]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
Merge branch 'component' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[linux-beck.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30
31 #define MHZ (1000 * 1000)
32
33 #define MASK(w) ((1 << w) - 1)
34
35 #define SYS_GPCPLL_CFG_BASE                     0x00137000
36 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
37
38 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
39 #define GPCPLL_CFG_ENABLE       BIT(0)
40 #define GPCPLL_CFG_IDDQ         BIT(1)
41 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
42 #define GPCPLL_CFG_LOCK         BIT(17)
43
44 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
45 #define GPCPLL_COEFF_M_SHIFT    0
46 #define GPCPLL_COEFF_M_WIDTH    8
47 #define GPCPLL_COEFF_N_SHIFT    8
48 #define GPCPLL_COEFF_N_WIDTH    8
49 #define GPCPLL_COEFF_P_SHIFT    16
50 #define GPCPLL_COEFF_P_WIDTH    6
51
52 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
53 #define GPCPLL_CFG2_SETUP2_SHIFT        16
54 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
55
56 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
57 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
58
59 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
60 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
62 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
63 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
64 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
65
66 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
67 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
68
69 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
70 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
71 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
72 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
73 #define GPC2CLK_OUT_VCODIV_WIDTH        6
74 #define GPC2CLK_OUT_VCODIV_SHIFT        8
75 #define GPC2CLK_OUT_VCODIV1             0
76 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
77                                         GPC2CLK_OUT_VCODIV_SHIFT)
78 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
79 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
80 #define GPC2CLK_OUT_BYPDIV31            0x3c
81 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
82                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
83                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
84                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
85 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
86                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
87                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
88                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
89
90 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
93             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
94
95 static const u8 pl_to_div[] = {
96 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
97 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
98 };
99
100 /* All frequencies in Mhz */
101 struct gk20a_clk_pllg_params {
102         u32 min_vco, max_vco;
103         u32 min_u, max_u;
104         u32 min_m, max_m;
105         u32 min_n, max_n;
106         u32 min_pl, max_pl;
107 };
108
109 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
110         .min_vco = 1000, .max_vco = 2064,
111         .min_u = 12, .max_u = 38,
112         .min_m = 1, .max_m = 255,
113         .min_n = 8, .max_n = 255,
114         .min_pl = 1, .max_pl = 32,
115 };
116
117 struct gk20a_clk {
118         struct nvkm_clk base;
119         const struct gk20a_clk_pllg_params *params;
120         u32 m, n, pl;
121         u32 parent_rate;
122 };
123
124 static void
125 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
126 {
127         struct nvkm_device *device = clk->base.subdev.device;
128         u32 val;
129
130         val = nvkm_rd32(device, GPCPLL_COEFF);
131         clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
132         clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
133         clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
134 }
135
136 static u32
137 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
138 {
139         u32 rate;
140         u32 divider;
141
142         rate = clk->parent_rate * clk->n;
143         divider = clk->m * pl_to_div[clk->pl];
144
145         return rate / divider / 2;
146 }
147
148 static int
149 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
150 {
151         struct nvkm_subdev *subdev = &clk->base.subdev;
152         u32 target_clk_f, ref_clk_f, target_freq;
153         u32 min_vco_f, max_vco_f;
154         u32 low_pl, high_pl, best_pl;
155         u32 target_vco_f, vco_f;
156         u32 best_m, best_n;
157         u32 u_f;
158         u32 m, n, n2;
159         u32 delta, lwv, best_delta = ~0;
160         u32 pl;
161
162         target_clk_f = rate * 2 / MHZ;
163         ref_clk_f = clk->parent_rate / MHZ;
164
165         max_vco_f = clk->params->max_vco;
166         min_vco_f = clk->params->min_vco;
167         best_m = clk->params->max_m;
168         best_n = clk->params->min_n;
169         best_pl = clk->params->min_pl;
170
171         target_vco_f = target_clk_f + target_clk_f / 50;
172         if (max_vco_f < target_vco_f)
173                 max_vco_f = target_vco_f;
174
175         /* min_pl <= high_pl <= max_pl */
176         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
177         high_pl = min(high_pl, clk->params->max_pl);
178         high_pl = max(high_pl, clk->params->min_pl);
179
180         /* min_pl <= low_pl <= max_pl */
181         low_pl = min_vco_f / target_vco_f;
182         low_pl = min(low_pl, clk->params->max_pl);
183         low_pl = max(low_pl, clk->params->min_pl);
184
185         /* Find Indices of high_pl and low_pl */
186         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
187                 if (pl_to_div[pl] >= low_pl) {
188                         low_pl = pl;
189                         break;
190                 }
191         }
192         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
193                 if (pl_to_div[pl] >= high_pl) {
194                         high_pl = pl;
195                         break;
196                 }
197         }
198
199         nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
200                    pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
201
202         /* Select lowest possible VCO */
203         for (pl = low_pl; pl <= high_pl; pl++) {
204                 target_vco_f = target_clk_f * pl_to_div[pl];
205                 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
206                         u_f = ref_clk_f / m;
207
208                         if (u_f < clk->params->min_u)
209                                 break;
210                         if (u_f > clk->params->max_u)
211                                 continue;
212
213                         n = (target_vco_f * m) / ref_clk_f;
214                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
215
216                         if (n > clk->params->max_n)
217                                 break;
218
219                         for (; n <= n2; n++) {
220                                 if (n < clk->params->min_n)
221                                         continue;
222                                 if (n > clk->params->max_n)
223                                         break;
224
225                                 vco_f = ref_clk_f * n / m;
226
227                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
228                                         lwv = (vco_f + (pl_to_div[pl] / 2))
229                                                 / pl_to_div[pl];
230                                         delta = abs(lwv - target_clk_f);
231
232                                         if (delta < best_delta) {
233                                                 best_delta = delta;
234                                                 best_m = m;
235                                                 best_n = n;
236                                                 best_pl = pl;
237
238                                                 if (best_delta == 0)
239                                                         goto found_match;
240                                         }
241                                 }
242                         }
243                 }
244         }
245
246 found_match:
247         WARN_ON(best_delta == ~0);
248
249         if (best_delta != 0)
250                 nvkm_debug(subdev,
251                            "no best match for target @ %dMHz on gpc_pll",
252                            target_clk_f);
253
254         clk->m = best_m;
255         clk->n = best_n;
256         clk->pl = best_pl;
257
258         target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
259
260         nvkm_debug(subdev,
261                    "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262                    target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
263         return 0;
264 }
265
266 static int
267 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
268 {
269         struct nvkm_subdev *subdev = &clk->base.subdev;
270         struct nvkm_device *device = subdev->device;
271         u32 val;
272         int ramp_timeout;
273
274         /* get old coefficients */
275         val = nvkm_rd32(device, GPCPLL_COEFF);
276         /* do nothing if NDIV is the same */
277         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
278                 return 0;
279
280         /* setup */
281         nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
282                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
283         nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
284                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
285
286         /* pll slowdown mode */
287         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
288                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
289                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
290
291         /* new ndiv ready for ramp */
292         val = nvkm_rd32(device, GPCPLL_COEFF);
293         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
294         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
295         udelay(1);
296         nvkm_wr32(device, GPCPLL_COEFF, val);
297
298         /* dynamic ramp to new ndiv */
299         val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
300         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
301         udelay(1);
302         nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
303
304         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
305                 udelay(1);
306                 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
307                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
308                         break;
309         }
310
311         /* exit slowdown mode */
312         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
313                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
314                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
315         nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
316
317         if (ramp_timeout <= 0) {
318                 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
319                 return -ETIMEDOUT;
320         }
321
322         return 0;
323 }
324
325 static void
326 _gk20a_pllg_enable(struct gk20a_clk *clk)
327 {
328         struct nvkm_device *device = clk->base.subdev.device;
329         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
330         nvkm_rd32(device, GPCPLL_CFG);
331 }
332
333 static void
334 _gk20a_pllg_disable(struct gk20a_clk *clk)
335 {
336         struct nvkm_device *device = clk->base.subdev.device;
337         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
338         nvkm_rd32(device, GPCPLL_CFG);
339 }
340
341 static int
342 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
343 {
344         struct nvkm_subdev *subdev = &clk->base.subdev;
345         struct nvkm_device *device = subdev->device;
346         u32 val, cfg;
347         u32 m_old, pl_old, n_lo;
348
349         /* get old coefficients */
350         val = nvkm_rd32(device, GPCPLL_COEFF);
351         m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
352         pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
353
354         /* do NDIV slide if there is no change in M and PL */
355         cfg = nvkm_rd32(device, GPCPLL_CFG);
356         if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
357             (cfg & GPCPLL_CFG_ENABLE)) {
358                 return gk20a_pllg_slide(clk, clk->n);
359         }
360
361         /* slide down to NDIV_LO */
362         n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
363                             clk->parent_rate / MHZ);
364         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
365                 int ret = gk20a_pllg_slide(clk, n_lo);
366
367                 if (ret)
368                         return ret;
369         }
370
371         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
372         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
373                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
374
375         /* put PLL in bypass before programming it */
376         val = nvkm_rd32(device, SEL_VCO);
377         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
378         udelay(2);
379         nvkm_wr32(device, SEL_VCO, val);
380
381         /* get out from IDDQ */
382         val = nvkm_rd32(device, GPCPLL_CFG);
383         if (val & GPCPLL_CFG_IDDQ) {
384                 val &= ~GPCPLL_CFG_IDDQ;
385                 nvkm_wr32(device, GPCPLL_CFG, val);
386                 nvkm_rd32(device, GPCPLL_CFG);
387                 udelay(2);
388         }
389
390         _gk20a_pllg_disable(clk);
391
392         nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
393                    clk->m, clk->n, clk->pl);
394
395         n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
396                             clk->parent_rate / MHZ);
397         val = clk->m << GPCPLL_COEFF_M_SHIFT;
398         val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
399         val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
400         nvkm_wr32(device, GPCPLL_COEFF, val);
401
402         _gk20a_pllg_enable(clk);
403
404         val = nvkm_rd32(device, GPCPLL_CFG);
405         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
406                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
407                 nvkm_wr32(device, GPCPLL_CFG, val);
408         }
409
410         if (nvkm_usec(device, 300,
411                 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
412                         break;
413         ) < 0)
414                 return -ETIMEDOUT;
415
416         /* switch to VCO mode */
417         nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
418
419         /* restore out divider 1:1 */
420         val = nvkm_rd32(device, GPC2CLK_OUT);
421         val &= ~GPC2CLK_OUT_VCODIV_MASK;
422         udelay(2);
423         nvkm_wr32(device, GPC2CLK_OUT, val);
424
425         /* slide up to new NDIV */
426         return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
427 }
428
429 static int
430 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
431 {
432         int err;
433
434         err = _gk20a_pllg_program_mnp(clk, true);
435         if (err)
436                 err = _gk20a_pllg_program_mnp(clk, false);
437
438         return err;
439 }
440
441 static void
442 gk20a_pllg_disable(struct gk20a_clk *clk)
443 {
444         struct nvkm_device *device = clk->base.subdev.device;
445         u32 val;
446
447         /* slide to VCO min */
448         val = nvkm_rd32(device, GPCPLL_CFG);
449         if (val & GPCPLL_CFG_ENABLE) {
450                 u32 coeff, m, n_lo;
451
452                 coeff = nvkm_rd32(device, GPCPLL_COEFF);
453                 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
454                 n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
455                                     clk->parent_rate / MHZ);
456                 gk20a_pllg_slide(clk, n_lo);
457         }
458
459         /* put PLL in bypass before disabling it */
460         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
461
462         _gk20a_pllg_disable(clk);
463 }
464
465 #define GK20A_CLK_GPC_MDIV 1000
466
467 static struct nvkm_pstate
468 gk20a_pstates[] = {
469         {
470                 .base = {
471                         .domain[nv_clk_src_gpc] = 72000,
472                         .voltage = 0,
473                 },
474         },
475         {
476                 .base = {
477                         .domain[nv_clk_src_gpc] = 108000,
478                         .voltage = 1,
479                 },
480         },
481         {
482                 .base = {
483                         .domain[nv_clk_src_gpc] = 180000,
484                         .voltage = 2,
485                 },
486         },
487         {
488                 .base = {
489                         .domain[nv_clk_src_gpc] = 252000,
490                         .voltage = 3,
491                 },
492         },
493         {
494                 .base = {
495                         .domain[nv_clk_src_gpc] = 324000,
496                         .voltage = 4,
497                 },
498         },
499         {
500                 .base = {
501                         .domain[nv_clk_src_gpc] = 396000,
502                         .voltage = 5,
503                 },
504         },
505         {
506                 .base = {
507                         .domain[nv_clk_src_gpc] = 468000,
508                         .voltage = 6,
509                 },
510         },
511         {
512                 .base = {
513                         .domain[nv_clk_src_gpc] = 540000,
514                         .voltage = 7,
515                 },
516         },
517         {
518                 .base = {
519                         .domain[nv_clk_src_gpc] = 612000,
520                         .voltage = 8,
521                 },
522         },
523         {
524                 .base = {
525                         .domain[nv_clk_src_gpc] = 648000,
526                         .voltage = 9,
527                 },
528         },
529         {
530                 .base = {
531                         .domain[nv_clk_src_gpc] = 684000,
532                         .voltage = 10,
533                 },
534         },
535         {
536                 .base = {
537                         .domain[nv_clk_src_gpc] = 708000,
538                         .voltage = 11,
539                 },
540         },
541         {
542                 .base = {
543                         .domain[nv_clk_src_gpc] = 756000,
544                         .voltage = 12,
545                 },
546         },
547         {
548                 .base = {
549                         .domain[nv_clk_src_gpc] = 804000,
550                         .voltage = 13,
551                 },
552         },
553         {
554                 .base = {
555                         .domain[nv_clk_src_gpc] = 852000,
556                         .voltage = 14,
557                 },
558         },
559 };
560
561 static int
562 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
563 {
564         struct gk20a_clk *clk = gk20a_clk(base);
565         struct nvkm_subdev *subdev = &clk->base.subdev;
566         struct nvkm_device *device = subdev->device;
567
568         switch (src) {
569         case nv_clk_src_crystal:
570                 return device->crystal;
571         case nv_clk_src_gpc:
572                 gk20a_pllg_read_mnp(clk);
573                 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
574         default:
575                 nvkm_error(subdev, "invalid clock source %d\n", src);
576                 return -EINVAL;
577         }
578 }
579
580 static int
581 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
582 {
583         struct gk20a_clk *clk = gk20a_clk(base);
584
585         return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
586                                          GK20A_CLK_GPC_MDIV);
587 }
588
589 static int
590 gk20a_clk_prog(struct nvkm_clk *base)
591 {
592         struct gk20a_clk *clk = gk20a_clk(base);
593
594         return gk20a_pllg_program_mnp(clk);
595 }
596
597 static void
598 gk20a_clk_tidy(struct nvkm_clk *base)
599 {
600 }
601
602 static void
603 gk20a_clk_fini(struct nvkm_clk *base)
604 {
605         struct gk20a_clk *clk = gk20a_clk(base);
606         gk20a_pllg_disable(clk);
607 }
608
609 static int
610 gk20a_clk_init(struct nvkm_clk *base)
611 {
612         struct gk20a_clk *clk = gk20a_clk(base);
613         struct nvkm_subdev *subdev = &clk->base.subdev;
614         struct nvkm_device *device = subdev->device;
615         int ret;
616
617         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
618
619         ret = gk20a_clk_prog(&clk->base);
620         if (ret) {
621                 nvkm_error(subdev, "cannot initialize clock\n");
622                 return ret;
623         }
624
625         return 0;
626 }
627
628 static const struct nvkm_clk_func
629 gk20a_clk = {
630         .init = gk20a_clk_init,
631         .fini = gk20a_clk_fini,
632         .read = gk20a_clk_read,
633         .calc = gk20a_clk_calc,
634         .prog = gk20a_clk_prog,
635         .tidy = gk20a_clk_tidy,
636         .pstates = gk20a_pstates,
637         .nr_pstates = ARRAY_SIZE(gk20a_pstates),
638         .domains = {
639                 { nv_clk_src_crystal, 0xff },
640                 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
641                 { nv_clk_src_max }
642         }
643 };
644
645 int
646 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
647 {
648         struct nvkm_device_tegra *tdev = device->func->tegra(device);
649         struct gk20a_clk *clk;
650         int ret, i;
651
652         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
653                 return -ENOMEM;
654         *pclk = &clk->base;
655
656         /* Finish initializing the pstates */
657         for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
658                 INIT_LIST_HEAD(&gk20a_pstates[i].list);
659                 gk20a_pstates[i].pstate = i + 1;
660         }
661
662         clk->params = &gk20a_pllg_params;
663         clk->parent_rate = clk_get_rate(tdev->clk);
664
665         ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
666         nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
667                   clk->parent_rate / MHZ);
668         return ret;
669 }