]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramgf100.c
drm/nouveau/devinit: namespace + nvidia gpu names (no binary change)
[karo-tx-linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramgf100.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ramfuc.h"
26
27 #include <core/option.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/bios/rammap.h>
31 #include <subdev/bios/timing.h>
32 #include <subdev/clk.h>
33 #include <subdev/clk/pll.h>
34 #include <subdev/ltc.h>
35
36 struct gf100_ramfuc {
37         struct ramfuc base;
38
39         struct ramfuc_reg r_0x10fe20;
40         struct ramfuc_reg r_0x10fe24;
41         struct ramfuc_reg r_0x137320;
42         struct ramfuc_reg r_0x137330;
43
44         struct ramfuc_reg r_0x132000;
45         struct ramfuc_reg r_0x132004;
46         struct ramfuc_reg r_0x132100;
47
48         struct ramfuc_reg r_0x137390;
49
50         struct ramfuc_reg r_0x10f290;
51         struct ramfuc_reg r_0x10f294;
52         struct ramfuc_reg r_0x10f298;
53         struct ramfuc_reg r_0x10f29c;
54         struct ramfuc_reg r_0x10f2a0;
55
56         struct ramfuc_reg r_0x10f300;
57         struct ramfuc_reg r_0x10f338;
58         struct ramfuc_reg r_0x10f340;
59         struct ramfuc_reg r_0x10f344;
60         struct ramfuc_reg r_0x10f348;
61
62         struct ramfuc_reg r_0x10f910;
63         struct ramfuc_reg r_0x10f914;
64
65         struct ramfuc_reg r_0x100b0c;
66         struct ramfuc_reg r_0x10f050;
67         struct ramfuc_reg r_0x10f090;
68         struct ramfuc_reg r_0x10f200;
69         struct ramfuc_reg r_0x10f210;
70         struct ramfuc_reg r_0x10f310;
71         struct ramfuc_reg r_0x10f314;
72         struct ramfuc_reg r_0x10f610;
73         struct ramfuc_reg r_0x10f614;
74         struct ramfuc_reg r_0x10f800;
75         struct ramfuc_reg r_0x10f808;
76         struct ramfuc_reg r_0x10f824;
77         struct ramfuc_reg r_0x10f830;
78         struct ramfuc_reg r_0x10f988;
79         struct ramfuc_reg r_0x10f98c;
80         struct ramfuc_reg r_0x10f990;
81         struct ramfuc_reg r_0x10f998;
82         struct ramfuc_reg r_0x10f9b0;
83         struct ramfuc_reg r_0x10f9b4;
84         struct ramfuc_reg r_0x10fb04;
85         struct ramfuc_reg r_0x10fb08;
86         struct ramfuc_reg r_0x137300;
87         struct ramfuc_reg r_0x137310;
88         struct ramfuc_reg r_0x137360;
89         struct ramfuc_reg r_0x1373ec;
90         struct ramfuc_reg r_0x1373f0;
91         struct ramfuc_reg r_0x1373f8;
92
93         struct ramfuc_reg r_0x61c140;
94         struct ramfuc_reg r_0x611200;
95
96         struct ramfuc_reg r_0x13d8f4;
97 };
98
99 struct gf100_ram {
100         struct nvkm_ram base;
101         struct gf100_ramfuc fuc;
102         struct nvbios_pll refpll;
103         struct nvbios_pll mempll;
104 };
105
106 static void
107 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
108 {
109         struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
110         struct nvkm_fb *pfb = nvkm_fb(ram);
111         u32 part = nv_rd32(pfb, 0x022438), i;
112         u32 mask = nv_rd32(pfb, 0x022554);
113         u32 addr = 0x110974;
114
115         ram_wr32(fuc, 0x10f910, magic);
116         ram_wr32(fuc, 0x10f914, magic);
117
118         for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
119                 if (mask & (1 << i))
120                         continue;
121                 ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
122         }
123 }
124
125 static int
126 gf100_ram_calc(struct nvkm_fb *pfb, u32 freq)
127 {
128         struct nvkm_clk *clk = nvkm_clk(pfb);
129         struct nvkm_bios *bios = nvkm_bios(pfb);
130         struct gf100_ram *ram = (void *)pfb->ram;
131         struct gf100_ramfuc *fuc = &ram->fuc;
132         struct nvbios_ramcfg cfg;
133         u8  ver, cnt, len, strap;
134         struct {
135                 u32 data;
136                 u8  size;
137         } rammap, ramcfg, timing;
138         int ref, div, out;
139         int from, mode;
140         int N1, M1, P;
141         int ret;
142
143         /* lookup memory config data relevant to the target frequency */
144         rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
145                                       &cnt, &ramcfg.size, &cfg);
146         if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
147                 nv_error(pfb, "invalid/missing rammap entry\n");
148                 return -EINVAL;
149         }
150
151         /* locate specific data set for the attached memory */
152         strap = nvbios_ramcfg_index(nv_subdev(pfb));
153         if (strap >= cnt) {
154                 nv_error(pfb, "invalid ramcfg strap\n");
155                 return -EINVAL;
156         }
157
158         ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
159         if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
160                 nv_error(pfb, "invalid/missing ramcfg entry\n");
161                 return -EINVAL;
162         }
163
164         /* lookup memory timings, if bios says they're present */
165         strap = nv_ro08(bios, ramcfg.data + 0x01);
166         if (strap != 0xff) {
167                 timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
168                                               &cnt, &len);
169                 if (!timing.data || ver != 0x10 || timing.size < 0x19) {
170                         nv_error(pfb, "invalid/missing timing entry\n");
171                         return -EINVAL;
172                 }
173         } else {
174                 timing.data = 0;
175         }
176
177         ret = ram_init(fuc, pfb);
178         if (ret)
179                 return ret;
180
181         /* determine current mclk configuration */
182         from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
183
184         /* determine target mclk configuration */
185         if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
186                 ref = clk->read(clk, nv_clk_src_sppll0);
187         else
188                 ref = clk->read(clk, nv_clk_src_sppll1);
189         div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
190         out = (ref * 2) / (div + 2);
191         mode = freq != out;
192
193         ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
194
195         if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
196                 ram_nuke(fuc, 0x132000);
197                 ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
198                 ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
199         }
200
201         if (mode == 1) {
202                 ram_nuke(fuc, 0x10fe20);
203                 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
204                 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
205         }
206
207 // 0x00020034 // 0x0000000a
208         ram_wr32(fuc, 0x132100, 0x00000001);
209
210         if (mode == 1 && from == 0) {
211                 /* calculate refpll */
212                 ret = gt215_pll_calc(nv_subdev(pfb), &ram->refpll,
213                                      ram->mempll.refclk, &N1, NULL, &M1, &P);
214                 if (ret <= 0) {
215                         nv_error(pfb, "unable to calc refpll\n");
216                         return ret ? ret : -ERANGE;
217                 }
218
219                 ram_wr32(fuc, 0x10fe20, 0x20010000);
220                 ram_wr32(fuc, 0x137320, 0x00000003);
221                 ram_wr32(fuc, 0x137330, 0x81200006);
222                 ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
223                 ram_wr32(fuc, 0x10fe20, 0x20010001);
224                 ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
225
226                 /* calculate mempll */
227                 ret = gt215_pll_calc(nv_subdev(pfb), &ram->mempll, freq,
228                                      &N1, NULL, &M1, &P);
229                 if (ret <= 0) {
230                         nv_error(pfb, "unable to calc refpll\n");
231                         return ret ? ret : -ERANGE;
232                 }
233
234                 ram_wr32(fuc, 0x10fe20, 0x20010005);
235                 ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
236                 ram_wr32(fuc, 0x132000, 0x18010101);
237                 ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
238         } else
239         if (mode == 0) {
240                 ram_wr32(fuc, 0x137300, 0x00000003);
241         }
242
243         if (from == 0) {
244                 ram_nuke(fuc, 0x10fb04);
245                 ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
246                 ram_nuke(fuc, 0x10fb08);
247                 ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
248                 ram_wr32(fuc, 0x10f988, 0x2004ff00);
249                 ram_wr32(fuc, 0x10f98c, 0x003fc040);
250                 ram_wr32(fuc, 0x10f990, 0x20012001);
251                 ram_wr32(fuc, 0x10f998, 0x00011a00);
252                 ram_wr32(fuc, 0x13d8f4, 0x00000000);
253         } else {
254                 ram_wr32(fuc, 0x10f988, 0x20010000);
255                 ram_wr32(fuc, 0x10f98c, 0x00000000);
256                 ram_wr32(fuc, 0x10f990, 0x20012001);
257                 ram_wr32(fuc, 0x10f998, 0x00010a00);
258         }
259
260         if (from == 0) {
261 // 0x00020039 // 0x000000ba
262         }
263
264 // 0x0002003a // 0x00000002
265         ram_wr32(fuc, 0x100b0c, 0x00080012);
266 // 0x00030014 // 0x00000000 // 0x02b5f070
267 // 0x00030014 // 0x00010000 // 0x02b5f070
268         ram_wr32(fuc, 0x611200, 0x00003300);
269 // 0x00020034 // 0x0000000a
270 // 0x00030020 // 0x00000001 // 0x00000000
271
272         ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
273         ram_wr32(fuc, 0x10f210, 0x00000000);
274         ram_nsec(fuc, 1000);
275         if (mode == 0)
276                 gf100_ram_train(fuc, 0x000c1001);
277         ram_wr32(fuc, 0x10f310, 0x00000001);
278         ram_nsec(fuc, 1000);
279         ram_wr32(fuc, 0x10f090, 0x00000061);
280         ram_wr32(fuc, 0x10f090, 0xc000007f);
281         ram_nsec(fuc, 1000);
282
283         if (from == 0) {
284                 ram_wr32(fuc, 0x10f824, 0x00007fd4);
285         } else {
286                 ram_wr32(fuc, 0x1373ec, 0x00020404);
287         }
288
289         if (mode == 0) {
290                 ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
291                 ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
292                 ram_wr32(fuc, 0x10f830, 0x41500010);
293                 ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
294                 ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
295                 ram_wr32(fuc, 0x10f050, 0xff000090);
296                 ram_wr32(fuc, 0x1373ec, 0x00020f0f);
297                 ram_wr32(fuc, 0x1373f0, 0x00000003);
298                 ram_wr32(fuc, 0x137310, 0x81201616);
299                 ram_wr32(fuc, 0x132100, 0x00000001);
300 // 0x00020039 // 0x000000ba
301                 ram_wr32(fuc, 0x10f830, 0x00300017);
302                 ram_wr32(fuc, 0x1373f0, 0x00000001);
303                 ram_wr32(fuc, 0x10f824, 0x00007e77);
304                 ram_wr32(fuc, 0x132000, 0x18030001);
305                 ram_wr32(fuc, 0x10f090, 0x4000007e);
306                 ram_nsec(fuc, 2000);
307                 ram_wr32(fuc, 0x10f314, 0x00000001);
308                 ram_wr32(fuc, 0x10f210, 0x80000000);
309                 ram_wr32(fuc, 0x10f338, 0x00300220);
310                 ram_wr32(fuc, 0x10f300, 0x0000011d);
311                 ram_nsec(fuc, 1000);
312                 ram_wr32(fuc, 0x10f290, 0x02060505);
313                 ram_wr32(fuc, 0x10f294, 0x34208288);
314                 ram_wr32(fuc, 0x10f298, 0x44050411);
315                 ram_wr32(fuc, 0x10f29c, 0x0000114c);
316                 ram_wr32(fuc, 0x10f2a0, 0x42e10069);
317                 ram_wr32(fuc, 0x10f614, 0x40044f77);
318                 ram_wr32(fuc, 0x10f610, 0x40044f77);
319                 ram_wr32(fuc, 0x10f344, 0x00600009);
320                 ram_nsec(fuc, 1000);
321                 ram_wr32(fuc, 0x10f348, 0x00700008);
322                 ram_wr32(fuc, 0x61c140, 0x19240000);
323                 ram_wr32(fuc, 0x10f830, 0x00300017);
324                 gf100_ram_train(fuc, 0x80021001);
325                 gf100_ram_train(fuc, 0x80081001);
326                 ram_wr32(fuc, 0x10f340, 0x00500004);
327                 ram_nsec(fuc, 1000);
328                 ram_wr32(fuc, 0x10f830, 0x01300017);
329                 ram_wr32(fuc, 0x10f830, 0x00300017);
330 // 0x00030020 // 0x00000000 // 0x00000000
331 // 0x00020034 // 0x0000000b
332                 ram_wr32(fuc, 0x100b0c, 0x00080028);
333                 ram_wr32(fuc, 0x611200, 0x00003330);
334         } else {
335                 ram_wr32(fuc, 0x10f800, 0x00001800);
336                 ram_wr32(fuc, 0x13d8f4, 0x00000000);
337                 ram_wr32(fuc, 0x1373ec, 0x00020404);
338                 ram_wr32(fuc, 0x1373f0, 0x00000003);
339                 ram_wr32(fuc, 0x10f830, 0x40700010);
340                 ram_wr32(fuc, 0x10f830, 0x40500010);
341                 ram_wr32(fuc, 0x13d8f4, 0x00000000);
342                 ram_wr32(fuc, 0x1373f8, 0x00000000);
343                 ram_wr32(fuc, 0x132100, 0x00000101);
344                 ram_wr32(fuc, 0x137310, 0x89201616);
345                 ram_wr32(fuc, 0x10f050, 0xff000090);
346                 ram_wr32(fuc, 0x1373ec, 0x00030404);
347                 ram_wr32(fuc, 0x1373f0, 0x00000002);
348         // 0x00020039 // 0x00000011
349                 ram_wr32(fuc, 0x132100, 0x00000001);
350                 ram_wr32(fuc, 0x1373f8, 0x00002000);
351                 ram_nsec(fuc, 2000);
352                 ram_wr32(fuc, 0x10f808, 0x7aaa0050);
353                 ram_wr32(fuc, 0x10f830, 0x00500010);
354                 ram_wr32(fuc, 0x10f200, 0x00ce1000);
355                 ram_wr32(fuc, 0x10f090, 0x4000007e);
356                 ram_nsec(fuc, 2000);
357                 ram_wr32(fuc, 0x10f314, 0x00000001);
358                 ram_wr32(fuc, 0x10f210, 0x80000000);
359                 ram_wr32(fuc, 0x10f338, 0x00300200);
360                 ram_wr32(fuc, 0x10f300, 0x0000084d);
361                 ram_nsec(fuc, 1000);
362                 ram_wr32(fuc, 0x10f290, 0x0b343825);
363                 ram_wr32(fuc, 0x10f294, 0x3483028e);
364                 ram_wr32(fuc, 0x10f298, 0x440c0600);
365                 ram_wr32(fuc, 0x10f29c, 0x0000214c);
366                 ram_wr32(fuc, 0x10f2a0, 0x42e20069);
367                 ram_wr32(fuc, 0x10f200, 0x00ce0000);
368                 ram_wr32(fuc, 0x10f614, 0x60044e77);
369                 ram_wr32(fuc, 0x10f610, 0x60044e77);
370                 ram_wr32(fuc, 0x10f340, 0x00500000);
371                 ram_nsec(fuc, 1000);
372                 ram_wr32(fuc, 0x10f344, 0x00600228);
373                 ram_nsec(fuc, 1000);
374                 ram_wr32(fuc, 0x10f348, 0x00700000);
375                 ram_wr32(fuc, 0x13d8f4, 0x00000000);
376                 ram_wr32(fuc, 0x61c140, 0x09a40000);
377
378                 gf100_ram_train(fuc, 0x800e1008);
379
380                 ram_nsec(fuc, 1000);
381                 ram_wr32(fuc, 0x10f800, 0x00001804);
382         // 0x00030020 // 0x00000000 // 0x00000000
383         // 0x00020034 // 0x0000000b
384                 ram_wr32(fuc, 0x13d8f4, 0x00000000);
385                 ram_wr32(fuc, 0x100b0c, 0x00080028);
386                 ram_wr32(fuc, 0x611200, 0x00003330);
387                 ram_nsec(fuc, 100000);
388                 ram_wr32(fuc, 0x10f9b0, 0x05313f41);
389                 ram_wr32(fuc, 0x10f9b4, 0x00002f50);
390
391                 gf100_ram_train(fuc, 0x010c1001);
392         }
393
394         ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
395 // 0x00020016 // 0x00000000
396
397         if (mode == 0)
398                 ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
399
400         return 0;
401 }
402
403 static int
404 gf100_ram_prog(struct nvkm_fb *pfb)
405 {
406         struct nvkm_device *device = nv_device(pfb);
407         struct gf100_ram *ram = (void *)pfb->ram;
408         struct gf100_ramfuc *fuc = &ram->fuc;
409         ram_exec(fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
410         return 0;
411 }
412
413 static void
414 gf100_ram_tidy(struct nvkm_fb *pfb)
415 {
416         struct gf100_ram *ram = (void *)pfb->ram;
417         struct gf100_ramfuc *fuc = &ram->fuc;
418         ram_exec(fuc, false);
419 }
420
421 extern const u8 gf100_pte_storage_type_map[256];
422
423 void
424 gf100_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem)
425 {
426         struct nvkm_ltc *ltc = nvkm_ltc(pfb);
427         struct nvkm_mem *mem = *pmem;
428
429         *pmem = NULL;
430         if (unlikely(mem == NULL))
431                 return;
432
433         mutex_lock(&pfb->base.mutex);
434         if (mem->tag)
435                 ltc->tags_free(ltc, &mem->tag);
436         __nv50_ram_put(pfb, mem);
437         mutex_unlock(&pfb->base.mutex);
438
439         kfree(mem);
440 }
441
442 int
443 gf100_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin,
444               u32 memtype, struct nvkm_mem **pmem)
445 {
446         struct nvkm_mm *mm = &pfb->vram;
447         struct nvkm_mm_node *r;
448         struct nvkm_mem *mem;
449         int type = (memtype & 0x0ff);
450         int back = (memtype & 0x800);
451         const bool comp = gf100_pte_storage_type_map[type] != type;
452         int ret;
453
454         size  >>= 12;
455         align >>= 12;
456         ncmin >>= 12;
457         if (!ncmin)
458                 ncmin = size;
459
460         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
461         if (!mem)
462                 return -ENOMEM;
463
464         INIT_LIST_HEAD(&mem->regions);
465         mem->size = size;
466
467         mutex_lock(&pfb->base.mutex);
468         if (comp) {
469                 struct nvkm_ltc *ltc = nvkm_ltc(pfb);
470
471                 /* compression only works with lpages */
472                 if (align == (1 << (17 - 12))) {
473                         int n = size >> 5;
474                         ltc->tags_alloc(ltc, n, &mem->tag);
475                 }
476
477                 if (unlikely(!mem->tag))
478                         type = gf100_pte_storage_type_map[type];
479         }
480         mem->memtype = type;
481
482         do {
483                 if (back)
484                         ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
485                 else
486                         ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
487                 if (ret) {
488                         mutex_unlock(&pfb->base.mutex);
489                         pfb->ram->put(pfb, &mem);
490                         return ret;
491                 }
492
493                 list_add_tail(&r->rl_entry, &mem->regions);
494                 size -= r->length;
495         } while (size);
496         mutex_unlock(&pfb->base.mutex);
497
498         r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
499         mem->offset = (u64)r->offset << 12;
500         *pmem = mem;
501         return 0;
502 }
503
504 int
505 gf100_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
506                   struct nvkm_oclass *oclass, u32 maskaddr, int size,
507                   void **pobject)
508 {
509         struct nvkm_fb *pfb = nvkm_fb(parent);
510         struct nvkm_bios *bios = nvkm_bios(pfb);
511         struct nvkm_ram *ram;
512         const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
513         const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
514         u32 parts = nv_rd32(pfb, 0x022438);
515         u32 pmask = nv_rd32(pfb, maskaddr);
516         u32 bsize = nv_rd32(pfb, 0x10f20c);
517         u32 offset, length;
518         bool uniform = true;
519         int ret, part;
520
521         ret = nvkm_ram_create_(parent, engine, oclass, size, pobject);
522         ram = *pobject;
523         if (ret)
524                 return ret;
525
526         nv_debug(pfb, "0x100800: 0x%08x\n", nv_rd32(pfb, 0x100800));
527         nv_debug(pfb, "parts 0x%08x mask 0x%08x\n", parts, pmask);
528
529         ram->type = nvkm_fb_bios_memtype(bios);
530         ram->ranks = (nv_rd32(pfb, 0x10f200) & 0x00000004) ? 2 : 1;
531
532         /* read amount of vram attached to each memory controller */
533         for (part = 0; part < parts; part++) {
534                 if (!(pmask & (1 << part))) {
535                         u32 psize = nv_rd32(pfb, 0x11020c + (part * 0x1000));
536                         if (psize != bsize) {
537                                 if (psize < bsize)
538                                         bsize = psize;
539                                 uniform = false;
540                         }
541
542                         nv_debug(pfb, "%d: mem_amount 0x%08x\n", part, psize);
543                         ram->size += (u64)psize << 20;
544                 }
545         }
546
547         /* if all controllers have the same amount attached, there's no holes */
548         if (uniform) {
549                 offset = rsvd_head;
550                 length = (ram->size >> 12) - rsvd_head - rsvd_tail;
551                 ret = nvkm_mm_init(&pfb->vram, offset, length, 1);
552         } else {
553                 /* otherwise, address lowest common amount from 0GiB */
554                 ret = nvkm_mm_init(&pfb->vram, rsvd_head,
555                                    (bsize << 8) * parts - rsvd_head, 1);
556                 if (ret)
557                         return ret;
558
559                 /* and the rest starting from (8GiB + common_size) */
560                 offset = (0x0200000000ULL >> 12) + (bsize << 8);
561                 length = (ram->size >> 12) - ((bsize * parts) << 8) - rsvd_tail;
562
563                 ret = nvkm_mm_init(&pfb->vram, offset, length, 1);
564                 if (ret)
565                         nvkm_mm_fini(&pfb->vram);
566         }
567
568         if (ret)
569                 return ret;
570
571         ram->get = gf100_ram_get;
572         ram->put = gf100_ram_put;
573         return 0;
574 }
575
576 static int
577 gf100_ram_init(struct nvkm_object *object)
578 {
579         struct nvkm_fb *pfb = (void *)object->parent;
580         struct gf100_ram *ram = (void *)object;
581         int ret, i;
582
583         ret = nvkm_ram_init(&ram->base);
584         if (ret)
585                 return ret;
586
587         /* prepare for ddr link training, and load training patterns */
588         switch (ram->base.type) {
589         case NV_MEM_TYPE_GDDR5: {
590                 static const u8  train0[] = {
591                         0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
592                         0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
593                 };
594                 static const u32 train1[] = {
595                         0x00000000, 0xffffffff,
596                         0x55555555, 0xaaaaaaaa,
597                         0x33333333, 0xcccccccc,
598                         0xf0f0f0f0, 0x0f0f0f0f,
599                         0x00ff00ff, 0xff00ff00,
600                         0x0000ffff, 0xffff0000,
601                 };
602
603                 for (i = 0; i < 0x30; i++) {
604                         nv_wr32(pfb, 0x10f968, 0x00000000 | (i << 8));
605                         nv_wr32(pfb, 0x10f96c, 0x00000000 | (i << 8));
606                         nv_wr32(pfb, 0x10f920, 0x00000100 | train0[i % 12]);
607                         nv_wr32(pfb, 0x10f924, 0x00000100 | train0[i % 12]);
608                         nv_wr32(pfb, 0x10f918,              train1[i % 12]);
609                         nv_wr32(pfb, 0x10f91c,              train1[i % 12]);
610                         nv_wr32(pfb, 0x10f920, 0x00000000 | train0[i % 12]);
611                         nv_wr32(pfb, 0x10f924, 0x00000000 | train0[i % 12]);
612                         nv_wr32(pfb, 0x10f918,              train1[i % 12]);
613                         nv_wr32(pfb, 0x10f91c,              train1[i % 12]);
614                 }
615         }       break;
616         default:
617                 break;
618         }
619
620         return 0;
621 }
622
623 static int
624 gf100_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
625                struct nvkm_oclass *oclass, void *data, u32 size,
626                struct nvkm_object **pobject)
627 {
628         struct nvkm_bios *bios = nvkm_bios(parent);
629         struct gf100_ram *ram;
630         int ret;
631
632         ret = gf100_ram_create(parent, engine, oclass, 0x022554, &ram);
633         *pobject = nv_object(ram);
634         if (ret)
635                 return ret;
636
637         ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
638         if (ret) {
639                 nv_error(ram, "mclk refpll data not found\n");
640                 return ret;
641         }
642
643         ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
644         if (ret) {
645                 nv_error(ram, "mclk pll data not found\n");
646                 return ret;
647         }
648
649         switch (ram->base.type) {
650         case NV_MEM_TYPE_GDDR5:
651                 ram->base.calc = gf100_ram_calc;
652                 ram->base.prog = gf100_ram_prog;
653                 ram->base.tidy = gf100_ram_tidy;
654                 break;
655         default:
656                 nv_warn(ram, "reclocking of this ram type unsupported\n");
657                 return 0;
658         }
659
660         ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
661         ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
662         ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
663         ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
664
665         ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
666         ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
667         ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
668
669         ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
670
671         ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
672         ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
673         ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
674         ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
675         ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
676
677         ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
678         ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
679         ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
680         ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
681         ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
682
683         ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
684         ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
685
686         ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
687         ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
688         ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
689         ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
690         ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
691         ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
692         ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
693         ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
694         ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
695         ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
696         ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
697         ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
698         ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
699         ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
700         ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
701         ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
702         ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
703         ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
704         ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
705         ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
706         ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
707         ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
708         ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
709         ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
710         ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
711         ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
712         ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
713
714         ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
715         ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
716
717         ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
718         return 0;
719 }
720
721 struct nvkm_oclass
722 gf100_ram_oclass = {
723         .handle = 0,
724         .ofuncs = &(struct nvkm_ofuncs) {
725                 .ctor = gf100_ram_ctor,
726                 .dtor = _nvkm_ram_dtor,
727                 .init = gf100_ram_init,
728                 .fini = _nvkm_ram_fini,
729         }
730 };