULL;
2525         return ret;
2526 }
2527
2528 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2532
2533         ring->name = "bsd ring";
2534         ring->id = VCS;
2535
2536         ring->write_tail = ring_write_tail;
2537         if (INTEL_INFO(dev)->gen >= 6) {
2538                 ring->mmio_base = GEN6_BSD_RING_BASE;
2539                 /* gen6 bsd needs a special wa for tail updates */
2540                 if (IS_GEN6(dev))
2541                         ring->write_tail = gen6_bsd_ring_write_tail;
2542                 ring->flush = gen6_bsd_ring_flush;
2543                 ring->add_request = gen6_add_request;
2544                 ring->get_seqno = gen6_ring_get_seqno;
2545                 ring->set_seqno = ring_set_seqno;
2546                 if (INTEL_INFO(dev)->gen >= 8) {
2547                         ring->irq_enable_mask =
2548                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2549                         ring->irq_get = gen8_ring_get_irq;
2550                         ring->irq_put = gen8_ring_put_irq;
2551                         ring->dispatch_execbuffer =
2552                                 gen8_ring_dispatch_execbuffer;
2553                         if (i915_semaphore_is_enabled(dev)) {
2554                                 ring->semaphore.sync_to = gen8_ring_sync;
2555                                 ring->semaphore.signal = gen8_xcs_signal;
2556                                 GEN8_RING_SEMAPHORE_INIT;
2557                         }
2558                 } else {
2559                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2560                         ring->irq_get = gen6_ring_get_irq;
2561                         ring->irq_put = gen6_ring_put_irq;
2562                         ring->dispatch_execbuffer =
2563                                 gen6_ring_dispatch_execbuffer;
2564                         if (i915_semaphore_is_enabled(dev)) {
2565                                 ring->semaphore.sync_to = gen6_ring_sync;
2566                                 ring->semaphore.signal = gen6_signal;
2567                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2568                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2569                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2570                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2571                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2572                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2573                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2574                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2575                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2576                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2577                         }
2578                 }
2579         } else {
2580                 ring->mmio_base = BSD_RING_BASE;
2581                 ring->flush = bsd_ring_flush;
2582                 ring->add_request = i9xx_add_request;
2583                 ring->get_seqno = ring_get_seqno;
2584                 ring->set_seqno = ring_set_seqno;
2585                 if (IS_GEN5(dev)) {
2586                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2587                         ring->irq_get = gen5_ring_get_irq;
2588                         ring->irq_put = gen5_ring_put_irq;
2589                 } else {
2590                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2591                         ring->irq_get = i9xx_ring_get_irq;
2592                         ring->irq_put = i9xx_ring_put_irq;
2593                 }
2594                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2595         }
2596         ring->init = init_ring_common;
2597
2598         return intel_init_ring_buffer(dev, ring);
2599 }
2600
2601 /**
2602  * Initialize the second BSD ring for Broadwell GT3.
2603  * It is noted that this only exists on Broadwell GT3.
2604  */
2605 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2606 {
2607         struct drm_i915_private *dev_priv = dev->dev_private;
2608         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2609
2610         if ((INTEL_INFO(dev)->gen != 8)) {
2611                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2612                 return -EINVAL;
2613         }
2614
2615         ring->name = "bsd2 ring";
2616         ring->id = VCS2;
2617
2618         ring->write_tail = ring_write_tail;
2619         ring->mmio_base = GEN8_BSD2_RING_BASE;
2620         ring->flush = gen6_bsd_ring_flush;
2621         ring->add_request = gen6_add_request;
2622         ring->get_seqno = gen6_ring_get_seqno;
2623         ring->set_seqno = ring_set_seqno;
2624         ring->irq_enable_mask =
2625                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2626         ring->irq_get = gen8_ring_get_irq;
2627         ring->irq_put = gen8_ring_put_irq;
2628         ring->dispatch_execbuffer =
2629                         gen8_ring_dispatch_execbuffer;
2630         if (i915_semaphore_is_enabled(dev)) {
2631                 ring->semaphore.sync_to = gen8_ring_sync;
2632                 ring->semaphore.signal = gen8_xcs_signal;
2633                 GEN8_RING_SEMAPHORE_INIT;
2634         }
2635         ring->init = init_ring_common;
2636
2637         return intel_init_ring_buffer(dev, ring);
2638 }
2639
2640 int intel_init_blt_ring_buffer(struct drm_device *dev)
2641 {
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2644
2645         ring->name = "blitter ring";
2646         ring->id = BCS;
2647
2648         ring->mmio_base = BLT_RING_BASE;
2649         ring->write_tail = ring_write_tail;
2650         ring->flush = gen6_ring_flush;
2651         ring->add_request = gen6_add_request;
2652         ring->get_seqno = gen6_ring_get_seqno;
2653         ring->set_seqno = ring_set_seqno;
2654         if (INTEL_INFO(dev)->gen >= 8) {
2655                 ring->irq_enable_mask =
2656                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2657                 ring->irq_get = gen8_ring_get_irq;
2658                 ring->irq_put = gen8_ring_put_irq;
2659                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2660                 if (i915_semaphore_is_enabled(dev)) {
2661                         ring->semaphore.sync_to = gen8_ring_sync;
2662                         ring->semaphore.signal = gen8_xcs_signal;
2663                         GEN8_RING_SEMAPHORE_INIT;
2664                 }
2665         } else {
2666                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2667                 ring->irq_get = gen6_ring_get_irq;
2668                 ring->irq_put = gen6_ring_put_irq;
2669                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2670                 if (i915_semaphore_is_enabled(dev)) {
2671                         ring->semaphore.signal = gen6_signal;
2672                         ring->semaphore.sync_to = gen6_ring_sync;
2673                         /*
2674                          * The current semaphore is only applied on pre-gen8
2675                          * platform.  And there is no VCS2 ring on the pre-gen8
2676                          * platform. So the semaphore between BCS and VCS2 is
2677                          * initialized as INVALID.  Gen8 will initialize the
2678                          * sema between BCS and VCS2 later.
2679                          */
2680                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2681                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2682                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2683                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2684                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2685                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2686                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2687                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2688                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2689                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2690                 }
2691         }
2692         ring->init = init_ring_common;
2693
2694         return intel_init_ring_buffer(dev, ring);
2695 }
2696
2697 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2698 {
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2701
2702         ring->name = "video enhancement ring";
2703         ring->id = VECS;
2704
2705         ring->mmio_base = VEBOX_RING_BASE;
2706         ring->write_tail = ring_write_tail;
2707         ring->flush = gen6_ring_flush;
2708         ring->add_request = gen6_add_request;
2709         ring->get_seqno = gen6_ring_get_seqno;
2710         ring->set_seqno = ring_set_seqno;
2711
2712         if (INTEL_INFO(dev)->gen >= 8) {
2713                 ring->irq_enable_mask =
2714                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2715                 ring->irq_get = gen8_ring_get_irq;
2716                 ring->irq_put = gen8_ring_put_irq;
2717                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2718                 if (i915_semaphore_is_enabled(dev)) {
2719                         ring->semaphore.sync_to = gen8_ring_sync;
2720                         ring->semaphore.signal = gen8_xcs_signal;
2721                         GEN8_RING_SEMAPHORE_INIT;
2722                 }
2723         } else {
2724                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2725                 ring->irq_get = hsw_vebox_get_irq;
2726                 ring->irq_put = hsw_vebox_put_irq;
2727                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2728                 if (i915_semaphore_is_enabled(dev)) {
2729                         ring->semaphore.sync_to = gen6_ring_sync;
2730                         ring->semaphore.signal = gen6_signal;
2731                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2732                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2733                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2734                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2735                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2736                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2737                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2738                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2739                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2740                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2741                 }
2742         }
2743         ring->init = init_ring_common;
2744
2745         return intel_init_ring_buffer(dev, ring);
2746 }
2747
2748 int
2749 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2750 {
2751         int ret;
2752
2753         if (!ring->gpu_caches_dirty)
2754                 return 0;
2755
2756         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2757         if (ret)
2758                 return ret;
2759
2760         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2761
2762         ring->gpu_caches_dirty = false;
2763         return 0;
2764 }
2765
2766 int
2767 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2768 {
2769         uint32_t flush_domains;
2770         int ret;
2771
2772         flush_domains = 0;
2773         if (ring->gpu_caches_dirty)
2774                 flush_domains = I915_GEM_GPU_DOMAINS;
2775
2776         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2777         if (ret)
2778                 return ret;
2779
2780         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2781
2782         ring->gpu_caches_dirty = false;
2783         return 0;
2784 }
2785
2786 void
2787 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2788 {
2789         int ret;
2790
2791         if (!intel_ring_initialized(ring))
2792                 return;
2793
2794         ret = intel_ring_idle(ring);
2795         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2796                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2797                           ring->name, ret);
2798
2799         stop_ring(ring);
2800 }