]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
Merge branch 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[linux-beck.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #include <linux/dma-mapping.h>
37 #include <linux/list.h>
38 #include <linux/seq_file.h> /* for seq_printf */
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/highmem.h>
42 #include <linux/mm_types.h>
43 #include <linux/module.h>
44 #include <linux/mm.h>
45 #include <linux/atomic.h>
46 #include <linux/device.h>
47 #include <linux/kthread.h>
48 #include "ttm/ttm_bo_driver.h"
49 #include "ttm/ttm_page_alloc.h"
50 #ifdef TTM_HAS_AGP
51 #include <asm/agp.h>
52 #endif
53
54 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
55 #define SMALL_ALLOCATION                4
56 #define FREE_ALL_PAGES                  (~0U)
57 /* times are in msecs */
58 #define IS_UNDEFINED                    (0)
59 #define IS_WC                           (1<<1)
60 #define IS_UC                           (1<<2)
61 #define IS_CACHED                       (1<<3)
62 #define IS_DMA32                        (1<<4)
63
64 enum pool_type {
65         POOL_IS_UNDEFINED,
66         POOL_IS_WC = IS_WC,
67         POOL_IS_UC = IS_UC,
68         POOL_IS_CACHED = IS_CACHED,
69         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
70         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
71         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
72 };
73 /*
74  * The pool structure. There are usually six pools:
75  *  - generic (not restricted to DMA32):
76  *      - write combined, uncached, cached.
77  *  - dma32 (up to 2^32 - so up 4GB):
78  *      - write combined, uncached, cached.
79  * for each 'struct device'. The 'cached' is for pages that are actively used.
80  * The other ones can be shrunk by the shrinker API if neccessary.
81  * @pools: The 'struct device->dma_pools' link.
82  * @type: Type of the pool
83  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
84  * used with irqsave/irqrestore variants because pool allocator maybe called
85  * from delayed work.
86  * @inuse_list: Pool of pages that are in use. The order is very important and
87  *   it is in the order that the TTM pages that are put back are in.
88  * @free_list: Pool of pages that are free to be used. No order requirements.
89  * @dev: The device that is associated with these pools.
90  * @size: Size used during DMA allocation.
91  * @npages_free: Count of available pages for re-use.
92  * @npages_in_use: Count of pages that are in use.
93  * @nfrees: Stats when pool is shrinking.
94  * @nrefills: Stats when the pool is grown.
95  * @gfp_flags: Flags to pass for alloc_page.
96  * @name: Name of the pool.
97  * @dev_name: Name derieved from dev - similar to how dev_info works.
98  *   Used during shutdown as the dev_info during release is unavailable.
99  */
100 struct dma_pool {
101         struct list_head pools; /* The 'struct device->dma_pools link */
102         enum pool_type type;
103         spinlock_t lock;
104         struct list_head inuse_list;
105         struct list_head free_list;
106         struct device *dev;
107         unsigned size;
108         unsigned npages_free;
109         unsigned npages_in_use;
110         unsigned long nfrees; /* Stats when shrunk. */
111         unsigned long nrefills; /* Stats when grown. */
112         gfp_t gfp_flags;
113         char name[13]; /* "cached dma32" */
114         char dev_name[64]; /* Constructed from dev */
115 };
116
117 /*
118  * The accounting page keeping track of the allocated page along with
119  * the DMA address.
120  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
121  * @vaddr: The virtual address of the page
122  * @dma: The bus address of the page. If the page is not allocated
123  *   via the DMA API, it will be -1.
124  */
125 struct dma_page {
126         struct list_head page_list;
127         void *vaddr;
128         struct page *p;
129         dma_addr_t dma;
130 };
131
132 /*
133  * Limits for the pool. They are handled without locks because only place where
134  * they may change is in sysfs store. They won't have immediate effect anyway
135  * so forcing serialization to access them is pointless.
136  */
137
138 struct ttm_pool_opts {
139         unsigned        alloc_size;
140         unsigned        max_size;
141         unsigned        small;
142 };
143
144 /*
145  * Contains the list of all of the 'struct device' and their corresponding
146  * DMA pools. Guarded by _mutex->lock.
147  * @pools: The link to 'struct ttm_pool_manager->pools'
148  * @dev: The 'struct device' associated with the 'pool'
149  * @pool: The 'struct dma_pool' associated with the 'dev'
150  */
151 struct device_pools {
152         struct list_head pools;
153         struct device *dev;
154         struct dma_pool *pool;
155 };
156
157 /*
158  * struct ttm_pool_manager - Holds memory pools for fast allocation
159  *
160  * @lock: Lock used when adding/removing from pools
161  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
162  * @options: Limits for the pool.
163  * @npools: Total amount of pools in existence.
164  * @shrinker: The structure used by [un|]register_shrinker
165  */
166 struct ttm_pool_manager {
167         struct mutex            lock;
168         struct list_head        pools;
169         struct ttm_pool_opts    options;
170         unsigned                npools;
171         struct shrinker         mm_shrink;
172         struct kobject          kobj;
173 };
174
175 static struct ttm_pool_manager *_manager;
176
177 static struct attribute ttm_page_pool_max = {
178         .name = "pool_max_size",
179         .mode = S_IRUGO | S_IWUSR
180 };
181 static struct attribute ttm_page_pool_small = {
182         .name = "pool_small_allocation",
183         .mode = S_IRUGO | S_IWUSR
184 };
185 static struct attribute ttm_page_pool_alloc_size = {
186         .name = "pool_allocation_size",
187         .mode = S_IRUGO | S_IWUSR
188 };
189
190 static struct attribute *ttm_pool_attrs[] = {
191         &ttm_page_pool_max,
192         &ttm_page_pool_small,
193         &ttm_page_pool_alloc_size,
194         NULL
195 };
196
197 static void ttm_pool_kobj_release(struct kobject *kobj)
198 {
199         struct ttm_pool_manager *m =
200                 container_of(kobj, struct ttm_pool_manager, kobj);
201         kfree(m);
202 }
203
204 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
205                               const char *buffer, size_t size)
206 {
207         struct ttm_pool_manager *m =
208                 container_of(kobj, struct ttm_pool_manager, kobj);
209         int chars;
210         unsigned val;
211         chars = sscanf(buffer, "%u", &val);
212         if (chars == 0)
213                 return size;
214
215         /* Convert kb to number of pages */
216         val = val / (PAGE_SIZE >> 10);
217
218         if (attr == &ttm_page_pool_max)
219                 m->options.max_size = val;
220         else if (attr == &ttm_page_pool_small)
221                 m->options.small = val;
222         else if (attr == &ttm_page_pool_alloc_size) {
223                 if (val > NUM_PAGES_TO_ALLOC*8) {
224                         printk(KERN_ERR TTM_PFX
225                                "Setting allocation size to %lu "
226                                "is not allowed. Recommended size is "
227                                "%lu\n",
228                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230                         return size;
231                 } else if (val > NUM_PAGES_TO_ALLOC) {
232                         printk(KERN_WARNING TTM_PFX
233                                "Setting allocation size to "
234                                "larger than %lu is not recommended.\n",
235                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
236                 }
237                 m->options.alloc_size = val;
238         }
239
240         return size;
241 }
242
243 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
244                              char *buffer)
245 {
246         struct ttm_pool_manager *m =
247                 container_of(kobj, struct ttm_pool_manager, kobj);
248         unsigned val = 0;
249
250         if (attr == &ttm_page_pool_max)
251                 val = m->options.max_size;
252         else if (attr == &ttm_page_pool_small)
253                 val = m->options.small;
254         else if (attr == &ttm_page_pool_alloc_size)
255                 val = m->options.alloc_size;
256
257         val = val * (PAGE_SIZE >> 10);
258
259         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
260 }
261
262 static const struct sysfs_ops ttm_pool_sysfs_ops = {
263         .show = &ttm_pool_show,
264         .store = &ttm_pool_store,
265 };
266
267 static struct kobj_type ttm_pool_kobj_type = {
268         .release = &ttm_pool_kobj_release,
269         .sysfs_ops = &ttm_pool_sysfs_ops,
270         .default_attrs = ttm_pool_attrs,
271 };
272
273 #ifndef CONFIG_X86
274 static int set_pages_array_wb(struct page **pages, int addrinarray)
275 {
276 #ifdef TTM_HAS_AGP
277         int i;
278
279         for (i = 0; i < addrinarray; i++)
280                 unmap_page_from_agp(pages[i]);
281 #endif
282         return 0;
283 }
284
285 static int set_pages_array_wc(struct page **pages, int addrinarray)
286 {
287 #ifdef TTM_HAS_AGP
288         int i;
289
290         for (i = 0; i < addrinarray; i++)
291                 map_page_into_agp(pages[i]);
292 #endif
293         return 0;
294 }
295
296 static int set_pages_array_uc(struct page **pages, int addrinarray)
297 {
298 #ifdef TTM_HAS_AGP
299         int i;
300
301         for (i = 0; i < addrinarray; i++)
302                 map_page_into_agp(pages[i]);
303 #endif
304         return 0;
305 }
306 #endif /* for !CONFIG_X86 */
307
308 static int ttm_set_pages_caching(struct dma_pool *pool,
309                                  struct page **pages, unsigned cpages)
310 {
311         int r = 0;
312         /* Set page caching */
313         if (pool->type & IS_UC) {
314                 r = set_pages_array_uc(pages, cpages);
315                 if (r)
316                         pr_err(TTM_PFX
317                                "%s: Failed to set %d pages to uc!\n",
318                                pool->dev_name, cpages);
319         }
320         if (pool->type & IS_WC) {
321                 r = set_pages_array_wc(pages, cpages);
322                 if (r)
323                         pr_err(TTM_PFX
324                                "%s: Failed to set %d pages to wc!\n",
325                                pool->dev_name, cpages);
326         }
327         return r;
328 }
329
330 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
331 {
332         dma_addr_t dma = d_page->dma;
333         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
334
335         kfree(d_page);
336         d_page = NULL;
337 }
338 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
339 {
340         struct dma_page *d_page;
341
342         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
343         if (!d_page)
344                 return NULL;
345
346         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
347                                            &d_page->dma,
348                                            pool->gfp_flags);
349         if (d_page->vaddr)
350                 d_page->p = virt_to_page(d_page->vaddr);
351         else {
352                 kfree(d_page);
353                 d_page = NULL;
354         }
355         return d_page;
356 }
357 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
358 {
359         enum pool_type type = IS_UNDEFINED;
360
361         if (flags & TTM_PAGE_FLAG_DMA32)
362                 type |= IS_DMA32;
363         if (cstate == tt_cached)
364                 type |= IS_CACHED;
365         else if (cstate == tt_uncached)
366                 type |= IS_UC;
367         else
368                 type |= IS_WC;
369
370         return type;
371 }
372
373 static void ttm_pool_update_free_locked(struct dma_pool *pool,
374                                         unsigned freed_pages)
375 {
376         pool->npages_free -= freed_pages;
377         pool->nfrees += freed_pages;
378
379 }
380
381 /* set memory back to wb and free the pages. */
382 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
383                               struct page *pages[], unsigned npages)
384 {
385         struct dma_page *d_page, *tmp;
386
387         /* Don't set WB on WB page pool. */
388         if (npages && !(pool->type & IS_CACHED) &&
389             set_pages_array_wb(pages, npages))
390                 pr_err(TTM_PFX "%s: Failed to set %d pages to wb!\n",
391                         pool->dev_name, npages);
392
393         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
394                 list_del(&d_page->page_list);
395                 __ttm_dma_free_page(pool, d_page);
396         }
397 }
398
399 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
400 {
401         /* Don't set WB on WB page pool. */
402         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
403                 pr_err(TTM_PFX "%s: Failed to set %d pages to wb!\n",
404                         pool->dev_name, 1);
405
406         list_del(&d_page->page_list);
407         __ttm_dma_free_page(pool, d_page);
408 }
409
410 /*
411  * Free pages from pool.
412  *
413  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
414  * number of pages in one go.
415  *
416  * @pool: to free the pages from
417  * @nr_free: If set to true will free all pages in pool
418  **/
419 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
420 {
421         unsigned long irq_flags;
422         struct dma_page *dma_p, *tmp;
423         struct page **pages_to_free;
424         struct list_head d_pages;
425         unsigned freed_pages = 0,
426                  npages_to_free = nr_free;
427
428         if (NUM_PAGES_TO_ALLOC < nr_free)
429                 npages_to_free = NUM_PAGES_TO_ALLOC;
430 #if 0
431         if (nr_free > 1) {
432                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
433                         pool->dev_name, pool->name, current->pid,
434                         npages_to_free, nr_free);
435         }
436 #endif
437         pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
438                         GFP_KERNEL);
439
440         if (!pages_to_free) {
441                 pr_err(TTM_PFX
442                        "%s: Failed to allocate memory for pool free operation.\n",
443                         pool->dev_name);
444                 return 0;
445         }
446         INIT_LIST_HEAD(&d_pages);
447 restart:
448         spin_lock_irqsave(&pool->lock, irq_flags);
449
450         /* We picking the oldest ones off the list */
451         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
452                                          page_list) {
453                 if (freed_pages >= npages_to_free)
454                         break;
455
456                 /* Move the dma_page from one list to another. */
457                 list_move(&dma_p->page_list, &d_pages);
458
459                 pages_to_free[freed_pages++] = dma_p->p;
460                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
461                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
462
463                         ttm_pool_update_free_locked(pool, freed_pages);
464                         /**
465                          * Because changing page caching is costly
466                          * we unlock the pool to prevent stalling.
467                          */
468                         spin_unlock_irqrestore(&pool->lock, irq_flags);
469
470                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
471                                           freed_pages);
472
473                         INIT_LIST_HEAD(&d_pages);
474
475                         if (likely(nr_free != FREE_ALL_PAGES))
476                                 nr_free -= freed_pages;
477
478                         if (NUM_PAGES_TO_ALLOC >= nr_free)
479                                 npages_to_free = nr_free;
480                         else
481                                 npages_to_free = NUM_PAGES_TO_ALLOC;
482
483                         freed_pages = 0;
484
485                         /* free all so restart the processing */
486                         if (nr_free)
487                                 goto restart;
488
489                         /* Not allowed to fall through or break because
490                          * following context is inside spinlock while we are
491                          * outside here.
492                          */
493                         goto out;
494
495                 }
496         }
497
498         /* remove range of pages from the pool */
499         if (freed_pages) {
500                 ttm_pool_update_free_locked(pool, freed_pages);
501                 nr_free -= freed_pages;
502         }
503
504         spin_unlock_irqrestore(&pool->lock, irq_flags);
505
506         if (freed_pages)
507                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
508 out:
509         kfree(pages_to_free);
510         return nr_free;
511 }
512
513 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
514 {
515         struct device_pools *p;
516         struct dma_pool *pool;
517
518         if (!dev)
519                 return;
520
521         mutex_lock(&_manager->lock);
522         list_for_each_entry_reverse(p, &_manager->pools, pools) {
523                 if (p->dev != dev)
524                         continue;
525                 pool = p->pool;
526                 if (pool->type != type)
527                         continue;
528
529                 list_del(&p->pools);
530                 kfree(p);
531                 _manager->npools--;
532                 break;
533         }
534         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
535                 if (pool->type != type)
536                         continue;
537                 /* Takes a spinlock.. */
538                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
539                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
540                 /* This code path is called after _all_ references to the
541                  * struct device has been dropped - so nobody should be
542                  * touching it. In case somebody is trying to _add_ we are
543                  * guarded by the mutex. */
544                 list_del(&pool->pools);
545                 kfree(pool);
546                 break;
547         }
548         mutex_unlock(&_manager->lock);
549 }
550
551 /*
552  * On free-ing of the 'struct device' this deconstructor is run.
553  * Albeit the pool might have already been freed earlier.
554  */
555 static void ttm_dma_pool_release(struct device *dev, void *res)
556 {
557         struct dma_pool *pool = *(struct dma_pool **)res;
558
559         if (pool)
560                 ttm_dma_free_pool(dev, pool->type);
561 }
562
563 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
564 {
565         return *(struct dma_pool **)res == match_data;
566 }
567
568 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
569                                           enum pool_type type)
570 {
571         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
572         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
573         struct device_pools *sec_pool = NULL;
574         struct dma_pool *pool = NULL, **ptr;
575         unsigned i;
576         int ret = -ENODEV;
577         char *p;
578
579         if (!dev)
580                 return NULL;
581
582         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
583         if (!ptr)
584                 return NULL;
585
586         ret = -ENOMEM;
587
588         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
589                             dev_to_node(dev));
590         if (!pool)
591                 goto err_mem;
592
593         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
594                                 dev_to_node(dev));
595         if (!sec_pool)
596                 goto err_mem;
597
598         INIT_LIST_HEAD(&sec_pool->pools);
599         sec_pool->dev = dev;
600         sec_pool->pool =  pool;
601
602         INIT_LIST_HEAD(&pool->free_list);
603         INIT_LIST_HEAD(&pool->inuse_list);
604         INIT_LIST_HEAD(&pool->pools);
605         spin_lock_init(&pool->lock);
606         pool->dev = dev;
607         pool->npages_free = pool->npages_in_use = 0;
608         pool->nfrees = 0;
609         pool->gfp_flags = flags;
610         pool->size = PAGE_SIZE;
611         pool->type = type;
612         pool->nrefills = 0;
613         p = pool->name;
614         for (i = 0; i < 5; i++) {
615                 if (type & t[i]) {
616                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
617                                       "%s", n[i]);
618                 }
619         }
620         *p = 0;
621         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
622          * - the kobj->name has already been deallocated.*/
623         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
624                  dev_driver_string(dev), dev_name(dev));
625         mutex_lock(&_manager->lock);
626         /* You can get the dma_pool from either the global: */
627         list_add(&sec_pool->pools, &_manager->pools);
628         _manager->npools++;
629         /* or from 'struct device': */
630         list_add(&pool->pools, &dev->dma_pools);
631         mutex_unlock(&_manager->lock);
632
633         *ptr = pool;
634         devres_add(dev, ptr);
635
636         return pool;
637 err_mem:
638         devres_free(ptr);
639         kfree(sec_pool);
640         kfree(pool);
641         return ERR_PTR(ret);
642 }
643
644 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
645                                           enum pool_type type)
646 {
647         struct dma_pool *pool, *tmp, *found = NULL;
648
649         if (type == IS_UNDEFINED)
650                 return found;
651
652         /* NB: We iterate on the 'struct dev' which has no spinlock, but
653          * it does have a kref which we have taken. The kref is taken during
654          * graphic driver loading - in the drm_pci_init it calls either
655          * pci_dev_get or pci_register_driver which both end up taking a kref
656          * on 'struct device'.
657          *
658          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
659          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
660          * thing is at that point of time there are no pages associated with the
661          * driver so this function will not be called.
662          */
663         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
664                 if (pool->type != type)
665                         continue;
666                 found = pool;
667                 break;
668         }
669         return found;
670 }
671
672 /*
673  * Free pages the pages that failed to change the caching state. If there
674  * are pages that have changed their caching state already put them to the
675  * pool.
676  */
677 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
678                                                  struct list_head *d_pages,
679                                                  struct page **failed_pages,
680                                                  unsigned cpages)
681 {
682         struct dma_page *d_page, *tmp;
683         struct page *p;
684         unsigned i = 0;
685
686         p = failed_pages[0];
687         if (!p)
688                 return;
689         /* Find the failed page. */
690         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
691                 if (d_page->p != p)
692                         continue;
693                 /* .. and then progress over the full list. */
694                 list_del(&d_page->page_list);
695                 __ttm_dma_free_page(pool, d_page);
696                 if (++i < cpages)
697                         p = failed_pages[i];
698                 else
699                         break;
700         }
701
702 }
703
704 /*
705  * Allocate 'count' pages, and put 'need' number of them on the
706  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
707  * The full list of pages should also be on 'd_pages'.
708  * We return zero for success, and negative numbers as errors.
709  */
710 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
711                                         struct list_head *d_pages,
712                                         unsigned count)
713 {
714         struct page **caching_array;
715         struct dma_page *dma_p;
716         struct page *p;
717         int r = 0;
718         unsigned i, cpages;
719         unsigned max_cpages = min(count,
720                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
721
722         /* allocate array for page caching change */
723         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
724
725         if (!caching_array) {
726                 pr_err(TTM_PFX
727                        "%s: Unable to allocate table for new pages.",
728                         pool->dev_name);
729                 return -ENOMEM;
730         }
731
732         if (count > 1) {
733                 pr_debug("%s: (%s:%d) Getting %d pages\n",
734                         pool->dev_name, pool->name, current->pid,
735                         count);
736         }
737
738         for (i = 0, cpages = 0; i < count; ++i) {
739                 dma_p = __ttm_dma_alloc_page(pool);
740                 if (!dma_p) {
741                         pr_err(TTM_PFX "%s: Unable to get page %u.\n",
742                                 pool->dev_name, i);
743
744                         /* store already allocated pages in the pool after
745                          * setting the caching state */
746                         if (cpages) {
747                                 r = ttm_set_pages_caching(pool, caching_array,
748                                                           cpages);
749                                 if (r)
750                                         ttm_dma_handle_caching_state_failure(
751                                                 pool, d_pages, caching_array,
752                                                 cpages);
753                         }
754                         r = -ENOMEM;
755                         goto out;
756                 }
757                 p = dma_p->p;
758 #ifdef CONFIG_HIGHMEM
759                 /* gfp flags of highmem page should never be dma32 so we
760                  * we should be fine in such case
761                  */
762                 if (!PageHighMem(p))
763 #endif
764                 {
765                         caching_array[cpages++] = p;
766                         if (cpages == max_cpages) {
767                                 /* Note: Cannot hold the spinlock */
768                                 r = ttm_set_pages_caching(pool, caching_array,
769                                                  cpages);
770                                 if (r) {
771                                         ttm_dma_handle_caching_state_failure(
772                                                 pool, d_pages, caching_array,
773                                                 cpages);
774                                         goto out;
775                                 }
776                                 cpages = 0;
777                         }
778                 }
779                 list_add(&dma_p->page_list, d_pages);
780         }
781
782         if (cpages) {
783                 r = ttm_set_pages_caching(pool, caching_array, cpages);
784                 if (r)
785                         ttm_dma_handle_caching_state_failure(pool, d_pages,
786                                         caching_array, cpages);
787         }
788 out:
789         kfree(caching_array);
790         return r;
791 }
792
793 /*
794  * @return count of pages still required to fulfill the request.
795  */
796 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
797                                          unsigned long *irq_flags)
798 {
799         unsigned count = _manager->options.small;
800         int r = pool->npages_free;
801
802         if (count > pool->npages_free) {
803                 struct list_head d_pages;
804
805                 INIT_LIST_HEAD(&d_pages);
806
807                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
808
809                 /* Returns how many more are neccessary to fulfill the
810                  * request. */
811                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
812
813                 spin_lock_irqsave(&pool->lock, *irq_flags);
814                 if (!r) {
815                         /* Add the fresh to the end.. */
816                         list_splice(&d_pages, &pool->free_list);
817                         ++pool->nrefills;
818                         pool->npages_free += count;
819                         r = count;
820                 } else {
821                         struct dma_page *d_page;
822                         unsigned cpages = 0;
823
824                         pr_err(TTM_PFX "%s: Failed to fill %s pool (r:%d)!\n",
825                                 pool->dev_name, pool->name, r);
826
827                         list_for_each_entry(d_page, &d_pages, page_list) {
828                                 cpages++;
829                         }
830                         list_splice_tail(&d_pages, &pool->free_list);
831                         pool->npages_free += cpages;
832                         r = cpages;
833                 }
834         }
835         return r;
836 }
837
838 /*
839  * @return count of pages still required to fulfill the request.
840  * The populate list is actually a stack (not that is matters as TTM
841  * allocates one page at a time.
842  */
843 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
844                                   struct ttm_dma_tt *ttm_dma,
845                                   unsigned index)
846 {
847         struct dma_page *d_page;
848         struct ttm_tt *ttm = &ttm_dma->ttm;
849         unsigned long irq_flags;
850         int count, r = -ENOMEM;
851
852         spin_lock_irqsave(&pool->lock, irq_flags);
853         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
854         if (count) {
855                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
856                 ttm->pages[index] = d_page->p;
857                 ttm_dma->dma_address[index] = d_page->dma;
858                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
859                 r = 0;
860                 pool->npages_in_use += 1;
861                 pool->npages_free -= 1;
862         }
863         spin_unlock_irqrestore(&pool->lock, irq_flags);
864         return r;
865 }
866
867 /*
868  * On success pages list will hold count number of correctly
869  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
870  */
871 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
872 {
873         struct ttm_tt *ttm = &ttm_dma->ttm;
874         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
875         struct dma_pool *pool;
876         enum pool_type type;
877         unsigned i;
878         gfp_t gfp_flags;
879         int ret;
880
881         if (ttm->state != tt_unpopulated)
882                 return 0;
883
884         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
885         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
886                 gfp_flags = GFP_USER | GFP_DMA32;
887         else
888                 gfp_flags = GFP_HIGHUSER;
889         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
890                 gfp_flags |= __GFP_ZERO;
891
892         pool = ttm_dma_find_pool(dev, type);
893         if (!pool) {
894                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
895                 if (IS_ERR_OR_NULL(pool)) {
896                         return -ENOMEM;
897                 }
898         }
899
900         INIT_LIST_HEAD(&ttm_dma->pages_list);
901         for (i = 0; i < ttm->num_pages; ++i) {
902                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
903                 if (ret != 0) {
904                         ttm_dma_unpopulate(ttm_dma, dev);
905                         return -ENOMEM;
906                 }
907
908                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
909                                                 false, false);
910                 if (unlikely(ret != 0)) {
911                         ttm_dma_unpopulate(ttm_dma, dev);
912                         return -ENOMEM;
913                 }
914         }
915
916         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
917                 ret = ttm_tt_swapin(ttm);
918                 if (unlikely(ret != 0)) {
919                         ttm_dma_unpopulate(ttm_dma, dev);
920                         return ret;
921                 }
922         }
923
924         ttm->state = tt_unbound;
925         return 0;
926 }
927 EXPORT_SYMBOL_GPL(ttm_dma_populate);
928
929 /* Get good estimation how many pages are free in pools */
930 static int ttm_dma_pool_get_num_unused_pages(void)
931 {
932         struct device_pools *p;
933         unsigned total = 0;
934
935         mutex_lock(&_manager->lock);
936         list_for_each_entry(p, &_manager->pools, pools)
937                 total += p->pool->npages_free;
938         mutex_unlock(&_manager->lock);
939         return total;
940 }
941
942 /* Put all pages in pages list to correct pool to wait for reuse */
943 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
944 {
945         struct ttm_tt *ttm = &ttm_dma->ttm;
946         struct dma_pool *pool;
947         struct dma_page *d_page, *next;
948         enum pool_type type;
949         bool is_cached = false;
950         unsigned count = 0, i, npages = 0;
951         unsigned long irq_flags;
952
953         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
954         pool = ttm_dma_find_pool(dev, type);
955         if (!pool)
956                 return;
957
958         is_cached = (ttm_dma_find_pool(pool->dev,
959                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
960
961         /* make sure pages array match list and count number of pages */
962         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
963                 ttm->pages[count] = d_page->p;
964                 count++;
965         }
966
967         spin_lock_irqsave(&pool->lock, irq_flags);
968         pool->npages_in_use -= count;
969         if (is_cached) {
970                 pool->nfrees += count;
971         } else {
972                 pool->npages_free += count;
973                 list_splice(&ttm_dma->pages_list, &pool->free_list);
974                 npages = count;
975                 if (pool->npages_free > _manager->options.max_size) {
976                         npages = pool->npages_free - _manager->options.max_size;
977                         /* free at least NUM_PAGES_TO_ALLOC number of pages
978                          * to reduce calls to set_memory_wb */
979                         if (npages < NUM_PAGES_TO_ALLOC)
980                                 npages = NUM_PAGES_TO_ALLOC;
981                 }
982         }
983         spin_unlock_irqrestore(&pool->lock, irq_flags);
984
985         if (is_cached) {
986                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
987                         ttm_mem_global_free_page(ttm->glob->mem_glob,
988                                                  d_page->p);
989                         ttm_dma_page_put(pool, d_page);
990                 }
991         } else {
992                 for (i = 0; i < count; i++) {
993                         ttm_mem_global_free_page(ttm->glob->mem_glob,
994                                                  ttm->pages[i]);
995                 }
996         }
997
998         INIT_LIST_HEAD(&ttm_dma->pages_list);
999         for (i = 0; i < ttm->num_pages; i++) {
1000                 ttm->pages[i] = NULL;
1001                 ttm_dma->dma_address[i] = 0;
1002         }
1003
1004         /* shrink pool if necessary (only on !is_cached pools)*/
1005         if (npages)
1006                 ttm_dma_page_pool_free(pool, npages);
1007         ttm->state = tt_unpopulated;
1008 }
1009 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1010
1011 /**
1012  * Callback for mm to request pool to reduce number of page held.
1013  */
1014 static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1015                                   struct shrink_control *sc)
1016 {
1017         static atomic_t start_pool = ATOMIC_INIT(0);
1018         unsigned idx = 0;
1019         unsigned pool_offset = atomic_add_return(1, &start_pool);
1020         unsigned shrink_pages = sc->nr_to_scan;
1021         struct device_pools *p;
1022
1023         if (list_empty(&_manager->pools))
1024                 return 0;
1025
1026         mutex_lock(&_manager->lock);
1027         pool_offset = pool_offset % _manager->npools;
1028         list_for_each_entry(p, &_manager->pools, pools) {
1029                 unsigned nr_free;
1030
1031                 if (!p->dev)
1032                         continue;
1033                 if (shrink_pages == 0)
1034                         break;
1035                 /* Do it in round-robin fashion. */
1036                 if (++idx < pool_offset)
1037                         continue;
1038                 nr_free = shrink_pages;
1039                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1040                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1041                         p->pool->dev_name, p->pool->name, current->pid, nr_free,
1042                         shrink_pages);
1043         }
1044         mutex_unlock(&_manager->lock);
1045         /* return estimated number of unused pages in pool */
1046         return ttm_dma_pool_get_num_unused_pages();
1047 }
1048
1049 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1050 {
1051         manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1052         manager->mm_shrink.seeks = 1;
1053         register_shrinker(&manager->mm_shrink);
1054 }
1055
1056 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1057 {
1058         unregister_shrinker(&manager->mm_shrink);
1059 }
1060
1061 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1062 {
1063         int ret = -ENOMEM;
1064
1065         WARN_ON(_manager);
1066
1067         printk(KERN_INFO TTM_PFX "Initializing DMA pool allocator.\n");
1068
1069         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1070         if (!_manager)
1071                 goto err_manager;
1072
1073         mutex_init(&_manager->lock);
1074         INIT_LIST_HEAD(&_manager->pools);
1075
1076         _manager->options.max_size = max_pages;
1077         _manager->options.small = SMALL_ALLOCATION;
1078         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1079
1080         /* This takes care of auto-freeing the _manager */
1081         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1082                                    &glob->kobj, "dma_pool");
1083         if (unlikely(ret != 0)) {
1084                 kobject_put(&_manager->kobj);
1085                 goto err;
1086         }
1087         ttm_dma_pool_mm_shrink_init(_manager);
1088         return 0;
1089 err_manager:
1090         kfree(_manager);
1091         _manager = NULL;
1092 err:
1093         return ret;
1094 }
1095
1096 void ttm_dma_page_alloc_fini(void)
1097 {
1098         struct device_pools *p, *t;
1099
1100         printk(KERN_INFO TTM_PFX "Finalizing DMA pool allocator.\n");
1101         ttm_dma_pool_mm_shrink_fini(_manager);
1102
1103         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1104                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1105                         current->pid);
1106                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1107                         ttm_dma_pool_match, p->pool));
1108                 ttm_dma_free_pool(p->dev, p->pool->type);
1109         }
1110         kobject_put(&_manager->kobj);
1111         _manager = NULL;
1112 }
1113
1114 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1115 {
1116         struct device_pools *p;
1117         struct dma_pool *pool = NULL;
1118         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1119                      "name", "virt", "busaddr"};
1120
1121         if (!_manager) {
1122                 seq_printf(m, "No pool allocator running.\n");
1123                 return 0;
1124         }
1125         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1126                    h[0], h[1], h[2], h[3], h[4], h[5]);
1127         mutex_lock(&_manager->lock);
1128         list_for_each_entry(p, &_manager->pools, pools) {
1129                 struct device *dev = p->dev;
1130                 if (!dev)
1131                         continue;
1132                 pool = p->pool;
1133                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1134                                 pool->name, pool->nrefills,
1135                                 pool->nfrees, pool->npages_in_use,
1136                                 pool->npages_free,
1137                                 pool->dev_name);
1138         }
1139         mutex_unlock(&_manager->lock);
1140         return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);