]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
0c06844af4455d6319e83c183fbbd594e61cd678
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94         u32 reg;
95         const char *name;
96 } crtc_regs[] = {
97         CRTC_REG(PV_CONTROL),
98         CRTC_REG(PV_V_CONTROL),
99         CRTC_REG(PV_VSYNCD_EVEN),
100         CRTC_REG(PV_HORZA),
101         CRTC_REG(PV_HORZB),
102         CRTC_REG(PV_VERTA),
103         CRTC_REG(PV_VERTB),
104         CRTC_REG(PV_VERTA_EVEN),
105         CRTC_REG(PV_VERTB_EVEN),
106         CRTC_REG(PV_INTEN),
107         CRTC_REG(PV_INTSTAT),
108         CRTC_REG(PV_STAT),
109         CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114         int i;
115
116         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117                 DRM_INFO("0x%04x (%s): 0x%08x\n",
118                          crtc_regs[i].reg, crtc_regs[i].name,
119                          CRTC_READ(crtc_regs[i].reg));
120         }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126         struct drm_info_node *node = (struct drm_info_node *)m->private;
127         struct drm_device *dev = node->minor->dev;
128         int crtc_index = (uintptr_t)node->info_ent->data;
129         struct drm_crtc *crtc;
130         struct vc4_crtc *vc4_crtc;
131         int i;
132
133         i = 0;
134         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135                 if (i == crtc_index)
136                         break;
137                 i++;
138         }
139         if (!crtc)
140                 return 0;
141         vc4_crtc = to_vc4_crtc(crtc);
142
143         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145                            crtc_regs[i].name, crtc_regs[i].reg,
146                            CRTC_READ(crtc_regs[i].reg));
147         }
148
149         return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154                             unsigned int flags, int *vpos, int *hpos,
155                             ktime_t *stime, ktime_t *etime,
156                             const struct drm_display_mode *mode)
157 {
158         struct vc4_dev *vc4 = to_vc4_dev(dev);
159         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
160         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
161         u32 val;
162         int fifo_lines;
163         int vblank_lines;
164         int ret = 0;
165
166         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168         /* Get optional system timestamp before query. */
169         if (stime)
170                 *stime = ktime_get();
171
172         /*
173          * Read vertical scanline which is currently composed for our
174          * pixelvalve by the HVS, and also the scaler status.
175          */
176         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178         /* Get optional system timestamp after query. */
179         if (etime)
180                 *etime = ktime_get();
181
182         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184         /* Vertical position of hvs composed scanline. */
185         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186         *hpos = 0;
187
188         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189                 *vpos /= 2;
190
191                 /* Use hpos to correct for field offset in interlaced mode. */
192                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193                         *hpos += mode->crtc_htotal / 2;
194         }
195
196         /* This is the offset we need for translating hvs -> pv scanout pos. */
197         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199         if (fifo_lines > 0)
200                 ret |= DRM_SCANOUTPOS_VALID;
201
202         /* HVS more than fifo_lines into frame for compositing? */
203         if (*vpos > fifo_lines) {
204                 /*
205                  * We are in active scanout and can get some meaningful results
206                  * from HVS. The actual PV scanout can not trail behind more
207                  * than fifo_lines as that is the fifo's capacity. Assume that
208                  * in active scanout the HVS and PV work in lockstep wrt. HVS
209                  * refilling the fifo and PV consuming from the fifo, ie.
210                  * whenever the PV consumes and frees up a scanline in the
211                  * fifo, the HVS will immediately refill it, therefore
212                  * incrementing vpos. Therefore we choose HVS read position -
213                  * fifo size in scanlines as a estimate of the real scanout
214                  * position of the PV.
215                  */
216                 *vpos -= fifo_lines + 1;
217
218                 ret |= DRM_SCANOUTPOS_ACCURATE;
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         ret |= DRM_SCANOUTPOS_IN_VBLANK;
232         vblank_lines = mode->vtotal - mode->vdisplay;
233
234         if (flags & DRM_CALLED_FROM_VBLIRQ) {
235                 /*
236                  * Assume the irq handler got called close to first
237                  * line of vblank, so PV has about a full vblank
238                  * scanlines to go, and as a base timestamp use the
239                  * one taken at entry into vblank irq handler, so it
240                  * is not affected by random delays due to lock
241                  * contention on event_lock or vblank_time lock in
242                  * the core.
243                  */
244                 *vpos = -vblank_lines;
245
246                 if (stime)
247                         *stime = vc4_crtc->t_vblank;
248                 if (etime)
249                         *etime = vc4_crtc->t_vblank;
250
251                 /*
252                  * If the HVS fifo is not yet full then we know for certain
253                  * we are at the very beginning of vblank, as the hvs just
254                  * started refilling, and the stime and etime timestamps
255                  * truly correspond to start of vblank.
256                  */
257                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258                         ret |= DRM_SCANOUTPOS_ACCURATE;
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273                                   int *max_error, struct timeval *vblank_time,
274                                   unsigned flags)
275 {
276         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
277         struct drm_crtc_state *state = crtc->state;
278
279         /* Helper routine in DRM core does all the work: */
280         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
281                                                      vblank_time, flags,
282                                                      &state->adjusted_mode);
283 }
284
285 static void vc4_crtc_destroy(struct drm_crtc *crtc)
286 {
287         drm_crtc_cleanup(crtc);
288 }
289
290 static void
291 vc4_crtc_lut_load(struct drm_crtc *crtc)
292 {
293         struct drm_device *dev = crtc->dev;
294         struct vc4_dev *vc4 = to_vc4_dev(dev);
295         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
296         u32 i;
297
298         /* The LUT memory is laid out with each HVS channel in order,
299          * each of which takes 256 writes for R, 256 for G, then 256
300          * for B.
301          */
302         HVS_WRITE(SCALER_GAMADDR,
303                   SCALER_GAMADDR_AUTOINC |
304                   (vc4_crtc->channel * 3 * crtc->gamma_size));
305
306         for (i = 0; i < crtc->gamma_size; i++)
307                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
308         for (i = 0; i < crtc->gamma_size; i++)
309                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
310         for (i = 0; i < crtc->gamma_size; i++)
311                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
312 }
313
314 static int
315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
316                    uint32_t size)
317 {
318         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319         u32 i;
320
321         for (i = 0; i < size; i++) {
322                 vc4_crtc->lut_r[i] = r[i] >> 8;
323                 vc4_crtc->lut_g[i] = g[i] >> 8;
324                 vc4_crtc->lut_b[i] = b[i] >> 8;
325         }
326
327         vc4_crtc_lut_load(crtc);
328
329         return 0;
330 }
331
332 static u32 vc4_get_fifo_full_level(u32 format)
333 {
334         static const u32 fifo_len_bytes = 64;
335         static const u32 hvs_latency_pix = 6;
336
337         switch (format) {
338         case PV_CONTROL_FORMAT_DSIV_16:
339         case PV_CONTROL_FORMAT_DSIC_16:
340                 return fifo_len_bytes - 2 * hvs_latency_pix;
341         case PV_CONTROL_FORMAT_DSIV_18:
342                 return fifo_len_bytes - 14;
343         case PV_CONTROL_FORMAT_24:
344         case PV_CONTROL_FORMAT_DSIV_24:
345         default:
346                 return fifo_len_bytes - 3 * hvs_latency_pix;
347         }
348 }
349
350 /*
351  * Returns the encoder attached to the CRTC.
352  *
353  * VC4 can only scan out to one encoder at a time, while the DRM core
354  * allows drivers to push pixels to more than one encoder from the
355  * same CRTC.
356  */
357 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
358 {
359         struct drm_connector *connector;
360
361         drm_for_each_connector(connector, crtc->dev) {
362                 if (connector->state->crtc == crtc) {
363                         return connector->encoder;
364                 }
365         }
366
367         return NULL;
368 }
369
370 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
371 {
372         struct drm_device *dev = crtc->dev;
373         struct vc4_dev *vc4 = to_vc4_dev(dev);
374         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
375         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
376         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377         struct drm_crtc_state *state = crtc->state;
378         struct drm_display_mode *mode = &state->adjusted_mode;
379         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
382                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
383         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
384         bool debug_dump_regs = false;
385
386         if (debug_dump_regs) {
387                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388                 vc4_crtc_dump_regs(vc4_crtc);
389         }
390
391         /* Reset the PV fifo. */
392         CRTC_WRITE(PV_CONTROL, 0);
393         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394         CRTC_WRITE(PV_CONTROL, 0);
395
396         CRTC_WRITE(PV_HORZA,
397                    VC4_SET_FIELD((mode->htotal -
398                                   mode->hsync_end) * pixel_rep,
399                                  PV_HORZA_HBP) |
400                    VC4_SET_FIELD((mode->hsync_end -
401                                   mode->hsync_start) * pixel_rep,
402                                  PV_HORZA_HSYNC));
403         CRTC_WRITE(PV_HORZB,
404                    VC4_SET_FIELD((mode->hsync_start -
405                                   mode->hdisplay) * pixel_rep,
406                                  PV_HORZB_HFP) |
407                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
408
409         CRTC_WRITE(PV_VERTA,
410                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
411                                  PV_VERTA_VBP) |
412                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
413                                  PV_VERTA_VSYNC));
414         CRTC_WRITE(PV_VERTB,
415                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
416                                  PV_VERTB_VFP) |
417                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
418
419         if (interlace) {
420                 CRTC_WRITE(PV_VERTA_EVEN,
421                            VC4_SET_FIELD(mode->crtc_vtotal -
422                                          mode->crtc_vsync_end - 1,
423                                          PV_VERTA_VBP) |
424                            VC4_SET_FIELD(mode->crtc_vsync_end -
425                                          mode->crtc_vsync_start,
426                                          PV_VERTA_VSYNC));
427                 CRTC_WRITE(PV_VERTB_EVEN,
428                            VC4_SET_FIELD(mode->crtc_vsync_start -
429                                          mode->crtc_vdisplay,
430                                          PV_VERTB_VFP) |
431                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432
433                 /* We set up first field even mode for HDMI.  VEC's
434                  * NTSC mode would want first field odd instead, once
435                  * we support it (to do so, set ODD_FIRST and put the
436                  * delay in VSYNCD_EVEN instead).
437                  */
438                 CRTC_WRITE(PV_V_CONTROL,
439                            PV_VCONTROL_CONTINUOUS |
440                            (is_dsi ? PV_VCONTROL_DSI : 0) |
441                            PV_VCONTROL_INTERLACE |
442                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
443                                          PV_VCONTROL_ODD_DELAY));
444                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
445         } else {
446                 CRTC_WRITE(PV_V_CONTROL,
447                            PV_VCONTROL_CONTINUOUS |
448                            (is_dsi ? PV_VCONTROL_DSI : 0));
449         }
450
451         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
452
453         CRTC_WRITE(PV_CONTROL,
454                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
455                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
456                                  PV_CONTROL_FIFO_LEVEL) |
457                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
458                    PV_CONTROL_CLR_AT_START |
459                    PV_CONTROL_TRIGGER_UNDERFLOW |
460                    PV_CONTROL_WAIT_HSTART |
461                    VC4_SET_FIELD(vc4_encoder->clock_select,
462                                  PV_CONTROL_CLK_SELECT) |
463                    PV_CONTROL_FIFO_CLR |
464                    PV_CONTROL_EN);
465
466         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
467                   SCALER_DISPBKGND_AUTOHS |
468                   SCALER_DISPBKGND_GAMMA |
469                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
470
471         /* Reload the LUT, since the SRAMs would have been disabled if
472          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
473          */
474         vc4_crtc_lut_load(crtc);
475
476         if (debug_dump_regs) {
477                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
478                 vc4_crtc_dump_regs(vc4_crtc);
479         }
480 }
481
482 static void require_hvs_enabled(struct drm_device *dev)
483 {
484         struct vc4_dev *vc4 = to_vc4_dev(dev);
485
486         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
487                      SCALER_DISPCTRL_ENABLE);
488 }
489
490 static void vc4_crtc_disable(struct drm_crtc *crtc)
491 {
492         struct drm_device *dev = crtc->dev;
493         struct vc4_dev *vc4 = to_vc4_dev(dev);
494         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495         u32 chan = vc4_crtc->channel;
496         int ret;
497         require_hvs_enabled(dev);
498
499         /* Disable vblank irq handling before crtc is disabled. */
500         drm_crtc_vblank_off(crtc);
501
502         CRTC_WRITE(PV_V_CONTROL,
503                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
504         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
505         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
506
507         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
508             SCALER_DISPCTRLX_ENABLE) {
509                 HVS_WRITE(SCALER_DISPCTRLX(chan),
510                           SCALER_DISPCTRLX_RESET);
511
512                 /* While the docs say that reset is self-clearing, it
513                  * seems it doesn't actually.
514                  */
515                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
516         }
517
518         /* Once we leave, the scaler should be disabled and its fifo empty. */
519
520         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
521
522         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
523                                    SCALER_DISPSTATX_MODE) !=
524                      SCALER_DISPSTATX_MODE_DISABLED);
525
526         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
527                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
528                      SCALER_DISPSTATX_EMPTY);
529 }
530
531 static void vc4_crtc_enable(struct drm_crtc *crtc)
532 {
533         struct drm_device *dev = crtc->dev;
534         struct vc4_dev *vc4 = to_vc4_dev(dev);
535         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
536         struct drm_crtc_state *state = crtc->state;
537         struct drm_display_mode *mode = &state->adjusted_mode;
538
539         require_hvs_enabled(dev);
540
541         /* Turn on the scaler, which will wait for vstart to start
542          * compositing.
543          */
544         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
545                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
546                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
547                   SCALER_DISPCTRLX_ENABLE);
548
549         /* Turn on the pixel valve, which will emit the vstart signal. */
550         CRTC_WRITE(PV_V_CONTROL,
551                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552
553         /* Enable vblank irq handling after crtc is started. */
554         drm_crtc_vblank_on(crtc);
555 }
556
557 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
558                                 const struct drm_display_mode *mode,
559                                 struct drm_display_mode *adjusted_mode)
560 {
561         /* Do not allow doublescan modes from user space */
562         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
563                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
564                               crtc->base.id);
565                 return false;
566         }
567
568         return true;
569 }
570
571 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
572                                  struct drm_crtc_state *state)
573 {
574         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575         struct drm_device *dev = crtc->dev;
576         struct vc4_dev *vc4 = to_vc4_dev(dev);
577         struct drm_plane *plane;
578         unsigned long flags;
579         const struct drm_plane_state *plane_state;
580         u32 dlist_count = 0;
581         int ret;
582
583         /* The pixelvalve can only feed one encoder (and encoders are
584          * 1:1 with connectors.)
585          */
586         if (hweight32(state->connector_mask) > 1)
587                 return -EINVAL;
588
589         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
590                 dlist_count += vc4_plane_dlist_size(plane_state);
591
592         dlist_count++; /* Account for SCALER_CTL0_END. */
593
594         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
595         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
596                                  dlist_count);
597         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
598         if (ret)
599                 return ret;
600
601         return 0;
602 }
603
604 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
605                                   struct drm_crtc_state *old_state)
606 {
607         struct drm_device *dev = crtc->dev;
608         struct vc4_dev *vc4 = to_vc4_dev(dev);
609         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
610         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
611         struct drm_plane *plane;
612         bool debug_dump_regs = false;
613         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
614         u32 __iomem *dlist_next = dlist_start;
615
616         if (debug_dump_regs) {
617                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
618                 vc4_hvs_dump_state(dev);
619         }
620
621         /* Copy all the active planes' dlist contents to the hardware dlist. */
622         drm_atomic_crtc_for_each_plane(plane, crtc) {
623                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
624         }
625
626         writel(SCALER_CTL0_END, dlist_next);
627         dlist_next++;
628
629         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
630
631         if (crtc->state->event) {
632                 unsigned long flags;
633
634                 crtc->state->event->pipe = drm_crtc_index(crtc);
635
636                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
637
638                 spin_lock_irqsave(&dev->event_lock, flags);
639                 vc4_crtc->event = crtc->state->event;
640                 crtc->state->event = NULL;
641
642                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
643                           vc4_state->mm.start);
644
645                 spin_unlock_irqrestore(&dev->event_lock, flags);
646         } else {
647                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
648                           vc4_state->mm.start);
649         }
650
651         if (debug_dump_regs) {
652                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
653                 vc4_hvs_dump_state(dev);
654         }
655 }
656
657 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
658 {
659         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
660         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661
662         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
663
664         return 0;
665 }
666
667 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
668 {
669         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
670         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671
672         CRTC_WRITE(PV_INTEN, 0);
673 }
674
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679
680         return !!vc4_crtc->event;
681 }
682
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685         struct drm_crtc *crtc = &vc4_crtc->base;
686         struct drm_device *dev = crtc->dev;
687         struct vc4_dev *vc4 = to_vc4_dev(dev);
688         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689         u32 chan = vc4_crtc->channel;
690         unsigned long flags;
691
692         spin_lock_irqsave(&dev->event_lock, flags);
693         if (vc4_crtc->event &&
694             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696                 vc4_crtc->event = NULL;
697                 drm_crtc_vblank_put(crtc);
698         }
699         spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704         struct vc4_crtc *vc4_crtc = data;
705         u32 stat = CRTC_READ(PV_INTSTAT);
706         irqreturn_t ret = IRQ_NONE;
707
708         if (stat & PV_INT_VFP_START) {
709                 vc4_crtc->t_vblank = ktime_get();
710                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711                 drm_crtc_handle_vblank(&vc4_crtc->base);
712                 vc4_crtc_handle_page_flip(vc4_crtc);
713                 ret = IRQ_HANDLED;
714         }
715
716         return ret;
717 }
718
719 struct vc4_async_flip_state {
720         struct drm_crtc *crtc;
721         struct drm_framebuffer *fb;
722         struct drm_pending_vblank_event *event;
723
724         struct vc4_seqno_cb cb;
725 };
726
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728  * we can actually update the plane's address to point to it.
729  */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733         struct vc4_async_flip_state *flip_state =
734                 container_of(cb, struct vc4_async_flip_state, cb);
735         struct drm_crtc *crtc = flip_state->crtc;
736         struct drm_device *dev = crtc->dev;
737         struct vc4_dev *vc4 = to_vc4_dev(dev);
738         struct drm_plane *plane = crtc->primary;
739
740         vc4_plane_async_set_fb(plane, flip_state->fb);
741         if (flip_state->event) {
742                 unsigned long flags;
743
744                 spin_lock_irqsave(&dev->event_lock, flags);
745                 drm_crtc_send_vblank_event(crtc, flip_state->event);
746                 spin_unlock_irqrestore(&dev->event_lock, flags);
747         }
748
749         drm_crtc_vblank_put(crtc);
750         drm_framebuffer_unreference(flip_state->fb);
751         kfree(flip_state);
752
753         up(&vc4->async_modeset);
754 }
755
756 /* Implements async (non-vblank-synced) page flips.
757  *
758  * The page flip ioctl needs to return immediately, so we grab the
759  * modeset semaphore on the pipe, and queue the address update for
760  * when V3D is done with the BO being flipped to.
761  */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763                                struct drm_framebuffer *fb,
764                                struct drm_pending_vblank_event *event,
765                                uint32_t flags)
766 {
767         struct drm_device *dev = crtc->dev;
768         struct vc4_dev *vc4 = to_vc4_dev(dev);
769         struct drm_plane *plane = crtc->primary;
770         int ret = 0;
771         struct vc4_async_flip_state *flip_state;
772         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774
775         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776         if (!flip_state)
777                 return -ENOMEM;
778
779         drm_framebuffer_reference(fb);
780         flip_state->fb = fb;
781         flip_state->crtc = crtc;
782         flip_state->event = event;
783
784         /* Make sure all other async modesetes have landed. */
785         ret = down_interruptible(&vc4->async_modeset);
786         if (ret) {
787                 drm_framebuffer_unreference(fb);
788                 kfree(flip_state);
789                 return ret;
790         }
791
792         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793
794         /* Immediately update the plane's legacy fb pointer, so that later
795          * modeset prep sees the state that will be present when the semaphore
796          * is released.
797          */
798         drm_atomic_set_fb_for_plane(plane->state, fb);
799         plane->fb = fb;
800
801         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802                            vc4_async_page_flip_complete);
803
804         /* Driver takes ownership of state on successful async commit. */
805         return 0;
806 }
807
808 static int vc4_page_flip(struct drm_crtc *crtc,
809                          struct drm_framebuffer *fb,
810                          struct drm_pending_vblank_event *event,
811                          uint32_t flags)
812 {
813         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
814                 return vc4_async_page_flip(crtc, fb, event, flags);
815         else
816                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
817 }
818
819 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
820 {
821         struct vc4_crtc_state *vc4_state;
822
823         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
824         if (!vc4_state)
825                 return NULL;
826
827         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
828         return &vc4_state->base;
829 }
830
831 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
832                                    struct drm_crtc_state *state)
833 {
834         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
835         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
836
837         if (vc4_state->mm.allocated) {
838                 unsigned long flags;
839
840                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
841                 drm_mm_remove_node(&vc4_state->mm);
842                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
843
844         }
845
846         drm_atomic_helper_crtc_destroy_state(crtc, state);
847 }
848
849 static const struct drm_crtc_funcs vc4_crtc_funcs = {
850         .set_config = drm_atomic_helper_set_config,
851         .destroy = vc4_crtc_destroy,
852         .page_flip = vc4_page_flip,
853         .set_property = NULL,
854         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
855         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
856         .reset = drm_atomic_helper_crtc_reset,
857         .atomic_duplicate_state = vc4_crtc_duplicate_state,
858         .atomic_destroy_state = vc4_crtc_destroy_state,
859         .gamma_set = vc4_crtc_gamma_set,
860 };
861
862 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
863         .mode_set_nofb = vc4_crtc_mode_set_nofb,
864         .disable = vc4_crtc_disable,
865         .enable = vc4_crtc_enable,
866         .mode_fixup = vc4_crtc_mode_fixup,
867         .atomic_check = vc4_crtc_atomic_check,
868         .atomic_flush = vc4_crtc_atomic_flush,
869 };
870
871 static const struct vc4_crtc_data pv0_data = {
872         .hvs_channel = 0,
873         .encoder_types = {
874                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
875                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
876         },
877 };
878
879 static const struct vc4_crtc_data pv1_data = {
880         .hvs_channel = 2,
881         .encoder_types = {
882                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
883                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
884         },
885 };
886
887 static const struct vc4_crtc_data pv2_data = {
888         .hvs_channel = 1,
889         .encoder_types = {
890                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
891                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
892         },
893 };
894
895 static const struct of_device_id vc4_crtc_dt_match[] = {
896         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
897         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
898         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
899         {}
900 };
901
902 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
903                                         struct drm_crtc *crtc)
904 {
905         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
906         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
907         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
908         struct drm_encoder *encoder;
909
910         drm_for_each_encoder(encoder, drm) {
911                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
912                 int i;
913
914                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
915                         if (vc4_encoder->type == encoder_types[i]) {
916                                 vc4_encoder->clock_select = i;
917                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
918                                 break;
919                         }
920                 }
921         }
922 }
923
924 static void
925 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
926 {
927         struct drm_device *drm = vc4_crtc->base.dev;
928         struct vc4_dev *vc4 = to_vc4_dev(drm);
929         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
930         /* Top/base are supposed to be 4-pixel aligned, but the
931          * Raspberry Pi firmware fills the low bits (which are
932          * presumably ignored).
933          */
934         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
935         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
936
937         vc4_crtc->cob_size = top - base + 4;
938 }
939
940 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
941 {
942         struct platform_device *pdev = to_platform_device(dev);
943         struct drm_device *drm = dev_get_drvdata(master);
944         struct vc4_crtc *vc4_crtc;
945         struct drm_crtc *crtc;
946         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
947         const struct of_device_id *match;
948         int ret, i;
949
950         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
951         if (!vc4_crtc)
952                 return -ENOMEM;
953         crtc = &vc4_crtc->base;
954
955         match = of_match_device(vc4_crtc_dt_match, dev);
956         if (!match)
957                 return -ENODEV;
958         vc4_crtc->data = match->data;
959
960         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
961         if (IS_ERR(vc4_crtc->regs))
962                 return PTR_ERR(vc4_crtc->regs);
963
964         /* For now, we create just the primary and the legacy cursor
965          * planes.  We should be able to stack more planes on easily,
966          * but to do that we would need to compute the bandwidth
967          * requirement of the plane configuration, and reject ones
968          * that will take too much.
969          */
970         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
971         if (IS_ERR(primary_plane)) {
972                 dev_err(dev, "failed to construct primary plane\n");
973                 ret = PTR_ERR(primary_plane);
974                 goto err;
975         }
976
977         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
978                                   &vc4_crtc_funcs, NULL);
979         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
980         primary_plane->crtc = crtc;
981         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
982         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
983
984         /* Set up some arbitrary number of planes.  We're not limited
985          * by a set number of physical registers, just the space in
986          * the HVS (16k) and how small an plane can be (28 bytes).
987          * However, each plane we set up takes up some memory, and
988          * increases the cost of looping over planes, which atomic
989          * modesetting does quite a bit.  As a result, we pick a
990          * modest number of planes to expose, that should hopefully
991          * still cover any sane usecase.
992          */
993         for (i = 0; i < 8; i++) {
994                 struct drm_plane *plane =
995                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
996
997                 if (IS_ERR(plane))
998                         continue;
999
1000                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1001         }
1002
1003         /* Set up the legacy cursor after overlay initialization,
1004          * since we overlay planes on the CRTC in the order they were
1005          * initialized.
1006          */
1007         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1008         if (!IS_ERR(cursor_plane)) {
1009                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010                 cursor_plane->crtc = crtc;
1011                 crtc->cursor = cursor_plane;
1012         }
1013
1014         vc4_crtc_get_cob_allocation(vc4_crtc);
1015
1016         CRTC_WRITE(PV_INTEN, 0);
1017         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1018         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1019                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1020         if (ret)
1021                 goto err_destroy_planes;
1022
1023         vc4_set_crtc_possible_masks(drm, crtc);
1024
1025         for (i = 0; i < crtc->gamma_size; i++) {
1026                 vc4_crtc->lut_r[i] = i;
1027                 vc4_crtc->lut_g[i] = i;
1028                 vc4_crtc->lut_b[i] = i;
1029         }
1030
1031         platform_set_drvdata(pdev, vc4_crtc);
1032
1033         return 0;
1034
1035 err_destroy_planes:
1036         list_for_each_entry_safe(destroy_plane, temp,
1037                                  &drm->mode_config.plane_list, head) {
1038                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1039                     destroy_plane->funcs->destroy(destroy_plane);
1040         }
1041 err:
1042         return ret;
1043 }
1044
1045 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1046                             void *data)
1047 {
1048         struct platform_device *pdev = to_platform_device(dev);
1049         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1050
1051         vc4_crtc_destroy(&vc4_crtc->base);
1052
1053         CRTC_WRITE(PV_INTEN, 0);
1054
1055         platform_set_drvdata(pdev, NULL);
1056 }
1057
1058 static const struct component_ops vc4_crtc_ops = {
1059         .bind   = vc4_crtc_bind,
1060         .unbind = vc4_crtc_unbind,
1061 };
1062
1063 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1064 {
1065         return component_add(&pdev->dev, &vc4_crtc_ops);
1066 }
1067
1068 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1069 {
1070         component_del(&pdev->dev, &vc4_crtc_ops);
1071         return 0;
1072 }
1073
1074 struct platform_driver vc4_crtc_driver = {
1075         .probe = vc4_crtc_dev_probe,
1076         .remove = vc4_crtc_dev_remove,
1077         .driver = {
1078                 .name = "vc4_crtc",
1079                 .of_match_table = vc4_crtc_dt_match,
1080         },
1081 };