]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
drm/nouveau/clk/gk20a: put mnp values into their own struct
[linux-beck.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2  * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30
31 #define KHZ (1000)
32 #define MHZ (KHZ * 1000)
33
34 #define MASK(w) ((1 << w) - 1)
35
36 #define SYS_GPCPLL_CFG_BASE                     0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
38
39 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE       BIT(0)
41 #define GPCPLL_CFG_IDDQ         BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
43 #define GPCPLL_CFG_LOCK         BIT(17)
44
45 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT    0
47 #define GPCPLL_COEFF_M_WIDTH    8
48 #define GPCPLL_COEFF_N_SHIFT    8
49 #define GPCPLL_COEFF_N_WIDTH    8
50 #define GPCPLL_COEFF_P_SHIFT    16
51 #define GPCPLL_COEFF_P_WIDTH    6
52
53 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT        16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
56
57 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
59
60 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
66
67 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
69
70 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
74 #define GPC2CLK_OUT_VCODIV_WIDTH        6
75 #define GPC2CLK_OUT_VCODIV_SHIFT        8
76 #define GPC2CLK_OUT_VCODIV1             0
77 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78                                         GPC2CLK_OUT_VCODIV_SHIFT)
79 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
81 #define GPC2CLK_OUT_BYPDIV31            0x3c
82 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95
96 static const u8 pl_to_div[] = {
97 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100
101 /* All frequencies in Khz */
102 struct gk20a_clk_pllg_params {
103         u32 min_vco, max_vco;
104         u32 min_u, max_u;
105         u32 min_m, max_m;
106         u32 min_n, max_n;
107         u32 min_pl, max_pl;
108 };
109
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111         .min_vco = 1000000, .max_vco = 2064000,
112         .min_u = 12000, .max_u = 38000,
113         .min_m = 1, .max_m = 255,
114         .min_n = 8, .max_n = 255,
115         .min_pl = 1, .max_pl = 32,
116 };
117
118 struct gk20a_pll {
119         u32 m;
120         u32 n;
121         u32 pl;
122 };
123
124 struct gk20a_clk {
125         struct nvkm_clk base;
126         const struct gk20a_clk_pllg_params *params;
127         struct gk20a_pll pll;
128         u32 parent_rate;
129 };
130
131 static void
132 gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
133 {
134         struct nvkm_device *device = clk->base.subdev.device;
135         u32 val;
136
137         val = nvkm_rd32(device, GPCPLL_COEFF);
138         pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
139         pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
140         pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
141 }
142
143 static u32
144 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
145 {
146         u32 rate;
147         u32 divider;
148
149         rate = clk->parent_rate * clk->pll.n;
150         divider = clk->pll.m * pl_to_div[clk->pll.pl];
151
152         return rate / divider / 2;
153 }
154
155 static int
156 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
157 {
158         struct nvkm_subdev *subdev = &clk->base.subdev;
159         u32 target_clk_f, ref_clk_f, target_freq;
160         u32 min_vco_f, max_vco_f;
161         u32 low_pl, high_pl, best_pl;
162         u32 target_vco_f;
163         u32 best_m, best_n;
164         u32 best_delta = ~0;
165         u32 pl;
166
167         target_clk_f = rate * 2 / KHZ;
168         ref_clk_f = clk->parent_rate / KHZ;
169
170         max_vco_f = clk->params->max_vco;
171         min_vco_f = clk->params->min_vco;
172         best_m = clk->params->max_m;
173         best_n = clk->params->min_n;
174         best_pl = clk->params->min_pl;
175
176         target_vco_f = target_clk_f + target_clk_f / 50;
177         if (max_vco_f < target_vco_f)
178                 max_vco_f = target_vco_f;
179
180         /* min_pl <= high_pl <= max_pl */
181         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
182         high_pl = min(high_pl, clk->params->max_pl);
183         high_pl = max(high_pl, clk->params->min_pl);
184
185         /* min_pl <= low_pl <= max_pl */
186         low_pl = min_vco_f / target_vco_f;
187         low_pl = min(low_pl, clk->params->max_pl);
188         low_pl = max(low_pl, clk->params->min_pl);
189
190         /* Find Indices of high_pl and low_pl */
191         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
192                 if (pl_to_div[pl] >= low_pl) {
193                         low_pl = pl;
194                         break;
195                 }
196         }
197         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
198                 if (pl_to_div[pl] >= high_pl) {
199                         high_pl = pl;
200                         break;
201                 }
202         }
203
204         nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
205                    pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
206
207         /* Select lowest possible VCO */
208         for (pl = low_pl; pl <= high_pl; pl++) {
209                 u32 m, n, n2;
210
211                 target_vco_f = target_clk_f * pl_to_div[pl];
212                 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
213                         u32 u_f, vco_f;
214
215                         u_f = ref_clk_f / m;
216
217                         if (u_f < clk->params->min_u)
218                                 break;
219                         if (u_f > clk->params->max_u)
220                                 continue;
221
222                         n = (target_vco_f * m) / ref_clk_f;
223                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
224
225                         if (n > clk->params->max_n)
226                                 break;
227
228                         for (; n <= n2; n++) {
229                                 if (n < clk->params->min_n)
230                                         continue;
231                                 if (n > clk->params->max_n)
232                                         break;
233
234                                 vco_f = ref_clk_f * n / m;
235
236                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
237                                         u32 delta, lwv;
238
239                                         lwv = (vco_f + (pl_to_div[pl] / 2))
240                                                 / pl_to_div[pl];
241                                         delta = abs(lwv - target_clk_f);
242
243                                         if (delta < best_delta) {
244                                                 best_delta = delta;
245                                                 best_m = m;
246                                                 best_n = n;
247                                                 best_pl = pl;
248
249                                                 if (best_delta == 0)
250                                                         goto found_match;
251                                         }
252                                 }
253                         }
254                 }
255         }
256
257 found_match:
258         WARN_ON(best_delta == ~0);
259
260         if (best_delta != 0)
261                 nvkm_debug(subdev,
262                            "no best match for target @ %dMHz on gpc_pll",
263                            target_clk_f / KHZ);
264
265         clk->pll.m = best_m;
266         clk->pll.n = best_n;
267         clk->pll.pl = best_pl;
268
269         target_freq = gk20a_pllg_calc_rate(clk);
270
271         nvkm_debug(subdev,
272                    "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
273                    target_freq / MHZ, clk->pll.m, clk->pll.n, clk->pll.pl,
274                    pl_to_div[clk->pll.pl]);
275         return 0;
276 }
277
278 static int
279 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
280 {
281         struct nvkm_subdev *subdev = &clk->base.subdev;
282         struct nvkm_device *device = subdev->device;
283         u32 val;
284         int ramp_timeout;
285
286         /* get old coefficients */
287         val = nvkm_rd32(device, GPCPLL_COEFF);
288         /* do nothing if NDIV is the same */
289         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
290                 return 0;
291
292         /* setup */
293         nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
294                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
295         nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
296                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
297
298         /* pll slowdown mode */
299         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
300                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
301                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
302
303         /* new ndiv ready for ramp */
304         val = nvkm_rd32(device, GPCPLL_COEFF);
305         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
306         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
307         udelay(1);
308         nvkm_wr32(device, GPCPLL_COEFF, val);
309
310         /* dynamic ramp to new ndiv */
311         val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
312         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
313         udelay(1);
314         nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
315
316         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
317                 udelay(1);
318                 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
319                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
320                         break;
321         }
322
323         /* exit slowdown mode */
324         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
325                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
326                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
327         nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
328
329         if (ramp_timeout <= 0) {
330                 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
331                 return -ETIMEDOUT;
332         }
333
334         return 0;
335 }
336
337 static void
338 gk20a_pllg_enable(struct gk20a_clk *clk)
339 {
340         struct nvkm_device *device = clk->base.subdev.device;
341
342         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
343         nvkm_rd32(device, GPCPLL_CFG);
344 }
345
346 static void
347 gk20a_pllg_disable(struct gk20a_clk *clk)
348 {
349         struct nvkm_device *device = clk->base.subdev.device;
350
351         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
352         nvkm_rd32(device, GPCPLL_CFG);
353 }
354
355 static int
356 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
357 {
358         struct nvkm_subdev *subdev = &clk->base.subdev;
359         struct nvkm_device *device = subdev->device;
360         u32 val, cfg;
361         struct gk20a_pll old_pll;
362         u32 n_lo;
363
364         /* get old coefficients */
365         gk20a_pllg_read_mnp(clk, &old_pll);
366
367         /* do NDIV slide if there is no change in M and PL */
368         cfg = nvkm_rd32(device, GPCPLL_CFG);
369         if (allow_slide && clk->pll.m == old_pll.m &&
370             clk->pll.pl == old_pll.pl && (cfg & GPCPLL_CFG_ENABLE)) {
371                 return gk20a_pllg_slide(clk, clk->pll.n);
372         }
373
374         /* slide down to NDIV_LO */
375         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
376                 int ret;
377
378                 n_lo = DIV_ROUND_UP(old_pll.m * clk->params->min_vco,
379                                     clk->parent_rate / KHZ);
380                 ret = gk20a_pllg_slide(clk, n_lo);
381
382                 if (ret)
383                         return ret;
384         }
385
386         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
387         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
388                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
389
390         /* put PLL in bypass before programming it */
391         val = nvkm_rd32(device, SEL_VCO);
392         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
393         udelay(2);
394         nvkm_wr32(device, SEL_VCO, val);
395
396         /* get out from IDDQ */
397         val = nvkm_rd32(device, GPCPLL_CFG);
398         if (val & GPCPLL_CFG_IDDQ) {
399                 val &= ~GPCPLL_CFG_IDDQ;
400                 nvkm_wr32(device, GPCPLL_CFG, val);
401                 nvkm_rd32(device, GPCPLL_CFG);
402                 udelay(2);
403         }
404
405         gk20a_pllg_disable(clk);
406
407         nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
408                    clk->pll.m, clk->pll.n, clk->pll.pl);
409
410         n_lo = DIV_ROUND_UP(clk->pll.m * clk->params->min_vco,
411                             clk->parent_rate / KHZ);
412         val = clk->pll.m << GPCPLL_COEFF_M_SHIFT;
413         val |= (allow_slide ? n_lo : clk->pll.n) << GPCPLL_COEFF_N_SHIFT;
414         val |= clk->pll.pl << GPCPLL_COEFF_P_SHIFT;
415         nvkm_wr32(device, GPCPLL_COEFF, val);
416
417         gk20a_pllg_enable(clk);
418
419         val = nvkm_rd32(device, GPCPLL_CFG);
420         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
421                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
422                 nvkm_wr32(device, GPCPLL_CFG, val);
423         }
424
425         if (nvkm_usec(device, 300,
426                 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
427                         break;
428         ) < 0)
429                 return -ETIMEDOUT;
430
431         /* switch to VCO mode */
432         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
433                   BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
434
435         /* restore out divider 1:1 */
436         val = nvkm_rd32(device, GPC2CLK_OUT);
437         if ((val & GPC2CLK_OUT_VCODIV_MASK) !=
438             (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) {
439                 val &= ~GPC2CLK_OUT_VCODIV_MASK;
440                 val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT;
441                 udelay(2);
442                 nvkm_wr32(device, GPC2CLK_OUT, val);
443                 /* Intentional 2nd write to assure linear divider operation */
444                 nvkm_wr32(device, GPC2CLK_OUT, val);
445                 nvkm_rd32(device, GPC2CLK_OUT);
446         }
447
448         /* slide up to new NDIV */
449         return allow_slide ? gk20a_pllg_slide(clk, clk->pll.n) : 0;
450 }
451
452 static int
453 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
454 {
455         int err;
456
457         err = _gk20a_pllg_program_mnp(clk, true);
458         if (err)
459                 err = _gk20a_pllg_program_mnp(clk, false);
460
461         return err;
462 }
463
464 #define GK20A_CLK_GPC_MDIV 1000
465
466 static struct nvkm_pstate
467 gk20a_pstates[] = {
468         {
469                 .base = {
470                         .domain[nv_clk_src_gpc] = 72000,
471                         .voltage = 0,
472                 },
473         },
474         {
475                 .base = {
476                         .domain[nv_clk_src_gpc] = 108000,
477                         .voltage = 1,
478                 },
479         },
480         {
481                 .base = {
482                         .domain[nv_clk_src_gpc] = 180000,
483                         .voltage = 2,
484                 },
485         },
486         {
487                 .base = {
488                         .domain[nv_clk_src_gpc] = 252000,
489                         .voltage = 3,
490                 },
491         },
492         {
493                 .base = {
494                         .domain[nv_clk_src_gpc] = 324000,
495                         .voltage = 4,
496                 },
497         },
498         {
499                 .base = {
500                         .domain[nv_clk_src_gpc] = 396000,
501                         .voltage = 5,
502                 },
503         },
504         {
505                 .base = {
506                         .domain[nv_clk_src_gpc] = 468000,
507                         .voltage = 6,
508                 },
509         },
510         {
511                 .base = {
512                         .domain[nv_clk_src_gpc] = 540000,
513                         .voltage = 7,
514                 },
515         },
516         {
517                 .base = {
518                         .domain[nv_clk_src_gpc] = 612000,
519                         .voltage = 8,
520                 },
521         },
522         {
523                 .base = {
524                         .domain[nv_clk_src_gpc] = 648000,
525                         .voltage = 9,
526                 },
527         },
528         {
529                 .base = {
530                         .domain[nv_clk_src_gpc] = 684000,
531                         .voltage = 10,
532                 },
533         },
534         {
535                 .base = {
536                         .domain[nv_clk_src_gpc] = 708000,
537                         .voltage = 11,
538                 },
539         },
540         {
541                 .base = {
542                         .domain[nv_clk_src_gpc] = 756000,
543                         .voltage = 12,
544                 },
545         },
546         {
547                 .base = {
548                         .domain[nv_clk_src_gpc] = 804000,
549                         .voltage = 13,
550                 },
551         },
552         {
553                 .base = {
554                         .domain[nv_clk_src_gpc] = 852000,
555                         .voltage = 14,
556                 },
557         },
558 };
559
560 static int
561 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
562 {
563         struct gk20a_clk *clk = gk20a_clk(base);
564         struct nvkm_subdev *subdev = &clk->base.subdev;
565         struct nvkm_device *device = subdev->device;
566
567         switch (src) {
568         case nv_clk_src_crystal:
569                 return device->crystal;
570         case nv_clk_src_gpc:
571                 gk20a_pllg_read_mnp(clk, &clk->pll);
572                 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
573         default:
574                 nvkm_error(subdev, "invalid clock source %d\n", src);
575                 return -EINVAL;
576         }
577 }
578
579 static int
580 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
581 {
582         struct gk20a_clk *clk = gk20a_clk(base);
583
584         return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
585                                          GK20A_CLK_GPC_MDIV);
586 }
587
588 static int
589 gk20a_clk_prog(struct nvkm_clk *base)
590 {
591         struct gk20a_clk *clk = gk20a_clk(base);
592
593         return gk20a_pllg_program_mnp(clk);
594 }
595
596 static void
597 gk20a_clk_tidy(struct nvkm_clk *base)
598 {
599 }
600
601 static void
602 gk20a_clk_fini(struct nvkm_clk *base)
603 {
604         struct nvkm_device *device = base->subdev.device;
605         struct gk20a_clk *clk = gk20a_clk(base);
606         u32 val;
607
608         /* slide to VCO min */
609         val = nvkm_rd32(device, GPCPLL_CFG);
610         if (val & GPCPLL_CFG_ENABLE) {
611                 struct gk20a_pll pll;
612                 u32 n_lo;
613
614                 gk20a_pllg_read_mnp(clk, &pll);
615                 n_lo = DIV_ROUND_UP(pll.m * clk->params->min_vco,
616                                     clk->parent_rate / KHZ);
617                 gk20a_pllg_slide(clk, n_lo);
618         }
619
620         /* put PLL in bypass before disabling it */
621         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
622
623         gk20a_pllg_disable(clk);
624 }
625
626 static int
627 gk20a_clk_init(struct nvkm_clk *base)
628 {
629         struct gk20a_clk *clk = gk20a_clk(base);
630         struct nvkm_subdev *subdev = &clk->base.subdev;
631         struct nvkm_device *device = subdev->device;
632         int ret;
633
634         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
635
636         ret = gk20a_clk_prog(&clk->base);
637         if (ret) {
638                 nvkm_error(subdev, "cannot initialize clock\n");
639                 return ret;
640         }
641
642         return 0;
643 }
644
645 static const struct nvkm_clk_func
646 gk20a_clk = {
647         .init = gk20a_clk_init,
648         .fini = gk20a_clk_fini,
649         .read = gk20a_clk_read,
650         .calc = gk20a_clk_calc,
651         .prog = gk20a_clk_prog,
652         .tidy = gk20a_clk_tidy,
653         .pstates = gk20a_pstates,
654         .nr_pstates = ARRAY_SIZE(gk20a_pstates),
655         .domains = {
656                 { nv_clk_src_crystal, 0xff },
657                 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
658                 { nv_clk_src_max }
659         }
660 };
661
662 int
663 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
664 {
665         struct nvkm_device_tegra *tdev = device->func->tegra(device);
666         struct gk20a_clk *clk;
667         int ret, i;
668
669         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
670                 return -ENOMEM;
671         *pclk = &clk->base;
672
673         /* Finish initializing the pstates */
674         for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
675                 INIT_LIST_HEAD(&gk20a_pstates[i].list);
676                 gk20a_pstates[i].pstate = i + 1;
677         }
678
679         clk->params = &gk20a_pllg_params;
680         clk->parent_rate = clk_get_rate(tdev->clk);
681
682         ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
683         nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
684                    clk->parent_rate / KHZ);
685         return ret;
686 }