]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
i915: Replace "hweight8(dev_priv->info.subslice_7eu[i]) != 1" with "!is_power_of_2...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 bool
38 intel_ring_initialized(struct intel_engine_cs *ring)
39 {
40         struct drm_device *dev = ring->dev;
41
42         if (!dev)
43                 return false;
44
45         if (i915.enable_execlists) {
46                 struct intel_context *dctx = ring->default_context;
47                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
48
49                 return ringbuf->obj;
50         } else
51                 return ring->buffer && ring->buffer->obj;
52 }
53
54 int __intel_ring_space(int head, int tail, int size)
55 {
56         int space = head - tail;
57         if (space <= 0)
58                 space += size;
59         return space - I915_RING_FREE_SPACE;
60 }
61
62 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
63 {
64         if (ringbuf->last_retired_head != -1) {
65                 ringbuf->head = ringbuf->last_retired_head;
66                 ringbuf->last_retired_head = -1;
67         }
68
69         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
70                                             ringbuf->tail, ringbuf->size);
71 }
72
73 int intel_ring_space(struct intel_ringbuffer *ringbuf)
74 {
75         intel_ring_update_space(ringbuf);
76         return ringbuf->space;
77 }
78
79 bool intel_ring_stopped(struct intel_engine_cs *ring)
80 {
81         struct drm_i915_private *dev_priv = ring->dev->dev_private;
82         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
83 }
84
85 static void __intel_ring_advance(struct intel_engine_cs *ring)
86 {
87         struct intel_ringbuffer *ringbuf = ring->buffer;
88         ringbuf->tail &= ringbuf->size - 1;
89         if (intel_ring_stopped(ring))
90                 return;
91         ring->write_tail(ring, ringbuf->tail);
92 }
93
94 static int
95 gen2_render_ring_flush(struct drm_i915_gem_request *req,
96                        u32      invalidate_domains,
97                        u32      flush_domains)
98 {
99         struct intel_engine_cs *ring = req->ring;
100         u32 cmd;
101         int ret;
102
103         cmd = MI_FLUSH;
104         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
105                 cmd |= MI_NO_WRITE_FLUSH;
106
107         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
108                 cmd |= MI_READ_FLUSH;
109
110         ret = intel_ring_begin(req, 2);
111         if (ret)
112                 return ret;
113
114         intel_ring_emit(ring, cmd);
115         intel_ring_emit(ring, MI_NOOP);
116         intel_ring_advance(ring);
117
118         return 0;
119 }
120
121 static int
122 gen4_render_ring_flush(struct drm_i915_gem_request *req,
123                        u32      invalidate_domains,
124                        u32      flush_domains)
125 {
126         struct intel_engine_cs *ring = req->ring;
127         struct drm_device *dev = ring->dev;
128         u32 cmd;
129         int ret;
130
131         /*
132          * read/write caches:
133          *
134          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
135          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
136          * also flushed at 2d versus 3d pipeline switches.
137          *
138          * read-only caches:
139          *
140          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
141          * MI_READ_FLUSH is set, and is always flushed on 965.
142          *
143          * I915_GEM_DOMAIN_COMMAND may not exist?
144          *
145          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
146          * invalidated when MI_EXE_FLUSH is set.
147          *
148          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
149          * invalidated with every MI_FLUSH.
150          *
151          * TLBs:
152          *
153          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
154          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
155          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
156          * are flushed at any MI_FLUSH.
157          */
158
159         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
160         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
161                 cmd &= ~MI_NO_WRITE_FLUSH;
162         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
163                 cmd |= MI_EXE_FLUSH;
164
165         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
166             (IS_G4X(dev) || IS_GEN5(dev)))
167                 cmd |= MI_INVALIDATE_ISP;
168
169         ret = intel_ring_begin(req, 2);
170         if (ret)
171                 return ret;
172
173         intel_ring_emit(ring, cmd);
174         intel_ring_emit(ring, MI_NOOP);
175         intel_ring_advance(ring);
176
177         return 0;
178 }
179
180 /**
181  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
182  * implementing two workarounds on gen6.  From section 1.4.7.1
183  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
184  *
185  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
186  * produced by non-pipelined state commands), software needs to first
187  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
188  * 0.
189  *
190  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
191  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
192  *
193  * And the workaround for these two requires this workaround first:
194  *
195  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
196  * BEFORE the pipe-control with a post-sync op and no write-cache
197  * flushes.
198  *
199  * And this last workaround is tricky because of the requirements on
200  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
201  * volume 2 part 1:
202  *
203  *     "1 of the following must also be set:
204  *      - Render Target Cache Flush Enable ([12] of DW1)
205  *      - Depth Cache Flush Enable ([0] of DW1)
206  *      - Stall at Pixel Scoreboard ([1] of DW1)
207  *      - Depth Stall ([13] of DW1)
208  *      - Post-Sync Operation ([13] of DW1)
209  *      - Notify Enable ([8] of DW1)"
210  *
211  * The cache flushes require the workaround flush that triggered this
212  * one, so we can't use it.  Depth stall would trigger the same.
213  * Post-sync nonzero is what triggered this second workaround, so we
214  * can't use that one either.  Notify enable is IRQs, which aren't
215  * really our business.  That leaves only stall at scoreboard.
216  */
217 static int
218 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
219 {
220         struct intel_engine_cs *ring = req->ring;
221         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
222         int ret;
223
224         ret = intel_ring_begin(req, 6);
225         if (ret)
226                 return ret;
227
228         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
229         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
230                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
231         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
232         intel_ring_emit(ring, 0); /* low dword */
233         intel_ring_emit(ring, 0); /* high dword */
234         intel_ring_emit(ring, MI_NOOP);
235         intel_ring_advance(ring);
236
237         ret = intel_ring_begin(req, 6);
238         if (ret)
239                 return ret;
240
241         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
242         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
243         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, 0);
246         intel_ring_emit(ring, MI_NOOP);
247         intel_ring_advance(ring);
248
249         return 0;
250 }
251
252 static int
253 gen6_render_ring_flush(struct drm_i915_gem_request *req,
254                        u32 invalidate_domains, u32 flush_domains)
255 {
256         struct intel_engine_cs *ring = req->ring;
257         u32 flags = 0;
258         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
259         int ret;
260
261         /* Force SNB workarounds for PIPE_CONTROL flushes */
262         ret = intel_emit_post_sync_nonzero_flush(req);
263         if (ret)
264                 return ret;
265
266         /* Just flush everything.  Experiments have shown that reducing the
267          * number of bits based on the write domains has little performance
268          * impact.
269          */
270         if (flush_domains) {
271                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
272                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
273                 /*
274                  * Ensure that any following seqno writes only happen
275                  * when the render cache is indeed flushed.
276                  */
277                 flags |= PIPE_CONTROL_CS_STALL;
278         }
279         if (invalidate_domains) {
280                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
281                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
285                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
286                 /*
287                  * TLB invalidate requires a post-sync write.
288                  */
289                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
290         }
291
292         ret = intel_ring_begin(req, 4);
293         if (ret)
294                 return ret;
295
296         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
297         intel_ring_emit(ring, flags);
298         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
299         intel_ring_emit(ring, 0);
300         intel_ring_advance(ring);
301
302         return 0;
303 }
304
305 static int
306 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
307 {
308         struct intel_engine_cs *ring = req->ring;
309         int ret;
310
311         ret = intel_ring_begin(req, 4);
312         if (ret)
313                 return ret;
314
315         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
316         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
317                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
318         intel_ring_emit(ring, 0);
319         intel_ring_emit(ring, 0);
320         intel_ring_advance(ring);
321
322         return 0;
323 }
324
325 static int
326 gen7_render_ring_flush(struct drm_i915_gem_request *req,
327                        u32 invalidate_domains, u32 flush_domains)
328 {
329         struct intel_engine_cs *ring = req->ring;
330         u32 flags = 0;
331         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
332         int ret;
333
334         /*
335          * Ensure that any following seqno writes only happen when the render
336          * cache is indeed flushed.
337          *
338          * Workaround: 4th PIPE_CONTROL command (except the ones with only
339          * read-cache invalidate bits set) must have the CS_STALL bit set. We
340          * don't try to be clever and just set it unconditionally.
341          */
342         flags |= PIPE_CONTROL_CS_STALL;
343
344         /* Just flush everything.  Experiments have shown that reducing the
345          * number of bits based on the write domains has little performance
346          * impact.
347          */
348         if (flush_domains) {
349                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
350                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
351                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
352         }
353         if (invalidate_domains) {
354                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
355                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
359                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
360                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
361                 /*
362                  * TLB invalidate requires a post-sync write.
363                  */
364                 flags |= PIPE_CONTROL_QW_WRITE;
365                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
366
367                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
368
369                 /* Workaround: we must issue a pipe_control with CS-stall bit
370                  * set before a pipe_control command that has the state cache
371                  * invalidate bit set. */
372                 gen7_render_ring_cs_stall_wa(req);
373         }
374
375         ret = intel_ring_begin(req, 4);
376         if (ret)
377                 return ret;
378
379         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
380         intel_ring_emit(ring, flags);
381         intel_ring_emit(ring, scratch_addr);
382         intel_ring_emit(ring, 0);
383         intel_ring_advance(ring);
384
385         return 0;
386 }
387
388 static int
389 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
390                        u32 flags, u32 scratch_addr)
391 {
392         struct intel_engine_cs *ring = req->ring;
393         int ret;
394
395         ret = intel_ring_begin(req, 6);
396         if (ret)
397                 return ret;
398
399         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
400         intel_ring_emit(ring, flags);
401         intel_ring_emit(ring, scratch_addr);
402         intel_ring_emit(ring, 0);
403         intel_ring_emit(ring, 0);
404         intel_ring_emit(ring, 0);
405         intel_ring_advance(ring);
406
407         return 0;
408 }
409
410 static int
411 gen8_render_ring_flush(struct drm_i915_gem_request *req,
412                        u32 invalidate_domains, u32 flush_domains)
413 {
414         u32 flags = 0;
415         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
416         int ret;
417
418         flags |= PIPE_CONTROL_CS_STALL;
419
420         if (flush_domains) {
421                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
422                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
423                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
424         }
425         if (invalidate_domains) {
426                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
427                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
430                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_QW_WRITE;
433                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
434
435                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
436                 ret = gen8_emit_pipe_control(req,
437                                              PIPE_CONTROL_CS_STALL |
438                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
439                                              0);
440                 if (ret)
441                         return ret;
442         }
443
444         return gen8_emit_pipe_control(req, flags, scratch_addr);
445 }
446
447 static void ring_write_tail(struct intel_engine_cs *ring,
448                             u32 value)
449 {
450         struct drm_i915_private *dev_priv = ring->dev->dev_private;
451         I915_WRITE_TAIL(ring, value);
452 }
453
454 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
455 {
456         struct drm_i915_private *dev_priv = ring->dev->dev_private;
457         u64 acthd;
458
459         if (INTEL_INFO(ring->dev)->gen >= 8)
460                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
461                                          RING_ACTHD_UDW(ring->mmio_base));
462         else if (INTEL_INFO(ring->dev)->gen >= 4)
463                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
464         else
465                 acthd = I915_READ(ACTHD);
466
467         return acthd;
468 }
469
470 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
471 {
472         struct drm_i915_private *dev_priv = ring->dev->dev_private;
473         u32 addr;
474
475         addr = dev_priv->status_page_dmah->busaddr;
476         if (INTEL_INFO(ring->dev)->gen >= 4)
477                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
478         I915_WRITE(HWS_PGA, addr);
479 }
480
481 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
482 {
483         struct drm_device *dev = ring->dev;
484         struct drm_i915_private *dev_priv = ring->dev->dev_private;
485         i915_reg_t mmio;
486
487         /* The ring status page addresses are no longer next to the rest of
488          * the ring registers as of gen7.
489          */
490         if (IS_GEN7(dev)) {
491                 switch (ring->id) {
492                 case RCS:
493                         mmio = RENDER_HWS_PGA_GEN7;
494                         break;
495                 case BCS:
496                         mmio = BLT_HWS_PGA_GEN7;
497                         break;
498                 /*
499                  * VCS2 actually doesn't exist on Gen7. Only shut up
500                  * gcc switch check warning
501                  */
502                 case VCS2:
503                 case VCS:
504                         mmio = BSD_HWS_PGA_GEN7;
505                         break;
506                 case VECS:
507                         mmio = VEBOX_HWS_PGA_GEN7;
508                         break;
509                 }
510         } else if (IS_GEN6(ring->dev)) {
511                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
512         } else {
513                 /* XXX: gen8 returns to sanity */
514                 mmio = RING_HWS_PGA(ring->mmio_base);
515         }
516
517         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
518         POSTING_READ(mmio);
519
520         /*
521          * Flush the TLB for this page
522          *
523          * FIXME: These two bits have disappeared on gen8, so a question
524          * arises: do we still need this and if so how should we go about
525          * invalidating the TLB?
526          */
527         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
528                 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
529
530                 /* ring should be idle before issuing a sync flush*/
531                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
532
533                 I915_WRITE(reg,
534                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
535                                               INSTPM_SYNC_FLUSH));
536                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
537                              1000))
538                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
539                                   ring->name);
540         }
541 }
542
543 static bool stop_ring(struct intel_engine_cs *ring)
544 {
545         struct drm_i915_private *dev_priv = to_i915(ring->dev);
546
547         if (!IS_GEN2(ring->dev)) {
548                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
549                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
550                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
551                         /* Sometimes we observe that the idle flag is not
552                          * set even though the ring is empty. So double
553                          * check before giving up.
554                          */
555                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
556                                 return false;
557                 }
558         }
559
560         I915_WRITE_CTL(ring, 0);
561         I915_WRITE_HEAD(ring, 0);
562         ring->write_tail(ring, 0);
563
564         if (!IS_GEN2(ring->dev)) {
565                 (void)I915_READ_CTL(ring);
566                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
567         }
568
569         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
570 }
571
572 static int init_ring_common(struct intel_engine_cs *ring)
573 {
574         struct drm_device *dev = ring->dev;
575         struct drm_i915_private *dev_priv = dev->dev_private;
576         struct intel_ringbuffer *ringbuf = ring->buffer;
577         struct drm_i915_gem_object *obj = ringbuf->obj;
578         int ret = 0;
579
580         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
581
582         if (!stop_ring(ring)) {
583                 /* G45 ring initialization often fails to reset head to zero */
584                 DRM_DEBUG_KMS("%s head not reset to zero "
585                               "ctl %08x head %08x tail %08x start %08x\n",
586                               ring->name,
587                               I915_READ_CTL(ring),
588                               I915_READ_HEAD(ring),
589                               I915_READ_TAIL(ring),
590                               I915_READ_START(ring));
591
592                 if (!stop_ring(ring)) {
593                         DRM_ERROR("failed to set %s head to zero "
594                                   "ctl %08x head %08x tail %08x start %08x\n",
595                                   ring->name,
596                                   I915_READ_CTL(ring),
597                                   I915_READ_HEAD(ring),
598                                   I915_READ_TAIL(ring),
599                                   I915_READ_START(ring));
600                         ret = -EIO;
601                         goto out;
602                 }
603         }
604
605         if (I915_NEED_GFX_HWS(dev))
606                 intel_ring_setup_status_page(ring);
607         else
608                 ring_setup_phys_status_page(ring);
609
610         /* Enforce ordering by reading HEAD register back */
611         I915_READ_HEAD(ring);
612
613         /* Initialize the ring. This must happen _after_ we've cleared the ring
614          * registers with the above sequence (the readback of the HEAD registers
615          * also enforces ordering), otherwise the hw might lose the new ring
616          * register values. */
617         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
618
619         /* WaClearRingBufHeadRegAtInit:ctg,elk */
620         if (I915_READ_HEAD(ring))
621                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
622                           ring->name, I915_READ_HEAD(ring));
623         I915_WRITE_HEAD(ring, 0);
624         (void)I915_READ_HEAD(ring);
625
626         I915_WRITE_CTL(ring,
627                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
628                         | RING_VALID);
629
630         /* If the head is still not zero, the ring is dead */
631         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
632                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
633                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
634                 DRM_ERROR("%s initialization failed "
635                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
636                           ring->name,
637                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
638                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
639                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
640                 ret = -EIO;
641                 goto out;
642         }
643
644         ringbuf->last_retired_head = -1;
645         ringbuf->head = I915_READ_HEAD(ring);
646         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
647         intel_ring_update_space(ringbuf);
648
649         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
650
651 out:
652         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
653
654         return ret;
655 }
656
657 void
658 intel_fini_pipe_control(struct intel_engine_cs *ring)
659 {
660         struct drm_device *dev = ring->dev;
661
662         if (ring->scratch.obj == NULL)
663                 return;
664
665         if (INTEL_INFO(dev)->gen >= 5) {
666                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
667                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
668         }
669
670         drm_gem_object_unreference(&ring->scratch.obj->base);
671         ring->scratch.obj = NULL;
672 }
673
674 int
675 intel_init_pipe_control(struct intel_engine_cs *ring)
676 {
677         int ret;
678
679         WARN_ON(ring->scratch.obj);
680
681         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
682         if (ring->scratch.obj == NULL) {
683                 DRM_ERROR("Failed to allocate seqno page\n");
684                 ret = -ENOMEM;
685                 goto err;
686         }
687
688         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
689         if (ret)
690                 goto err_unref;
691
692         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
693         if (ret)
694                 goto err_unref;
695
696         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
697         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
698         if (ring->scratch.cpu_page == NULL) {
699                 ret = -ENOMEM;
700                 goto err_unpin;
701         }
702
703         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
704                          ring->name, ring->scratch.gtt_offset);
705         return 0;
706
707 err_unpin:
708         i915_gem_object_ggtt_unpin(ring->scratch.obj);
709 err_unref:
710         drm_gem_object_unreference(&ring->scratch.obj->base);
711 err:
712         return ret;
713 }
714
715 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
716 {
717         int ret, i;
718         struct intel_engine_cs *ring = req->ring;
719         struct drm_device *dev = ring->dev;
720         struct drm_i915_private *dev_priv = dev->dev_private;
721         struct i915_workarounds *w = &dev_priv->workarounds;
722
723         if (w->count == 0)
724                 return 0;
725
726         ring->gpu_caches_dirty = true;
727         ret = intel_ring_flush_all_caches(req);
728         if (ret)
729                 return ret;
730
731         ret = intel_ring_begin(req, (w->count * 2 + 2));
732         if (ret)
733                 return ret;
734
735         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
736         for (i = 0; i < w->count; i++) {
737                 intel_ring_emit_reg(ring, w->reg[i].addr);
738                 intel_ring_emit(ring, w->reg[i].value);
739         }
740         intel_ring_emit(ring, MI_NOOP);
741
742         intel_ring_advance(ring);
743
744         ring->gpu_caches_dirty = true;
745         ret = intel_ring_flush_all_caches(req);
746         if (ret)
747                 return ret;
748
749         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
750
751         return 0;
752 }
753
754 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
755 {
756         int ret;
757
758         ret = intel_ring_workarounds_emit(req);
759         if (ret != 0)
760                 return ret;
761
762         ret = i915_gem_render_state_init(req);
763         if (ret)
764                 DRM_ERROR("init render state: %d\n", ret);
765
766         return ret;
767 }
768
769 static int wa_add(struct drm_i915_private *dev_priv,
770                   i915_reg_t addr,
771                   const u32 mask, const u32 val)
772 {
773         const u32 idx = dev_priv->workarounds.count;
774
775         if (WARN_ON(idx >= I915_MAX_WA_REGS))
776                 return -ENOSPC;
777
778         dev_priv->workarounds.reg[idx].addr = addr;
779         dev_priv->workarounds.reg[idx].value = val;
780         dev_priv->workarounds.reg[idx].mask = mask;
781
782         dev_priv->workarounds.count++;
783
784         return 0;
785 }
786
787 #define WA_REG(addr, mask, val) do { \
788                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
789                 if (r) \
790                         return r; \
791         } while (0)
792
793 #define WA_SET_BIT_MASKED(addr, mask) \
794         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
795
796 #define WA_CLR_BIT_MASKED(addr, mask) \
797         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
798
799 #define WA_SET_FIELD_MASKED(addr, mask, value) \
800         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
801
802 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
803 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
804
805 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
806
807 static int gen8_init_workarounds(struct intel_engine_cs *ring)
808 {
809         struct drm_device *dev = ring->dev;
810         struct drm_i915_private *dev_priv = dev->dev_private;
811
812         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
813
814         /* WaDisableAsyncFlipPerfMode:bdw,chv */
815         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
816
817         /* WaDisablePartialInstShootdown:bdw,chv */
818         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
820
821         /* Use Force Non-Coherent whenever executing a 3D context. This is a
822          * workaround for for a possible hang in the unlikely event a TLB
823          * invalidation occurs during a PSD flush.
824          */
825         /* WaForceEnableNonCoherent:bdw,chv */
826         /* WaHdcDisableFetchWhenMasked:bdw,chv */
827         WA_SET_BIT_MASKED(HDC_CHICKEN0,
828                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829                           HDC_FORCE_NON_COHERENT);
830
831         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833          *  polygons in the same 8x4 pixel/sample area to be processed without
834          *  stalling waiting for the earlier ones to write to Hierarchical Z
835          *  buffer."
836          *
837          * This optimization is off by default for BDW and CHV; turn it on.
838          */
839         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
840
841         /* Wa4x4STCOptimizationDisable:bdw,chv */
842         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844         /*
845          * BSpec recommends 8x4 when MSAA is used,
846          * however in practice 16x4 seems fastest.
847          *
848          * Note that PS/WM thread counts depend on the WIZ hashing
849          * disable bit, which we don't touch here, but it's good
850          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851          */
852         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853                             GEN6_WIZ_HASHING_MASK,
854                             GEN6_WIZ_HASHING_16x4);
855
856         return 0;
857 }
858
859 static int bdw_init_workarounds(struct intel_engine_cs *ring)
860 {
861         int ret;
862         struct drm_device *dev = ring->dev;
863         struct drm_i915_private *dev_priv = dev->dev_private;
864
865         ret = gen8_init_workarounds(ring);
866         if (ret)
867                 return ret;
868
869         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871
872         /* WaDisableDopClockGating:bdw */
873         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874                           DOP_CLOCK_GATING_DISABLE);
875
876         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877                           GEN8_SAMPLER_POWER_BYPASS_DIS);
878
879         WA_SET_BIT_MASKED(HDC_CHICKEN0,
880                           /* WaForceContextSaveRestoreNonCoherent:bdw */
881                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884
885         return 0;
886 }
887
888 static int chv_init_workarounds(struct intel_engine_cs *ring)
889 {
890         int ret;
891         struct drm_device *dev = ring->dev;
892         struct drm_i915_private *dev_priv = dev->dev_private;
893
894         ret = gen8_init_workarounds(ring);
895         if (ret)
896                 return ret;
897
898         /* WaDisableThreadStallDopClockGating:chv */
899         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900
901         /* Improve HiZ throughput on CHV. */
902         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903
904         return 0;
905 }
906
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909         struct drm_device *dev = ring->dev;
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         uint32_t tmp;
912
913         /* WaEnableLbsSlaRetryTimerDecrement:skl */
914         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916
917         /* WaDisableKillLogic:bxt,skl */
918         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919                    ECOCHK_DIS_TLB);
920
921         /* WaDisablePartialInstShootdown:skl,bxt */
922         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
923                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
924
925         /* Syncing dependencies between camera and graphics:skl,bxt */
926         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
927                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
928
929         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
930         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
931             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
932                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
933                                   GEN9_DG_MIRROR_FIX_ENABLE);
934
935         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
936         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
937             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
938                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
939                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
940                 /*
941                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
942                  * but we do that in per ctx batchbuffer as there is an issue
943                  * with this register not getting restored on ctx restore
944                  */
945         }
946
947         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
948         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
949                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
950                                   GEN9_ENABLE_YV12_BUGFIX);
951
952         /* Wa4x4STCOptimizationDisable:skl,bxt */
953         /* WaDisablePartialResolveInVc:skl,bxt */
954         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
955                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
956
957         /* WaCcsTlbPrefetchDisable:skl,bxt */
958         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
959                           GEN9_CCS_TLB_PREFETCH_ENABLE);
960
961         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
962         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
963             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
964                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
965                                   PIXEL_MASK_CAMMING_DISABLE);
966
967         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
968         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
969         if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
970             IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
971                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
972         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
973
974         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
975         if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
976                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
977                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
978
979         /* WaDisableSTUnitPowerOptimization:skl,bxt */
980         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
981
982         return 0;
983 }
984
985 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
986 {
987         struct drm_device *dev = ring->dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         u8 vals[3] = { 0, 0, 0 };
990         unsigned int i;
991
992         for (i = 0; i < 3; i++) {
993                 u8 ss;
994
995                 /*
996                  * Only consider slices where one, and only one, subslice has 7
997                  * EUs
998                  */
999                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1000                         continue;
1001
1002                 /*
1003                  * subslice_7eu[i] != 0 (because of the check above) and
1004                  * ss_max == 4 (maximum number of subslices possible per slice)
1005                  *
1006                  * ->    0 <= ss <= 3;
1007                  */
1008                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1009                 vals[i] = 3 - ss;
1010         }
1011
1012         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1013                 return 0;
1014
1015         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1016         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1017                             GEN9_IZ_HASHING_MASK(2) |
1018                             GEN9_IZ_HASHING_MASK(1) |
1019                             GEN9_IZ_HASHING_MASK(0),
1020                             GEN9_IZ_HASHING(2, vals[2]) |
1021                             GEN9_IZ_HASHING(1, vals[1]) |
1022                             GEN9_IZ_HASHING(0, vals[0]));
1023
1024         return 0;
1025 }
1026
1027 static int skl_init_workarounds(struct intel_engine_cs *ring)
1028 {
1029         int ret;
1030         struct drm_device *dev = ring->dev;
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032
1033         ret = gen9_init_workarounds(ring);
1034         if (ret)
1035                 return ret;
1036
1037         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1038                 /* WaDisableHDCInvalidation:skl */
1039                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1040                            BDW_DISABLE_HDC_INVALIDATION);
1041
1042                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1043                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1044                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1045         }
1046
1047         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1048          * involving this register should also be added to WA batch as required.
1049          */
1050         if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1051                 /* WaDisableLSQCROPERFforOCL:skl */
1052                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1053                            GEN8_LQSC_RO_PERF_DIS);
1054
1055         /* WaEnableGapsTsvCreditFix:skl */
1056         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1057                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1058                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1059         }
1060
1061         /* WaDisablePowerCompilerClockGating:skl */
1062         if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1063                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1064                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1065
1066         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1067                 /*
1068                  *Use Force Non-Coherent whenever executing a 3D context. This
1069                  * is a workaround for a possible hang in the unlikely event
1070                  * a TLB invalidation occurs during a PSD flush.
1071                  */
1072                 /* WaForceEnableNonCoherent:skl */
1073                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1074                                   HDC_FORCE_NON_COHERENT);
1075         }
1076
1077         /* WaBarrierPerformanceFixDisable:skl */
1078         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1079                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1080                                   HDC_FENCE_DEST_SLM_DISABLE |
1081                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1082
1083         /* WaDisableSbeCacheDispatchPortSharing:skl */
1084         if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1085                 WA_SET_BIT_MASKED(
1086                         GEN7_HALF_SLICE_CHICKEN1,
1087                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1088
1089         return skl_tune_iz_hashing(ring);
1090 }
1091
1092 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1093 {
1094         int ret;
1095         struct drm_device *dev = ring->dev;
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097
1098         ret = gen9_init_workarounds(ring);
1099         if (ret)
1100                 return ret;
1101
1102         /* WaStoreMultiplePTEenable:bxt */
1103         /* This is a requirement according to Hardware specification */
1104         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1105                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1106
1107         /* WaSetClckGatingDisableMedia:bxt */
1108         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1109                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1110                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1111         }
1112
1113         /* WaDisableThreadStallDopClockGating:bxt */
1114         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1115                           STALL_DOP_GATING_DISABLE);
1116
1117         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1118         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1119                 WA_SET_BIT_MASKED(
1120                         GEN7_HALF_SLICE_CHICKEN1,
1121                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1122         }
1123
1124         return 0;
1125 }
1126
1127 int init_workarounds_ring(struct intel_engine_cs *ring)
1128 {
1129         struct drm_device *dev = ring->dev;
1130         struct drm_i915_private *dev_priv = dev->dev_private;
1131
1132         WARN_ON(ring->id != RCS);
1133
1134         dev_priv->workarounds.count = 0;
1135
1136         if (IS_BROADWELL(dev))
1137                 return bdw_init_workarounds(ring);
1138
1139         if (IS_CHERRYVIEW(dev))
1140                 return chv_init_workarounds(ring);
1141
1142         if (IS_SKYLAKE(dev))
1143                 return skl_init_workarounds(ring);
1144
1145         if (IS_BROXTON(dev))
1146                 return bxt_init_workarounds(ring);
1147
1148         return 0;
1149 }
1150
1151 static int init_render_ring(struct intel_engine_cs *ring)
1152 {
1153         struct drm_device *dev = ring->dev;
1154         struct drm_i915_private *dev_priv = dev->dev_private;
1155         int ret = init_ring_common(ring);
1156         if (ret)
1157                 return ret;
1158
1159         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1160         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1161                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1162
1163         /* We need to disable the AsyncFlip performance optimisations in order
1164          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1165          * programmed to '1' on all products.
1166          *
1167          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1168          */
1169         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1170                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1171
1172         /* Required for the hardware to program scanline values for waiting */
1173         /* WaEnableFlushTlbInvalidationMode:snb */
1174         if (INTEL_INFO(dev)->gen == 6)
1175                 I915_WRITE(GFX_MODE,
1176                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1177
1178         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1179         if (IS_GEN7(dev))
1180                 I915_WRITE(GFX_MODE_GEN7,
1181                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1182                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1183
1184         if (IS_GEN6(dev)) {
1185                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1186                  * "If this bit is set, STCunit will have LRA as replacement
1187                  *  policy. [...] This bit must be reset.  LRA replacement
1188                  *  policy is not supported."
1189                  */
1190                 I915_WRITE(CACHE_MODE_0,
1191                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1192         }
1193
1194         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1195                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1196
1197         if (HAS_L3_DPF(dev))
1198                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1199
1200         return init_workarounds_ring(ring);
1201 }
1202
1203 static void render_ring_cleanup(struct intel_engine_cs *ring)
1204 {
1205         struct drm_device *dev = ring->dev;
1206         struct drm_i915_private *dev_priv = dev->dev_private;
1207
1208         if (dev_priv->semaphore_obj) {
1209                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1210                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1211                 dev_priv->semaphore_obj = NULL;
1212         }
1213
1214         intel_fini_pipe_control(ring);
1215 }
1216
1217 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1218                            unsigned int num_dwords)
1219 {
1220 #define MBOX_UPDATE_DWORDS 8
1221         struct intel_engine_cs *signaller = signaller_req->ring;
1222         struct drm_device *dev = signaller->dev;
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         struct intel_engine_cs *waiter;
1225         int i, ret, num_rings;
1226
1227         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1228         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1229 #undef MBOX_UPDATE_DWORDS
1230
1231         ret = intel_ring_begin(signaller_req, num_dwords);
1232         if (ret)
1233                 return ret;
1234
1235         for_each_ring(waiter, dev_priv, i) {
1236                 u32 seqno;
1237                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1238                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1239                         continue;
1240
1241                 seqno = i915_gem_request_get_seqno(signaller_req);
1242                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1243                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1244                                            PIPE_CONTROL_QW_WRITE |
1245                                            PIPE_CONTROL_FLUSH_ENABLE);
1246                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1247                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1248                 intel_ring_emit(signaller, seqno);
1249                 intel_ring_emit(signaller, 0);
1250                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1251                                            MI_SEMAPHORE_TARGET(waiter->id));
1252                 intel_ring_emit(signaller, 0);
1253         }
1254
1255         return 0;
1256 }
1257
1258 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1259                            unsigned int num_dwords)
1260 {
1261 #define MBOX_UPDATE_DWORDS 6
1262         struct intel_engine_cs *signaller = signaller_req->ring;
1263         struct drm_device *dev = signaller->dev;
1264         struct drm_i915_private *dev_priv = dev->dev_private;
1265         struct intel_engine_cs *waiter;
1266         int i, ret, num_rings;
1267
1268         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1269         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1270 #undef MBOX_UPDATE_DWORDS
1271
1272         ret = intel_ring_begin(signaller_req, num_dwords);
1273         if (ret)
1274                 return ret;
1275
1276         for_each_ring(waiter, dev_priv, i) {
1277                 u32 seqno;
1278                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1279                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1280                         continue;
1281
1282                 seqno = i915_gem_request_get_seqno(signaller_req);
1283                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1284                                            MI_FLUSH_DW_OP_STOREDW);
1285                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1286                                            MI_FLUSH_DW_USE_GTT);
1287                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1288                 intel_ring_emit(signaller, seqno);
1289                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1290                                            MI_SEMAPHORE_TARGET(waiter->id));
1291                 intel_ring_emit(signaller, 0);
1292         }
1293
1294         return 0;
1295 }
1296
1297 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1298                        unsigned int num_dwords)
1299 {
1300         struct intel_engine_cs *signaller = signaller_req->ring;
1301         struct drm_device *dev = signaller->dev;
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303         struct intel_engine_cs *useless;
1304         int i, ret, num_rings;
1305
1306 #define MBOX_UPDATE_DWORDS 3
1307         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1308         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1309 #undef MBOX_UPDATE_DWORDS
1310
1311         ret = intel_ring_begin(signaller_req, num_dwords);
1312         if (ret)
1313                 return ret;
1314
1315         for_each_ring(useless, dev_priv, i) {
1316                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1317
1318                 if (i915_mmio_reg_valid(mbox_reg)) {
1319                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1320
1321                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1322                         intel_ring_emit_reg(signaller, mbox_reg);
1323                         intel_ring_emit(signaller, seqno);
1324                 }
1325         }
1326
1327         /* If num_dwords was rounded, make sure the tail pointer is correct */
1328         if (num_rings % 2 == 0)
1329                 intel_ring_emit(signaller, MI_NOOP);
1330
1331         return 0;
1332 }
1333
1334 /**
1335  * gen6_add_request - Update the semaphore mailbox registers
1336  *
1337  * @request - request to write to the ring
1338  *
1339  * Update the mailbox registers in the *other* rings with the current seqno.
1340  * This acts like a signal in the canonical semaphore.
1341  */
1342 static int
1343 gen6_add_request(struct drm_i915_gem_request *req)
1344 {
1345         struct intel_engine_cs *ring = req->ring;
1346         int ret;
1347
1348         if (ring->semaphore.signal)
1349                 ret = ring->semaphore.signal(req, 4);
1350         else
1351                 ret = intel_ring_begin(req, 4);
1352
1353         if (ret)
1354                 return ret;
1355
1356         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1357         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1358         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1359         intel_ring_emit(ring, MI_USER_INTERRUPT);
1360         __intel_ring_advance(ring);
1361
1362         return 0;
1363 }
1364
1365 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1366                                               u32 seqno)
1367 {
1368         struct drm_i915_private *dev_priv = dev->dev_private;
1369         return dev_priv->last_seqno < seqno;
1370 }
1371
1372 /**
1373  * intel_ring_sync - sync the waiter to the signaller on seqno
1374  *
1375  * @waiter - ring that is waiting
1376  * @signaller - ring which has, or will signal
1377  * @seqno - seqno which the waiter will block on
1378  */
1379
1380 static int
1381 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1382                struct intel_engine_cs *signaller,
1383                u32 seqno)
1384 {
1385         struct intel_engine_cs *waiter = waiter_req->ring;
1386         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1387         int ret;
1388
1389         ret = intel_ring_begin(waiter_req, 4);
1390         if (ret)
1391                 return ret;
1392
1393         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1394                                 MI_SEMAPHORE_GLOBAL_GTT |
1395                                 MI_SEMAPHORE_POLL |
1396                                 MI_SEMAPHORE_SAD_GTE_SDD);
1397         intel_ring_emit(waiter, seqno);
1398         intel_ring_emit(waiter,
1399                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1400         intel_ring_emit(waiter,
1401                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1402         intel_ring_advance(waiter);
1403         return 0;
1404 }
1405
1406 static int
1407 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1408                struct intel_engine_cs *signaller,
1409                u32 seqno)
1410 {
1411         struct intel_engine_cs *waiter = waiter_req->ring;
1412         u32 dw1 = MI_SEMAPHORE_MBOX |
1413                   MI_SEMAPHORE_COMPARE |
1414                   MI_SEMAPHORE_REGISTER;
1415         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1416         int ret;
1417
1418         /* Throughout all of the GEM code, seqno passed implies our current
1419          * seqno is >= the last seqno executed. However for hardware the
1420          * comparison is strictly greater than.
1421          */
1422         seqno -= 1;
1423
1424         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1425
1426         ret = intel_ring_begin(waiter_req, 4);
1427         if (ret)
1428                 return ret;
1429
1430         /* If seqno wrap happened, omit the wait with no-ops */
1431         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1432                 intel_ring_emit(waiter, dw1 | wait_mbox);
1433                 intel_ring_emit(waiter, seqno);
1434                 intel_ring_emit(waiter, 0);
1435                 intel_ring_emit(waiter, MI_NOOP);
1436         } else {
1437                 intel_ring_emit(waiter, MI_NOOP);
1438                 intel_ring_emit(waiter, MI_NOOP);
1439                 intel_ring_emit(waiter, MI_NOOP);
1440                 intel_ring_emit(waiter, MI_NOOP);
1441         }
1442         intel_ring_advance(waiter);
1443
1444         return 0;
1445 }
1446
1447 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1448 do {                                                                    \
1449         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1450                  PIPE_CONTROL_DEPTH_STALL);                             \
1451         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1452         intel_ring_emit(ring__, 0);                                                     \
1453         intel_ring_emit(ring__, 0);                                                     \
1454 } while (0)
1455
1456 static int
1457 pc_render_add_request(struct drm_i915_gem_request *req)
1458 {
1459         struct intel_engine_cs *ring = req->ring;
1460         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1461         int ret;
1462
1463         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1464          * incoherent with writes to memory, i.e. completely fubar,
1465          * so we need to use PIPE_NOTIFY instead.
1466          *
1467          * However, we also need to workaround the qword write
1468          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1469          * memory before requesting an interrupt.
1470          */
1471         ret = intel_ring_begin(req, 32);
1472         if (ret)
1473                 return ret;
1474
1475         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1476                         PIPE_CONTROL_WRITE_FLUSH |
1477                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1478         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1479         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1480         intel_ring_emit(ring, 0);
1481         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1482         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1483         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1484         scratch_addr += 2 * CACHELINE_BYTES;
1485         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1486         scratch_addr += 2 * CACHELINE_BYTES;
1487         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488         scratch_addr += 2 * CACHELINE_BYTES;
1489         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490         scratch_addr += 2 * CACHELINE_BYTES;
1491         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492
1493         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1494                         PIPE_CONTROL_WRITE_FLUSH |
1495                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1496                         PIPE_CONTROL_NOTIFY);
1497         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1498         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1499         intel_ring_emit(ring, 0);
1500         __intel_ring_advance(ring);
1501
1502         return 0;
1503 }
1504
1505 static u32
1506 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1507 {
1508         /* Workaround to force correct ordering between irq and seqno writes on
1509          * ivb (and maybe also on snb) by reading from a CS register (like
1510          * ACTHD) before reading the status page. */
1511         if (!lazy_coherency) {
1512                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1513                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1514         }
1515
1516         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1517 }
1518
1519 static u32
1520 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1521 {
1522         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1523 }
1524
1525 static void
1526 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1527 {
1528         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1529 }
1530
1531 static u32
1532 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1533 {
1534         return ring->scratch.cpu_page[0];
1535 }
1536
1537 static void
1538 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1539 {
1540         ring->scratch.cpu_page[0] = seqno;
1541 }
1542
1543 static bool
1544 gen5_ring_get_irq(struct intel_engine_cs *ring)
1545 {
1546         struct drm_device *dev = ring->dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         unsigned long flags;
1549
1550         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1551                 return false;
1552
1553         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1554         if (ring->irq_refcount++ == 0)
1555                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1556         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557
1558         return true;
1559 }
1560
1561 static void
1562 gen5_ring_put_irq(struct intel_engine_cs *ring)
1563 {
1564         struct drm_device *dev = ring->dev;
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         unsigned long flags;
1567
1568         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1569         if (--ring->irq_refcount == 0)
1570                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1571         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1572 }
1573
1574 static bool
1575 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1576 {
1577         struct drm_device *dev = ring->dev;
1578         struct drm_i915_private *dev_priv = dev->dev_private;
1579         unsigned long flags;
1580
1581         if (!intel_irqs_enabled(dev_priv))
1582                 return false;
1583
1584         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1585         if (ring->irq_refcount++ == 0) {
1586                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1587                 I915_WRITE(IMR, dev_priv->irq_mask);
1588                 POSTING_READ(IMR);
1589         }
1590         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1591
1592         return true;
1593 }
1594
1595 static void
1596 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1597 {
1598         struct drm_device *dev = ring->dev;
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         unsigned long flags;
1601
1602         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1603         if (--ring->irq_refcount == 0) {
1604                 dev_priv->irq_mask |= ring->irq_enable_mask;
1605                 I915_WRITE(IMR, dev_priv->irq_mask);
1606                 POSTING_READ(IMR);
1607         }
1608         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609 }
1610
1611 static bool
1612 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1613 {
1614         struct drm_device *dev = ring->dev;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616         unsigned long flags;
1617
1618         if (!intel_irqs_enabled(dev_priv))
1619                 return false;
1620
1621         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1622         if (ring->irq_refcount++ == 0) {
1623                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1624                 I915_WRITE16(IMR, dev_priv->irq_mask);
1625                 POSTING_READ16(IMR);
1626         }
1627         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1628
1629         return true;
1630 }
1631
1632 static void
1633 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1634 {
1635         struct drm_device *dev = ring->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         unsigned long flags;
1638
1639         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1640         if (--ring->irq_refcount == 0) {
1641                 dev_priv->irq_mask |= ring->irq_enable_mask;
1642                 I915_WRITE16(IMR, dev_priv->irq_mask);
1643                 POSTING_READ16(IMR);
1644         }
1645         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1646 }
1647
1648 static int
1649 bsd_ring_flush(struct drm_i915_gem_request *req,
1650                u32     invalidate_domains,
1651                u32     flush_domains)
1652 {
1653         struct intel_engine_cs *ring = req->ring;
1654         int ret;
1655
1656         ret = intel_ring_begin(req, 2);
1657         if (ret)
1658                 return ret;
1659
1660         intel_ring_emit(ring, MI_FLUSH);
1661         intel_ring_emit(ring, MI_NOOP);
1662         intel_ring_advance(ring);
1663         return 0;
1664 }
1665
1666 static int
1667 i9xx_add_request(struct drm_i915_gem_request *req)
1668 {
1669         struct intel_engine_cs *ring = req->ring;
1670         int ret;
1671
1672         ret = intel_ring_begin(req, 4);
1673         if (ret)
1674                 return ret;
1675
1676         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1677         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1678         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1679         intel_ring_emit(ring, MI_USER_INTERRUPT);
1680         __intel_ring_advance(ring);
1681
1682         return 0;
1683 }
1684
1685 static bool
1686 gen6_ring_get_irq(struct intel_engine_cs *ring)
1687 {
1688         struct drm_device *dev = ring->dev;
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         unsigned long flags;
1691
1692         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1693                 return false;
1694
1695         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1696         if (ring->irq_refcount++ == 0) {
1697                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1698                         I915_WRITE_IMR(ring,
1699                                        ~(ring->irq_enable_mask |
1700                                          GT_PARITY_ERROR(dev)));
1701                 else
1702                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1703                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1704         }
1705         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706
1707         return true;
1708 }
1709
1710 static void
1711 gen6_ring_put_irq(struct intel_engine_cs *ring)
1712 {
1713         struct drm_device *dev = ring->dev;
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         unsigned long flags;
1716
1717         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1718         if (--ring->irq_refcount == 0) {
1719                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1720                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1721                 else
1722                         I915_WRITE_IMR(ring, ~0);
1723                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1724         }
1725         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1726 }
1727
1728 static bool
1729 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1730 {
1731         struct drm_device *dev = ring->dev;
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         unsigned long flags;
1734
1735         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1736                 return false;
1737
1738         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739         if (ring->irq_refcount++ == 0) {
1740                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1741                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1742         }
1743         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1744
1745         return true;
1746 }
1747
1748 static void
1749 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1750 {
1751         struct drm_device *dev = ring->dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         unsigned long flags;
1754
1755         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1756         if (--ring->irq_refcount == 0) {
1757                 I915_WRITE_IMR(ring, ~0);
1758                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1759         }
1760         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1761 }
1762
1763 static bool
1764 gen8_ring_get_irq(struct intel_engine_cs *ring)
1765 {
1766         struct drm_device *dev = ring->dev;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         unsigned long flags;
1769
1770         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1771                 return false;
1772
1773         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1774         if (ring->irq_refcount++ == 0) {
1775                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1776                         I915_WRITE_IMR(ring,
1777                                        ~(ring->irq_enable_mask |
1778                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1779                 } else {
1780                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1781                 }
1782                 POSTING_READ(RING_IMR(ring->mmio_base));
1783         }
1784         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1785
1786         return true;
1787 }
1788
1789 static void
1790 gen8_ring_put_irq(struct intel_engine_cs *ring)
1791 {
1792         struct drm_device *dev = ring->dev;
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         unsigned long flags;
1795
1796         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1797         if (--ring->irq_refcount == 0) {
1798                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1799                         I915_WRITE_IMR(ring,
1800                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1801                 } else {
1802                         I915_WRITE_IMR(ring, ~0);
1803                 }
1804                 POSTING_READ(RING_IMR(ring->mmio_base));
1805         }
1806         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1807 }
1808
1809 static int
1810 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1811                          u64 offset, u32 length,
1812                          unsigned dispatch_flags)
1813 {
1814         struct intel_engine_cs *ring = req->ring;
1815         int ret;
1816
1817         ret = intel_ring_begin(req, 2);
1818         if (ret)
1819                 return ret;
1820
1821         intel_ring_emit(ring,
1822                         MI_BATCH_BUFFER_START |
1823                         MI_BATCH_GTT |
1824                         (dispatch_flags & I915_DISPATCH_SECURE ?
1825                          0 : MI_BATCH_NON_SECURE_I965));
1826         intel_ring_emit(ring, offset);
1827         intel_ring_advance(ring);
1828
1829         return 0;
1830 }
1831
1832 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1833 #define I830_BATCH_LIMIT (256*1024)
1834 #define I830_TLB_ENTRIES (2)
1835 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1836 static int
1837 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1838                          u64 offset, u32 len,
1839                          unsigned dispatch_flags)
1840 {
1841         struct intel_engine_cs *ring = req->ring;
1842         u32 cs_offset = ring->scratch.gtt_offset;
1843         int ret;
1844
1845         ret = intel_ring_begin(req, 6);
1846         if (ret)
1847                 return ret;
1848
1849         /* Evict the invalid PTE TLBs */
1850         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1851         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1852         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1853         intel_ring_emit(ring, cs_offset);
1854         intel_ring_emit(ring, 0xdeadbeef);
1855         intel_ring_emit(ring, MI_NOOP);
1856         intel_ring_advance(ring);
1857
1858         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1859                 if (len > I830_BATCH_LIMIT)
1860                         return -ENOSPC;
1861
1862                 ret = intel_ring_begin(req, 6 + 2);
1863                 if (ret)
1864                         return ret;
1865
1866                 /* Blit the batch (which has now all relocs applied) to the
1867                  * stable batch scratch bo area (so that the CS never
1868                  * stumbles over its tlb invalidation bug) ...
1869                  */
1870                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1871                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1872                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1873                 intel_ring_emit(ring, cs_offset);
1874                 intel_ring_emit(ring, 4096);
1875                 intel_ring_emit(ring, offset);
1876
1877                 intel_ring_emit(ring, MI_FLUSH);
1878                 intel_ring_emit(ring, MI_NOOP);
1879                 intel_ring_advance(ring);
1880
1881                 /* ... and execute it. */
1882                 offset = cs_offset;
1883         }
1884
1885         ret = intel_ring_begin(req, 4);
1886         if (ret)
1887                 return ret;
1888
1889         intel_ring_emit(ring, MI_BATCH_BUFFER);
1890         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1891                                         0 : MI_BATCH_NON_SECURE));
1892         intel_ring_emit(ring, offset + len - 8);
1893         intel_ring_emit(ring, MI_NOOP);
1894         intel_ring_advance(ring);
1895
1896         return 0;
1897 }
1898
1899 static int
1900 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1901                          u64 offset, u32 len,
1902                          unsigned dispatch_flags)
1903 {
1904         struct intel_engine_cs *ring = req->ring;
1905         int ret;
1906
1907         ret = intel_ring_begin(req, 2);
1908         if (ret)
1909                 return ret;
1910
1911         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1912         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1913                                         0 : MI_BATCH_NON_SECURE));
1914         intel_ring_advance(ring);
1915
1916         return 0;
1917 }
1918
1919 static void cleanup_status_page(struct intel_engine_cs *ring)
1920 {
1921         struct drm_i915_gem_object *obj;
1922
1923         obj = ring->status_page.obj;
1924         if (obj == NULL)
1925                 return;
1926
1927         kunmap(sg_page(obj->pages->sgl));
1928         i915_gem_object_ggtt_unpin(obj);
1929         drm_gem_object_unreference(&obj->base);
1930         ring->status_page.obj = NULL;
1931 }
1932
1933 static int init_status_page(struct intel_engine_cs *ring)
1934 {
1935         struct drm_i915_gem_object *obj;
1936
1937         if ((obj = ring->status_page.obj) == NULL) {
1938                 unsigned flags;
1939                 int ret;
1940
1941                 obj = i915_gem_alloc_object(ring->dev, 4096);
1942                 if (obj == NULL) {
1943                         DRM_ERROR("Failed to allocate status page\n");
1944                         return -ENOMEM;
1945                 }
1946
1947                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1948                 if (ret)
1949                         goto err_unref;
1950
1951                 flags = 0;
1952                 if (!HAS_LLC(ring->dev))
1953                         /* On g33, we cannot place HWS above 256MiB, so
1954                          * restrict its pinning to the low mappable arena.
1955                          * Though this restriction is not documented for
1956                          * gen4, gen5, or byt, they also behave similarly
1957                          * and hang if the HWS is placed at the top of the
1958                          * GTT. To generalise, it appears that all !llc
1959                          * platforms have issues with us placing the HWS
1960                          * above the mappable region (even though we never
1961                          * actualy map it).
1962                          */
1963                         flags |= PIN_MAPPABLE;
1964                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1965                 if (ret) {
1966 err_unref:
1967                         drm_gem_object_unreference(&obj->base);
1968                         return ret;
1969                 }
1970
1971                 ring->status_page.obj = obj;
1972         }
1973
1974         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1975         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1976         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1977
1978         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1979                         ring->name, ring->status_page.gfx_addr);
1980
1981         return 0;
1982 }
1983
1984 static int init_phys_status_page(struct intel_engine_cs *ring)
1985 {
1986         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1987
1988         if (!dev_priv->status_page_dmah) {
1989                 dev_priv->status_page_dmah =
1990                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1991                 if (!dev_priv->status_page_dmah)
1992                         return -ENOMEM;
1993         }
1994
1995         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1996         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1997
1998         return 0;
1999 }
2000
2001 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2002 {
2003         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2004                 vunmap(ringbuf->virtual_start);
2005         else
2006                 iounmap(ringbuf->virtual_start);
2007         ringbuf->virtual_start = NULL;
2008         i915_gem_object_ggtt_unpin(ringbuf->obj);
2009 }
2010
2011 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2012 {
2013         struct sg_page_iter sg_iter;
2014         struct page **pages;
2015         void *addr;
2016         int i;
2017
2018         pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2019         if (pages == NULL)
2020                 return NULL;
2021
2022         i = 0;
2023         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2024                 pages[i++] = sg_page_iter_page(&sg_iter);
2025
2026         addr = vmap(pages, i, 0, PAGE_KERNEL);
2027         drm_free_large(pages);
2028
2029         return addr;
2030 }
2031
2032 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2033                                      struct intel_ringbuffer *ringbuf)
2034 {
2035         struct drm_i915_private *dev_priv = to_i915(dev);
2036         struct drm_i915_gem_object *obj = ringbuf->obj;
2037         int ret;
2038
2039         if (HAS_LLC(dev_priv) && !obj->stolen) {
2040                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2041                 if (ret)
2042                         return ret;
2043
2044                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2045                 if (ret) {
2046                         i915_gem_object_ggtt_unpin(obj);
2047                         return ret;
2048                 }
2049
2050                 ringbuf->virtual_start = vmap_obj(obj);
2051                 if (ringbuf->virtual_start == NULL) {
2052                         i915_gem_object_ggtt_unpin(obj);
2053                         return -ENOMEM;
2054                 }
2055         } else {
2056                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2057                 if (ret)
2058                         return ret;
2059
2060                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2061                 if (ret) {
2062                         i915_gem_object_ggtt_unpin(obj);
2063                         return ret;
2064                 }
2065
2066                 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2067                                                     i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2068                 if (ringbuf->virtual_start == NULL) {
2069                         i915_gem_object_ggtt_unpin(obj);
2070                         return -EINVAL;
2071                 }
2072         }
2073
2074         return 0;
2075 }
2076
2077 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2078 {
2079         drm_gem_object_unreference(&ringbuf->obj->base);
2080         ringbuf->obj = NULL;
2081 }
2082
2083 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2084                                       struct intel_ringbuffer *ringbuf)
2085 {
2086         struct drm_i915_gem_object *obj;
2087
2088         obj = NULL;
2089         if (!HAS_LLC(dev))
2090                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2091         if (obj == NULL)
2092                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2093         if (obj == NULL)
2094                 return -ENOMEM;
2095
2096         /* mark ring buffers as read-only from GPU side by default */
2097         obj->gt_ro = 1;
2098
2099         ringbuf->obj = obj;
2100
2101         return 0;
2102 }
2103
2104 struct intel_ringbuffer *
2105 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2106 {
2107         struct intel_ringbuffer *ring;
2108         int ret;
2109
2110         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2111         if (ring == NULL) {
2112                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2113                                  engine->name);
2114                 return ERR_PTR(-ENOMEM);
2115         }
2116
2117         ring->ring = engine;
2118         list_add(&ring->link, &engine->buffers);
2119
2120         ring->size = size;
2121         /* Workaround an erratum on the i830 which causes a hang if
2122          * the TAIL pointer points to within the last 2 cachelines
2123          * of the buffer.
2124          */
2125         ring->effective_size = size;
2126         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2127                 ring->effective_size -= 2 * CACHELINE_BYTES;
2128
2129         ring->last_retired_head = -1;
2130         intel_ring_update_space(ring);
2131
2132         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2133         if (ret) {
2134                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2135                                  engine->name, ret);
2136                 list_del(&ring->link);
2137                 kfree(ring);
2138                 return ERR_PTR(ret);
2139         }
2140
2141         return ring;
2142 }
2143
2144 void
2145 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2146 {
2147         intel_destroy_ringbuffer_obj(ring);
2148         list_del(&ring->link);
2149         kfree(ring);
2150 }
2151
2152 static int intel_init_ring_buffer(struct drm_device *dev,
2153                                   struct intel_engine_cs *ring)
2154 {
2155         struct intel_ringbuffer *ringbuf;
2156         int ret;
2157
2158         WARN_ON(ring->buffer);
2159
2160         ring->dev = dev;
2161         INIT_LIST_HEAD(&ring->active_list);
2162         INIT_LIST_HEAD(&ring->request_list);
2163         INIT_LIST_HEAD(&ring->execlist_queue);
2164         INIT_LIST_HEAD(&ring->buffers);
2165         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2166         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2167
2168         init_waitqueue_head(&ring->irq_queue);
2169
2170         ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2171         if (IS_ERR(ringbuf))
2172                 return PTR_ERR(ringbuf);
2173         ring->buffer = ringbuf;
2174
2175         if (I915_NEED_GFX_HWS(dev)) {
2176                 ret = init_status_page(ring);
2177                 if (ret)
2178                         goto error;
2179         } else {
2180                 BUG_ON(ring->id != RCS);
2181                 ret = init_phys_status_page(ring);
2182                 if (ret)
2183                         goto error;
2184         }
2185
2186         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2187         if (ret) {
2188                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2189                                 ring->name, ret);
2190                 intel_destroy_ringbuffer_obj(ringbuf);
2191                 goto error;
2192         }
2193
2194         ret = i915_cmd_parser_init_ring(ring);
2195         if (ret)
2196                 goto error;
2197
2198         return 0;
2199
2200 error:
2201         intel_ringbuffer_free(ringbuf);
2202         ring->buffer = NULL;
2203         return ret;
2204 }
2205
2206 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2207 {
2208         struct drm_i915_private *dev_priv;
2209
2210         if (!intel_ring_initialized(ring))
2211                 return;
2212
2213         dev_priv = to_i915(ring->dev);
2214
2215         intel_stop_ring_buffer(ring);
2216         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2217
2218         intel_unpin_ringbuffer_obj(ring->buffer);
2219         intel_ringbuffer_free(ring->buffer);
2220         ring->buffer = NULL;
2221
2222         if (ring->cleanup)
2223                 ring->cleanup(ring);
2224
2225         cleanup_status_page(ring);
2226
2227         i915_cmd_parser_fini_ring(ring);
2228         i915_gem_batch_pool_fini(&ring->batch_pool);
2229 }
2230
2231 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2232 {
2233         struct intel_ringbuffer *ringbuf = ring->buffer;
2234         struct drm_i915_gem_request *request;
2235         unsigned space;
2236         int ret;
2237
2238         if (intel_ring_space(ringbuf) >= n)
2239                 return 0;
2240
2241         /* The whole point of reserving space is to not wait! */
2242         WARN_ON(ringbuf->reserved_in_use);
2243
2244         list_for_each_entry(request, &ring->request_list, list) {
2245                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2246                                            ringbuf->size);
2247                 if (space >= n)
2248                         break;
2249         }
2250
2251         if (WARN_ON(&request->list == &ring->request_list))
2252                 return -ENOSPC;
2253
2254         ret = i915_wait_request(request);
2255         if (ret)
2256                 return ret;
2257
2258         ringbuf->space = space;
2259         return 0;
2260 }
2261
2262 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2263 {
2264         uint32_t __iomem *virt;
2265         int rem = ringbuf->size - ringbuf->tail;
2266
2267         virt = ringbuf->virtual_start + ringbuf->tail;
2268         rem /= 4;
2269         while (rem--)
2270                 iowrite32(MI_NOOP, virt++);
2271
2272         ringbuf->tail = 0;
2273         intel_ring_update_space(ringbuf);
2274 }
2275
2276 int intel_ring_idle(struct intel_engine_cs *ring)
2277 {
2278         struct drm_i915_gem_request *req;
2279
2280         /* Wait upon the last request to be completed */
2281         if (list_empty(&ring->request_list))
2282                 return 0;
2283
2284         req = list_entry(ring->request_list.prev,
2285                         struct drm_i915_gem_request,
2286                         list);
2287
2288         /* Make sure we do not trigger any retires */
2289         return __i915_wait_request(req,
2290                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2291                                    to_i915(ring->dev)->mm.interruptible,
2292                                    NULL, NULL);
2293 }
2294
2295 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2296 {
2297         request->ringbuf = request->ring->buffer;
2298         return 0;
2299 }
2300
2301 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2302 {
2303         /*
2304          * The first call merely notes the reserve request and is common for
2305          * all back ends. The subsequent localised _begin() call actually
2306          * ensures that the reservation is available. Without the begin, if
2307          * the request creator immediately submitted the request without
2308          * adding any commands to it then there might not actually be
2309          * sufficient room for the submission commands.
2310          */
2311         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2312
2313         return intel_ring_begin(request, 0);
2314 }
2315
2316 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2317 {
2318         WARN_ON(ringbuf->reserved_size);
2319         WARN_ON(ringbuf->reserved_in_use);
2320
2321         ringbuf->reserved_size = size;
2322 }
2323
2324 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2325 {
2326         WARN_ON(ringbuf->reserved_in_use);
2327
2328         ringbuf->reserved_size   = 0;
2329         ringbuf->reserved_in_use = false;
2330 }
2331
2332 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2333 {
2334         WARN_ON(ringbuf->reserved_in_use);
2335
2336         ringbuf->reserved_in_use = true;
2337         ringbuf->reserved_tail   = ringbuf->tail;
2338 }
2339
2340 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2341 {
2342         WARN_ON(!ringbuf->reserved_in_use);
2343         if (ringbuf->tail > ringbuf->reserved_tail) {
2344                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2345                      "request reserved size too small: %d vs %d!\n",
2346                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2347         } else {
2348                 /*
2349                  * The ring was wrapped while the reserved space was in use.
2350                  * That means that some unknown amount of the ring tail was
2351                  * no-op filled and skipped. Thus simply adding the ring size
2352                  * to the tail and doing the above space check will not work.
2353                  * Rather than attempt to track how much tail was skipped,
2354                  * it is much simpler to say that also skipping the sanity
2355                  * check every once in a while is not a big issue.
2356                  */
2357         }
2358
2359         ringbuf->reserved_size   = 0;
2360         ringbuf->reserved_in_use = false;
2361 }
2362
2363 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2364 {
2365         struct intel_ringbuffer *ringbuf = ring->buffer;
2366         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2367         int remain_actual = ringbuf->size - ringbuf->tail;
2368         int ret, total_bytes, wait_bytes = 0;
2369         bool need_wrap = false;
2370
2371         if (ringbuf->reserved_in_use)
2372                 total_bytes = bytes;
2373         else
2374                 total_bytes = bytes + ringbuf->reserved_size;
2375
2376         if (unlikely(bytes > remain_usable)) {
2377                 /*
2378                  * Not enough space for the basic request. So need to flush
2379                  * out the remainder and then wait for base + reserved.
2380                  */
2381                 wait_bytes = remain_actual + total_bytes;
2382                 need_wrap = true;
2383         } else {
2384                 if (unlikely(total_bytes > remain_usable)) {
2385                         /*
2386                          * The base request will fit but the reserved space
2387                          * falls off the end. So only need to to wait for the
2388                          * reserved size after flushing out the remainder.
2389                          */
2390                         wait_bytes = remain_actual + ringbuf->reserved_size;
2391                         need_wrap = true;
2392                 } else if (total_bytes > ringbuf->space) {
2393                         /* No wrapping required, just waiting. */
2394                         wait_bytes = total_bytes;
2395                 }
2396         }
2397
2398         if (wait_bytes) {
2399                 ret = ring_wait_for_space(ring, wait_bytes);
2400                 if (unlikely(ret))
2401                         return ret;
2402
2403                 if (need_wrap)
2404                         __wrap_ring_buffer(ringbuf);
2405         }
2406
2407         return 0;
2408 }
2409
2410 int intel_ring_begin(struct drm_i915_gem_request *req,
2411                      int num_dwords)
2412 {
2413         struct intel_engine_cs *ring;
2414         struct drm_i915_private *dev_priv;
2415         int ret;
2416
2417         WARN_ON(req == NULL);
2418         ring = req->ring;
2419         dev_priv = ring->dev->dev_private;
2420
2421         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2422                                    dev_priv->mm.interruptible);
2423         if (ret)
2424                 return ret;
2425
2426         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2427         if (ret)
2428                 return ret;
2429
2430         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2431         return 0;
2432 }
2433
2434 /* Align the ring tail to a cacheline boundary */
2435 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2436 {
2437         struct intel_engine_cs *ring = req->ring;
2438         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2439         int ret;
2440
2441         if (num_dwords == 0)
2442                 return 0;
2443
2444         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2445         ret = intel_ring_begin(req, num_dwords);
2446         if (ret)
2447                 return ret;
2448
2449         while (num_dwords--)
2450                 intel_ring_emit(ring, MI_NOOP);
2451
2452         intel_ring_advance(ring);
2453
2454         return 0;
2455 }
2456
2457 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2458 {
2459         struct drm_device *dev = ring->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2463                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2464                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2465                 if (HAS_VEBOX(dev))
2466                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2467         }
2468
2469         ring->set_seqno(ring, seqno);
2470         ring->hangcheck.seqno = seqno;
2471 }
2472
2473 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2474                                      u32 value)
2475 {
2476         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2477
2478        /* Every tail move must follow the sequence below */
2479
2480         /* Disable notification that the ring is IDLE. The GT
2481          * will then assume that it is busy and bring it out of rc6.
2482          */
2483         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2484                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2485
2486         /* Clear the context id. Here be magic! */
2487         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2488
2489         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2490         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2491                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2492                      50))
2493                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2494
2495         /* Now that the ring is fully powered up, update the tail */
2496         I915_WRITE_TAIL(ring, value);
2497         POSTING_READ(RING_TAIL(ring->mmio_base));
2498
2499         /* Let the ring send IDLE messages to the GT again,
2500          * and so let it sleep to conserve power when idle.
2501          */
2502         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2503                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2504 }
2505
2506 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2507                                u32 invalidate, u32 flush)
2508 {
2509         struct intel_engine_cs *ring = req->ring;
2510         uint32_t cmd;
2511         int ret;
2512
2513         ret = intel_ring_begin(req, 4);
2514         if (ret)
2515                 return ret;
2516
2517         cmd = MI_FLUSH_DW;
2518         if (INTEL_INFO(ring->dev)->gen >= 8)
2519                 cmd += 1;
2520
2521         /* We always require a command barrier so that subsequent
2522          * commands, such as breadcrumb interrupts, are strictly ordered
2523          * wrt the contents of the write cache being flushed to memory
2524          * (and thus being coherent from the CPU).
2525          */
2526         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2527
2528         /*
2529          * Bspec vol 1c.5 - video engine command streamer:
2530          * "If ENABLED, all TLBs will be invalidated once the flush
2531          * operation is complete. This bit is only valid when the
2532          * Post-Sync Operation field is a value of 1h or 3h."
2533          */
2534         if (invalidate & I915_GEM_GPU_DOMAINS)
2535                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2536
2537         intel_ring_emit(ring, cmd);
2538         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2539         if (INTEL_INFO(ring->dev)->gen >= 8) {
2540                 intel_ring_emit(ring, 0); /* upper addr */
2541                 intel_ring_emit(ring, 0); /* value */
2542         } else  {
2543                 intel_ring_emit(ring, 0);
2544                 intel_ring_emit(ring, MI_NOOP);
2545         }
2546         intel_ring_advance(ring);
2547         return 0;
2548 }
2549
2550 static int
2551 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2552                               u64 offset, u32 len,
2553                               unsigned dispatch_flags)
2554 {
2555         struct intel_engine_cs *ring = req->ring;
2556         bool ppgtt = USES_PPGTT(ring->dev) &&
2557                         !(dispatch_flags & I915_DISPATCH_SECURE);
2558         int ret;
2559
2560         ret = intel_ring_begin(req, 4);
2561         if (ret)
2562                 return ret;
2563
2564         /* FIXME(BDW): Address space and security selectors. */
2565         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2566                         (dispatch_flags & I915_DISPATCH_RS ?
2567                          MI_BATCH_RESOURCE_STREAMER : 0));
2568         intel_ring_emit(ring, lower_32_bits(offset));
2569         intel_ring_emit(ring, upper_32_bits(offset));
2570         intel_ring_emit(ring, MI_NOOP);
2571         intel_ring_advance(ring);
2572
2573         return 0;
2574 }
2575
2576 static int
2577 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2578                              u64 offset, u32 len,
2579                              unsigned dispatch_flags)
2580 {
2581         struct intel_engine_cs *ring = req->ring;
2582         int ret;
2583
2584         ret = intel_ring_begin(req, 2);
2585         if (ret)
2586                 return ret;
2587
2588         intel_ring_emit(ring,
2589                         MI_BATCH_BUFFER_START |
2590                         (dispatch_flags & I915_DISPATCH_SECURE ?
2591                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2592                         (dispatch_flags & I915_DISPATCH_RS ?
2593                          MI_BATCH_RESOURCE_STREAMER : 0));
2594         /* bit0-7 is the length on GEN6+ */
2595         intel_ring_emit(ring, offset);
2596         intel_ring_advance(ring);
2597
2598         return 0;
2599 }
2600
2601 static int
2602 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2603                               u64 offset, u32 len,
2604                               unsigned dispatch_flags)
2605 {
2606         struct intel_engine_cs *ring = req->ring;
2607         int ret;
2608
2609         ret = intel_ring_begin(req, 2);
2610         if (ret)
2611                 return ret;
2612
2613         intel_ring_emit(ring,
2614                         MI_BATCH_BUFFER_START |
2615                         (dispatch_flags & I915_DISPATCH_SECURE ?
2616                          0 : MI_BATCH_NON_SECURE_I965));
2617         /* bit0-7 is the length on GEN6+ */
2618         intel_ring_emit(ring, offset);
2619         intel_ring_advance(ring);
2620
2621         return 0;
2622 }
2623
2624 /* Blitter support (SandyBridge+) */
2625
2626 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2627                            u32 invalidate, u32 flush)
2628 {
2629         struct intel_engine_cs *ring = req->ring;
2630         struct drm_device *dev = ring->dev;
2631         uint32_t cmd;
2632         int ret;
2633
2634         ret = intel_ring_begin(req, 4);
2635         if (ret)
2636                 return ret;
2637
2638         cmd = MI_FLUSH_DW;
2639         if (INTEL_INFO(dev)->gen >= 8)
2640                 cmd += 1;
2641
2642         /* We always require a command barrier so that subsequent
2643          * commands, such as breadcrumb interrupts, are strictly ordered
2644          * wrt the contents of the write cache being flushed to memory
2645          * (and thus being coherent from the CPU).
2646          */
2647         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2648
2649         /*
2650          * Bspec vol 1c.3 - blitter engine command streamer:
2651          * "If ENABLED, all TLBs will be invalidated once the flush
2652          * operation is complete. This bit is only valid when the
2653          * Post-Sync Operation field is a value of 1h or 3h."
2654          */
2655         if (invalidate & I915_GEM_DOMAIN_RENDER)
2656                 cmd |= MI_INVALIDATE_TLB;
2657         intel_ring_emit(ring, cmd);
2658         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2659         if (INTEL_INFO(dev)->gen >= 8) {
2660                 intel_ring_emit(ring, 0); /* upper addr */
2661                 intel_ring_emit(ring, 0); /* value */
2662         } else  {
2663                 intel_ring_emit(ring, 0);
2664                 intel_ring_emit(ring, MI_NOOP);
2665         }
2666         intel_ring_advance(ring);
2667
2668         return 0;
2669 }
2670
2671 int intel_init_render_ring_buffer(struct drm_device *dev)
2672 {
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2675         struct drm_i915_gem_object *obj;
2676         int ret;
2677
2678         ring->name = "render ring";
2679         ring->id = RCS;
2680         ring->mmio_base = RENDER_RING_BASE;
2681
2682         if (INTEL_INFO(dev)->gen >= 8) {
2683                 if (i915_semaphore_is_enabled(dev)) {
2684                         obj = i915_gem_alloc_object(dev, 4096);
2685                         if (obj == NULL) {
2686                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2687                                 i915.semaphores = 0;
2688                         } else {
2689                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2690                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2691                                 if (ret != 0) {
2692                                         drm_gem_object_unreference(&obj->base);
2693                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2694                                         i915.semaphores = 0;
2695                                 } else
2696                                         dev_priv->semaphore_obj = obj;
2697                         }
2698                 }
2699
2700                 ring->init_context = intel_rcs_ctx_init;
2701                 ring->add_request = gen6_add_request;
2702                 ring->flush = gen8_render_ring_flush;
2703                 ring->irq_get = gen8_ring_get_irq;
2704                 ring->irq_put = gen8_ring_put_irq;
2705                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2706                 ring->get_seqno = gen6_ring_get_seqno;
2707                 ring->set_seqno = ring_set_seqno;
2708                 if (i915_semaphore_is_enabled(dev)) {
2709                         WARN_ON(!dev_priv->semaphore_obj);
2710                         ring->semaphore.sync_to = gen8_ring_sync;
2711                         ring->semaphore.signal = gen8_rcs_signal;
2712                         GEN8_RING_SEMAPHORE_INIT;
2713                 }
2714         } else if (INTEL_INFO(dev)->gen >= 6) {
2715                 ring->init_context = intel_rcs_ctx_init;
2716                 ring->add_request = gen6_add_request;
2717                 ring->flush = gen7_render_ring_flush;
2718                 if (INTEL_INFO(dev)->gen == 6)
2719                         ring->flush = gen6_render_ring_flush;
2720                 ring->irq_get = gen6_ring_get_irq;
2721                 ring->irq_put = gen6_ring_put_irq;
2722                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2723                 ring->get_seqno = gen6_ring_get_seqno;
2724                 ring->set_seqno = ring_set_seqno;
2725                 if (i915_semaphore_is_enabled(dev)) {
2726                         ring->semaphore.sync_to = gen6_ring_sync;
2727                         ring->semaphore.signal = gen6_signal;
2728                         /*
2729                          * The current semaphore is only applied on pre-gen8
2730                          * platform.  And there is no VCS2 ring on the pre-gen8
2731                          * platform. So the semaphore between RCS and VCS2 is
2732                          * initialized as INVALID.  Gen8 will initialize the
2733                          * sema between VCS2 and RCS later.
2734                          */
2735                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2736                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2737                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2738                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2739                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2740                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2741                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2742                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2743                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2744                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2745                 }
2746         } else if (IS_GEN5(dev)) {
2747                 ring->add_request = pc_render_add_request;
2748                 ring->flush = gen4_render_ring_flush;
2749                 ring->get_seqno = pc_render_get_seqno;
2750                 ring->set_seqno = pc_render_set_seqno;
2751                 ring->irq_get = gen5_ring_get_irq;
2752                 ring->irq_put = gen5_ring_put_irq;
2753                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2754                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2755         } else {
2756                 ring->add_request = i9xx_add_request;
2757                 if (INTEL_INFO(dev)->gen < 4)
2758                         ring->flush = gen2_render_ring_flush;
2759                 else
2760                         ring->flush = gen4_render_ring_flush;
2761                 ring->get_seqno = ring_get_seqno;
2762                 ring->set_seqno = ring_set_seqno;
2763                 if (IS_GEN2(dev)) {
2764                         ring->irq_get = i8xx_ring_get_irq;
2765                         ring->irq_put = i8xx_ring_put_irq;
2766                 } else {
2767                         ring->irq_get = i9xx_ring_get_irq;
2768                         ring->irq_put = i9xx_ring_put_irq;
2769                 }
2770                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2771         }
2772         ring->write_tail = ring_write_tail;
2773
2774         if (IS_HASWELL(dev))
2775                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2776         else if (IS_GEN8(dev))
2777                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2778         else if (INTEL_INFO(dev)->gen >= 6)
2779                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2780         else if (INTEL_INFO(dev)->gen >= 4)
2781                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2782         else if (IS_I830(dev) || IS_845G(dev))
2783                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2784         else
2785                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2786         ring->init_hw = init_render_ring;
2787         ring->cleanup = render_ring_cleanup;
2788
2789         /* Workaround batchbuffer to combat CS tlb bug. */
2790         if (HAS_BROKEN_CS_TLB(dev)) {
2791                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2792                 if (obj == NULL) {
2793                         DRM_ERROR("Failed to allocate batch bo\n");
2794                         return -ENOMEM;
2795                 }
2796
2797                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2798                 if (ret != 0) {
2799                         drm_gem_object_unreference(&obj->base);
2800                         DRM_ERROR("Failed to ping batch bo\n");
2801                         return ret;
2802                 }
2803
2804                 ring->scratch.obj = obj;
2805                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2806         }
2807
2808         ret = intel_init_ring_buffer(dev, ring);
2809         if (ret)
2810                 return ret;
2811
2812         if (INTEL_INFO(dev)->gen >= 5) {
2813                 ret = intel_init_pipe_control(ring);
2814                 if (ret)
2815                         return ret;
2816         }
2817
2818         return 0;
2819 }
2820
2821 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2822 {
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2825
2826         ring->name = "bsd ring";
2827         ring->id = VCS;
2828
2829         ring->write_tail = ring_write_tail;
2830         if (INTEL_INFO(dev)->gen >= 6) {
2831                 ring->mmio_base = GEN6_BSD_RING_BASE;
2832                 /* gen6 bsd needs a special wa for tail updates */
2833                 if (IS_GEN6(dev))
2834                         ring->write_tail = gen6_bsd_ring_write_tail;
2835                 ring->flush = gen6_bsd_ring_flush;
2836                 ring->add_request = gen6_add_request;
2837                 ring->get_seqno = gen6_ring_get_seqno;
2838                 ring->set_seqno = ring_set_seqno;
2839                 if (INTEL_INFO(dev)->gen >= 8) {
2840                         ring->irq_enable_mask =
2841                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2842                         ring->irq_get = gen8_ring_get_irq;
2843                         ring->irq_put = gen8_ring_put_irq;
2844                         ring->dispatch_execbuffer =
2845                                 gen8_ring_dispatch_execbuffer;
2846                         if (i915_semaphore_is_enabled(dev)) {
2847                                 ring->semaphore.sync_to = gen8_ring_sync;
2848                                 ring->semaphore.signal = gen8_xcs_signal;
2849                                 GEN8_RING_SEMAPHORE_INIT;
2850                         }
2851                 } else {
2852                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2853                         ring->irq_get = gen6_ring_get_irq;
2854                         ring->irq_put = gen6_ring_put_irq;
2855                         ring->dispatch_execbuffer =
2856                                 gen6_ring_dispatch_execbuffer;
2857                         if (i915_semaphore_is_enabled(dev)) {
2858                                 ring->semaphore.sync_to = gen6_ring_sync;
2859                                 ring->semaphore.signal = gen6_signal;
2860                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2861                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2862                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2863                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2864                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2865                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2866                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2867                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2868                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2869                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2870                         }
2871                 }
2872         } else {
2873                 ring->mmio_base = BSD_RING_BASE;
2874                 ring->flush = bsd_ring_flush;
2875                 ring->add_request = i9xx_add_request;
2876                 ring->get_seqno = ring_get_seqno;
2877                 ring->set_seqno = ring_set_seqno;
2878                 if (IS_GEN5(dev)) {
2879                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2880                         ring->irq_get = gen5_ring_get_irq;
2881                         ring->irq_put = gen5_ring_put_irq;
2882                 } else {
2883                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2884                         ring->irq_get = i9xx_ring_get_irq;
2885                         ring->irq_put = i9xx_ring_put_irq;
2886                 }
2887                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2888         }
2889         ring->init_hw = init_ring_common;
2890
2891         return intel_init_ring_buffer(dev, ring);
2892 }
2893
2894 /**
2895  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2896  */
2897 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2898 {
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2901
2902         ring->name = "bsd2 ring";
2903         ring->id = VCS2;
2904
2905         ring->write_tail = ring_write_tail;
2906         ring->mmio_base = GEN8_BSD2_RING_BASE;
2907         ring->flush = gen6_bsd_ring_flush;
2908         ring->add_request = gen6_add_request;
2909         ring->get_seqno = gen6_ring_get_seqno;
2910         ring->set_seqno = ring_set_seqno;
2911         ring->irq_enable_mask =
2912                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2913         ring->irq_get = gen8_ring_get_irq;
2914         ring->irq_put = gen8_ring_put_irq;
2915         ring->dispatch_execbuffer =
2916                         gen8_ring_dispatch_execbuffer;
2917         if (i915_semaphore_is_enabled(dev)) {
2918                 ring->semaphore.sync_to = gen8_ring_sync;
2919                 ring->semaphore.signal = gen8_xcs_signal;
2920                 GEN8_RING_SEMAPHORE_INIT;
2921         }
2922         ring->init_hw = init_ring_common;
2923
2924         return intel_init_ring_buffer(dev, ring);
2925 }
2926
2927 int intel_init_blt_ring_buffer(struct drm_device *dev)
2928 {
2929         struct drm_i915_private *dev_priv = dev->dev_private;
2930         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2931
2932         ring->name = "blitter ring";
2933         ring->id = BCS;
2934
2935         ring->mmio_base = BLT_RING_BASE;
2936         ring->write_tail = ring_write_tail;
2937         ring->flush = gen6_ring_flush;
2938         ring->add_request = gen6_add_request;
2939         ring->get_seqno = gen6_ring_get_seqno;
2940         ring->set_seqno = ring_set_seqno;
2941         if (INTEL_INFO(dev)->gen >= 8) {
2942                 ring->irq_enable_mask =
2943                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2944                 ring->irq_get = gen8_ring_get_irq;
2945                 ring->irq_put = gen8_ring_put_irq;
2946                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2947                 if (i915_semaphore_is_enabled(dev)) {
2948                         ring->semaphore.sync_to = gen8_ring_sync;
2949                         ring->semaphore.signal = gen8_xcs_signal;
2950                         GEN8_RING_SEMAPHORE_INIT;
2951                 }
2952         } else {
2953                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2954                 ring->irq_get = gen6_ring_get_irq;
2955                 ring->irq_put = gen6_ring_put_irq;
2956                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2957                 if (i915_semaphore_is_enabled(dev)) {
2958                         ring->semaphore.signal = gen6_signal;
2959                         ring->semaphore.sync_to = gen6_ring_sync;
2960                         /*
2961                          * The current semaphore is only applied on pre-gen8
2962                          * platform.  And there is no VCS2 ring on the pre-gen8
2963                          * platform. So the semaphore between BCS and VCS2 is
2964                          * initialized as INVALID.  Gen8 will initialize the
2965                          * sema between BCS and VCS2 later.
2966                          */
2967                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2968                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2969                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2970                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2971                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2972                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2973                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2974                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2975                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2976                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2977                 }
2978         }
2979         ring->init_hw = init_ring_common;
2980
2981         return intel_init_ring_buffer(dev, ring);
2982 }
2983
2984 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2988
2989         ring->name = "video enhancement ring";
2990         ring->id = VECS;
2991
2992         ring->mmio_base = VEBOX_RING_BASE;
2993         ring->write_tail = ring_write_tail;
2994         ring->flush = gen6_ring_flush;
2995         ring->add_request = gen6_add_request;
2996         ring->get_seqno = gen6_ring_get_seqno;
2997         ring->set_seqno = ring_set_seqno;
2998
2999         if (INTEL_INFO(dev)->gen >= 8) {
3000                 ring->irq_enable_mask =
3001                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3002                 ring->irq_get = gen8_ring_get_irq;
3003                 ring->irq_put = gen8_ring_put_irq;
3004                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3005                 if (i915_semaphore_is_enabled(dev)) {
3006                         ring->semaphore.sync_to = gen8_ring_sync;
3007                         ring->semaphore.signal = gen8_xcs_signal;
3008                         GEN8_RING_SEMAPHORE_INIT;
3009                 }
3010         } else {
3011                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3012                 ring->irq_get = hsw_vebox_get_irq;
3013                 ring->irq_put = hsw_vebox_put_irq;
3014                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3015                 if (i915_semaphore_is_enabled(dev)) {
3016                         ring->semaphore.sync_to = gen6_ring_sync;
3017                         ring->semaphore.signal = gen6_signal;
3018                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3019                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3020                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3021                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3022                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3023                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3024                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3025                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3026                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3027                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3028                 }
3029         }
3030         ring->init_hw = init_ring_common;
3031
3032         return intel_init_ring_buffer(dev, ring);
3033 }
3034
3035 int
3036 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3037 {
3038         struct intel_engine_cs *ring = req->ring;
3039         int ret;
3040
3041         if (!ring->gpu_caches_dirty)
3042                 return 0;
3043
3044         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3045         if (ret)
3046                 return ret;
3047
3048         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3049
3050         ring->gpu_caches_dirty = false;
3051         return 0;
3052 }
3053
3054 int
3055 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3056 {
3057         struct intel_engine_cs *ring = req->ring;
3058         uint32_t flush_domains;
3059         int ret;
3060
3061         flush_domains = 0;
3062         if (ring->gpu_caches_dirty)
3063                 flush_domains = I915_GEM_GPU_DOMAINS;
3064
3065         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3066         if (ret)
3067                 return ret;
3068
3069         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3070
3071         ring->gpu_caches_dirty = false;
3072         return 0;
3073 }
3074
3075 void
3076 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3077 {
3078         int ret;
3079
3080         if (!intel_ring_initialized(ring))
3081                 return;
3082
3083         ret = intel_ring_idle(ring);
3084         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3085                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3086                           ring->name, ret);
3087
3088         stop_ring(ring);
3089 }