]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge tag 'v3.10' into drm-intel-fixes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41         struct drm_i915_gem_object *obj;
42         volatile u32 *cpu_page;
43         u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49         if (space < 0)
50                 space += ring->size;
51         return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         struct pipe_control *pc = ring->private;
179         u32 scratch_addr = pc->gtt_offset + 128;
180         int ret;
181
182
183         ret = intel_ring_begin(ring, 6);
184         if (ret)
185                 return ret;
186
187         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
190         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191         intel_ring_emit(ring, 0); /* low dword */
192         intel_ring_emit(ring, 0); /* high dword */
193         intel_ring_emit(ring, MI_NOOP);
194         intel_ring_advance(ring);
195
196         ret = intel_ring_begin(ring, 6);
197         if (ret)
198                 return ret;
199
200         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, MI_NOOP);
206         intel_ring_advance(ring);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215         u32 flags = 0;
216         struct pipe_control *pc = ring->private;
217         u32 scratch_addr = pc->gtt_offset + 128;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(ring);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (flush_domains) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (invalidate_domains) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         ret = intel_ring_begin(ring, 4);
252         if (ret)
253                 return ret;
254
255         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256         intel_ring_emit(ring, flags);
257         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258         intel_ring_emit(ring, 0);
259         intel_ring_advance(ring);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267         int ret;
268
269         ret = intel_ring_begin(ring, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
276         intel_ring_emit(ring, 0);
277         intel_ring_emit(ring, 0);
278         intel_ring_advance(ring);
279
280         return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285         int ret;
286
287         if (!ring->fbc_dirty)
288                 return 0;
289
290         ret = intel_ring_begin(ring, 4);
291         if (ret)
292                 return ret;
293         intel_ring_emit(ring, MI_NOOP);
294         /* WaFbcNukeOn3DBlt:ivb/hsw */
295         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, value);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         struct pipe_control *pc = ring->private;
310         u32 scratch_addr = pc->gtt_offset + 128;
311         int ret;
312
313         /*
314          * Ensure that any following seqno writes only happen when the render
315          * cache is indeed flushed.
316          *
317          * Workaround: 4th PIPE_CONTROL command (except the ones with only
318          * read-cache invalidate bits set) must have the CS_STALL bit set. We
319          * don't try to be clever and just set it unconditionally.
320          */
321         flags |= PIPE_CONTROL_CS_STALL;
322
323         /* Just flush everything.  Experiments have shown that reducing the
324          * number of bits based on the write domains has little performance
325          * impact.
326          */
327         if (flush_domains) {
328                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330         }
331         if (invalidate_domains) {
332                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338                 /*
339                  * TLB invalidate requires a post-sync write.
340                  */
341                 flags |= PIPE_CONTROL_QW_WRITE;
342                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344                 /* Workaround: we must issue a pipe_control with CS-stall bit
345                  * set before a pipe_control command that has the state cache
346                  * invalidate bit set. */
347                 gen7_render_ring_cs_stall_wa(ring);
348         }
349
350         ret = intel_ring_begin(ring, 4);
351         if (ret)
352                 return ret;
353
354         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355         intel_ring_emit(ring, flags);
356         intel_ring_emit(ring, scratch_addr);
357         intel_ring_emit(ring, 0);
358         intel_ring_advance(ring);
359
360         if (flush_domains)
361                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363         return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367                             u32 value)
368 {
369         drm_i915_private_t *dev_priv = ring->dev->dev_private;
370         I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375         drm_i915_private_t *dev_priv = ring->dev->dev_private;
376         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377                         RING_ACTHD(ring->mmio_base) : ACTHD;
378
379         return I915_READ(acthd_reg);
380 }
381
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384         struct drm_i915_private *dev_priv = ring->dev->dev_private;
385         u32 addr;
386
387         addr = dev_priv->status_page_dmah->busaddr;
388         if (INTEL_INFO(ring->dev)->gen >= 4)
389                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390         I915_WRITE(HWS_PGA, addr);
391 }
392
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395         struct drm_device *dev = ring->dev;
396         drm_i915_private_t *dev_priv = dev->dev_private;
397         struct drm_i915_gem_object *obj = ring->obj;
398         int ret = 0;
399         u32 head;
400
401         if (HAS_FORCE_WAKE(dev))
402                 gen6_gt_force_wake_get(dev_priv);
403
404         if (I915_NEED_GFX_HWS(dev))
405                 intel_ring_setup_status_page(ring);
406         else
407                 ring_setup_phys_status_page(ring);
408
409         /* Stop the ring if it's running. */
410         I915_WRITE_CTL(ring, 0);
411         I915_WRITE_HEAD(ring, 0);
412         ring->write_tail(ring, 0);
413
414         head = I915_READ_HEAD(ring) & HEAD_ADDR;
415
416         /* G45 ring initialization fails to reset head to zero */
417         if (head != 0) {
418                 DRM_DEBUG_KMS("%s head not reset to zero "
419                               "ctl %08x head %08x tail %08x start %08x\n",
420                               ring->name,
421                               I915_READ_CTL(ring),
422                               I915_READ_HEAD(ring),
423                               I915_READ_TAIL(ring),
424                               I915_READ_START(ring));
425
426                 I915_WRITE_HEAD(ring, 0);
427
428                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429                         DRM_ERROR("failed to set %s head to zero "
430                                   "ctl %08x head %08x tail %08x start %08x\n",
431                                   ring->name,
432                                   I915_READ_CTL(ring),
433                                   I915_READ_HEAD(ring),
434                                   I915_READ_TAIL(ring),
435                                   I915_READ_START(ring));
436                 }
437         }
438
439         /* Initialize the ring. This must happen _after_ we've cleared the ring
440          * registers with the above sequence (the readback of the HEAD registers
441          * also enforces ordering), otherwise the hw might lose the new ring
442          * register values. */
443         I915_WRITE_START(ring, obj->gtt_offset);
444         I915_WRITE_CTL(ring,
445                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446                         | RING_VALID);
447
448         /* If the head is still not zero, the ring is dead */
449         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450                      I915_READ_START(ring) == obj->gtt_offset &&
451                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452                 DRM_ERROR("%s initialization failed "
453                                 "ctl %08x head %08x tail %08x start %08x\n",
454                                 ring->name,
455                                 I915_READ_CTL(ring),
456                                 I915_READ_HEAD(ring),
457                                 I915_READ_TAIL(ring),
458                                 I915_READ_START(ring));
459                 ret = -EIO;
460                 goto out;
461         }
462
463         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464                 i915_kernel_lost_context(ring->dev);
465         else {
466                 ring->head = I915_READ_HEAD(ring);
467                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468                 ring->space = ring_space(ring);
469                 ring->last_retired_head = -1;
470         }
471
472         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473
474 out:
475         if (HAS_FORCE_WAKE(dev))
476                 gen6_gt_force_wake_put(dev_priv);
477
478         return ret;
479 }
480
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484         struct pipe_control *pc;
485         struct drm_i915_gem_object *obj;
486         int ret;
487
488         if (ring->private)
489                 return 0;
490
491         pc = kmalloc(sizeof(*pc), GFP_KERNEL);
492         if (!pc)
493                 return -ENOMEM;
494
495         obj = i915_gem_alloc_object(ring->dev, 4096);
496         if (obj == NULL) {
497                 DRM_ERROR("Failed to allocate seqno page\n");
498                 ret = -ENOMEM;
499                 goto err;
500         }
501
502         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503
504         ret = i915_gem_object_pin(obj, 4096, true, false);
505         if (ret)
506                 goto err_unref;
507
508         pc->gtt_offset = obj->gtt_offset;
509         pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510         if (pc->cpu_page == NULL) {
511                 ret = -ENOMEM;
512                 goto err_unpin;
513         }
514
515         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516                          ring->name, pc->gtt_offset);
517
518         pc->obj = obj;
519         ring->private = pc;
520         return 0;
521
522 err_unpin:
523         i915_gem_object_unpin(obj);
524 err_unref:
525         drm_gem_object_unreference(&obj->base);
526 err:
527         kfree(pc);
528         return ret;
529 }
530
531 static void
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
533 {
534         struct pipe_control *pc = ring->private;
535         struct drm_i915_gem_object *obj;
536
537         obj = pc->obj;
538
539         kunmap(sg_page(obj->pages->sgl));
540         i915_gem_object_unpin(obj);
541         drm_gem_object_unreference(&obj->base);
542
543         kfree(pc);
544 }
545
546 static int init_render_ring(struct intel_ring_buffer *ring)
547 {
548         struct drm_device *dev = ring->dev;
549         struct drm_i915_private *dev_priv = dev->dev_private;
550         int ret = init_ring_common(ring);
551
552         if (INTEL_INFO(dev)->gen > 3)
553                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
554
555         /* We need to disable the AsyncFlip performance optimisations in order
556          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557          * programmed to '1' on all products.
558          *
559          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
560          */
561         if (INTEL_INFO(dev)->gen >= 6)
562                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
563
564         /* Required for the hardware to program scanline values for waiting */
565         if (INTEL_INFO(dev)->gen == 6)
566                 I915_WRITE(GFX_MODE,
567                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
568
569         if (IS_GEN7(dev))
570                 I915_WRITE(GFX_MODE_GEN7,
571                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
573
574         if (INTEL_INFO(dev)->gen >= 5) {
575                 ret = init_pipe_control(ring);
576                 if (ret)
577                         return ret;
578         }
579
580         if (IS_GEN6(dev)) {
581                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582                  * "If this bit is set, STCunit will have LRA as replacement
583                  *  policy. [...] This bit must be reset.  LRA replacement
584                  *  policy is not supported."
585                  */
586                 I915_WRITE(CACHE_MODE_0,
587                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
588
589                 /* This is not explicitly set for GEN6, so read the register.
590                  * see intel_ring_mi_set_context() for why we care.
591                  * TODO: consider explicitly setting the bit for GEN5
592                  */
593                 ring->itlb_before_ctx_switch =
594                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
595         }
596
597         if (INTEL_INFO(dev)->gen >= 6)
598                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
599
600         if (HAS_L3_GPU_CACHE(dev))
601                 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
602
603         return ret;
604 }
605
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
607 {
608         struct drm_device *dev = ring->dev;
609
610         if (!ring->private)
611                 return;
612
613         if (HAS_BROKEN_CS_TLB(dev))
614                 drm_gem_object_unreference(to_gem_object(ring->private));
615
616         if (INTEL_INFO(dev)->gen >= 5)
617                 cleanup_pipe_control(ring);
618
619         ring->private = NULL;
620 }
621
622 static void
623 update_mboxes(struct intel_ring_buffer *ring,
624               u32 mmio_offset)
625 {
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627  * of rings, it's easiest if we round up each individual update to a
628  * multiple of 2 (since ring updates must always be a multiple of 2)
629  * even though the actual update only requires 3 dwords.
630  */
631 #define MBOX_UPDATE_DWORDS 4
632         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633         intel_ring_emit(ring, mmio_offset);
634         intel_ring_emit(ring, ring->outstanding_lazy_request);
635         intel_ring_emit(ring, MI_NOOP);
636 }
637
638 /**
639  * gen6_add_request - Update the semaphore mailbox registers
640  * 
641  * @ring - ring that is adding a request
642  * @seqno - return seqno stuck into the ring
643  *
644  * Update the mailbox registers in the *other* rings with the current seqno.
645  * This acts like a signal in the canonical semaphore.
646  */
647 static int
648 gen6_add_request(struct intel_ring_buffer *ring)
649 {
650         struct drm_device *dev = ring->dev;
651         struct drm_i915_private *dev_priv = dev->dev_private;
652         struct intel_ring_buffer *useless;
653         int i, ret;
654
655         ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656                                       MBOX_UPDATE_DWORDS) +
657                                       4);
658         if (ret)
659                 return ret;
660 #undef MBOX_UPDATE_DWORDS
661
662         for_each_ring(useless, dev_priv, i) {
663                 u32 mbox_reg = ring->signal_mbox[i];
664                 if (mbox_reg != GEN6_NOSYNC)
665                         update_mboxes(ring, mbox_reg);
666         }
667
668         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670         intel_ring_emit(ring, ring->outstanding_lazy_request);
671         intel_ring_emit(ring, MI_USER_INTERRUPT);
672         intel_ring_advance(ring);
673
674         return 0;
675 }
676
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
678                                               u32 seqno)
679 {
680         struct drm_i915_private *dev_priv = dev->dev_private;
681         return dev_priv->last_seqno < seqno;
682 }
683
684 /**
685  * intel_ring_sync - sync the waiter to the signaller on seqno
686  *
687  * @waiter - ring that is waiting
688  * @signaller - ring which has, or will signal
689  * @seqno - seqno which the waiter will block on
690  */
691 static int
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693                struct intel_ring_buffer *signaller,
694                u32 seqno)
695 {
696         int ret;
697         u32 dw1 = MI_SEMAPHORE_MBOX |
698                   MI_SEMAPHORE_COMPARE |
699                   MI_SEMAPHORE_REGISTER;
700
701         /* Throughout all of the GEM code, seqno passed implies our current
702          * seqno is >= the last seqno executed. However for hardware the
703          * comparison is strictly greater than.
704          */
705         seqno -= 1;
706
707         WARN_ON(signaller->semaphore_register[waiter->id] ==
708                 MI_SEMAPHORE_SYNC_INVALID);
709
710         ret = intel_ring_begin(waiter, 4);
711         if (ret)
712                 return ret;
713
714         /* If seqno wrap happened, omit the wait with no-ops */
715         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716                 intel_ring_emit(waiter,
717                                 dw1 |
718                                 signaller->semaphore_register[waiter->id]);
719                 intel_ring_emit(waiter, seqno);
720                 intel_ring_emit(waiter, 0);
721                 intel_ring_emit(waiter, MI_NOOP);
722         } else {
723                 intel_ring_emit(waiter, MI_NOOP);
724                 intel_ring_emit(waiter, MI_NOOP);
725                 intel_ring_emit(waiter, MI_NOOP);
726                 intel_ring_emit(waiter, MI_NOOP);
727         }
728         intel_ring_advance(waiter);
729
730         return 0;
731 }
732
733 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
734 do {                                                                    \
735         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
736                  PIPE_CONTROL_DEPTH_STALL);                             \
737         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
738         intel_ring_emit(ring__, 0);                                                     \
739         intel_ring_emit(ring__, 0);                                                     \
740 } while (0)
741
742 static int
743 pc_render_add_request(struct intel_ring_buffer *ring)
744 {
745         struct pipe_control *pc = ring->private;
746         u32 scratch_addr = pc->gtt_offset + 128;
747         int ret;
748
749         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750          * incoherent with writes to memory, i.e. completely fubar,
751          * so we need to use PIPE_NOTIFY instead.
752          *
753          * However, we also need to workaround the qword write
754          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755          * memory before requesting an interrupt.
756          */
757         ret = intel_ring_begin(ring, 32);
758         if (ret)
759                 return ret;
760
761         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762                         PIPE_CONTROL_WRITE_FLUSH |
763                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765         intel_ring_emit(ring, ring->outstanding_lazy_request);
766         intel_ring_emit(ring, 0);
767         PIPE_CONTROL_FLUSH(ring, scratch_addr);
768         scratch_addr += 128; /* write to separate cachelines */
769         PIPE_CONTROL_FLUSH(ring, scratch_addr);
770         scratch_addr += 128;
771         PIPE_CONTROL_FLUSH(ring, scratch_addr);
772         scratch_addr += 128;
773         PIPE_CONTROL_FLUSH(ring, scratch_addr);
774         scratch_addr += 128;
775         PIPE_CONTROL_FLUSH(ring, scratch_addr);
776         scratch_addr += 128;
777         PIPE_CONTROL_FLUSH(ring, scratch_addr);
778
779         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780                         PIPE_CONTROL_WRITE_FLUSH |
781                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782                         PIPE_CONTROL_NOTIFY);
783         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784         intel_ring_emit(ring, ring->outstanding_lazy_request);
785         intel_ring_emit(ring, 0);
786         intel_ring_advance(ring);
787
788         return 0;
789 }
790
791 static u32
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
793 {
794         /* Workaround to force correct ordering between irq and seqno writes on
795          * ivb (and maybe also on snb) by reading from a CS register (like
796          * ACTHD) before reading the status page. */
797         if (!lazy_coherency)
798                 intel_ring_get_active_head(ring);
799         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
800 }
801
802 static u32
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
804 {
805         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
806 }
807
808 static void
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
810 {
811         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
812 }
813
814 static u32
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817         struct pipe_control *pc = ring->private;
818         return pc->cpu_page[0];
819 }
820
821 static void
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
823 {
824         struct pipe_control *pc = ring->private;
825         pc->cpu_page[0] = seqno;
826 }
827
828 static bool
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
830 {
831         struct drm_device *dev = ring->dev;
832         drm_i915_private_t *dev_priv = dev->dev_private;
833         unsigned long flags;
834
835         if (!dev->irq_enabled)
836                 return false;
837
838         spin_lock_irqsave(&dev_priv->irq_lock, flags);
839         if (ring->irq_refcount.gt++ == 0) {
840                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
841                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
842                 POSTING_READ(GTIMR);
843         }
844         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
845
846         return true;
847 }
848
849 static void
850 gen5_ring_put_irq(struct intel_ring_buffer *ring)
851 {
852         struct drm_device *dev = ring->dev;
853         drm_i915_private_t *dev_priv = dev->dev_private;
854         unsigned long flags;
855
856         spin_lock_irqsave(&dev_priv->irq_lock, flags);
857         if (--ring->irq_refcount.gt == 0) {
858                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
859                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
860                 POSTING_READ(GTIMR);
861         }
862         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
863 }
864
865 static bool
866 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
867 {
868         struct drm_device *dev = ring->dev;
869         drm_i915_private_t *dev_priv = dev->dev_private;
870         unsigned long flags;
871
872         if (!dev->irq_enabled)
873                 return false;
874
875         spin_lock_irqsave(&dev_priv->irq_lock, flags);
876         if (ring->irq_refcount.gt++ == 0) {
877                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
878                 I915_WRITE(IMR, dev_priv->irq_mask);
879                 POSTING_READ(IMR);
880         }
881         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
882
883         return true;
884 }
885
886 static void
887 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889         struct drm_device *dev = ring->dev;
890         drm_i915_private_t *dev_priv = dev->dev_private;
891         unsigned long flags;
892
893         spin_lock_irqsave(&dev_priv->irq_lock, flags);
894         if (--ring->irq_refcount.gt == 0) {
895                 dev_priv->irq_mask |= ring->irq_enable_mask;
896                 I915_WRITE(IMR, dev_priv->irq_mask);
897                 POSTING_READ(IMR);
898         }
899         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
900 }
901
902 static bool
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
904 {
905         struct drm_device *dev = ring->dev;
906         drm_i915_private_t *dev_priv = dev->dev_private;
907         unsigned long flags;
908
909         if (!dev->irq_enabled)
910                 return false;
911
912         spin_lock_irqsave(&dev_priv->irq_lock, flags);
913         if (ring->irq_refcount.gt++ == 0) {
914                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
915                 I915_WRITE16(IMR, dev_priv->irq_mask);
916                 POSTING_READ16(IMR);
917         }
918         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
919
920         return true;
921 }
922
923 static void
924 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
925 {
926         struct drm_device *dev = ring->dev;
927         drm_i915_private_t *dev_priv = dev->dev_private;
928         unsigned long flags;
929
930         spin_lock_irqsave(&dev_priv->irq_lock, flags);
931         if (--ring->irq_refcount.gt == 0) {
932                 dev_priv->irq_mask |= ring->irq_enable_mask;
933                 I915_WRITE16(IMR, dev_priv->irq_mask);
934                 POSTING_READ16(IMR);
935         }
936         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
937 }
938
939 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
940 {
941         struct drm_device *dev = ring->dev;
942         drm_i915_private_t *dev_priv = ring->dev->dev_private;
943         u32 mmio = 0;
944
945         /* The ring status page addresses are no longer next to the rest of
946          * the ring registers as of gen7.
947          */
948         if (IS_GEN7(dev)) {
949                 switch (ring->id) {
950                 case RCS:
951                         mmio = RENDER_HWS_PGA_GEN7;
952                         break;
953                 case BCS:
954                         mmio = BLT_HWS_PGA_GEN7;
955                         break;
956                 case VCS:
957                         mmio = BSD_HWS_PGA_GEN7;
958                         break;
959                 case VECS:
960                         mmio = VEBOX_HWS_PGA_GEN7;
961                         break;
962                 }
963         } else if (IS_GEN6(ring->dev)) {
964                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
965         } else {
966                 mmio = RING_HWS_PGA(ring->mmio_base);
967         }
968
969         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
970         POSTING_READ(mmio);
971 }
972
973 static int
974 bsd_ring_flush(struct intel_ring_buffer *ring,
975                u32     invalidate_domains,
976                u32     flush_domains)
977 {
978         int ret;
979
980         ret = intel_ring_begin(ring, 2);
981         if (ret)
982                 return ret;
983
984         intel_ring_emit(ring, MI_FLUSH);
985         intel_ring_emit(ring, MI_NOOP);
986         intel_ring_advance(ring);
987         return 0;
988 }
989
990 static int
991 i9xx_add_request(struct intel_ring_buffer *ring)
992 {
993         int ret;
994
995         ret = intel_ring_begin(ring, 4);
996         if (ret)
997                 return ret;
998
999         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1000         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1001         intel_ring_emit(ring, ring->outstanding_lazy_request);
1002         intel_ring_emit(ring, MI_USER_INTERRUPT);
1003         intel_ring_advance(ring);
1004
1005         return 0;
1006 }
1007
1008 static bool
1009 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1010 {
1011         struct drm_device *dev = ring->dev;
1012         drm_i915_private_t *dev_priv = dev->dev_private;
1013         unsigned long flags;
1014
1015         if (!dev->irq_enabled)
1016                return false;
1017
1018         /* It looks like we need to prevent the gt from suspending while waiting
1019          * for an notifiy irq, otherwise irqs seem to get lost on at least the
1020          * blt/bsd rings on ivb. */
1021         gen6_gt_force_wake_get(dev_priv);
1022
1023         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1024         if (ring->irq_refcount.gt++ == 0) {
1025                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1026                         I915_WRITE_IMR(ring,
1027                                        ~(ring->irq_enable_mask |
1028                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1029                 else
1030                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1031                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1032                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1033                 POSTING_READ(GTIMR);
1034         }
1035         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1036
1037         return true;
1038 }
1039
1040 static void
1041 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1042 {
1043         struct drm_device *dev = ring->dev;
1044         drm_i915_private_t *dev_priv = dev->dev_private;
1045         unsigned long flags;
1046
1047         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1048         if (--ring->irq_refcount.gt == 0) {
1049                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1050                         I915_WRITE_IMR(ring,
1051                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1052                 else
1053                         I915_WRITE_IMR(ring, ~0);
1054                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1055                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1056                 POSTING_READ(GTIMR);
1057         }
1058         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1059
1060         gen6_gt_force_wake_put(dev_priv);
1061 }
1062
1063 static bool
1064 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1065 {
1066         struct drm_device *dev = ring->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         unsigned long flags;
1069
1070         if (!dev->irq_enabled)
1071                 return false;
1072
1073         spin_lock_irqsave(&dev_priv->rps.lock, flags);
1074         if (ring->irq_refcount.pm++ == 0) {
1075                 u32 pm_imr = I915_READ(GEN6_PMIMR);
1076                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1077                 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1078                 POSTING_READ(GEN6_PMIMR);
1079         }
1080         spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1081
1082         return true;
1083 }
1084
1085 static void
1086 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1087 {
1088         struct drm_device *dev = ring->dev;
1089         struct drm_i915_private *dev_priv = dev->dev_private;
1090         unsigned long flags;
1091
1092         if (!dev->irq_enabled)
1093                 return;
1094
1095         spin_lock_irqsave(&dev_priv->rps.lock, flags);
1096         if (--ring->irq_refcount.pm == 0) {
1097                 u32 pm_imr = I915_READ(GEN6_PMIMR);
1098                 I915_WRITE_IMR(ring, ~0);
1099                 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1100                 POSTING_READ(GEN6_PMIMR);
1101         }
1102         spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1103 }
1104
1105 static int
1106 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1107                          u32 offset, u32 length,
1108                          unsigned flags)
1109 {
1110         int ret;
1111
1112         ret = intel_ring_begin(ring, 2);
1113         if (ret)
1114                 return ret;
1115
1116         intel_ring_emit(ring,
1117                         MI_BATCH_BUFFER_START |
1118                         MI_BATCH_GTT |
1119                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1120         intel_ring_emit(ring, offset);
1121         intel_ring_advance(ring);
1122
1123         return 0;
1124 }
1125
1126 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1127 #define I830_BATCH_LIMIT (256*1024)
1128 static int
1129 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1130                                 u32 offset, u32 len,
1131                                 unsigned flags)
1132 {
1133         int ret;
1134
1135         if (flags & I915_DISPATCH_PINNED) {
1136                 ret = intel_ring_begin(ring, 4);
1137                 if (ret)
1138                         return ret;
1139
1140                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1141                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1142                 intel_ring_emit(ring, offset + len - 8);
1143                 intel_ring_emit(ring, MI_NOOP);
1144                 intel_ring_advance(ring);
1145         } else {
1146                 struct drm_i915_gem_object *obj = ring->private;
1147                 u32 cs_offset = obj->gtt_offset;
1148
1149                 if (len > I830_BATCH_LIMIT)
1150                         return -ENOSPC;
1151
1152                 ret = intel_ring_begin(ring, 9+3);
1153                 if (ret)
1154                         return ret;
1155                 /* Blit the batch (which has now all relocs applied) to the stable batch
1156                  * scratch bo area (so that the CS never stumbles over its tlb
1157                  * invalidation bug) ... */
1158                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1159                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1160                                 XY_SRC_COPY_BLT_WRITE_RGB);
1161                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1162                 intel_ring_emit(ring, 0);
1163                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1164                 intel_ring_emit(ring, cs_offset);
1165                 intel_ring_emit(ring, 0);
1166                 intel_ring_emit(ring, 4096);
1167                 intel_ring_emit(ring, offset);
1168                 intel_ring_emit(ring, MI_FLUSH);
1169
1170                 /* ... and execute it. */
1171                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1172                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1173                 intel_ring_emit(ring, cs_offset + len - 8);
1174                 intel_ring_advance(ring);
1175         }
1176
1177         return 0;
1178 }
1179
1180 static int
1181 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182                          u32 offset, u32 len,
1183                          unsigned flags)
1184 {
1185         int ret;
1186
1187         ret = intel_ring_begin(ring, 2);
1188         if (ret)
1189                 return ret;
1190
1191         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1192         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1193         intel_ring_advance(ring);
1194
1195         return 0;
1196 }
1197
1198 static void cleanup_status_page(struct intel_ring_buffer *ring)
1199 {
1200         struct drm_i915_gem_object *obj;
1201
1202         obj = ring->status_page.obj;
1203         if (obj == NULL)
1204                 return;
1205
1206         kunmap(sg_page(obj->pages->sgl));
1207         i915_gem_object_unpin(obj);
1208         drm_gem_object_unreference(&obj->base);
1209         ring->status_page.obj = NULL;
1210 }
1211
1212 static int init_status_page(struct intel_ring_buffer *ring)
1213 {
1214         struct drm_device *dev = ring->dev;
1215         struct drm_i915_gem_object *obj;
1216         int ret;
1217
1218         obj = i915_gem_alloc_object(dev, 4096);
1219         if (obj == NULL) {
1220                 DRM_ERROR("Failed to allocate status page\n");
1221                 ret = -ENOMEM;
1222                 goto err;
1223         }
1224
1225         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1226
1227         ret = i915_gem_object_pin(obj, 4096, true, false);
1228         if (ret != 0) {
1229                 goto err_unref;
1230         }
1231
1232         ring->status_page.gfx_addr = obj->gtt_offset;
1233         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1234         if (ring->status_page.page_addr == NULL) {
1235                 ret = -ENOMEM;
1236                 goto err_unpin;
1237         }
1238         ring->status_page.obj = obj;
1239         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1240
1241         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1242                         ring->name, ring->status_page.gfx_addr);
1243
1244         return 0;
1245
1246 err_unpin:
1247         i915_gem_object_unpin(obj);
1248 err_unref:
1249         drm_gem_object_unreference(&obj->base);
1250 err:
1251         return ret;
1252 }
1253
1254 static int init_phys_status_page(struct intel_ring_buffer *ring)
1255 {
1256         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1257
1258         if (!dev_priv->status_page_dmah) {
1259                 dev_priv->status_page_dmah =
1260                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1261                 if (!dev_priv->status_page_dmah)
1262                         return -ENOMEM;
1263         }
1264
1265         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1266         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1267
1268         return 0;
1269 }
1270
1271 static int intel_init_ring_buffer(struct drm_device *dev,
1272                                   struct intel_ring_buffer *ring)
1273 {
1274         struct drm_i915_gem_object *obj;
1275         struct drm_i915_private *dev_priv = dev->dev_private;
1276         int ret;
1277
1278         ring->dev = dev;
1279         INIT_LIST_HEAD(&ring->active_list);
1280         INIT_LIST_HEAD(&ring->request_list);
1281         ring->size = 32 * PAGE_SIZE;
1282         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1283
1284         init_waitqueue_head(&ring->irq_queue);
1285
1286         if (I915_NEED_GFX_HWS(dev)) {
1287                 ret = init_status_page(ring);
1288                 if (ret)
1289                         return ret;
1290         } else {
1291                 BUG_ON(ring->id != RCS);
1292                 ret = init_phys_status_page(ring);
1293                 if (ret)
1294                         return ret;
1295         }
1296
1297         obj = NULL;
1298         if (!HAS_LLC(dev))
1299                 obj = i915_gem_object_create_stolen(dev, ring->size);
1300         if (obj == NULL)
1301                 obj = i915_gem_alloc_object(dev, ring->size);
1302         if (obj == NULL) {
1303                 DRM_ERROR("Failed to allocate ringbuffer\n");
1304                 ret = -ENOMEM;
1305                 goto err_hws;
1306         }
1307
1308         ring->obj = obj;
1309
1310         ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1311         if (ret)
1312                 goto err_unref;
1313
1314         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1315         if (ret)
1316                 goto err_unpin;
1317
1318         ring->virtual_start =
1319                 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1320                            ring->size);
1321         if (ring->virtual_start == NULL) {
1322                 DRM_ERROR("Failed to map ringbuffer.\n");
1323                 ret = -EINVAL;
1324                 goto err_unpin;
1325         }
1326
1327         ret = ring->init(ring);
1328         if (ret)
1329                 goto err_unmap;
1330
1331         /* Workaround an erratum on the i830 which causes a hang if
1332          * the TAIL pointer points to within the last 2 cachelines
1333          * of the buffer.
1334          */
1335         ring->effective_size = ring->size;
1336         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1337                 ring->effective_size -= 128;
1338
1339         return 0;
1340
1341 err_unmap:
1342         iounmap(ring->virtual_start);
1343 err_unpin:
1344         i915_gem_object_unpin(obj);
1345 err_unref:
1346         drm_gem_object_unreference(&obj->base);
1347         ring->obj = NULL;
1348 err_hws:
1349         cleanup_status_page(ring);
1350         return ret;
1351 }
1352
1353 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1354 {
1355         struct drm_i915_private *dev_priv;
1356         int ret;
1357
1358         if (ring->obj == NULL)
1359                 return;
1360
1361         /* Disable the ring buffer. The ring must be idle at this point */
1362         dev_priv = ring->dev->dev_private;
1363         ret = intel_ring_idle(ring);
1364         if (ret)
1365                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1366                           ring->name, ret);
1367
1368         I915_WRITE_CTL(ring, 0);
1369
1370         iounmap(ring->virtual_start);
1371
1372         i915_gem_object_unpin(ring->obj);
1373         drm_gem_object_unreference(&ring->obj->base);
1374         ring->obj = NULL;
1375
1376         if (ring->cleanup)
1377                 ring->cleanup(ring);
1378
1379         cleanup_status_page(ring);
1380 }
1381
1382 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1383 {
1384         int ret;
1385
1386         ret = i915_wait_seqno(ring, seqno);
1387         if (!ret)
1388                 i915_gem_retire_requests_ring(ring);
1389
1390         return ret;
1391 }
1392
1393 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1394 {
1395         struct drm_i915_gem_request *request;
1396         u32 seqno = 0;
1397         int ret;
1398
1399         i915_gem_retire_requests_ring(ring);
1400
1401         if (ring->last_retired_head != -1) {
1402                 ring->head = ring->last_retired_head;
1403                 ring->last_retired_head = -1;
1404                 ring->space = ring_space(ring);
1405                 if (ring->space >= n)
1406                         return 0;
1407         }
1408
1409         list_for_each_entry(request, &ring->request_list, list) {
1410                 int space;
1411
1412                 if (request->tail == -1)
1413                         continue;
1414
1415                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1416                 if (space < 0)
1417                         space += ring->size;
1418                 if (space >= n) {
1419                         seqno = request->seqno;
1420                         break;
1421                 }
1422
1423                 /* Consume this request in case we need more space than
1424                  * is available and so need to prevent a race between
1425                  * updating last_retired_head and direct reads of
1426                  * I915_RING_HEAD. It also provides a nice sanity check.
1427                  */
1428                 request->tail = -1;
1429         }
1430
1431         if (seqno == 0)
1432                 return -ENOSPC;
1433
1434         ret = intel_ring_wait_seqno(ring, seqno);
1435         if (ret)
1436                 return ret;
1437
1438         if (WARN_ON(ring->last_retired_head == -1))
1439                 return -ENOSPC;
1440
1441         ring->head = ring->last_retired_head;
1442         ring->last_retired_head = -1;
1443         ring->space = ring_space(ring);
1444         if (WARN_ON(ring->space < n))
1445                 return -ENOSPC;
1446
1447         return 0;
1448 }
1449
1450 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1451 {
1452         struct drm_device *dev = ring->dev;
1453         struct drm_i915_private *dev_priv = dev->dev_private;
1454         unsigned long end;
1455         int ret;
1456
1457         ret = intel_ring_wait_request(ring, n);
1458         if (ret != -ENOSPC)
1459                 return ret;
1460
1461         trace_i915_ring_wait_begin(ring);
1462         /* With GEM the hangcheck timer should kick us out of the loop,
1463          * leaving it early runs the risk of corrupting GEM state (due
1464          * to running on almost untested codepaths). But on resume
1465          * timers don't work yet, so prevent a complete hang in that
1466          * case by choosing an insanely large timeout. */
1467         end = jiffies + 60 * HZ;
1468
1469         do {
1470                 ring->head = I915_READ_HEAD(ring);
1471                 ring->space = ring_space(ring);
1472                 if (ring->space >= n) {
1473                         trace_i915_ring_wait_end(ring);
1474                         return 0;
1475                 }
1476
1477                 if (dev->primary->master) {
1478                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1479                         if (master_priv->sarea_priv)
1480                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1481                 }
1482
1483                 msleep(1);
1484
1485                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1486                                            dev_priv->mm.interruptible);
1487                 if (ret)
1488                         return ret;
1489         } while (!time_after(jiffies, end));
1490         trace_i915_ring_wait_end(ring);
1491         return -EBUSY;
1492 }
1493
1494 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1495 {
1496         uint32_t __iomem *virt;
1497         int rem = ring->size - ring->tail;
1498
1499         if (ring->space < rem) {
1500                 int ret = ring_wait_for_space(ring, rem);
1501                 if (ret)
1502                         return ret;
1503         }
1504
1505         virt = ring->virtual_start + ring->tail;
1506         rem /= 4;
1507         while (rem--)
1508                 iowrite32(MI_NOOP, virt++);
1509
1510         ring->tail = 0;
1511         ring->space = ring_space(ring);
1512
1513         return 0;
1514 }
1515
1516 int intel_ring_idle(struct intel_ring_buffer *ring)
1517 {
1518         u32 seqno;
1519         int ret;
1520
1521         /* We need to add any requests required to flush the objects and ring */
1522         if (ring->outstanding_lazy_request) {
1523                 ret = i915_add_request(ring, NULL);
1524                 if (ret)
1525                         return ret;
1526         }
1527
1528         /* Wait upon the last request to be completed */
1529         if (list_empty(&ring->request_list))
1530                 return 0;
1531
1532         seqno = list_entry(ring->request_list.prev,
1533                            struct drm_i915_gem_request,
1534                            list)->seqno;
1535
1536         return i915_wait_seqno(ring, seqno);
1537 }
1538
1539 static int
1540 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1541 {
1542         if (ring->outstanding_lazy_request)
1543                 return 0;
1544
1545         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1546 }
1547
1548 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1549                               int bytes)
1550 {
1551         int ret;
1552
1553         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1554                 ret = intel_wrap_ring_buffer(ring);
1555                 if (unlikely(ret))
1556                         return ret;
1557         }
1558
1559         if (unlikely(ring->space < bytes)) {
1560                 ret = ring_wait_for_space(ring, bytes);
1561                 if (unlikely(ret))
1562                         return ret;
1563         }
1564
1565         ring->space -= bytes;
1566         return 0;
1567 }
1568
1569 int intel_ring_begin(struct intel_ring_buffer *ring,
1570                      int num_dwords)
1571 {
1572         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1573         int ret;
1574
1575         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1576                                    dev_priv->mm.interruptible);
1577         if (ret)
1578                 return ret;
1579
1580         /* Preallocate the olr before touching the ring */
1581         ret = intel_ring_alloc_seqno(ring);
1582         if (ret)
1583                 return ret;
1584
1585         return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1586 }
1587
1588 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1589 {
1590         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1591
1592         BUG_ON(ring->outstanding_lazy_request);
1593
1594         if (INTEL_INFO(ring->dev)->gen >= 6) {
1595                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1596                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1597         }
1598
1599         ring->set_seqno(ring, seqno);
1600         ring->hangcheck.seqno = seqno;
1601 }
1602
1603 void intel_ring_advance(struct intel_ring_buffer *ring)
1604 {
1605         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1606
1607         ring->tail &= ring->size - 1;
1608         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1609                 return;
1610         ring->write_tail(ring, ring->tail);
1611 }
1612
1613
1614 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1615                                      u32 value)
1616 {
1617         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1618
1619        /* Every tail move must follow the sequence below */
1620
1621         /* Disable notification that the ring is IDLE. The GT
1622          * will then assume that it is busy and bring it out of rc6.
1623          */
1624         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1625                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1626
1627         /* Clear the context id. Here be magic! */
1628         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1629
1630         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1631         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1632                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1633                      50))
1634                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1635
1636         /* Now that the ring is fully powered up, update the tail */
1637         I915_WRITE_TAIL(ring, value);
1638         POSTING_READ(RING_TAIL(ring->mmio_base));
1639
1640         /* Let the ring send IDLE messages to the GT again,
1641          * and so let it sleep to conserve power when idle.
1642          */
1643         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1644                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1645 }
1646
1647 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1648                                u32 invalidate, u32 flush)
1649 {
1650         uint32_t cmd;
1651         int ret;
1652
1653         ret = intel_ring_begin(ring, 4);
1654         if (ret)
1655                 return ret;
1656
1657         cmd = MI_FLUSH_DW;
1658         /*
1659          * Bspec vol 1c.5 - video engine command streamer:
1660          * "If ENABLED, all TLBs will be invalidated once the flush
1661          * operation is complete. This bit is only valid when the
1662          * Post-Sync Operation field is a value of 1h or 3h."
1663          */
1664         if (invalidate & I915_GEM_GPU_DOMAINS)
1665                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1666                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667         intel_ring_emit(ring, cmd);
1668         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1669         intel_ring_emit(ring, 0);
1670         intel_ring_emit(ring, MI_NOOP);
1671         intel_ring_advance(ring);
1672         return 0;
1673 }
1674
1675 static int
1676 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1677                               u32 offset, u32 len,
1678                               unsigned flags)
1679 {
1680         int ret;
1681
1682         ret = intel_ring_begin(ring, 2);
1683         if (ret)
1684                 return ret;
1685
1686         intel_ring_emit(ring,
1687                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1688                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1689         /* bit0-7 is the length on GEN6+ */
1690         intel_ring_emit(ring, offset);
1691         intel_ring_advance(ring);
1692
1693         return 0;
1694 }
1695
1696 static int
1697 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1698                               u32 offset, u32 len,
1699                               unsigned flags)
1700 {
1701         int ret;
1702
1703         ret = intel_ring_begin(ring, 2);
1704         if (ret)
1705                 return ret;
1706
1707         intel_ring_emit(ring,
1708                         MI_BATCH_BUFFER_START |
1709                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1710         /* bit0-7 is the length on GEN6+ */
1711         intel_ring_emit(ring, offset);
1712         intel_ring_advance(ring);
1713
1714         return 0;
1715 }
1716
1717 /* Blitter support (SandyBridge+) */
1718
1719 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1720                            u32 invalidate, u32 flush)
1721 {
1722         struct drm_device *dev = ring->dev;
1723         uint32_t cmd;
1724         int ret;
1725
1726         ret = intel_ring_begin(ring, 4);
1727         if (ret)
1728                 return ret;
1729
1730         cmd = MI_FLUSH_DW;
1731         /*
1732          * Bspec vol 1c.3 - blitter engine command streamer:
1733          * "If ENABLED, all TLBs will be invalidated once the flush
1734          * operation is complete. This bit is only valid when the
1735          * Post-Sync Operation field is a value of 1h or 3h."
1736          */
1737         if (invalidate & I915_GEM_DOMAIN_RENDER)
1738                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1739                         MI_FLUSH_DW_OP_STOREDW;
1740         intel_ring_emit(ring, cmd);
1741         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1742         intel_ring_emit(ring, 0);
1743         intel_ring_emit(ring, MI_NOOP);
1744         intel_ring_advance(ring);
1745
1746         if (IS_GEN7(dev) && flush)
1747                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1748
1749         return 0;
1750 }
1751
1752 int intel_init_render_ring_buffer(struct drm_device *dev)
1753 {
1754         drm_i915_private_t *dev_priv = dev->dev_private;
1755         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1756
1757         ring->name = "render ring";
1758         ring->id = RCS;
1759         ring->mmio_base = RENDER_RING_BASE;
1760
1761         if (INTEL_INFO(dev)->gen >= 6) {
1762                 ring->add_request = gen6_add_request;
1763                 ring->flush = gen7_render_ring_flush;
1764                 if (INTEL_INFO(dev)->gen == 6)
1765                         ring->flush = gen6_render_ring_flush;
1766                 ring->irq_get = gen6_ring_get_irq;
1767                 ring->irq_put = gen6_ring_put_irq;
1768                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1769                 ring->get_seqno = gen6_ring_get_seqno;
1770                 ring->set_seqno = ring_set_seqno;
1771                 ring->sync_to = gen6_ring_sync;
1772                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1773                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1774                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1775                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1776                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1777                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1778                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1779                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1780         } else if (IS_GEN5(dev)) {
1781                 ring->add_request = pc_render_add_request;
1782                 ring->flush = gen4_render_ring_flush;
1783                 ring->get_seqno = pc_render_get_seqno;
1784                 ring->set_seqno = pc_render_set_seqno;
1785                 ring->irq_get = gen5_ring_get_irq;
1786                 ring->irq_put = gen5_ring_put_irq;
1787                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1788                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1789         } else {
1790                 ring->add_request = i9xx_add_request;
1791                 if (INTEL_INFO(dev)->gen < 4)
1792                         ring->flush = gen2_render_ring_flush;
1793                 else
1794                         ring->flush = gen4_render_ring_flush;
1795                 ring->get_seqno = ring_get_seqno;
1796                 ring->set_seqno = ring_set_seqno;
1797                 if (IS_GEN2(dev)) {
1798                         ring->irq_get = i8xx_ring_get_irq;
1799                         ring->irq_put = i8xx_ring_put_irq;
1800                 } else {
1801                         ring->irq_get = i9xx_ring_get_irq;
1802                         ring->irq_put = i9xx_ring_put_irq;
1803                 }
1804                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1805         }
1806         ring->write_tail = ring_write_tail;
1807         if (IS_HASWELL(dev))
1808                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1809         else if (INTEL_INFO(dev)->gen >= 6)
1810                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1811         else if (INTEL_INFO(dev)->gen >= 4)
1812                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1813         else if (IS_I830(dev) || IS_845G(dev))
1814                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1815         else
1816                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1817         ring->init = init_render_ring;
1818         ring->cleanup = render_ring_cleanup;
1819
1820         /* Workaround batchbuffer to combat CS tlb bug. */
1821         if (HAS_BROKEN_CS_TLB(dev)) {
1822                 struct drm_i915_gem_object *obj;
1823                 int ret;
1824
1825                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1826                 if (obj == NULL) {
1827                         DRM_ERROR("Failed to allocate batch bo\n");
1828                         return -ENOMEM;
1829                 }
1830
1831                 ret = i915_gem_object_pin(obj, 0, true, false);
1832                 if (ret != 0) {
1833                         drm_gem_object_unreference(&obj->base);
1834                         DRM_ERROR("Failed to ping batch bo\n");
1835                         return ret;
1836                 }
1837
1838                 ring->private = obj;
1839         }
1840
1841         return intel_init_ring_buffer(dev, ring);
1842 }
1843
1844 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1845 {
1846         drm_i915_private_t *dev_priv = dev->dev_private;
1847         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1848         int ret;
1849
1850         ring->name = "render ring";
1851         ring->id = RCS;
1852         ring->mmio_base = RENDER_RING_BASE;
1853
1854         if (INTEL_INFO(dev)->gen >= 6) {
1855                 /* non-kms not supported on gen6+ */
1856                 return -ENODEV;
1857         }
1858
1859         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1860          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1861          * the special gen5 functions. */
1862         ring->add_request = i9xx_add_request;
1863         if (INTEL_INFO(dev)->gen < 4)
1864                 ring->flush = gen2_render_ring_flush;
1865         else
1866                 ring->flush = gen4_render_ring_flush;
1867         ring->get_seqno = ring_get_seqno;
1868         ring->set_seqno = ring_set_seqno;
1869         if (IS_GEN2(dev)) {
1870                 ring->irq_get = i8xx_ring_get_irq;
1871                 ring->irq_put = i8xx_ring_put_irq;
1872         } else {
1873                 ring->irq_get = i9xx_ring_get_irq;
1874                 ring->irq_put = i9xx_ring_put_irq;
1875         }
1876         ring->irq_enable_mask = I915_USER_INTERRUPT;
1877         ring->write_tail = ring_write_tail;
1878         if (INTEL_INFO(dev)->gen >= 4)
1879                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1880         else if (IS_I830(dev) || IS_845G(dev))
1881                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1882         else
1883                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1884         ring->init = init_render_ring;
1885         ring->cleanup = render_ring_cleanup;
1886
1887         ring->dev = dev;
1888         INIT_LIST_HEAD(&ring->active_list);
1889         INIT_LIST_HEAD(&ring->request_list);
1890
1891         ring->size = size;
1892         ring->effective_size = ring->size;
1893         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1894                 ring->effective_size -= 128;
1895
1896         ring->virtual_start = ioremap_wc(start, size);
1897         if (ring->virtual_start == NULL) {
1898                 DRM_ERROR("can not ioremap virtual address for"
1899                           " ring buffer\n");
1900                 return -ENOMEM;
1901         }
1902
1903         if (!I915_NEED_GFX_HWS(dev)) {
1904                 ret = init_phys_status_page(ring);
1905                 if (ret)
1906                         return ret;
1907         }
1908
1909         return 0;
1910 }
1911
1912 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1913 {
1914         drm_i915_private_t *dev_priv = dev->dev_private;
1915         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1916
1917         ring->name = "bsd ring";
1918         ring->id = VCS;
1919
1920         ring->write_tail = ring_write_tail;
1921         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1922                 ring->mmio_base = GEN6_BSD_RING_BASE;
1923                 /* gen6 bsd needs a special wa for tail updates */
1924                 if (IS_GEN6(dev))
1925                         ring->write_tail = gen6_bsd_ring_write_tail;
1926                 ring->flush = gen6_bsd_ring_flush;
1927                 ring->add_request = gen6_add_request;
1928                 ring->get_seqno = gen6_ring_get_seqno;
1929                 ring->set_seqno = ring_set_seqno;
1930                 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1931                 ring->irq_get = gen6_ring_get_irq;
1932                 ring->irq_put = gen6_ring_put_irq;
1933                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934                 ring->sync_to = gen6_ring_sync;
1935                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1936                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1937                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1938                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1939                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1940                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1941                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1942                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1943         } else {
1944                 ring->mmio_base = BSD_RING_BASE;
1945                 ring->flush = bsd_ring_flush;
1946                 ring->add_request = i9xx_add_request;
1947                 ring->get_seqno = ring_get_seqno;
1948                 ring->set_seqno = ring_set_seqno;
1949                 if (IS_GEN5(dev)) {
1950                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1951                         ring->irq_get = gen5_ring_get_irq;
1952                         ring->irq_put = gen5_ring_put_irq;
1953                 } else {
1954                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1955                         ring->irq_get = i9xx_ring_get_irq;
1956                         ring->irq_put = i9xx_ring_put_irq;
1957                 }
1958                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1959         }
1960         ring->init = init_ring_common;
1961
1962         return intel_init_ring_buffer(dev, ring);
1963 }
1964
1965 int intel_init_blt_ring_buffer(struct drm_device *dev)
1966 {
1967         drm_i915_private_t *dev_priv = dev->dev_private;
1968         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1969
1970         ring->name = "blitter ring";
1971         ring->id = BCS;
1972
1973         ring->mmio_base = BLT_RING_BASE;
1974         ring->write_tail = ring_write_tail;
1975         ring->flush = gen6_ring_flush;
1976         ring->add_request = gen6_add_request;
1977         ring->get_seqno = gen6_ring_get_seqno;
1978         ring->set_seqno = ring_set_seqno;
1979         ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1980         ring->irq_get = gen6_ring_get_irq;
1981         ring->irq_put = gen6_ring_put_irq;
1982         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1983         ring->sync_to = gen6_ring_sync;
1984         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1985         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1986         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1987         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1988         ring->signal_mbox[RCS] = GEN6_RBSYNC;
1989         ring->signal_mbox[VCS] = GEN6_VBSYNC;
1990         ring->signal_mbox[BCS] = GEN6_NOSYNC;
1991         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1992         ring->init = init_ring_common;
1993
1994         return intel_init_ring_buffer(dev, ring);
1995 }
1996
1997 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1998 {
1999         drm_i915_private_t *dev_priv = dev->dev_private;
2000         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2001
2002         ring->name = "video enhancement ring";
2003         ring->id = VECS;
2004
2005         ring->mmio_base = VEBOX_RING_BASE;
2006         ring->write_tail = ring_write_tail;
2007         ring->flush = gen6_ring_flush;
2008         ring->add_request = gen6_add_request;
2009         ring->get_seqno = gen6_ring_get_seqno;
2010         ring->set_seqno = ring_set_seqno;
2011         ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2012                 PM_VEBOX_CS_ERROR_INTERRUPT;
2013         ring->irq_get = hsw_vebox_get_irq;
2014         ring->irq_put = hsw_vebox_put_irq;
2015         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2016         ring->sync_to = gen6_ring_sync;
2017         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2018         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2019         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2020         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2021         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2022         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2023         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2024         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2025         ring->init = init_ring_common;
2026
2027         return intel_init_ring_buffer(dev, ring);
2028 }
2029
2030 int
2031 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2032 {
2033         int ret;
2034
2035         if (!ring->gpu_caches_dirty)
2036                 return 0;
2037
2038         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2039         if (ret)
2040                 return ret;
2041
2042         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2043
2044         ring->gpu_caches_dirty = false;
2045         return 0;
2046 }
2047
2048 int
2049 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2050 {
2051         uint32_t flush_domains;
2052         int ret;
2053
2054         flush_domains = 0;
2055         if (ring->gpu_caches_dirty)
2056                 flush_domains = I915_GEM_GPU_DOMAINS;
2057
2058         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2059         if (ret)
2060                 return ret;
2061
2062         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2063
2064         ring->gpu_caches_dirty = false;
2065         return 0;
2066 }