]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c
drm/nouveau/clk: switch to new-style timer macros
[linux-beck.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <subdev/clk.h>
25 #include "pll.h"
26
27 #include <subdev/bios.h>
28 #include <subdev/bios/pll.h>
29 #include <subdev/timer.h>
30
31 struct gf100_clk_info {
32         u32 freq;
33         u32 ssel;
34         u32 mdiv;
35         u32 dsrc;
36         u32 ddiv;
37         u32 coef;
38 };
39
40 struct gf100_clk {
41         struct nvkm_clk base;
42         struct gf100_clk_info eng[16];
43 };
44
45 static u32 read_div(struct gf100_clk *, int, u32, u32);
46
47 static u32
48 read_vco(struct gf100_clk *clk, u32 dsrc)
49 {
50         struct nvkm_device *device = clk->base.subdev.device;
51         u32 ssrc = nvkm_rd32(device, dsrc);
52         if (!(ssrc & 0x00000100))
53                 return clk->base.read(&clk->base, nv_clk_src_sppll0);
54         return clk->base.read(&clk->base, nv_clk_src_sppll1);
55 }
56
57 static u32
58 read_pll(struct gf100_clk *clk, u32 pll)
59 {
60         struct nvkm_device *device = clk->base.subdev.device;
61         u32 ctrl = nvkm_rd32(device, pll + 0x00);
62         u32 coef = nvkm_rd32(device, pll + 0x04);
63         u32 P = (coef & 0x003f0000) >> 16;
64         u32 N = (coef & 0x0000ff00) >> 8;
65         u32 M = (coef & 0x000000ff) >> 0;
66         u32 sclk;
67
68         if (!(ctrl & 0x00000001))
69                 return 0;
70
71         switch (pll) {
72         case 0x00e800:
73         case 0x00e820:
74                 sclk = device->crystal;
75                 P = 1;
76                 break;
77         case 0x132000:
78                 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc);
79                 break;
80         case 0x132020:
81                 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref);
82                 break;
83         case 0x137000:
84         case 0x137020:
85         case 0x137040:
86         case 0x1370e0:
87                 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
88                 break;
89         default:
90                 return 0;
91         }
92
93         return sclk * N / M / P;
94 }
95
96 static u32
97 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
98 {
99         struct nvkm_device *device = clk->base.subdev.device;
100         u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
101         u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
102
103         switch (ssrc & 0x00000003) {
104         case 0:
105                 if ((ssrc & 0x00030000) != 0x00030000)
106                         return device->crystal;
107                 return 108000;
108         case 2:
109                 return 100000;
110         case 3:
111                 if (sctl & 0x80000000) {
112                         u32 sclk = read_vco(clk, dsrc + (doff * 4));
113                         u32 sdiv = (sctl & 0x0000003f) + 2;
114                         return (sclk * 2) / sdiv;
115                 }
116
117                 return read_vco(clk, dsrc + (doff * 4));
118         default:
119                 return 0;
120         }
121 }
122
123 static u32
124 read_clk(struct gf100_clk *clk, int idx)
125 {
126         struct nvkm_device *device = clk->base.subdev.device;
127         u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
128         u32 ssel = nvkm_rd32(device, 0x137100);
129         u32 sclk, sdiv;
130
131         if (ssel & (1 << idx)) {
132                 if (idx < 7)
133                         sclk = read_pll(clk, 0x137000 + (idx * 0x20));
134                 else
135                         sclk = read_pll(clk, 0x1370e0);
136                 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
137         } else {
138                 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
139                 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
140         }
141
142         if (sctl & 0x80000000)
143                 return (sclk * 2) / sdiv;
144
145         return sclk;
146 }
147
148 static int
149 gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
150 {
151         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
152         struct nvkm_device *device = clk->base.subdev.device;
153
154         switch (src) {
155         case nv_clk_src_crystal:
156                 return device->crystal;
157         case nv_clk_src_href:
158                 return 100000;
159         case nv_clk_src_sppll0:
160                 return read_pll(clk, 0x00e800);
161         case nv_clk_src_sppll1:
162                 return read_pll(clk, 0x00e820);
163
164         case nv_clk_src_mpllsrcref:
165                 return read_div(clk, 0, 0x137320, 0x137330);
166         case nv_clk_src_mpllsrc:
167                 return read_pll(clk, 0x132020);
168         case nv_clk_src_mpll:
169                 return read_pll(clk, 0x132000);
170         case nv_clk_src_mdiv:
171                 return read_div(clk, 0, 0x137300, 0x137310);
172         case nv_clk_src_mem:
173                 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
174                         return clk->base.read(&clk->base, nv_clk_src_mpll);
175                 return clk->base.read(&clk->base, nv_clk_src_mdiv);
176
177         case nv_clk_src_gpc:
178                 return read_clk(clk, 0x00);
179         case nv_clk_src_rop:
180                 return read_clk(clk, 0x01);
181         case nv_clk_src_hubk07:
182                 return read_clk(clk, 0x02);
183         case nv_clk_src_hubk06:
184                 return read_clk(clk, 0x07);
185         case nv_clk_src_hubk01:
186                 return read_clk(clk, 0x08);
187         case nv_clk_src_copy:
188                 return read_clk(clk, 0x09);
189         case nv_clk_src_daemon:
190                 return read_clk(clk, 0x0c);
191         case nv_clk_src_vdec:
192                 return read_clk(clk, 0x0e);
193         default:
194                 nv_error(clk, "invalid clock source %d\n", src);
195                 return -EINVAL;
196         }
197 }
198
199 static u32
200 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
201 {
202         u32 div = min((ref * 2) / freq, (u32)65);
203         if (div < 2)
204                 div = 2;
205
206         *ddiv = div - 2;
207         return (ref * 2) / div;
208 }
209
210 static u32
211 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
212 {
213         u32 sclk;
214
215         /* use one of the fixed frequencies if possible */
216         *ddiv = 0x00000000;
217         switch (freq) {
218         case  27000:
219         case 108000:
220                 *dsrc = 0x00000000;
221                 if (freq == 108000)
222                         *dsrc |= 0x00030000;
223                 return freq;
224         case 100000:
225                 *dsrc = 0x00000002;
226                 return freq;
227         default:
228                 *dsrc = 0x00000003;
229                 break;
230         }
231
232         /* otherwise, calculate the closest divider */
233         sclk = read_vco(clk, 0x137160 + (idx * 4));
234         if (idx < 7)
235                 sclk = calc_div(clk, idx, sclk, freq, ddiv);
236         return sclk;
237 }
238
239 static u32
240 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
241 {
242         struct nvkm_bios *bios = nvkm_bios(clk);
243         struct nvbios_pll limits;
244         int N, M, P, ret;
245
246         ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
247         if (ret)
248                 return 0;
249
250         limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
251         if (!limits.refclk)
252                 return 0;
253
254         ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P);
255         if (ret <= 0)
256                 return 0;
257
258         *coef = (P << 16) | (N << 8) | M;
259         return ret;
260 }
261
262 static int
263 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
264 {
265         struct gf100_clk_info *info = &clk->eng[idx];
266         u32 freq = cstate->domain[dom];
267         u32 src0, div0, div1D, div1P = 0;
268         u32 clk0, clk1 = 0;
269
270         /* invalid clock domain */
271         if (!freq)
272                 return 0;
273
274         /* first possible path, using only dividers */
275         clk0 = calc_src(clk, idx, freq, &src0, &div0);
276         clk0 = calc_div(clk, idx, clk0, freq, &div1D);
277
278         /* see if we can get any closer using PLLs */
279         if (clk0 != freq && (0x00004387 & (1 << idx))) {
280                 if (idx <= 7)
281                         clk1 = calc_pll(clk, idx, freq, &info->coef);
282                 else
283                         clk1 = cstate->domain[nv_clk_src_hubk06];
284                 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
285         }
286
287         /* select the method which gets closest to target freq */
288         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
289                 info->dsrc = src0;
290                 if (div0) {
291                         info->ddiv |= 0x80000000;
292                         info->ddiv |= div0 << 8;
293                         info->ddiv |= div0;
294                 }
295                 if (div1D) {
296                         info->mdiv |= 0x80000000;
297                         info->mdiv |= div1D;
298                 }
299                 info->ssel = info->coef = 0;
300                 info->freq = clk0;
301         } else {
302                 if (div1P) {
303                         info->mdiv |= 0x80000000;
304                         info->mdiv |= div1P << 8;
305                 }
306                 info->ssel = (1 << idx);
307                 info->freq = clk1;
308         }
309
310         return 0;
311 }
312
313 static int
314 gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
315 {
316         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
317         int ret;
318
319         if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
320             (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
321             (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
322             (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
323             (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
324             (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
325             (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
326             (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
327                 return ret;
328
329         return 0;
330 }
331
332 static void
333 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
334 {
335         struct gf100_clk_info *info = &clk->eng[idx];
336         struct nvkm_device *device = clk->base.subdev.device;
337         if (idx < 7 && !info->ssel) {
338                 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
339                 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
340         }
341 }
342
343 static void
344 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
345 {
346         struct nvkm_device *device = clk->base.subdev.device;
347         nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
348         nvkm_msec(device, 2000,
349                 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
350                         break;
351         );
352 }
353
354 static void
355 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
356 {
357         struct gf100_clk_info *info = &clk->eng[idx];
358         struct nvkm_device *device = clk->base.subdev.device;
359         const u32 addr = 0x137000 + (idx * 0x20);
360         if (idx <= 7) {
361                 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
362                 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
363                 if (info->coef) {
364                         nvkm_wr32(device, addr + 0x04, info->coef);
365                         nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
366                         nvkm_msec(device, 2000,
367                                 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
368                                         break;
369                         );
370                         nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
371                 }
372         }
373 }
374
375 static void
376 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
377 {
378         struct gf100_clk_info *info = &clk->eng[idx];
379         struct nvkm_device *device = clk->base.subdev.device;
380         if (info->ssel) {
381                 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
382                 nvkm_msec(device, 2000,
383                         u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
384                         if (tmp == info->ssel)
385                                 break;
386                 );
387         }
388 }
389
390 static void
391 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
392 {
393         struct gf100_clk_info *info = &clk->eng[idx];
394         struct nvkm_device *device = clk->base.subdev.device;
395         nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
396 }
397
398 static int
399 gf100_clk_prog(struct nvkm_clk *obj)
400 {
401         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
402         struct {
403                 void (*exec)(struct gf100_clk *, int);
404         } stage[] = {
405                 { gf100_clk_prog_0 }, /* div programming */
406                 { gf100_clk_prog_1 }, /* select div mode */
407                 { gf100_clk_prog_2 }, /* (maybe) program pll */
408                 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
409                 { gf100_clk_prog_4 }, /* final divider */
410         };
411         int i, j;
412
413         for (i = 0; i < ARRAY_SIZE(stage); i++) {
414                 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
415                         if (!clk->eng[j].freq)
416                                 continue;
417                         stage[i].exec(clk, j);
418                 }
419         }
420
421         return 0;
422 }
423
424 static void
425 gf100_clk_tidy(struct nvkm_clk *obj)
426 {
427         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
428         memset(clk->eng, 0x00, sizeof(clk->eng));
429 }
430
431 static struct nvkm_domain
432 gf100_domain[] = {
433         { nv_clk_src_crystal, 0xff },
434         { nv_clk_src_href   , 0xff },
435         { nv_clk_src_hubk06 , 0x00 },
436         { nv_clk_src_hubk01 , 0x01 },
437         { nv_clk_src_copy   , 0x02 },
438         { nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
439         { nv_clk_src_rop    , 0x04 },
440         { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
441         { nv_clk_src_vdec   , 0x06 },
442         { nv_clk_src_daemon , 0x0a },
443         { nv_clk_src_hubk07 , 0x0b },
444         { nv_clk_src_max }
445 };
446
447 static int
448 gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
449                struct nvkm_oclass *oclass, void *data, u32 size,
450                struct nvkm_object **pobject)
451 {
452         struct gf100_clk *clk;
453         int ret;
454
455         ret = nvkm_clk_create(parent, engine, oclass, gf100_domain,
456                               NULL, 0, false, &clk);
457         *pobject = nv_object(clk);
458         if (ret)
459                 return ret;
460
461         clk->base.read = gf100_clk_read;
462         clk->base.calc = gf100_clk_calc;
463         clk->base.prog = gf100_clk_prog;
464         clk->base.tidy = gf100_clk_tidy;
465         return 0;
466 }
467
468 struct nvkm_oclass
469 gf100_clk_oclass = {
470         .handle = NV_SUBDEV(CLK, 0xc0),
471         .ofuncs = &(struct nvkm_ofuncs) {
472                 .ctor = gf100_clk_ctor,
473                 .dtor = _nvkm_clk_dtor,
474                 .init = _nvkm_clk_init,
475                 .fini = _nvkm_clk_fini,
476         },
477 };