]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/ttm/ttm_bo.c
ttm: fix agp since ttm tt rework
[mv-sheeva.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140         size_t acc_size = bo->acc_size;
141
142         BUG_ON(atomic_read(&bo->list_kref.refcount));
143         BUG_ON(atomic_read(&bo->kref.refcount));
144         BUG_ON(atomic_read(&bo->cpu_writers));
145         BUG_ON(bo->sync_obj != NULL);
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->destroy)
154                 bo->destroy(bo);
155         else {
156                 kfree(bo);
157         }
158         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163         if (interruptible) {
164                 return wait_event_interruptible(bo->event_queue,
165                                                atomic_read(&bo->reserved) == 0);
166         } else {
167                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168                 return 0;
169         }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175         struct ttm_bo_device *bdev = bo->bdev;
176         struct ttm_mem_type_manager *man;
177
178         BUG_ON(!atomic_read(&bo->reserved));
179
180         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182                 BUG_ON(!list_empty(&bo->lru));
183
184                 man = &bdev->man[bo->mem.mem_type];
185                 list_add_tail(&bo->lru, &man->lru);
186                 kref_get(&bo->list_kref);
187
188                 if (bo->ttm != NULL) {
189                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
190                         kref_get(&bo->list_kref);
191                 }
192         }
193 }
194
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197         int put_count = 0;
198
199         if (!list_empty(&bo->swap)) {
200                 list_del_init(&bo->swap);
201                 ++put_count;
202         }
203         if (!list_empty(&bo->lru)) {
204                 list_del_init(&bo->lru);
205                 ++put_count;
206         }
207
208         /*
209          * TODO: Add a driver hook to delete from
210          * driver-specific LRU's here.
211          */
212
213         return put_count;
214 }
215
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217                           bool interruptible,
218                           bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220         struct ttm_bo_global *glob = bo->glob;
221         int ret;
222
223         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224                 /**
225                  * Deadlock avoidance for multi-bo reserving.
226                  */
227                 if (use_sequence && bo->seq_valid) {
228                         /**
229                          * We've already reserved this one.
230                          */
231                         if (unlikely(sequence == bo->val_seq))
232                                 return -EDEADLK;
233                         /**
234                          * Already reserved by a thread that will not back
235                          * off for us. We need to back off.
236                          */
237                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
238                                 return -EAGAIN;
239                 }
240
241                 if (no_wait)
242                         return -EBUSY;
243
244                 spin_unlock(&glob->lru_lock);
245                 ret = ttm_bo_wait_unreserved(bo, interruptible);
246                 spin_lock(&glob->lru_lock);
247
248                 if (unlikely(ret))
249                         return ret;
250         }
251
252         if (use_sequence) {
253                 /**
254                  * Wake up waiters that may need to recheck for deadlock,
255                  * if we decreased the sequence number.
256                  */
257                 if (unlikely((bo->val_seq - sequence < (1 << 31))
258                              || !bo->seq_valid))
259                         wake_up_all(&bo->event_queue);
260
261                 bo->val_seq = sequence;
262                 bo->seq_valid = true;
263         } else {
264                 bo->seq_valid = false;
265         }
266
267         return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273         BUG();
274 }
275
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277                          bool never_free)
278 {
279         kref_sub(&bo->list_kref, count,
280                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284                    bool interruptible,
285                    bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287         struct ttm_bo_global *glob = bo->glob;
288         int put_count = 0;
289         int ret;
290
291         spin_lock(&glob->lru_lock);
292         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293                                     sequence);
294         if (likely(ret == 0))
295                 put_count = ttm_bo_del_from_lru(bo);
296         spin_unlock(&glob->lru_lock);
297
298         ttm_bo_list_ref_sub(bo, put_count, true);
299
300         return ret;
301 }
302
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305         ttm_bo_add_to_lru(bo);
306         atomic_set(&bo->reserved, 0);
307         wake_up_all(&bo->event_queue);
308 }
309
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312         struct ttm_bo_global *glob = bo->glob;
313
314         spin_lock(&glob->lru_lock);
315         ttm_bo_unreserve_locked(bo);
316         spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319
320 /*
321  * Call bo->mutex locked.
322  */
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325         struct ttm_bo_device *bdev = bo->bdev;
326         struct ttm_bo_global *glob = bo->glob;
327         int ret = 0;
328         uint32_t page_flags = 0;
329
330         TTM_ASSERT_LOCKED(&bo->mutex);
331         bo->ttm = NULL;
332
333         if (bdev->need_dma32)
334                 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336         switch (bo->type) {
337         case ttm_bo_type_device:
338                 if (zero_alloc)
339                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340         case ttm_bo_type_kernel:
341                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342                                                       page_flags, glob->dummy_read_page);
343                 if (unlikely(bo->ttm == NULL))
344                         ret = -ENOMEM;
345                 break;
346         default:
347                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
348                 ret = -EINVAL;
349                 break;
350         }
351
352         return ret;
353 }
354
355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356                                   struct ttm_mem_reg *mem,
357                                   bool evict, bool interruptible,
358                                   bool no_wait_reserve, bool no_wait_gpu)
359 {
360         struct ttm_bo_device *bdev = bo->bdev;
361         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365         int ret = 0;
366
367         if (old_is_pci || new_is_pci ||
368             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369                 ret = ttm_mem_io_lock(old_man, true);
370                 if (unlikely(ret != 0))
371                         goto out_err;
372                 ttm_bo_unmap_virtual_locked(bo);
373                 ttm_mem_io_unlock(old_man);
374         }
375
376         /*
377          * Create and bind a ttm if required.
378          */
379
380         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381                 if (bo->ttm == NULL) {
382                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383                         ret = ttm_bo_add_ttm(bo, zero);
384                         if (ret)
385                                 goto out_err;
386                 }
387
388                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389                 if (ret)
390                         goto out_err;
391
392                 if (mem->mem_type != TTM_PL_SYSTEM) {
393                         ret = ttm_tt_bind(bo->ttm, mem);
394                         if (ret)
395                                 goto out_err;
396                 }
397
398                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399                         if (bdev->driver->move_notify)
400                                 bdev->driver->move_notify(bo, mem);
401                         bo->mem = *mem;
402                         mem->mm_node = NULL;
403                         goto moved;
404                 }
405         }
406
407         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
408             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
409                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
410         else if (bdev->driver->move)
411                 ret = bdev->driver->move(bo, evict, interruptible,
412                                          no_wait_reserve, no_wait_gpu, mem);
413         else
414                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
415
416         if (ret)
417                 goto out_err;
418
419         if (bdev->driver->move_notify)
420                 bdev->driver->move_notify(bo, mem);
421
422 moved:
423         if (bo->evicted) {
424                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
425                 if (ret)
426                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
427                 bo->evicted = false;
428         }
429
430         if (bo->mem.mm_node) {
431                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
432                     bdev->man[bo->mem.mem_type].gpu_offset;
433                 bo->cur_placement = bo->mem.placement;
434         } else
435                 bo->offset = 0;
436
437         return 0;
438
439 out_err:
440         new_man = &bdev->man[bo->mem.mem_type];
441         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
442                 ttm_tt_unbind(bo->ttm);
443                 ttm_tt_destroy(bo->ttm);
444                 bo->ttm = NULL;
445         }
446
447         return ret;
448 }
449
450 /**
451  * Call bo::reserved.
452  * Will release GPU memory type usage on destruction.
453  * This is the place to put in driver specific hooks to release
454  * driver private resources.
455  * Will release the bo::reserved lock.
456  */
457
458 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
459 {
460         if (bo->bdev->driver->move_notify)
461                 bo->bdev->driver->move_notify(bo, NULL);
462
463         if (bo->ttm) {
464                 ttm_tt_unbind(bo->ttm);
465                 ttm_tt_destroy(bo->ttm);
466                 bo->ttm = NULL;
467         }
468         ttm_bo_mem_put(bo, &bo->mem);
469
470         atomic_set(&bo->reserved, 0);
471
472         /*
473          * Make processes trying to reserve really pick it up.
474          */
475         smp_mb__after_atomic_dec();
476         wake_up_all(&bo->event_queue);
477 }
478
479 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
480 {
481         struct ttm_bo_device *bdev = bo->bdev;
482         struct ttm_bo_global *glob = bo->glob;
483         struct ttm_bo_driver *driver;
484         void *sync_obj = NULL;
485         void *sync_obj_arg;
486         int put_count;
487         int ret;
488
489         spin_lock(&bdev->fence_lock);
490         (void) ttm_bo_wait(bo, false, false, true);
491         if (!bo->sync_obj) {
492
493                 spin_lock(&glob->lru_lock);
494
495                 /**
496                  * Lock inversion between bo:reserve and bdev::fence_lock here,
497                  * but that's OK, since we're only trylocking.
498                  */
499
500                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
501
502                 if (unlikely(ret == -EBUSY))
503                         goto queue;
504
505                 spin_unlock(&bdev->fence_lock);
506                 put_count = ttm_bo_del_from_lru(bo);
507
508                 spin_unlock(&glob->lru_lock);
509                 ttm_bo_cleanup_memtype_use(bo);
510
511                 ttm_bo_list_ref_sub(bo, put_count, true);
512
513                 return;
514         } else {
515                 spin_lock(&glob->lru_lock);
516         }
517 queue:
518         driver = bdev->driver;
519         if (bo->sync_obj)
520                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
521         sync_obj_arg = bo->sync_obj_arg;
522
523         kref_get(&bo->list_kref);
524         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
525         spin_unlock(&glob->lru_lock);
526         spin_unlock(&bdev->fence_lock);
527
528         if (sync_obj) {
529                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
530                 driver->sync_obj_unref(&sync_obj);
531         }
532         schedule_delayed_work(&bdev->wq,
533                               ((HZ / 100) < 1) ? 1 : HZ / 100);
534 }
535
536 /**
537  * function ttm_bo_cleanup_refs
538  * If bo idle, remove from delayed- and lru lists, and unref.
539  * If not idle, do nothing.
540  *
541  * @interruptible         Any sleeps should occur interruptibly.
542  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
543  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
544  */
545
546 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
547                                bool interruptible,
548                                bool no_wait_reserve,
549                                bool no_wait_gpu)
550 {
551         struct ttm_bo_device *bdev = bo->bdev;
552         struct ttm_bo_global *glob = bo->glob;
553         int put_count;
554         int ret = 0;
555
556 retry:
557         spin_lock(&bdev->fence_lock);
558         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
559         spin_unlock(&bdev->fence_lock);
560
561         if (unlikely(ret != 0))
562                 return ret;
563
564         spin_lock(&glob->lru_lock);
565
566         if (unlikely(list_empty(&bo->ddestroy))) {
567                 spin_unlock(&glob->lru_lock);
568                 return 0;
569         }
570
571         ret = ttm_bo_reserve_locked(bo, interruptible,
572                                     no_wait_reserve, false, 0);
573
574         if (unlikely(ret != 0)) {
575                 spin_unlock(&glob->lru_lock);
576                 return ret;
577         }
578
579         /**
580          * We can re-check for sync object without taking
581          * the bo::lock since setting the sync object requires
582          * also bo::reserved. A busy object at this point may
583          * be caused by another thread recently starting an accelerated
584          * eviction.
585          */
586
587         if (unlikely(bo->sync_obj)) {
588                 atomic_set(&bo->reserved, 0);
589                 wake_up_all(&bo->event_queue);
590                 spin_unlock(&glob->lru_lock);
591                 goto retry;
592         }
593
594         put_count = ttm_bo_del_from_lru(bo);
595         list_del_init(&bo->ddestroy);
596         ++put_count;
597
598         spin_unlock(&glob->lru_lock);
599         ttm_bo_cleanup_memtype_use(bo);
600
601         ttm_bo_list_ref_sub(bo, put_count, true);
602
603         return 0;
604 }
605
606 /**
607  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
608  * encountered buffers.
609  */
610
611 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
612 {
613         struct ttm_bo_global *glob = bdev->glob;
614         struct ttm_buffer_object *entry = NULL;
615         int ret = 0;
616
617         spin_lock(&glob->lru_lock);
618         if (list_empty(&bdev->ddestroy))
619                 goto out_unlock;
620
621         entry = list_first_entry(&bdev->ddestroy,
622                 struct ttm_buffer_object, ddestroy);
623         kref_get(&entry->list_kref);
624
625         for (;;) {
626                 struct ttm_buffer_object *nentry = NULL;
627
628                 if (entry->ddestroy.next != &bdev->ddestroy) {
629                         nentry = list_first_entry(&entry->ddestroy,
630                                 struct ttm_buffer_object, ddestroy);
631                         kref_get(&nentry->list_kref);
632                 }
633
634                 spin_unlock(&glob->lru_lock);
635                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
636                                           !remove_all);
637                 kref_put(&entry->list_kref, ttm_bo_release_list);
638                 entry = nentry;
639
640                 if (ret || !entry)
641                         goto out;
642
643                 spin_lock(&glob->lru_lock);
644                 if (list_empty(&entry->ddestroy))
645                         break;
646         }
647
648 out_unlock:
649         spin_unlock(&glob->lru_lock);
650 out:
651         if (entry)
652                 kref_put(&entry->list_kref, ttm_bo_release_list);
653         return ret;
654 }
655
656 static void ttm_bo_delayed_workqueue(struct work_struct *work)
657 {
658         struct ttm_bo_device *bdev =
659             container_of(work, struct ttm_bo_device, wq.work);
660
661         if (ttm_bo_delayed_delete(bdev, false)) {
662                 schedule_delayed_work(&bdev->wq,
663                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
664         }
665 }
666
667 static void ttm_bo_release(struct kref *kref)
668 {
669         struct ttm_buffer_object *bo =
670             container_of(kref, struct ttm_buffer_object, kref);
671         struct ttm_bo_device *bdev = bo->bdev;
672         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
673
674         if (likely(bo->vm_node != NULL)) {
675                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
676                 drm_mm_put_block(bo->vm_node);
677                 bo->vm_node = NULL;
678         }
679         write_unlock(&bdev->vm_lock);
680         ttm_mem_io_lock(man, false);
681         ttm_mem_io_free_vm(bo);
682         ttm_mem_io_unlock(man);
683         ttm_bo_cleanup_refs_or_queue(bo);
684         kref_put(&bo->list_kref, ttm_bo_release_list);
685         write_lock(&bdev->vm_lock);
686 }
687
688 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
689 {
690         struct ttm_buffer_object *bo = *p_bo;
691         struct ttm_bo_device *bdev = bo->bdev;
692
693         *p_bo = NULL;
694         write_lock(&bdev->vm_lock);
695         kref_put(&bo->kref, ttm_bo_release);
696         write_unlock(&bdev->vm_lock);
697 }
698 EXPORT_SYMBOL(ttm_bo_unref);
699
700 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
701 {
702         return cancel_delayed_work_sync(&bdev->wq);
703 }
704 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
705
706 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
707 {
708         if (resched)
709                 schedule_delayed_work(&bdev->wq,
710                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
711 }
712 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
713
714 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
715                         bool no_wait_reserve, bool no_wait_gpu)
716 {
717         struct ttm_bo_device *bdev = bo->bdev;
718         struct ttm_mem_reg evict_mem;
719         struct ttm_placement placement;
720         int ret = 0;
721
722         spin_lock(&bdev->fence_lock);
723         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
724         spin_unlock(&bdev->fence_lock);
725
726         if (unlikely(ret != 0)) {
727                 if (ret != -ERESTARTSYS) {
728                         printk(KERN_ERR TTM_PFX
729                                "Failed to expire sync object before "
730                                "buffer eviction.\n");
731                 }
732                 goto out;
733         }
734
735         BUG_ON(!atomic_read(&bo->reserved));
736
737         evict_mem = bo->mem;
738         evict_mem.mm_node = NULL;
739         evict_mem.bus.io_reserved_vm = false;
740         evict_mem.bus.io_reserved_count = 0;
741
742         placement.fpfn = 0;
743         placement.lpfn = 0;
744         placement.num_placement = 0;
745         placement.num_busy_placement = 0;
746         bdev->driver->evict_flags(bo, &placement);
747         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
748                                 no_wait_reserve, no_wait_gpu);
749         if (ret) {
750                 if (ret != -ERESTARTSYS) {
751                         printk(KERN_ERR TTM_PFX
752                                "Failed to find memory space for "
753                                "buffer 0x%p eviction.\n", bo);
754                         ttm_bo_mem_space_debug(bo, &placement);
755                 }
756                 goto out;
757         }
758
759         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
760                                      no_wait_reserve, no_wait_gpu);
761         if (ret) {
762                 if (ret != -ERESTARTSYS)
763                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
764                 ttm_bo_mem_put(bo, &evict_mem);
765                 goto out;
766         }
767         bo->evicted = true;
768 out:
769         return ret;
770 }
771
772 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
773                                 uint32_t mem_type,
774                                 bool interruptible, bool no_wait_reserve,
775                                 bool no_wait_gpu)
776 {
777         struct ttm_bo_global *glob = bdev->glob;
778         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
779         struct ttm_buffer_object *bo;
780         int ret, put_count = 0;
781
782 retry:
783         spin_lock(&glob->lru_lock);
784         if (list_empty(&man->lru)) {
785                 spin_unlock(&glob->lru_lock);
786                 return -EBUSY;
787         }
788
789         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
790         kref_get(&bo->list_kref);
791
792         if (!list_empty(&bo->ddestroy)) {
793                 spin_unlock(&glob->lru_lock);
794                 ret = ttm_bo_cleanup_refs(bo, interruptible,
795                                           no_wait_reserve, no_wait_gpu);
796                 kref_put(&bo->list_kref, ttm_bo_release_list);
797
798                 if (likely(ret == 0 || ret == -ERESTARTSYS))
799                         return ret;
800
801                 goto retry;
802         }
803
804         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
805
806         if (unlikely(ret == -EBUSY)) {
807                 spin_unlock(&glob->lru_lock);
808                 if (likely(!no_wait_gpu))
809                         ret = ttm_bo_wait_unreserved(bo, interruptible);
810
811                 kref_put(&bo->list_kref, ttm_bo_release_list);
812
813                 /**
814                  * We *need* to retry after releasing the lru lock.
815                  */
816
817                 if (unlikely(ret != 0))
818                         return ret;
819                 goto retry;
820         }
821
822         put_count = ttm_bo_del_from_lru(bo);
823         spin_unlock(&glob->lru_lock);
824
825         BUG_ON(ret != 0);
826
827         ttm_bo_list_ref_sub(bo, put_count, true);
828
829         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
830         ttm_bo_unreserve(bo);
831
832         kref_put(&bo->list_kref, ttm_bo_release_list);
833         return ret;
834 }
835
836 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
837 {
838         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
839
840         if (mem->mm_node)
841                 (*man->func->put_node)(man, mem);
842 }
843 EXPORT_SYMBOL(ttm_bo_mem_put);
844
845 /**
846  * Repeatedly evict memory from the LRU for @mem_type until we create enough
847  * space, or we've evicted everything and there isn't enough space.
848  */
849 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
850                                         uint32_t mem_type,
851                                         struct ttm_placement *placement,
852                                         struct ttm_mem_reg *mem,
853                                         bool interruptible,
854                                         bool no_wait_reserve,
855                                         bool no_wait_gpu)
856 {
857         struct ttm_bo_device *bdev = bo->bdev;
858         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
859         int ret;
860
861         do {
862                 ret = (*man->func->get_node)(man, bo, placement, mem);
863                 if (unlikely(ret != 0))
864                         return ret;
865                 if (mem->mm_node)
866                         break;
867                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
868                                                 no_wait_reserve, no_wait_gpu);
869                 if (unlikely(ret != 0))
870                         return ret;
871         } while (1);
872         if (mem->mm_node == NULL)
873                 return -ENOMEM;
874         mem->mem_type = mem_type;
875         return 0;
876 }
877
878 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
879                                       uint32_t cur_placement,
880                                       uint32_t proposed_placement)
881 {
882         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
883         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
884
885         /**
886          * Keep current caching if possible.
887          */
888
889         if ((cur_placement & caching) != 0)
890                 result |= (cur_placement & caching);
891         else if ((man->default_caching & caching) != 0)
892                 result |= man->default_caching;
893         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
894                 result |= TTM_PL_FLAG_CACHED;
895         else if ((TTM_PL_FLAG_WC & caching) != 0)
896                 result |= TTM_PL_FLAG_WC;
897         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
898                 result |= TTM_PL_FLAG_UNCACHED;
899
900         return result;
901 }
902
903 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
904                                  uint32_t mem_type,
905                                  uint32_t proposed_placement,
906                                  uint32_t *masked_placement)
907 {
908         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
909
910         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
911                 return false;
912
913         if ((proposed_placement & man->available_caching) == 0)
914                 return false;
915
916         cur_flags |= (proposed_placement & man->available_caching);
917
918         *masked_placement = cur_flags;
919         return true;
920 }
921
922 /**
923  * Creates space for memory region @mem according to its type.
924  *
925  * This function first searches for free space in compatible memory types in
926  * the priority order defined by the driver.  If free space isn't found, then
927  * ttm_bo_mem_force_space is attempted in priority order to evict and find
928  * space.
929  */
930 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
931                         struct ttm_placement *placement,
932                         struct ttm_mem_reg *mem,
933                         bool interruptible, bool no_wait_reserve,
934                         bool no_wait_gpu)
935 {
936         struct ttm_bo_device *bdev = bo->bdev;
937         struct ttm_mem_type_manager *man;
938         uint32_t mem_type = TTM_PL_SYSTEM;
939         uint32_t cur_flags = 0;
940         bool type_found = false;
941         bool type_ok = false;
942         bool has_erestartsys = false;
943         int i, ret;
944
945         mem->mm_node = NULL;
946         for (i = 0; i < placement->num_placement; ++i) {
947                 ret = ttm_mem_type_from_flags(placement->placement[i],
948                                                 &mem_type);
949                 if (ret)
950                         return ret;
951                 man = &bdev->man[mem_type];
952
953                 type_ok = ttm_bo_mt_compatible(man,
954                                                 mem_type,
955                                                 placement->placement[i],
956                                                 &cur_flags);
957
958                 if (!type_ok)
959                         continue;
960
961                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
962                                                   cur_flags);
963                 /*
964                  * Use the access and other non-mapping-related flag bits from
965                  * the memory placement flags to the current flags
966                  */
967                 ttm_flag_masked(&cur_flags, placement->placement[i],
968                                 ~TTM_PL_MASK_MEMTYPE);
969
970                 if (mem_type == TTM_PL_SYSTEM)
971                         break;
972
973                 if (man->has_type && man->use_type) {
974                         type_found = true;
975                         ret = (*man->func->get_node)(man, bo, placement, mem);
976                         if (unlikely(ret))
977                                 return ret;
978                 }
979                 if (mem->mm_node)
980                         break;
981         }
982
983         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
984                 mem->mem_type = mem_type;
985                 mem->placement = cur_flags;
986                 return 0;
987         }
988
989         if (!type_found)
990                 return -EINVAL;
991
992         for (i = 0; i < placement->num_busy_placement; ++i) {
993                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
994                                                 &mem_type);
995                 if (ret)
996                         return ret;
997                 man = &bdev->man[mem_type];
998                 if (!man->has_type)
999                         continue;
1000                 if (!ttm_bo_mt_compatible(man,
1001                                                 mem_type,
1002                                                 placement->busy_placement[i],
1003                                                 &cur_flags))
1004                         continue;
1005
1006                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1007                                                   cur_flags);
1008                 /*
1009                  * Use the access and other non-mapping-related flag bits from
1010                  * the memory placement flags to the current flags
1011                  */
1012                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1013                                 ~TTM_PL_MASK_MEMTYPE);
1014
1015
1016                 if (mem_type == TTM_PL_SYSTEM) {
1017                         mem->mem_type = mem_type;
1018                         mem->placement = cur_flags;
1019                         mem->mm_node = NULL;
1020                         return 0;
1021                 }
1022
1023                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1024                                                 interruptible, no_wait_reserve, no_wait_gpu);
1025                 if (ret == 0 && mem->mm_node) {
1026                         mem->placement = cur_flags;
1027                         return 0;
1028                 }
1029                 if (ret == -ERESTARTSYS)
1030                         has_erestartsys = true;
1031         }
1032         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1033         return ret;
1034 }
1035 EXPORT_SYMBOL(ttm_bo_mem_space);
1036
1037 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1038 {
1039         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1040                 return -EBUSY;
1041
1042         return wait_event_interruptible(bo->event_queue,
1043                                         atomic_read(&bo->cpu_writers) == 0);
1044 }
1045 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1046
1047 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1048                         struct ttm_placement *placement,
1049                         bool interruptible, bool no_wait_reserve,
1050                         bool no_wait_gpu)
1051 {
1052         int ret = 0;
1053         struct ttm_mem_reg mem;
1054         struct ttm_bo_device *bdev = bo->bdev;
1055
1056         BUG_ON(!atomic_read(&bo->reserved));
1057
1058         /*
1059          * FIXME: It's possible to pipeline buffer moves.
1060          * Have the driver move function wait for idle when necessary,
1061          * instead of doing it here.
1062          */
1063         spin_lock(&bdev->fence_lock);
1064         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1065         spin_unlock(&bdev->fence_lock);
1066         if (ret)
1067                 return ret;
1068         mem.num_pages = bo->num_pages;
1069         mem.size = mem.num_pages << PAGE_SHIFT;
1070         mem.page_alignment = bo->mem.page_alignment;
1071         mem.bus.io_reserved_vm = false;
1072         mem.bus.io_reserved_count = 0;
1073         /*
1074          * Determine where to move the buffer.
1075          */
1076         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1077         if (ret)
1078                 goto out_unlock;
1079         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1080 out_unlock:
1081         if (ret && mem.mm_node)
1082                 ttm_bo_mem_put(bo, &mem);
1083         return ret;
1084 }
1085
1086 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1087                              struct ttm_mem_reg *mem)
1088 {
1089         int i;
1090
1091         if (mem->mm_node && placement->lpfn != 0 &&
1092             (mem->start < placement->fpfn ||
1093              mem->start + mem->num_pages > placement->lpfn))
1094                 return -1;
1095
1096         for (i = 0; i < placement->num_placement; i++) {
1097                 if ((placement->placement[i] & mem->placement &
1098                         TTM_PL_MASK_CACHING) &&
1099                         (placement->placement[i] & mem->placement &
1100                         TTM_PL_MASK_MEM))
1101                         return i;
1102         }
1103         return -1;
1104 }
1105
1106 int ttm_bo_validate(struct ttm_buffer_object *bo,
1107                         struct ttm_placement *placement,
1108                         bool interruptible, bool no_wait_reserve,
1109                         bool no_wait_gpu)
1110 {
1111         int ret;
1112
1113         BUG_ON(!atomic_read(&bo->reserved));
1114         /* Check that range is valid */
1115         if (placement->lpfn || placement->fpfn)
1116                 if (placement->fpfn > placement->lpfn ||
1117                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1118                         return -EINVAL;
1119         /*
1120          * Check whether we need to move buffer.
1121          */
1122         ret = ttm_bo_mem_compat(placement, &bo->mem);
1123         if (ret < 0) {
1124                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1125                 if (ret)
1126                         return ret;
1127         } else {
1128                 /*
1129                  * Use the access and other non-mapping-related flag bits from
1130                  * the compatible memory placement flags to the active flags
1131                  */
1132                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1133                                 ~TTM_PL_MASK_MEMTYPE);
1134         }
1135         /*
1136          * We might need to add a TTM.
1137          */
1138         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1139                 ret = ttm_bo_add_ttm(bo, true);
1140                 if (ret)
1141                         return ret;
1142         }
1143         return 0;
1144 }
1145 EXPORT_SYMBOL(ttm_bo_validate);
1146
1147 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1148                                 struct ttm_placement *placement)
1149 {
1150         BUG_ON((placement->fpfn || placement->lpfn) &&
1151                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1152
1153         return 0;
1154 }
1155
1156 int ttm_bo_init(struct ttm_bo_device *bdev,
1157                 struct ttm_buffer_object *bo,
1158                 unsigned long size,
1159                 enum ttm_bo_type type,
1160                 struct ttm_placement *placement,
1161                 uint32_t page_alignment,
1162                 unsigned long buffer_start,
1163                 bool interruptible,
1164                 struct file *persistent_swap_storage,
1165                 size_t acc_size,
1166                 void (*destroy) (struct ttm_buffer_object *))
1167 {
1168         int ret = 0;
1169         unsigned long num_pages;
1170         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1171
1172         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1173         if (ret) {
1174                 printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
1175                 if (destroy)
1176                         (*destroy)(bo);
1177                 else
1178                         kfree(bo);
1179                 return -ENOMEM;
1180         }
1181
1182         size += buffer_start & ~PAGE_MASK;
1183         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1184         if (num_pages == 0) {
1185                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1186                 if (destroy)
1187                         (*destroy)(bo);
1188                 else
1189                         kfree(bo);
1190                 return -EINVAL;
1191         }
1192         bo->destroy = destroy;
1193
1194         kref_init(&bo->kref);
1195         kref_init(&bo->list_kref);
1196         atomic_set(&bo->cpu_writers, 0);
1197         atomic_set(&bo->reserved, 1);
1198         init_waitqueue_head(&bo->event_queue);
1199         INIT_LIST_HEAD(&bo->lru);
1200         INIT_LIST_HEAD(&bo->ddestroy);
1201         INIT_LIST_HEAD(&bo->swap);
1202         INIT_LIST_HEAD(&bo->io_reserve_lru);
1203         bo->bdev = bdev;
1204         bo->glob = bdev->glob;
1205         bo->type = type;
1206         bo->num_pages = num_pages;
1207         bo->mem.size = num_pages << PAGE_SHIFT;
1208         bo->mem.mem_type = TTM_PL_SYSTEM;
1209         bo->mem.num_pages = bo->num_pages;
1210         bo->mem.mm_node = NULL;
1211         bo->mem.page_alignment = page_alignment;
1212         bo->mem.bus.io_reserved_vm = false;
1213         bo->mem.bus.io_reserved_count = 0;
1214         bo->buffer_start = buffer_start & PAGE_MASK;
1215         bo->priv_flags = 0;
1216         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1217         bo->seq_valid = false;
1218         bo->persistent_swap_storage = persistent_swap_storage;
1219         bo->acc_size = acc_size;
1220         atomic_inc(&bo->glob->bo_count);
1221
1222         ret = ttm_bo_check_placement(bo, placement);
1223         if (unlikely(ret != 0))
1224                 goto out_err;
1225
1226         /*
1227          * For ttm_bo_type_device buffers, allocate
1228          * address space from the device.
1229          */
1230         if (bo->type == ttm_bo_type_device) {
1231                 ret = ttm_bo_setup_vm(bo);
1232                 if (ret)
1233                         goto out_err;
1234         }
1235
1236         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1237         if (ret)
1238                 goto out_err;
1239
1240         ttm_bo_unreserve(bo);
1241         return 0;
1242
1243 out_err:
1244         ttm_bo_unreserve(bo);
1245         ttm_bo_unref(&bo);
1246
1247         return ret;
1248 }
1249 EXPORT_SYMBOL(ttm_bo_init);
1250
1251 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1252                        unsigned long bo_size,
1253                        unsigned struct_size)
1254 {
1255         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1256         size_t size = 0;
1257
1258         size += ttm_round_pot(struct_size);
1259         size += PAGE_ALIGN(npages * sizeof(void *));
1260         size += ttm_round_pot(sizeof(struct ttm_tt));
1261         return size;
1262 }
1263 EXPORT_SYMBOL(ttm_bo_acc_size);
1264
1265 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1266                            unsigned long bo_size,
1267                            unsigned struct_size)
1268 {
1269         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1270         size_t size = 0;
1271
1272         size += ttm_round_pot(struct_size);
1273         size += PAGE_ALIGN(npages * sizeof(void *));
1274         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1275         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1276         return size;
1277 }
1278 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1279
1280 int ttm_bo_create(struct ttm_bo_device *bdev,
1281                         unsigned long size,
1282                         enum ttm_bo_type type,
1283                         struct ttm_placement *placement,
1284                         uint32_t page_alignment,
1285                         unsigned long buffer_start,
1286                         bool interruptible,
1287                         struct file *persistent_swap_storage,
1288                         struct ttm_buffer_object **p_bo)
1289 {
1290         struct ttm_buffer_object *bo;
1291         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292         size_t acc_size;
1293         int ret;
1294
1295         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1296         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1297         if (unlikely(ret != 0))
1298                 return ret;
1299
1300         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1301
1302         if (unlikely(bo == NULL)) {
1303                 ttm_mem_global_free(mem_glob, acc_size);
1304                 return -ENOMEM;
1305         }
1306
1307         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1308                                 buffer_start, interruptible,
1309                                 persistent_swap_storage, acc_size, NULL);
1310         if (likely(ret == 0))
1311                 *p_bo = bo;
1312
1313         return ret;
1314 }
1315 EXPORT_SYMBOL(ttm_bo_create);
1316
1317 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1318                                         unsigned mem_type, bool allow_errors)
1319 {
1320         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1321         struct ttm_bo_global *glob = bdev->glob;
1322         int ret;
1323
1324         /*
1325          * Can't use standard list traversal since we're unlocking.
1326          */
1327
1328         spin_lock(&glob->lru_lock);
1329         while (!list_empty(&man->lru)) {
1330                 spin_unlock(&glob->lru_lock);
1331                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1332                 if (ret) {
1333                         if (allow_errors) {
1334                                 return ret;
1335                         } else {
1336                                 printk(KERN_ERR TTM_PFX
1337                                         "Cleanup eviction failed\n");
1338                         }
1339                 }
1340                 spin_lock(&glob->lru_lock);
1341         }
1342         spin_unlock(&glob->lru_lock);
1343         return 0;
1344 }
1345
1346 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1347 {
1348         struct ttm_mem_type_manager *man;
1349         int ret = -EINVAL;
1350
1351         if (mem_type >= TTM_NUM_MEM_TYPES) {
1352                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1353                 return ret;
1354         }
1355         man = &bdev->man[mem_type];
1356
1357         if (!man->has_type) {
1358                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1359                        "memory manager type %u\n", mem_type);
1360                 return ret;
1361         }
1362
1363         man->use_type = false;
1364         man->has_type = false;
1365
1366         ret = 0;
1367         if (mem_type > 0) {
1368                 ttm_bo_force_list_clean(bdev, mem_type, false);
1369
1370                 ret = (*man->func->takedown)(man);
1371         }
1372
1373         return ret;
1374 }
1375 EXPORT_SYMBOL(ttm_bo_clean_mm);
1376
1377 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1378 {
1379         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1380
1381         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1382                 printk(KERN_ERR TTM_PFX
1383                        "Illegal memory manager memory type %u.\n",
1384                        mem_type);
1385                 return -EINVAL;
1386         }
1387
1388         if (!man->has_type) {
1389                 printk(KERN_ERR TTM_PFX
1390                        "Memory type %u has not been initialized.\n",
1391                        mem_type);
1392                 return 0;
1393         }
1394
1395         return ttm_bo_force_list_clean(bdev, mem_type, true);
1396 }
1397 EXPORT_SYMBOL(ttm_bo_evict_mm);
1398
1399 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1400                         unsigned long p_size)
1401 {
1402         int ret = -EINVAL;
1403         struct ttm_mem_type_manager *man;
1404
1405         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1406         man = &bdev->man[type];
1407         BUG_ON(man->has_type);
1408         man->io_reserve_fastpath = true;
1409         man->use_io_reserve_lru = false;
1410         mutex_init(&man->io_reserve_mutex);
1411         INIT_LIST_HEAD(&man->io_reserve_lru);
1412
1413         ret = bdev->driver->init_mem_type(bdev, type, man);
1414         if (ret)
1415                 return ret;
1416         man->bdev = bdev;
1417
1418         ret = 0;
1419         if (type != TTM_PL_SYSTEM) {
1420                 ret = (*man->func->init)(man, p_size);
1421                 if (ret)
1422                         return ret;
1423         }
1424         man->has_type = true;
1425         man->use_type = true;
1426         man->size = p_size;
1427
1428         INIT_LIST_HEAD(&man->lru);
1429
1430         return 0;
1431 }
1432 EXPORT_SYMBOL(ttm_bo_init_mm);
1433
1434 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1435 {
1436         struct ttm_bo_global *glob =
1437                 container_of(kobj, struct ttm_bo_global, kobj);
1438
1439         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1440         __free_page(glob->dummy_read_page);
1441         kfree(glob);
1442 }
1443
1444 void ttm_bo_global_release(struct drm_global_reference *ref)
1445 {
1446         struct ttm_bo_global *glob = ref->object;
1447
1448         kobject_del(&glob->kobj);
1449         kobject_put(&glob->kobj);
1450 }
1451 EXPORT_SYMBOL(ttm_bo_global_release);
1452
1453 int ttm_bo_global_init(struct drm_global_reference *ref)
1454 {
1455         struct ttm_bo_global_ref *bo_ref =
1456                 container_of(ref, struct ttm_bo_global_ref, ref);
1457         struct ttm_bo_global *glob = ref->object;
1458         int ret;
1459
1460         mutex_init(&glob->device_list_mutex);
1461         spin_lock_init(&glob->lru_lock);
1462         glob->mem_glob = bo_ref->mem_glob;
1463         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1464
1465         if (unlikely(glob->dummy_read_page == NULL)) {
1466                 ret = -ENOMEM;
1467                 goto out_no_drp;
1468         }
1469
1470         INIT_LIST_HEAD(&glob->swap_lru);
1471         INIT_LIST_HEAD(&glob->device_list);
1472
1473         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1474         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1475         if (unlikely(ret != 0)) {
1476                 printk(KERN_ERR TTM_PFX
1477                        "Could not register buffer object swapout.\n");
1478                 goto out_no_shrink;
1479         }
1480
1481         atomic_set(&glob->bo_count, 0);
1482
1483         ret = kobject_init_and_add(
1484                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1485         if (unlikely(ret != 0))
1486                 kobject_put(&glob->kobj);
1487         return ret;
1488 out_no_shrink:
1489         __free_page(glob->dummy_read_page);
1490 out_no_drp:
1491         kfree(glob);
1492         return ret;
1493 }
1494 EXPORT_SYMBOL(ttm_bo_global_init);
1495
1496
1497 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1498 {
1499         int ret = 0;
1500         unsigned i = TTM_NUM_MEM_TYPES;
1501         struct ttm_mem_type_manager *man;
1502         struct ttm_bo_global *glob = bdev->glob;
1503
1504         while (i--) {
1505                 man = &bdev->man[i];
1506                 if (man->has_type) {
1507                         man->use_type = false;
1508                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1509                                 ret = -EBUSY;
1510                                 printk(KERN_ERR TTM_PFX
1511                                        "DRM memory manager type %d "
1512                                        "is not clean.\n", i);
1513                         }
1514                         man->has_type = false;
1515                 }
1516         }
1517
1518         mutex_lock(&glob->device_list_mutex);
1519         list_del(&bdev->device_list);
1520         mutex_unlock(&glob->device_list_mutex);
1521
1522         cancel_delayed_work_sync(&bdev->wq);
1523
1524         while (ttm_bo_delayed_delete(bdev, true))
1525                 ;
1526
1527         spin_lock(&glob->lru_lock);
1528         if (list_empty(&bdev->ddestroy))
1529                 TTM_DEBUG("Delayed destroy list was clean\n");
1530
1531         if (list_empty(&bdev->man[0].lru))
1532                 TTM_DEBUG("Swap list was clean\n");
1533         spin_unlock(&glob->lru_lock);
1534
1535         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1536         write_lock(&bdev->vm_lock);
1537         drm_mm_takedown(&bdev->addr_space_mm);
1538         write_unlock(&bdev->vm_lock);
1539
1540         return ret;
1541 }
1542 EXPORT_SYMBOL(ttm_bo_device_release);
1543
1544 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1545                        struct ttm_bo_global *glob,
1546                        struct ttm_bo_driver *driver,
1547                        uint64_t file_page_offset,
1548                        bool need_dma32)
1549 {
1550         int ret = -EINVAL;
1551
1552         rwlock_init(&bdev->vm_lock);
1553         bdev->driver = driver;
1554
1555         memset(bdev->man, 0, sizeof(bdev->man));
1556
1557         /*
1558          * Initialize the system memory buffer type.
1559          * Other types need to be driver / IOCTL initialized.
1560          */
1561         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1562         if (unlikely(ret != 0))
1563                 goto out_no_sys;
1564
1565         bdev->addr_space_rb = RB_ROOT;
1566         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1567         if (unlikely(ret != 0))
1568                 goto out_no_addr_mm;
1569
1570         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1571         bdev->nice_mode = true;
1572         INIT_LIST_HEAD(&bdev->ddestroy);
1573         bdev->dev_mapping = NULL;
1574         bdev->glob = glob;
1575         bdev->need_dma32 = need_dma32;
1576         bdev->val_seq = 0;
1577         spin_lock_init(&bdev->fence_lock);
1578         mutex_lock(&glob->device_list_mutex);
1579         list_add_tail(&bdev->device_list, &glob->device_list);
1580         mutex_unlock(&glob->device_list_mutex);
1581
1582         return 0;
1583 out_no_addr_mm:
1584         ttm_bo_clean_mm(bdev, 0);
1585 out_no_sys:
1586         return ret;
1587 }
1588 EXPORT_SYMBOL(ttm_bo_device_init);
1589
1590 /*
1591  * buffer object vm functions.
1592  */
1593
1594 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1595 {
1596         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1597
1598         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1599                 if (mem->mem_type == TTM_PL_SYSTEM)
1600                         return false;
1601
1602                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1603                         return false;
1604
1605                 if (mem->placement & TTM_PL_FLAG_CACHED)
1606                         return false;
1607         }
1608         return true;
1609 }
1610
1611 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1612 {
1613         struct ttm_bo_device *bdev = bo->bdev;
1614         loff_t offset = (loff_t) bo->addr_space_offset;
1615         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1616
1617         if (!bdev->dev_mapping)
1618                 return;
1619         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1620         ttm_mem_io_free_vm(bo);
1621 }
1622
1623 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1624 {
1625         struct ttm_bo_device *bdev = bo->bdev;
1626         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1627
1628         ttm_mem_io_lock(man, false);
1629         ttm_bo_unmap_virtual_locked(bo);
1630         ttm_mem_io_unlock(man);
1631 }
1632
1633
1634 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1635
1636 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1637 {
1638         struct ttm_bo_device *bdev = bo->bdev;
1639         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1640         struct rb_node *parent = NULL;
1641         struct ttm_buffer_object *cur_bo;
1642         unsigned long offset = bo->vm_node->start;
1643         unsigned long cur_offset;
1644
1645         while (*cur) {
1646                 parent = *cur;
1647                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1648                 cur_offset = cur_bo->vm_node->start;
1649                 if (offset < cur_offset)
1650                         cur = &parent->rb_left;
1651                 else if (offset > cur_offset)
1652                         cur = &parent->rb_right;
1653                 else
1654                         BUG();
1655         }
1656
1657         rb_link_node(&bo->vm_rb, parent, cur);
1658         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1659 }
1660
1661 /**
1662  * ttm_bo_setup_vm:
1663  *
1664  * @bo: the buffer to allocate address space for
1665  *
1666  * Allocate address space in the drm device so that applications
1667  * can mmap the buffer and access the contents. This only
1668  * applies to ttm_bo_type_device objects as others are not
1669  * placed in the drm device address space.
1670  */
1671
1672 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1673 {
1674         struct ttm_bo_device *bdev = bo->bdev;
1675         int ret;
1676
1677 retry_pre_get:
1678         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1679         if (unlikely(ret != 0))
1680                 return ret;
1681
1682         write_lock(&bdev->vm_lock);
1683         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1684                                          bo->mem.num_pages, 0, 0);
1685
1686         if (unlikely(bo->vm_node == NULL)) {
1687                 ret = -ENOMEM;
1688                 goto out_unlock;
1689         }
1690
1691         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1692                                               bo->mem.num_pages, 0);
1693
1694         if (unlikely(bo->vm_node == NULL)) {
1695                 write_unlock(&bdev->vm_lock);
1696                 goto retry_pre_get;
1697         }
1698
1699         ttm_bo_vm_insert_rb(bo);
1700         write_unlock(&bdev->vm_lock);
1701         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1702
1703         return 0;
1704 out_unlock:
1705         write_unlock(&bdev->vm_lock);
1706         return ret;
1707 }
1708
1709 int ttm_bo_wait(struct ttm_buffer_object *bo,
1710                 bool lazy, bool interruptible, bool no_wait)
1711 {
1712         struct ttm_bo_driver *driver = bo->bdev->driver;
1713         struct ttm_bo_device *bdev = bo->bdev;
1714         void *sync_obj;
1715         void *sync_obj_arg;
1716         int ret = 0;
1717
1718         if (likely(bo->sync_obj == NULL))
1719                 return 0;
1720
1721         while (bo->sync_obj) {
1722
1723                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1724                         void *tmp_obj = bo->sync_obj;
1725                         bo->sync_obj = NULL;
1726                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1727                         spin_unlock(&bdev->fence_lock);
1728                         driver->sync_obj_unref(&tmp_obj);
1729                         spin_lock(&bdev->fence_lock);
1730                         continue;
1731                 }
1732
1733                 if (no_wait)
1734                         return -EBUSY;
1735
1736                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1737                 sync_obj_arg = bo->sync_obj_arg;
1738                 spin_unlock(&bdev->fence_lock);
1739                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1740                                             lazy, interruptible);
1741                 if (unlikely(ret != 0)) {
1742                         driver->sync_obj_unref(&sync_obj);
1743                         spin_lock(&bdev->fence_lock);
1744                         return ret;
1745                 }
1746                 spin_lock(&bdev->fence_lock);
1747                 if (likely(bo->sync_obj == sync_obj &&
1748                            bo->sync_obj_arg == sync_obj_arg)) {
1749                         void *tmp_obj = bo->sync_obj;
1750                         bo->sync_obj = NULL;
1751                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1752                                   &bo->priv_flags);
1753                         spin_unlock(&bdev->fence_lock);
1754                         driver->sync_obj_unref(&sync_obj);
1755                         driver->sync_obj_unref(&tmp_obj);
1756                         spin_lock(&bdev->fence_lock);
1757                 } else {
1758                         spin_unlock(&bdev->fence_lock);
1759                         driver->sync_obj_unref(&sync_obj);
1760                         spin_lock(&bdev->fence_lock);
1761                 }
1762         }
1763         return 0;
1764 }
1765 EXPORT_SYMBOL(ttm_bo_wait);
1766
1767 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1768 {
1769         struct ttm_bo_device *bdev = bo->bdev;
1770         int ret = 0;
1771
1772         /*
1773          * Using ttm_bo_reserve makes sure the lru lists are updated.
1774          */
1775
1776         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1777         if (unlikely(ret != 0))
1778                 return ret;
1779         spin_lock(&bdev->fence_lock);
1780         ret = ttm_bo_wait(bo, false, true, no_wait);
1781         spin_unlock(&bdev->fence_lock);
1782         if (likely(ret == 0))
1783                 atomic_inc(&bo->cpu_writers);
1784         ttm_bo_unreserve(bo);
1785         return ret;
1786 }
1787 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1788
1789 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1790 {
1791         if (atomic_dec_and_test(&bo->cpu_writers))
1792                 wake_up_all(&bo->event_queue);
1793 }
1794 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1795
1796 /**
1797  * A buffer object shrink method that tries to swap out the first
1798  * buffer object on the bo_global::swap_lru list.
1799  */
1800
1801 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1802 {
1803         struct ttm_bo_global *glob =
1804             container_of(shrink, struct ttm_bo_global, shrink);
1805         struct ttm_buffer_object *bo;
1806         int ret = -EBUSY;
1807         int put_count;
1808         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1809
1810         spin_lock(&glob->lru_lock);
1811         while (ret == -EBUSY) {
1812                 if (unlikely(list_empty(&glob->swap_lru))) {
1813                         spin_unlock(&glob->lru_lock);
1814                         return -EBUSY;
1815                 }
1816
1817                 bo = list_first_entry(&glob->swap_lru,
1818                                       struct ttm_buffer_object, swap);
1819                 kref_get(&bo->list_kref);
1820
1821                 if (!list_empty(&bo->ddestroy)) {
1822                         spin_unlock(&glob->lru_lock);
1823                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1824                         kref_put(&bo->list_kref, ttm_bo_release_list);
1825                         continue;
1826                 }
1827
1828                 /**
1829                  * Reserve buffer. Since we unlock while sleeping, we need
1830                  * to re-check that nobody removed us from the swap-list while
1831                  * we slept.
1832                  */
1833
1834                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1835                 if (unlikely(ret == -EBUSY)) {
1836                         spin_unlock(&glob->lru_lock);
1837                         ttm_bo_wait_unreserved(bo, false);
1838                         kref_put(&bo->list_kref, ttm_bo_release_list);
1839                         spin_lock(&glob->lru_lock);
1840                 }
1841         }
1842
1843         BUG_ON(ret != 0);
1844         put_count = ttm_bo_del_from_lru(bo);
1845         spin_unlock(&glob->lru_lock);
1846
1847         ttm_bo_list_ref_sub(bo, put_count, true);
1848
1849         /**
1850          * Wait for GPU, then move to system cached.
1851          */
1852
1853         spin_lock(&bo->bdev->fence_lock);
1854         ret = ttm_bo_wait(bo, false, false, false);
1855         spin_unlock(&bo->bdev->fence_lock);
1856
1857         if (unlikely(ret != 0))
1858                 goto out;
1859
1860         if ((bo->mem.placement & swap_placement) != swap_placement) {
1861                 struct ttm_mem_reg evict_mem;
1862
1863                 evict_mem = bo->mem;
1864                 evict_mem.mm_node = NULL;
1865                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1866                 evict_mem.mem_type = TTM_PL_SYSTEM;
1867
1868                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1869                                              false, false, false);
1870                 if (unlikely(ret != 0))
1871                         goto out;
1872         }
1873
1874         ttm_bo_unmap_virtual(bo);
1875
1876         /**
1877          * Swap out. Buffer will be swapped in again as soon as
1878          * anyone tries to access a ttm page.
1879          */
1880
1881         if (bo->bdev->driver->swap_notify)
1882                 bo->bdev->driver->swap_notify(bo);
1883
1884         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1885 out:
1886
1887         /**
1888          *
1889          * Unreserve without putting on LRU to avoid swapping out an
1890          * already swapped buffer.
1891          */
1892
1893         atomic_set(&bo->reserved, 0);
1894         wake_up_all(&bo->event_queue);
1895         kref_put(&bo->list_kref, ttm_bo_release_list);
1896         return ret;
1897 }
1898
1899 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1900 {
1901         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1902                 ;
1903 }
1904 EXPORT_SYMBOL(ttm_bo_swapout_all);