]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
drm/nouveau/clk/gk20a: emit parent rate as debug message
[linux-beck.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2  * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30
31 #define KHZ (1000)
32 #define MHZ (KHZ * 1000)
33
34 #define MASK(w) ((1 << w) - 1)
35
36 #define SYS_GPCPLL_CFG_BASE                     0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
38
39 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE       BIT(0)
41 #define GPCPLL_CFG_IDDQ         BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
43 #define GPCPLL_CFG_LOCK         BIT(17)
44
45 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT    0
47 #define GPCPLL_COEFF_M_WIDTH    8
48 #define GPCPLL_COEFF_N_SHIFT    8
49 #define GPCPLL_COEFF_N_WIDTH    8
50 #define GPCPLL_COEFF_P_SHIFT    16
51 #define GPCPLL_COEFF_P_WIDTH    6
52
53 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT        16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
56
57 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
59
60 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
66
67 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
69
70 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
74 #define GPC2CLK_OUT_VCODIV_WIDTH        6
75 #define GPC2CLK_OUT_VCODIV_SHIFT        8
76 #define GPC2CLK_OUT_VCODIV1             0
77 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78                                         GPC2CLK_OUT_VCODIV_SHIFT)
79 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
81 #define GPC2CLK_OUT_BYPDIV31            0x3c
82 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95
96 static const u8 pl_to_div[] = {
97 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100
101 /* All frequencies in Khz */
102 struct gk20a_clk_pllg_params {
103         u32 min_vco, max_vco;
104         u32 min_u, max_u;
105         u32 min_m, max_m;
106         u32 min_n, max_n;
107         u32 min_pl, max_pl;
108 };
109
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111         .min_vco = 1000000, .max_vco = 2064000,
112         .min_u = 12000, .max_u = 38000,
113         .min_m = 1, .max_m = 255,
114         .min_n = 8, .max_n = 255,
115         .min_pl = 1, .max_pl = 32,
116 };
117
118 struct gk20a_clk {
119         struct nvkm_clk base;
120         const struct gk20a_clk_pllg_params *params;
121         u32 m, n, pl;
122         u32 parent_rate;
123 };
124
125 static void
126 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
127 {
128         struct nvkm_device *device = clk->base.subdev.device;
129         u32 val;
130
131         val = nvkm_rd32(device, GPCPLL_COEFF);
132         clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
133         clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
134         clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
135 }
136
137 static u32
138 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
139 {
140         u32 rate;
141         u32 divider;
142
143         rate = clk->parent_rate * clk->n;
144         divider = clk->m * pl_to_div[clk->pl];
145
146         return rate / divider / 2;
147 }
148
149 static int
150 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
151 {
152         struct nvkm_subdev *subdev = &clk->base.subdev;
153         u32 target_clk_f, ref_clk_f, target_freq;
154         u32 min_vco_f, max_vco_f;
155         u32 low_pl, high_pl, best_pl;
156         u32 target_vco_f;
157         u32 best_m, best_n;
158         u32 best_delta = ~0;
159         u32 pl;
160
161         target_clk_f = rate * 2 / KHZ;
162         ref_clk_f = clk->parent_rate / KHZ;
163
164         max_vco_f = clk->params->max_vco;
165         min_vco_f = clk->params->min_vco;
166         best_m = clk->params->max_m;
167         best_n = clk->params->min_n;
168         best_pl = clk->params->min_pl;
169
170         target_vco_f = target_clk_f + target_clk_f / 50;
171         if (max_vco_f < target_vco_f)
172                 max_vco_f = target_vco_f;
173
174         /* min_pl <= high_pl <= max_pl */
175         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
176         high_pl = min(high_pl, clk->params->max_pl);
177         high_pl = max(high_pl, clk->params->min_pl);
178
179         /* min_pl <= low_pl <= max_pl */
180         low_pl = min_vco_f / target_vco_f;
181         low_pl = min(low_pl, clk->params->max_pl);
182         low_pl = max(low_pl, clk->params->min_pl);
183
184         /* Find Indices of high_pl and low_pl */
185         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
186                 if (pl_to_div[pl] >= low_pl) {
187                         low_pl = pl;
188                         break;
189                 }
190         }
191         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
192                 if (pl_to_div[pl] >= high_pl) {
193                         high_pl = pl;
194                         break;
195                 }
196         }
197
198         nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
199                    pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
200
201         /* Select lowest possible VCO */
202         for (pl = low_pl; pl <= high_pl; pl++) {
203                 u32 m, n, n2;
204
205                 target_vco_f = target_clk_f * pl_to_div[pl];
206                 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
207                         u32 u_f, vco_f;
208
209                         u_f = ref_clk_f / m;
210
211                         if (u_f < clk->params->min_u)
212                                 break;
213                         if (u_f > clk->params->max_u)
214                                 continue;
215
216                         n = (target_vco_f * m) / ref_clk_f;
217                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
218
219                         if (n > clk->params->max_n)
220                                 break;
221
222                         for (; n <= n2; n++) {
223                                 if (n < clk->params->min_n)
224                                         continue;
225                                 if (n > clk->params->max_n)
226                                         break;
227
228                                 vco_f = ref_clk_f * n / m;
229
230                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
231                                         u32 delta, lwv;
232
233                                         lwv = (vco_f + (pl_to_div[pl] / 2))
234                                                 / pl_to_div[pl];
235                                         delta = abs(lwv - target_clk_f);
236
237                                         if (delta < best_delta) {
238                                                 best_delta = delta;
239                                                 best_m = m;
240                                                 best_n = n;
241                                                 best_pl = pl;
242
243                                                 if (best_delta == 0)
244                                                         goto found_match;
245                                         }
246                                 }
247                         }
248                 }
249         }
250
251 found_match:
252         WARN_ON(best_delta == ~0);
253
254         if (best_delta != 0)
255                 nvkm_debug(subdev,
256                            "no best match for target @ %dMHz on gpc_pll",
257                            target_clk_f / KHZ);
258
259         clk->m = best_m;
260         clk->n = best_n;
261         clk->pl = best_pl;
262
263         target_freq = gk20a_pllg_calc_rate(clk);
264
265         nvkm_debug(subdev,
266                    "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
267                    target_freq / MHZ, clk->m, clk->n, clk->pl,
268                    pl_to_div[clk->pl]);
269         return 0;
270 }
271
272 static int
273 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
274 {
275         struct nvkm_subdev *subdev = &clk->base.subdev;
276         struct nvkm_device *device = subdev->device;
277         u32 val;
278         int ramp_timeout;
279
280         /* get old coefficients */
281         val = nvkm_rd32(device, GPCPLL_COEFF);
282         /* do nothing if NDIV is the same */
283         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
284                 return 0;
285
286         /* setup */
287         nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
288                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
289         nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
290                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
291
292         /* pll slowdown mode */
293         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
294                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
295                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
296
297         /* new ndiv ready for ramp */
298         val = nvkm_rd32(device, GPCPLL_COEFF);
299         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
300         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
301         udelay(1);
302         nvkm_wr32(device, GPCPLL_COEFF, val);
303
304         /* dynamic ramp to new ndiv */
305         val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
306         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
307         udelay(1);
308         nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
309
310         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
311                 udelay(1);
312                 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
313                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
314                         break;
315         }
316
317         /* exit slowdown mode */
318         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
319                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
320                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
321         nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
322
323         if (ramp_timeout <= 0) {
324                 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
325                 return -ETIMEDOUT;
326         }
327
328         return 0;
329 }
330
331 static void
332 gk20a_pllg_enable(struct gk20a_clk *clk)
333 {
334         struct nvkm_device *device = clk->base.subdev.device;
335
336         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
337         nvkm_rd32(device, GPCPLL_CFG);
338 }
339
340 static void
341 gk20a_pllg_disable(struct gk20a_clk *clk)
342 {
343         struct nvkm_device *device = clk->base.subdev.device;
344
345         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
346         nvkm_rd32(device, GPCPLL_CFG);
347 }
348
349 static int
350 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
351 {
352         struct nvkm_subdev *subdev = &clk->base.subdev;
353         struct nvkm_device *device = subdev->device;
354         u32 val, cfg;
355         u32 m_old, pl_old, n_lo;
356
357         /* get old coefficients */
358         val = nvkm_rd32(device, GPCPLL_COEFF);
359         m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
360         pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
361
362         /* do NDIV slide if there is no change in M and PL */
363         cfg = nvkm_rd32(device, GPCPLL_CFG);
364         if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
365             (cfg & GPCPLL_CFG_ENABLE)) {
366                 return gk20a_pllg_slide(clk, clk->n);
367         }
368
369         /* slide down to NDIV_LO */
370         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
371                 int ret;
372
373                 n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
374                                     clk->parent_rate / KHZ);
375                 ret = gk20a_pllg_slide(clk, n_lo);
376
377                 if (ret)
378                         return ret;
379         }
380
381         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
382         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
383                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
384
385         /* put PLL in bypass before programming it */
386         val = nvkm_rd32(device, SEL_VCO);
387         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
388         udelay(2);
389         nvkm_wr32(device, SEL_VCO, val);
390
391         /* get out from IDDQ */
392         val = nvkm_rd32(device, GPCPLL_CFG);
393         if (val & GPCPLL_CFG_IDDQ) {
394                 val &= ~GPCPLL_CFG_IDDQ;
395                 nvkm_wr32(device, GPCPLL_CFG, val);
396                 nvkm_rd32(device, GPCPLL_CFG);
397                 udelay(2);
398         }
399
400         gk20a_pllg_disable(clk);
401
402         nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
403                    clk->m, clk->n, clk->pl);
404
405         n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
406                             clk->parent_rate / KHZ);
407         val = clk->m << GPCPLL_COEFF_M_SHIFT;
408         val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
409         val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
410         nvkm_wr32(device, GPCPLL_COEFF, val);
411
412         gk20a_pllg_enable(clk);
413
414         val = nvkm_rd32(device, GPCPLL_CFG);
415         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
416                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
417                 nvkm_wr32(device, GPCPLL_CFG, val);
418         }
419
420         if (nvkm_usec(device, 300,
421                 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
422                         break;
423         ) < 0)
424                 return -ETIMEDOUT;
425
426         /* switch to VCO mode */
427         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
428                   BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
429
430         /* restore out divider 1:1 */
431         val = nvkm_rd32(device, GPC2CLK_OUT);
432         if ((val & GPC2CLK_OUT_VCODIV_MASK) !=
433             (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) {
434                 val &= ~GPC2CLK_OUT_VCODIV_MASK;
435                 val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT;
436                 udelay(2);
437                 nvkm_wr32(device, GPC2CLK_OUT, val);
438                 /* Intentional 2nd write to assure linear divider operation */
439                 nvkm_wr32(device, GPC2CLK_OUT, val);
440                 nvkm_rd32(device, GPC2CLK_OUT);
441         }
442
443         /* slide up to new NDIV */
444         return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
445 }
446
447 static int
448 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
449 {
450         int err;
451
452         err = _gk20a_pllg_program_mnp(clk, true);
453         if (err)
454                 err = _gk20a_pllg_program_mnp(clk, false);
455
456         return err;
457 }
458
459 #define GK20A_CLK_GPC_MDIV 1000
460
461 static struct nvkm_pstate
462 gk20a_pstates[] = {
463         {
464                 .base = {
465                         .domain[nv_clk_src_gpc] = 72000,
466                         .voltage = 0,
467                 },
468         },
469         {
470                 .base = {
471                         .domain[nv_clk_src_gpc] = 108000,
472                         .voltage = 1,
473                 },
474         },
475         {
476                 .base = {
477                         .domain[nv_clk_src_gpc] = 180000,
478                         .voltage = 2,
479                 },
480         },
481         {
482                 .base = {
483                         .domain[nv_clk_src_gpc] = 252000,
484                         .voltage = 3,
485                 },
486         },
487         {
488                 .base = {
489                         .domain[nv_clk_src_gpc] = 324000,
490                         .voltage = 4,
491                 },
492         },
493         {
494                 .base = {
495                         .domain[nv_clk_src_gpc] = 396000,
496                         .voltage = 5,
497                 },
498         },
499         {
500                 .base = {
501                         .domain[nv_clk_src_gpc] = 468000,
502                         .voltage = 6,
503                 },
504         },
505         {
506                 .base = {
507                         .domain[nv_clk_src_gpc] = 540000,
508                         .voltage = 7,
509                 },
510         },
511         {
512                 .base = {
513                         .domain[nv_clk_src_gpc] = 612000,
514                         .voltage = 8,
515                 },
516         },
517         {
518                 .base = {
519                         .domain[nv_clk_src_gpc] = 648000,
520                         .voltage = 9,
521                 },
522         },
523         {
524                 .base = {
525                         .domain[nv_clk_src_gpc] = 684000,
526                         .voltage = 10,
527                 },
528         },
529         {
530                 .base = {
531                         .domain[nv_clk_src_gpc] = 708000,
532                         .voltage = 11,
533                 },
534         },
535         {
536                 .base = {
537                         .domain[nv_clk_src_gpc] = 756000,
538                         .voltage = 12,
539                 },
540         },
541         {
542                 .base = {
543                         .domain[nv_clk_src_gpc] = 804000,
544                         .voltage = 13,
545                 },
546         },
547         {
548                 .base = {
549                         .domain[nv_clk_src_gpc] = 852000,
550                         .voltage = 14,
551                 },
552         },
553 };
554
555 static int
556 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
557 {
558         struct gk20a_clk *clk = gk20a_clk(base);
559         struct nvkm_subdev *subdev = &clk->base.subdev;
560         struct nvkm_device *device = subdev->device;
561
562         switch (src) {
563         case nv_clk_src_crystal:
564                 return device->crystal;
565         case nv_clk_src_gpc:
566                 gk20a_pllg_read_mnp(clk);
567                 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
568         default:
569                 nvkm_error(subdev, "invalid clock source %d\n", src);
570                 return -EINVAL;
571         }
572 }
573
574 static int
575 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
576 {
577         struct gk20a_clk *clk = gk20a_clk(base);
578
579         return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
580                                          GK20A_CLK_GPC_MDIV);
581 }
582
583 static int
584 gk20a_clk_prog(struct nvkm_clk *base)
585 {
586         struct gk20a_clk *clk = gk20a_clk(base);
587
588         return gk20a_pllg_program_mnp(clk);
589 }
590
591 static void
592 gk20a_clk_tidy(struct nvkm_clk *base)
593 {
594 }
595
596 static void
597 gk20a_clk_fini(struct nvkm_clk *base)
598 {
599         struct nvkm_device *device = base->subdev.device;
600         struct gk20a_clk *clk = gk20a_clk(base);
601         u32 val;
602
603         /* slide to VCO min */
604         val = nvkm_rd32(device, GPCPLL_CFG);
605         if (val & GPCPLL_CFG_ENABLE) {
606                 u32 coef, m, n_lo;
607
608                 coef = nvkm_rd32(device, GPCPLL_COEFF);
609                 m = (coef >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
610                 n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
611                                     clk->parent_rate / KHZ);
612                 gk20a_pllg_slide(clk, n_lo);
613         }
614
615         /* put PLL in bypass before disabling it */
616         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
617
618         gk20a_pllg_disable(clk);
619 }
620
621 static int
622 gk20a_clk_init(struct nvkm_clk *base)
623 {
624         struct gk20a_clk *clk = gk20a_clk(base);
625         struct nvkm_subdev *subdev = &clk->base.subdev;
626         struct nvkm_device *device = subdev->device;
627         int ret;
628
629         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
630
631         ret = gk20a_clk_prog(&clk->base);
632         if (ret) {
633                 nvkm_error(subdev, "cannot initialize clock\n");
634                 return ret;
635         }
636
637         return 0;
638 }
639
640 static const struct nvkm_clk_func
641 gk20a_clk = {
642         .init = gk20a_clk_init,
643         .fini = gk20a_clk_fini,
644         .read = gk20a_clk_read,
645         .calc = gk20a_clk_calc,
646         .prog = gk20a_clk_prog,
647         .tidy = gk20a_clk_tidy,
648         .pstates = gk20a_pstates,
649         .nr_pstates = ARRAY_SIZE(gk20a_pstates),
650         .domains = {
651                 { nv_clk_src_crystal, 0xff },
652                 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
653                 { nv_clk_src_max }
654         }
655 };
656
657 int
658 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
659 {
660         struct nvkm_device_tegra *tdev = device->func->tegra(device);
661         struct gk20a_clk *clk;
662         int ret, i;
663
664         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
665                 return -ENOMEM;
666         *pclk = &clk->base;
667
668         /* Finish initializing the pstates */
669         for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
670                 INIT_LIST_HEAD(&gk20a_pstates[i].list);
671                 gk20a_pstates[i].pstate = i + 1;
672         }
673
674         clk->params = &gk20a_pllg_params;
675         clk->parent_rate = clk_get_rate(tdev->clk);
676
677         ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
678         nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
679                    clk->parent_rate / KHZ);
680         return ret;
681 }