]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm: Add acquire ctx parameter to ->page_flip(_target)
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46         struct drm_crtc base;
47         const struct vc4_crtc_data *data;
48         void __iomem *regs;
49
50         /* Timestamp at start of vblank irq - unaffected by lock delays. */
51         ktime_t t_vblank;
52
53         /* Which HVS channel we're using for our CRTC. */
54         int channel;
55
56         u8 lut_r[256];
57         u8 lut_g[256];
58         u8 lut_b[256];
59         /* Size in pixels of the COB memory allocated to this CRTC. */
60         u32 cob_size;
61
62         struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66         struct drm_crtc_state base;
67         /* Dlist area for this CRTC configuration. */
68         struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74         return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80         return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84         /* Which channel of the HVS this pixelvalve sources from. */
85         int hvs_channel;
86
87         enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                             unsigned int flags, int *vpos, int *hpos,
156                             ktime_t *stime, ktime_t *etime,
157                             const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162         u32 val;
163         int fifo_lines;
164         int vblank_lines;
165         int ret = 0;
166
167         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169         /* Get optional system timestamp before query. */
170         if (stime)
171                 *stime = ktime_get();
172
173         /*
174          * Read vertical scanline which is currently composed for our
175          * pixelvalve by the HVS, and also the scaler status.
176          */
177         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179         /* Get optional system timestamp after query. */
180         if (etime)
181                 *etime = ktime_get();
182
183         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185         /* Vertical position of hvs composed scanline. */
186         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187         *hpos = 0;
188
189         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190                 *vpos /= 2;
191
192                 /* Use hpos to correct for field offset in interlaced mode. */
193                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194                         *hpos += mode->crtc_htotal / 2;
195         }
196
197         /* This is the offset we need for translating hvs -> pv scanout pos. */
198         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200         if (fifo_lines > 0)
201                 ret |= DRM_SCANOUTPOS_VALID;
202
203         /* HVS more than fifo_lines into frame for compositing? */
204         if (*vpos > fifo_lines) {
205                 /*
206                  * We are in active scanout and can get some meaningful results
207                  * from HVS. The actual PV scanout can not trail behind more
208                  * than fifo_lines as that is the fifo's capacity. Assume that
209                  * in active scanout the HVS and PV work in lockstep wrt. HVS
210                  * refilling the fifo and PV consuming from the fifo, ie.
211                  * whenever the PV consumes and frees up a scanline in the
212                  * fifo, the HVS will immediately refill it, therefore
213                  * incrementing vpos. Therefore we choose HVS read position -
214                  * fifo size in scanlines as a estimate of the real scanout
215                  * position of the PV.
216                  */
217                 *vpos -= fifo_lines + 1;
218
219                 ret |= DRM_SCANOUTPOS_ACCURATE;
220                 return ret;
221         }
222
223         /*
224          * Less: This happens when we are in vblank and the HVS, after getting
225          * the VSTART restart signal from the PV, just started refilling its
226          * fifo with new lines from the top-most lines of the new framebuffers.
227          * The PV does not scan out in vblank, so does not remove lines from
228          * the fifo, so the fifo will be full quickly and the HVS has to pause.
229          * We can't get meaningful readings wrt. scanline position of the PV
230          * and need to make things up in a approximative but consistent way.
231          */
232         ret |= DRM_SCANOUTPOS_IN_VBLANK;
233         vblank_lines = mode->vtotal - mode->vdisplay;
234
235         if (flags & DRM_CALLED_FROM_VBLIRQ) {
236                 /*
237                  * Assume the irq handler got called close to first
238                  * line of vblank, so PV has about a full vblank
239                  * scanlines to go, and as a base timestamp use the
240                  * one taken at entry into vblank irq handler, so it
241                  * is not affected by random delays due to lock
242                  * contention on event_lock or vblank_time lock in
243                  * the core.
244                  */
245                 *vpos = -vblank_lines;
246
247                 if (stime)
248                         *stime = vc4_crtc->t_vblank;
249                 if (etime)
250                         *etime = vc4_crtc->t_vblank;
251
252                 /*
253                  * If the HVS fifo is not yet full then we know for certain
254                  * we are at the very beginning of vblank, as the hvs just
255                  * started refilling, and the stime and etime timestamps
256                  * truly correspond to start of vblank.
257                  */
258                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
259                         ret |= DRM_SCANOUTPOS_ACCURATE;
260         } else {
261                 /*
262                  * No clue where we are inside vblank. Return a vpos of zero,
263                  * which will cause calling code to just return the etime
264                  * timestamp uncorrected. At least this is no worse than the
265                  * standard fallback.
266                  */
267                 *vpos = 0;
268         }
269
270         return ret;
271 }
272
273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
274                                   int *max_error, struct timeval *vblank_time,
275                                   unsigned flags)
276 {
277         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
278         struct drm_crtc_state *state = crtc->state;
279
280         /* Helper routine in DRM core does all the work: */
281         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282                                                      vblank_time, flags,
283                                                      &state->adjusted_mode);
284 }
285
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288         drm_crtc_cleanup(crtc);
289 }
290
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294         struct drm_device *dev = crtc->dev;
295         struct vc4_dev *vc4 = to_vc4_dev(dev);
296         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297         u32 i;
298
299         /* The LUT memory is laid out with each HVS channel in order,
300          * each of which takes 256 writes for R, 256 for G, then 256
301          * for B.
302          */
303         HVS_WRITE(SCALER_GAMADDR,
304                   SCALER_GAMADDR_AUTOINC |
305                   (vc4_crtc->channel * 3 * crtc->gamma_size));
306
307         for (i = 0; i < crtc->gamma_size; i++)
308                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309         for (i = 0; i < crtc->gamma_size; i++)
310                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311         for (i = 0; i < crtc->gamma_size; i++)
312                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317                    uint32_t size)
318 {
319         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
320         u32 i;
321
322         for (i = 0; i < size; i++) {
323                 vc4_crtc->lut_r[i] = r[i] >> 8;
324                 vc4_crtc->lut_g[i] = g[i] >> 8;
325                 vc4_crtc->lut_b[i] = b[i] >> 8;
326         }
327
328         vc4_crtc_lut_load(crtc);
329
330         return 0;
331 }
332
333 static u32 vc4_get_fifo_full_level(u32 format)
334 {
335         static const u32 fifo_len_bytes = 64;
336         static const u32 hvs_latency_pix = 6;
337
338         switch (format) {
339         case PV_CONTROL_FORMAT_DSIV_16:
340         case PV_CONTROL_FORMAT_DSIC_16:
341                 return fifo_len_bytes - 2 * hvs_latency_pix;
342         case PV_CONTROL_FORMAT_DSIV_18:
343                 return fifo_len_bytes - 14;
344         case PV_CONTROL_FORMAT_24:
345         case PV_CONTROL_FORMAT_DSIV_24:
346         default:
347                 return fifo_len_bytes - 3 * hvs_latency_pix;
348         }
349 }
350
351 /*
352  * Returns the encoder attached to the CRTC.
353  *
354  * VC4 can only scan out to one encoder at a time, while the DRM core
355  * allows drivers to push pixels to more than one encoder from the
356  * same CRTC.
357  */
358 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
359 {
360         struct drm_connector *connector;
361
362         drm_for_each_connector(connector, crtc->dev) {
363                 if (connector->state->crtc == crtc) {
364                         return connector->encoder;
365                 }
366         }
367
368         return NULL;
369 }
370
371 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
372 {
373         struct drm_device *dev = crtc->dev;
374         struct vc4_dev *vc4 = to_vc4_dev(dev);
375         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
376         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
377         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378         struct drm_crtc_state *state = crtc->state;
379         struct drm_display_mode *mode = &state->adjusted_mode;
380         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
382         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
383                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
384         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
385         bool debug_dump_regs = false;
386
387         if (debug_dump_regs) {
388                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
389                 vc4_crtc_dump_regs(vc4_crtc);
390         }
391
392         /* Reset the PV fifo. */
393         CRTC_WRITE(PV_CONTROL, 0);
394         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
395         CRTC_WRITE(PV_CONTROL, 0);
396
397         CRTC_WRITE(PV_HORZA,
398                    VC4_SET_FIELD((mode->htotal -
399                                   mode->hsync_end) * pixel_rep,
400                                  PV_HORZA_HBP) |
401                    VC4_SET_FIELD((mode->hsync_end -
402                                   mode->hsync_start) * pixel_rep,
403                                  PV_HORZA_HSYNC));
404         CRTC_WRITE(PV_HORZB,
405                    VC4_SET_FIELD((mode->hsync_start -
406                                   mode->hdisplay) * pixel_rep,
407                                  PV_HORZB_HFP) |
408                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
409
410         CRTC_WRITE(PV_VERTA,
411                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
412                                  PV_VERTA_VBP) |
413                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
414                                  PV_VERTA_VSYNC));
415         CRTC_WRITE(PV_VERTB,
416                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
417                                  PV_VERTB_VFP) |
418                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
419
420         if (interlace) {
421                 CRTC_WRITE(PV_VERTA_EVEN,
422                            VC4_SET_FIELD(mode->crtc_vtotal -
423                                          mode->crtc_vsync_end - 1,
424                                          PV_VERTA_VBP) |
425                            VC4_SET_FIELD(mode->crtc_vsync_end -
426                                          mode->crtc_vsync_start,
427                                          PV_VERTA_VSYNC));
428                 CRTC_WRITE(PV_VERTB_EVEN,
429                            VC4_SET_FIELD(mode->crtc_vsync_start -
430                                          mode->crtc_vdisplay,
431                                          PV_VERTB_VFP) |
432                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
433
434                 /* We set up first field even mode for HDMI.  VEC's
435                  * NTSC mode would want first field odd instead, once
436                  * we support it (to do so, set ODD_FIRST and put the
437                  * delay in VSYNCD_EVEN instead).
438                  */
439                 CRTC_WRITE(PV_V_CONTROL,
440                            PV_VCONTROL_CONTINUOUS |
441                            (is_dsi ? PV_VCONTROL_DSI : 0) |
442                            PV_VCONTROL_INTERLACE |
443                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
444                                          PV_VCONTROL_ODD_DELAY));
445                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
446         } else {
447                 CRTC_WRITE(PV_V_CONTROL,
448                            PV_VCONTROL_CONTINUOUS |
449                            (is_dsi ? PV_VCONTROL_DSI : 0));
450         }
451
452         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
453
454         CRTC_WRITE(PV_CONTROL,
455                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
456                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
457                                  PV_CONTROL_FIFO_LEVEL) |
458                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
459                    PV_CONTROL_CLR_AT_START |
460                    PV_CONTROL_TRIGGER_UNDERFLOW |
461                    PV_CONTROL_WAIT_HSTART |
462                    VC4_SET_FIELD(vc4_encoder->clock_select,
463                                  PV_CONTROL_CLK_SELECT) |
464                    PV_CONTROL_FIFO_CLR |
465                    PV_CONTROL_EN);
466
467         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
468                   SCALER_DISPBKGND_AUTOHS |
469                   SCALER_DISPBKGND_GAMMA |
470                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
471
472         /* Reload the LUT, since the SRAMs would have been disabled if
473          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
474          */
475         vc4_crtc_lut_load(crtc);
476
477         if (debug_dump_regs) {
478                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
479                 vc4_crtc_dump_regs(vc4_crtc);
480         }
481 }
482
483 static void require_hvs_enabled(struct drm_device *dev)
484 {
485         struct vc4_dev *vc4 = to_vc4_dev(dev);
486
487         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
488                      SCALER_DISPCTRL_ENABLE);
489 }
490
491 static void vc4_crtc_disable(struct drm_crtc *crtc)
492 {
493         struct drm_device *dev = crtc->dev;
494         struct vc4_dev *vc4 = to_vc4_dev(dev);
495         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
496         u32 chan = vc4_crtc->channel;
497         int ret;
498         require_hvs_enabled(dev);
499
500         /* Disable vblank irq handling before crtc is disabled. */
501         drm_crtc_vblank_off(crtc);
502
503         CRTC_WRITE(PV_V_CONTROL,
504                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
505         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
506         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
507
508         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
509             SCALER_DISPCTRLX_ENABLE) {
510                 HVS_WRITE(SCALER_DISPCTRLX(chan),
511                           SCALER_DISPCTRLX_RESET);
512
513                 /* While the docs say that reset is self-clearing, it
514                  * seems it doesn't actually.
515                  */
516                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
517         }
518
519         /* Once we leave, the scaler should be disabled and its fifo empty. */
520
521         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
522
523         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
524                                    SCALER_DISPSTATX_MODE) !=
525                      SCALER_DISPSTATX_MODE_DISABLED);
526
527         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
528                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
529                      SCALER_DISPSTATX_EMPTY);
530 }
531
532 static void vc4_crtc_enable(struct drm_crtc *crtc)
533 {
534         struct drm_device *dev = crtc->dev;
535         struct vc4_dev *vc4 = to_vc4_dev(dev);
536         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
537         struct drm_crtc_state *state = crtc->state;
538         struct drm_display_mode *mode = &state->adjusted_mode;
539
540         require_hvs_enabled(dev);
541
542         /* Turn on the scaler, which will wait for vstart to start
543          * compositing.
544          */
545         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
546                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
547                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
548                   SCALER_DISPCTRLX_ENABLE);
549
550         /* Turn on the pixel valve, which will emit the vstart signal. */
551         CRTC_WRITE(PV_V_CONTROL,
552                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
553
554         /* Enable vblank irq handling after crtc is started. */
555         drm_crtc_vblank_on(crtc);
556 }
557
558 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
559                                 const struct drm_display_mode *mode,
560                                 struct drm_display_mode *adjusted_mode)
561 {
562         /* Do not allow doublescan modes from user space */
563         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
564                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
565                               crtc->base.id);
566                 return false;
567         }
568
569         return true;
570 }
571
572 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
573                                  struct drm_crtc_state *state)
574 {
575         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
576         struct drm_device *dev = crtc->dev;
577         struct vc4_dev *vc4 = to_vc4_dev(dev);
578         struct drm_plane *plane;
579         unsigned long flags;
580         const struct drm_plane_state *plane_state;
581         u32 dlist_count = 0;
582         int ret;
583
584         /* The pixelvalve can only feed one encoder (and encoders are
585          * 1:1 with connectors.)
586          */
587         if (hweight32(state->connector_mask) > 1)
588                 return -EINVAL;
589
590         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
591                 dlist_count += vc4_plane_dlist_size(plane_state);
592
593         dlist_count++; /* Account for SCALER_CTL0_END. */
594
595         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
596         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
597                                  dlist_count);
598         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
599         if (ret)
600                 return ret;
601
602         return 0;
603 }
604
605 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
606                                   struct drm_crtc_state *old_state)
607 {
608         struct drm_device *dev = crtc->dev;
609         struct vc4_dev *vc4 = to_vc4_dev(dev);
610         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
611         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
612         struct drm_plane *plane;
613         bool debug_dump_regs = false;
614         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
615         u32 __iomem *dlist_next = dlist_start;
616
617         if (debug_dump_regs) {
618                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
619                 vc4_hvs_dump_state(dev);
620         }
621
622         /* Copy all the active planes' dlist contents to the hardware dlist. */
623         drm_atomic_crtc_for_each_plane(plane, crtc) {
624                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
625         }
626
627         writel(SCALER_CTL0_END, dlist_next);
628         dlist_next++;
629
630         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
631
632         if (crtc->state->event) {
633                 unsigned long flags;
634
635                 crtc->state->event->pipe = drm_crtc_index(crtc);
636
637                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
638
639                 spin_lock_irqsave(&dev->event_lock, flags);
640                 vc4_crtc->event = crtc->state->event;
641                 crtc->state->event = NULL;
642
643                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
644                           vc4_state->mm.start);
645
646                 spin_unlock_irqrestore(&dev->event_lock, flags);
647         } else {
648                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
649                           vc4_state->mm.start);
650         }
651
652         if (debug_dump_regs) {
653                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
654                 vc4_hvs_dump_state(dev);
655         }
656 }
657
658 static int vc4_enable_vblank(struct drm_crtc *crtc)
659 {
660         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661
662         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
663
664         return 0;
665 }
666
667 static void vc4_disable_vblank(struct drm_crtc *crtc)
668 {
669         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
670
671         CRTC_WRITE(PV_INTEN, 0);
672 }
673
674 /* Must be called with the event lock held */
675 bool vc4_event_pending(struct drm_crtc *crtc)
676 {
677         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
678
679         return !!vc4_crtc->event;
680 }
681
682 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
683 {
684         struct drm_crtc *crtc = &vc4_crtc->base;
685         struct drm_device *dev = crtc->dev;
686         struct vc4_dev *vc4 = to_vc4_dev(dev);
687         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
688         u32 chan = vc4_crtc->channel;
689         unsigned long flags;
690
691         spin_lock_irqsave(&dev->event_lock, flags);
692         if (vc4_crtc->event &&
693             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
694                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
695                 vc4_crtc->event = NULL;
696                 drm_crtc_vblank_put(crtc);
697         }
698         spin_unlock_irqrestore(&dev->event_lock, flags);
699 }
700
701 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
702 {
703         struct vc4_crtc *vc4_crtc = data;
704         u32 stat = CRTC_READ(PV_INTSTAT);
705         irqreturn_t ret = IRQ_NONE;
706
707         if (stat & PV_INT_VFP_START) {
708                 vc4_crtc->t_vblank = ktime_get();
709                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
710                 drm_crtc_handle_vblank(&vc4_crtc->base);
711                 vc4_crtc_handle_page_flip(vc4_crtc);
712                 ret = IRQ_HANDLED;
713         }
714
715         return ret;
716 }
717
718 struct vc4_async_flip_state {
719         struct drm_crtc *crtc;
720         struct drm_framebuffer *fb;
721         struct drm_pending_vblank_event *event;
722
723         struct vc4_seqno_cb cb;
724 };
725
726 /* Called when the V3D execution for the BO being flipped to is done, so that
727  * we can actually update the plane's address to point to it.
728  */
729 static void
730 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
731 {
732         struct vc4_async_flip_state *flip_state =
733                 container_of(cb, struct vc4_async_flip_state, cb);
734         struct drm_crtc *crtc = flip_state->crtc;
735         struct drm_device *dev = crtc->dev;
736         struct vc4_dev *vc4 = to_vc4_dev(dev);
737         struct drm_plane *plane = crtc->primary;
738
739         vc4_plane_async_set_fb(plane, flip_state->fb);
740         if (flip_state->event) {
741                 unsigned long flags;
742
743                 spin_lock_irqsave(&dev->event_lock, flags);
744                 drm_crtc_send_vblank_event(crtc, flip_state->event);
745                 spin_unlock_irqrestore(&dev->event_lock, flags);
746         }
747
748         drm_crtc_vblank_put(crtc);
749         drm_framebuffer_unreference(flip_state->fb);
750         kfree(flip_state);
751
752         up(&vc4->async_modeset);
753 }
754
755 /* Implements async (non-vblank-synced) page flips.
756  *
757  * The page flip ioctl needs to return immediately, so we grab the
758  * modeset semaphore on the pipe, and queue the address update for
759  * when V3D is done with the BO being flipped to.
760  */
761 static int vc4_async_page_flip(struct drm_crtc *crtc,
762                                struct drm_framebuffer *fb,
763                                struct drm_pending_vblank_event *event,
764                                uint32_t flags)
765 {
766         struct drm_device *dev = crtc->dev;
767         struct vc4_dev *vc4 = to_vc4_dev(dev);
768         struct drm_plane *plane = crtc->primary;
769         int ret = 0;
770         struct vc4_async_flip_state *flip_state;
771         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
772         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
773
774         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
775         if (!flip_state)
776                 return -ENOMEM;
777
778         drm_framebuffer_reference(fb);
779         flip_state->fb = fb;
780         flip_state->crtc = crtc;
781         flip_state->event = event;
782
783         /* Make sure all other async modesetes have landed. */
784         ret = down_interruptible(&vc4->async_modeset);
785         if (ret) {
786                 drm_framebuffer_unreference(fb);
787                 kfree(flip_state);
788                 return ret;
789         }
790
791         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
792
793         /* Immediately update the plane's legacy fb pointer, so that later
794          * modeset prep sees the state that will be present when the semaphore
795          * is released.
796          */
797         drm_atomic_set_fb_for_plane(plane->state, fb);
798         plane->fb = fb;
799
800         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
801                            vc4_async_page_flip_complete);
802
803         /* Driver takes ownership of state on successful async commit. */
804         return 0;
805 }
806
807 static int vc4_page_flip(struct drm_crtc *crtc,
808                          struct drm_framebuffer *fb,
809                          struct drm_pending_vblank_event *event,
810                          uint32_t flags,
811                          struct drm_modeset_acquire_ctx *ctx)
812 {
813         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
814                 return vc4_async_page_flip(crtc, fb, event, flags);
815         else
816                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
817 }
818
819 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
820 {
821         struct vc4_crtc_state *vc4_state;
822
823         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
824         if (!vc4_state)
825                 return NULL;
826
827         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
828         return &vc4_state->base;
829 }
830
831 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
832                                    struct drm_crtc_state *state)
833 {
834         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
835         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
836
837         if (vc4_state->mm.allocated) {
838                 unsigned long flags;
839
840                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
841                 drm_mm_remove_node(&vc4_state->mm);
842                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
843
844         }
845
846         drm_atomic_helper_crtc_destroy_state(crtc, state);
847 }
848
849 static const struct drm_crtc_funcs vc4_crtc_funcs = {
850         .set_config = drm_atomic_helper_set_config,
851         .destroy = vc4_crtc_destroy,
852         .page_flip = vc4_page_flip,
853         .set_property = NULL,
854         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
855         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
856         .reset = drm_atomic_helper_crtc_reset,
857         .atomic_duplicate_state = vc4_crtc_duplicate_state,
858         .atomic_destroy_state = vc4_crtc_destroy_state,
859         .gamma_set = vc4_crtc_gamma_set,
860         .enable_vblank = vc4_enable_vblank,
861         .disable_vblank = vc4_disable_vblank,
862 };
863
864 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
865         .mode_set_nofb = vc4_crtc_mode_set_nofb,
866         .disable = vc4_crtc_disable,
867         .enable = vc4_crtc_enable,
868         .mode_fixup = vc4_crtc_mode_fixup,
869         .atomic_check = vc4_crtc_atomic_check,
870         .atomic_flush = vc4_crtc_atomic_flush,
871 };
872
873 static const struct vc4_crtc_data pv0_data = {
874         .hvs_channel = 0,
875         .encoder_types = {
876                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
877                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
878         },
879 };
880
881 static const struct vc4_crtc_data pv1_data = {
882         .hvs_channel = 2,
883         .encoder_types = {
884                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
885                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
886         },
887 };
888
889 static const struct vc4_crtc_data pv2_data = {
890         .hvs_channel = 1,
891         .encoder_types = {
892                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
893                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
894         },
895 };
896
897 static const struct of_device_id vc4_crtc_dt_match[] = {
898         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
899         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
900         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
901         {}
902 };
903
904 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
905                                         struct drm_crtc *crtc)
906 {
907         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
908         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
909         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
910         struct drm_encoder *encoder;
911
912         drm_for_each_encoder(encoder, drm) {
913                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
914                 int i;
915
916                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
917                         if (vc4_encoder->type == encoder_types[i]) {
918                                 vc4_encoder->clock_select = i;
919                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
920                                 break;
921                         }
922                 }
923         }
924 }
925
926 static void
927 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
928 {
929         struct drm_device *drm = vc4_crtc->base.dev;
930         struct vc4_dev *vc4 = to_vc4_dev(drm);
931         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
932         /* Top/base are supposed to be 4-pixel aligned, but the
933          * Raspberry Pi firmware fills the low bits (which are
934          * presumably ignored).
935          */
936         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
937         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
938
939         vc4_crtc->cob_size = top - base + 4;
940 }
941
942 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
943 {
944         struct platform_device *pdev = to_platform_device(dev);
945         struct drm_device *drm = dev_get_drvdata(master);
946         struct vc4_crtc *vc4_crtc;
947         struct drm_crtc *crtc;
948         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
949         const struct of_device_id *match;
950         int ret, i;
951
952         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
953         if (!vc4_crtc)
954                 return -ENOMEM;
955         crtc = &vc4_crtc->base;
956
957         match = of_match_device(vc4_crtc_dt_match, dev);
958         if (!match)
959                 return -ENODEV;
960         vc4_crtc->data = match->data;
961
962         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
963         if (IS_ERR(vc4_crtc->regs))
964                 return PTR_ERR(vc4_crtc->regs);
965
966         /* For now, we create just the primary and the legacy cursor
967          * planes.  We should be able to stack more planes on easily,
968          * but to do that we would need to compute the bandwidth
969          * requirement of the plane configuration, and reject ones
970          * that will take too much.
971          */
972         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
973         if (IS_ERR(primary_plane)) {
974                 dev_err(dev, "failed to construct primary plane\n");
975                 ret = PTR_ERR(primary_plane);
976                 goto err;
977         }
978
979         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
980                                   &vc4_crtc_funcs, NULL);
981         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
982         primary_plane->crtc = crtc;
983         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
984         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
985
986         /* Set up some arbitrary number of planes.  We're not limited
987          * by a set number of physical registers, just the space in
988          * the HVS (16k) and how small an plane can be (28 bytes).
989          * However, each plane we set up takes up some memory, and
990          * increases the cost of looping over planes, which atomic
991          * modesetting does quite a bit.  As a result, we pick a
992          * modest number of planes to expose, that should hopefully
993          * still cover any sane usecase.
994          */
995         for (i = 0; i < 8; i++) {
996                 struct drm_plane *plane =
997                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
998
999                 if (IS_ERR(plane))
1000                         continue;
1001
1002                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1003         }
1004
1005         /* Set up the legacy cursor after overlay initialization,
1006          * since we overlay planes on the CRTC in the order they were
1007          * initialized.
1008          */
1009         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1010         if (!IS_ERR(cursor_plane)) {
1011                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1012                 cursor_plane->crtc = crtc;
1013                 crtc->cursor = cursor_plane;
1014         }
1015
1016         vc4_crtc_get_cob_allocation(vc4_crtc);
1017
1018         CRTC_WRITE(PV_INTEN, 0);
1019         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1020         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1021                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1022         if (ret)
1023                 goto err_destroy_planes;
1024
1025         vc4_set_crtc_possible_masks(drm, crtc);
1026
1027         for (i = 0; i < crtc->gamma_size; i++) {
1028                 vc4_crtc->lut_r[i] = i;
1029                 vc4_crtc->lut_g[i] = i;
1030                 vc4_crtc->lut_b[i] = i;
1031         }
1032
1033         platform_set_drvdata(pdev, vc4_crtc);
1034
1035         return 0;
1036
1037 err_destroy_planes:
1038         list_for_each_entry_safe(destroy_plane, temp,
1039                                  &drm->mode_config.plane_list, head) {
1040                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1041                     destroy_plane->funcs->destroy(destroy_plane);
1042         }
1043 err:
1044         return ret;
1045 }
1046
1047 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1048                             void *data)
1049 {
1050         struct platform_device *pdev = to_platform_device(dev);
1051         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1052
1053         vc4_crtc_destroy(&vc4_crtc->base);
1054
1055         CRTC_WRITE(PV_INTEN, 0);
1056
1057         platform_set_drvdata(pdev, NULL);
1058 }
1059
1060 static const struct component_ops vc4_crtc_ops = {
1061         .bind   = vc4_crtc_bind,
1062         .unbind = vc4_crtc_unbind,
1063 };
1064
1065 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1066 {
1067         return component_add(&pdev->dev, &vc4_crtc_ops);
1068 }
1069
1070 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1071 {
1072         component_del(&pdev->dev, &vc4_crtc_ops);
1073         return 0;
1074 }
1075
1076 struct platform_driver vc4_crtc_driver = {
1077         .probe = vc4_crtc_dev_probe,
1078         .remove = vc4_crtc_dev_remove,
1079         .driver = {
1080                 .name = "vc4_crtc",
1081                 .of_match_table = vc4_crtc_dt_match,
1082         },
1083 };