]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: Fix ->clock_select setting for the VEC encoder
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94         u32 reg;
95         const char *name;
96 } crtc_regs[] = {
97         CRTC_REG(PV_CONTROL),
98         CRTC_REG(PV_V_CONTROL),
99         CRTC_REG(PV_VSYNCD_EVEN),
100         CRTC_REG(PV_HORZA),
101         CRTC_REG(PV_HORZB),
102         CRTC_REG(PV_VERTA),
103         CRTC_REG(PV_VERTB),
104         CRTC_REG(PV_VERTA_EVEN),
105         CRTC_REG(PV_VERTB_EVEN),
106         CRTC_REG(PV_INTEN),
107         CRTC_REG(PV_INTSTAT),
108         CRTC_REG(PV_STAT),
109         CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114         int i;
115
116         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117                 DRM_INFO("0x%04x (%s): 0x%08x\n",
118                          crtc_regs[i].reg, crtc_regs[i].name,
119                          CRTC_READ(crtc_regs[i].reg));
120         }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126         struct drm_info_node *node = (struct drm_info_node *)m->private;
127         struct drm_device *dev = node->minor->dev;
128         int crtc_index = (uintptr_t)node->info_ent->data;
129         struct drm_crtc *crtc;
130         struct vc4_crtc *vc4_crtc;
131         int i;
132
133         i = 0;
134         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135                 if (i == crtc_index)
136                         break;
137                 i++;
138         }
139         if (!crtc)
140                 return 0;
141         vc4_crtc = to_vc4_crtc(crtc);
142
143         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145                            crtc_regs[i].name, crtc_regs[i].reg,
146                            CRTC_READ(crtc_regs[i].reg));
147         }
148
149         return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154                             unsigned int flags, int *vpos, int *hpos,
155                             ktime_t *stime, ktime_t *etime,
156                             const struct drm_display_mode *mode)
157 {
158         struct vc4_dev *vc4 = to_vc4_dev(dev);
159         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
160         u32 val;
161         int fifo_lines;
162         int vblank_lines;
163         int ret = 0;
164
165         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
166
167         /* Get optional system timestamp before query. */
168         if (stime)
169                 *stime = ktime_get();
170
171         /*
172          * Read vertical scanline which is currently composed for our
173          * pixelvalve by the HVS, and also the scaler status.
174          */
175         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
176
177         /* Get optional system timestamp after query. */
178         if (etime)
179                 *etime = ktime_get();
180
181         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
182
183         /* Vertical position of hvs composed scanline. */
184         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
185         *hpos = 0;
186
187         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
188                 *vpos /= 2;
189
190                 /* Use hpos to correct for field offset in interlaced mode. */
191                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
192                         *hpos += mode->crtc_htotal / 2;
193         }
194
195         /* This is the offset we need for translating hvs -> pv scanout pos. */
196         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
197
198         if (fifo_lines > 0)
199                 ret |= DRM_SCANOUTPOS_VALID;
200
201         /* HVS more than fifo_lines into frame for compositing? */
202         if (*vpos > fifo_lines) {
203                 /*
204                  * We are in active scanout and can get some meaningful results
205                  * from HVS. The actual PV scanout can not trail behind more
206                  * than fifo_lines as that is the fifo's capacity. Assume that
207                  * in active scanout the HVS and PV work in lockstep wrt. HVS
208                  * refilling the fifo and PV consuming from the fifo, ie.
209                  * whenever the PV consumes and frees up a scanline in the
210                  * fifo, the HVS will immediately refill it, therefore
211                  * incrementing vpos. Therefore we choose HVS read position -
212                  * fifo size in scanlines as a estimate of the real scanout
213                  * position of the PV.
214                  */
215                 *vpos -= fifo_lines + 1;
216
217                 ret |= DRM_SCANOUTPOS_ACCURATE;
218                 return ret;
219         }
220
221         /*
222          * Less: This happens when we are in vblank and the HVS, after getting
223          * the VSTART restart signal from the PV, just started refilling its
224          * fifo with new lines from the top-most lines of the new framebuffers.
225          * The PV does not scan out in vblank, so does not remove lines from
226          * the fifo, so the fifo will be full quickly and the HVS has to pause.
227          * We can't get meaningful readings wrt. scanline position of the PV
228          * and need to make things up in a approximative but consistent way.
229          */
230         ret |= DRM_SCANOUTPOS_IN_VBLANK;
231         vblank_lines = mode->vtotal - mode->vdisplay;
232
233         if (flags & DRM_CALLED_FROM_VBLIRQ) {
234                 /*
235                  * Assume the irq handler got called close to first
236                  * line of vblank, so PV has about a full vblank
237                  * scanlines to go, and as a base timestamp use the
238                  * one taken at entry into vblank irq handler, so it
239                  * is not affected by random delays due to lock
240                  * contention on event_lock or vblank_time lock in
241                  * the core.
242                  */
243                 *vpos = -vblank_lines;
244
245                 if (stime)
246                         *stime = vc4_crtc->t_vblank;
247                 if (etime)
248                         *etime = vc4_crtc->t_vblank;
249
250                 /*
251                  * If the HVS fifo is not yet full then we know for certain
252                  * we are at the very beginning of vblank, as the hvs just
253                  * started refilling, and the stime and etime timestamps
254                  * truly correspond to start of vblank.
255                  */
256                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
257                         ret |= DRM_SCANOUTPOS_ACCURATE;
258         } else {
259                 /*
260                  * No clue where we are inside vblank. Return a vpos of zero,
261                  * which will cause calling code to just return the etime
262                  * timestamp uncorrected. At least this is no worse than the
263                  * standard fallback.
264                  */
265                 *vpos = 0;
266         }
267
268         return ret;
269 }
270
271 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
272                                   int *max_error, struct timeval *vblank_time,
273                                   unsigned flags)
274 {
275         struct vc4_dev *vc4 = to_vc4_dev(dev);
276         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
277         struct drm_crtc *crtc = &vc4_crtc->base;
278         struct drm_crtc_state *state = crtc->state;
279
280         /* Helper routine in DRM core does all the work: */
281         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282                                                      vblank_time, flags,
283                                                      &state->adjusted_mode);
284 }
285
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288         drm_crtc_cleanup(crtc);
289 }
290
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294         struct drm_device *dev = crtc->dev;
295         struct vc4_dev *vc4 = to_vc4_dev(dev);
296         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297         u32 i;
298
299         /* The LUT memory is laid out with each HVS channel in order,
300          * each of which takes 256 writes for R, 256 for G, then 256
301          * for B.
302          */
303         HVS_WRITE(SCALER_GAMADDR,
304                   SCALER_GAMADDR_AUTOINC |
305                   (vc4_crtc->channel * 3 * crtc->gamma_size));
306
307         for (i = 0; i < crtc->gamma_size; i++)
308                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309         for (i = 0; i < crtc->gamma_size; i++)
310                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311         for (i = 0; i < crtc->gamma_size; i++)
312                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317                    uint32_t size)
318 {
319         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
320         u32 i;
321
322         for (i = 0; i < size; i++) {
323                 vc4_crtc->lut_r[i] = r[i] >> 8;
324                 vc4_crtc->lut_g[i] = g[i] >> 8;
325                 vc4_crtc->lut_b[i] = b[i] >> 8;
326         }
327
328         vc4_crtc_lut_load(crtc);
329
330         return 0;
331 }
332
333 static u32 vc4_get_fifo_full_level(u32 format)
334 {
335         static const u32 fifo_len_bytes = 64;
336         static const u32 hvs_latency_pix = 6;
337
338         switch (format) {
339         case PV_CONTROL_FORMAT_DSIV_16:
340         case PV_CONTROL_FORMAT_DSIC_16:
341                 return fifo_len_bytes - 2 * hvs_latency_pix;
342         case PV_CONTROL_FORMAT_DSIV_18:
343                 return fifo_len_bytes - 14;
344         case PV_CONTROL_FORMAT_24:
345         case PV_CONTROL_FORMAT_DSIV_24:
346         default:
347                 return fifo_len_bytes - 3 * hvs_latency_pix;
348         }
349 }
350
351 /*
352  * Returns the clock select bit for the connector attached to the
353  * CRTC.
354  */
355 static int vc4_get_clock_select(struct drm_crtc *crtc)
356 {
357         struct drm_connector *connector;
358
359         drm_for_each_connector(connector, crtc->dev) {
360                 if (connector->state->crtc == crtc) {
361                         struct drm_encoder *encoder = connector->encoder;
362                         struct vc4_encoder *vc4_encoder =
363                                 to_vc4_encoder(encoder);
364
365                         return vc4_encoder->clock_select;
366                 }
367         }
368
369         return -1;
370 }
371
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374         struct drm_device *dev = crtc->dev;
375         struct vc4_dev *vc4 = to_vc4_dev(dev);
376         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377         struct drm_crtc_state *state = crtc->state;
378         struct drm_display_mode *mode = &state->adjusted_mode;
379         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381         u32 format = PV_CONTROL_FORMAT_24;
382         bool debug_dump_regs = false;
383         int clock_select = vc4_get_clock_select(crtc);
384
385         if (debug_dump_regs) {
386                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
387                 vc4_crtc_dump_regs(vc4_crtc);
388         }
389
390         /* Reset the PV fifo. */
391         CRTC_WRITE(PV_CONTROL, 0);
392         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
393         CRTC_WRITE(PV_CONTROL, 0);
394
395         CRTC_WRITE(PV_HORZA,
396                    VC4_SET_FIELD((mode->htotal -
397                                   mode->hsync_end) * pixel_rep,
398                                  PV_HORZA_HBP) |
399                    VC4_SET_FIELD((mode->hsync_end -
400                                   mode->hsync_start) * pixel_rep,
401                                  PV_HORZA_HSYNC));
402         CRTC_WRITE(PV_HORZB,
403                    VC4_SET_FIELD((mode->hsync_start -
404                                   mode->hdisplay) * pixel_rep,
405                                  PV_HORZB_HFP) |
406                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
407
408         CRTC_WRITE(PV_VERTA,
409                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
410                                  PV_VERTA_VBP) |
411                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
412                                  PV_VERTA_VSYNC));
413         CRTC_WRITE(PV_VERTB,
414                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
415                                  PV_VERTB_VFP) |
416                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
417
418         if (interlace) {
419                 CRTC_WRITE(PV_VERTA_EVEN,
420                            VC4_SET_FIELD(mode->crtc_vtotal -
421                                          mode->crtc_vsync_end - 1,
422                                          PV_VERTA_VBP) |
423                            VC4_SET_FIELD(mode->crtc_vsync_end -
424                                          mode->crtc_vsync_start,
425                                          PV_VERTA_VSYNC));
426                 CRTC_WRITE(PV_VERTB_EVEN,
427                            VC4_SET_FIELD(mode->crtc_vsync_start -
428                                          mode->crtc_vdisplay,
429                                          PV_VERTB_VFP) |
430                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
431
432                 /* We set up first field even mode for HDMI.  VEC's
433                  * NTSC mode would want first field odd instead, once
434                  * we support it (to do so, set ODD_FIRST and put the
435                  * delay in VSYNCD_EVEN instead).
436                  */
437                 CRTC_WRITE(PV_V_CONTROL,
438                            PV_VCONTROL_CONTINUOUS |
439                            PV_VCONTROL_INTERLACE |
440                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
441                                          PV_VCONTROL_ODD_DELAY));
442                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
443         } else {
444                 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
445         }
446
447         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
448
449
450         CRTC_WRITE(PV_CONTROL,
451                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
452                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
453                                  PV_CONTROL_FIFO_LEVEL) |
454                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
455                    PV_CONTROL_CLR_AT_START |
456                    PV_CONTROL_TRIGGER_UNDERFLOW |
457                    PV_CONTROL_WAIT_HSTART |
458                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
459                    PV_CONTROL_FIFO_CLR |
460                    PV_CONTROL_EN);
461
462         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
463                   SCALER_DISPBKGND_AUTOHS |
464                   SCALER_DISPBKGND_GAMMA |
465                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
466
467         /* Reload the LUT, since the SRAMs would have been disabled if
468          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
469          */
470         vc4_crtc_lut_load(crtc);
471
472         if (debug_dump_regs) {
473                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
474                 vc4_crtc_dump_regs(vc4_crtc);
475         }
476 }
477
478 static void require_hvs_enabled(struct drm_device *dev)
479 {
480         struct vc4_dev *vc4 = to_vc4_dev(dev);
481
482         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
483                      SCALER_DISPCTRL_ENABLE);
484 }
485
486 static void vc4_crtc_disable(struct drm_crtc *crtc)
487 {
488         struct drm_device *dev = crtc->dev;
489         struct vc4_dev *vc4 = to_vc4_dev(dev);
490         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491         u32 chan = vc4_crtc->channel;
492         int ret;
493         require_hvs_enabled(dev);
494
495         /* Disable vblank irq handling before crtc is disabled. */
496         drm_crtc_vblank_off(crtc);
497
498         CRTC_WRITE(PV_V_CONTROL,
499                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502
503         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
504             SCALER_DISPCTRLX_ENABLE) {
505                 HVS_WRITE(SCALER_DISPCTRLX(chan),
506                           SCALER_DISPCTRLX_RESET);
507
508                 /* While the docs say that reset is self-clearing, it
509                  * seems it doesn't actually.
510                  */
511                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
512         }
513
514         /* Once we leave, the scaler should be disabled and its fifo empty. */
515
516         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517
518         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
519                                    SCALER_DISPSTATX_MODE) !=
520                      SCALER_DISPSTATX_MODE_DISABLED);
521
522         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
523                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
524                      SCALER_DISPSTATX_EMPTY);
525 }
526
527 static void vc4_crtc_enable(struct drm_crtc *crtc)
528 {
529         struct drm_device *dev = crtc->dev;
530         struct vc4_dev *vc4 = to_vc4_dev(dev);
531         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
532         struct drm_crtc_state *state = crtc->state;
533         struct drm_display_mode *mode = &state->adjusted_mode;
534
535         require_hvs_enabled(dev);
536
537         /* Turn on the scaler, which will wait for vstart to start
538          * compositing.
539          */
540         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
541                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
542                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
543                   SCALER_DISPCTRLX_ENABLE);
544
545         /* Turn on the pixel valve, which will emit the vstart signal. */
546         CRTC_WRITE(PV_V_CONTROL,
547                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
548
549         /* Enable vblank irq handling after crtc is started. */
550         drm_crtc_vblank_on(crtc);
551 }
552
553 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
554                                 const struct drm_display_mode *mode,
555                                 struct drm_display_mode *adjusted_mode)
556 {
557         /* Do not allow doublescan modes from user space */
558         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
559                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
560                               crtc->base.id);
561                 return false;
562         }
563
564         return true;
565 }
566
567 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
568                                  struct drm_crtc_state *state)
569 {
570         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
571         struct drm_device *dev = crtc->dev;
572         struct vc4_dev *vc4 = to_vc4_dev(dev);
573         struct drm_plane *plane;
574         unsigned long flags;
575         const struct drm_plane_state *plane_state;
576         u32 dlist_count = 0;
577         int ret;
578
579         /* The pixelvalve can only feed one encoder (and encoders are
580          * 1:1 with connectors.)
581          */
582         if (hweight32(state->connector_mask) > 1)
583                 return -EINVAL;
584
585         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
586                 dlist_count += vc4_plane_dlist_size(plane_state);
587
588         dlist_count++; /* Account for SCALER_CTL0_END. */
589
590         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
591         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
592                                  dlist_count, 1, 0);
593         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
594         if (ret)
595                 return ret;
596
597         return 0;
598 }
599
600 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
601                                   struct drm_crtc_state *old_state)
602 {
603         struct drm_device *dev = crtc->dev;
604         struct vc4_dev *vc4 = to_vc4_dev(dev);
605         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
606         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
607         struct drm_plane *plane;
608         bool debug_dump_regs = false;
609         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
610         u32 __iomem *dlist_next = dlist_start;
611
612         if (debug_dump_regs) {
613                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
614                 vc4_hvs_dump_state(dev);
615         }
616
617         /* Copy all the active planes' dlist contents to the hardware dlist. */
618         drm_atomic_crtc_for_each_plane(plane, crtc) {
619                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
620         }
621
622         writel(SCALER_CTL0_END, dlist_next);
623         dlist_next++;
624
625         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
626
627         if (crtc->state->event) {
628                 unsigned long flags;
629
630                 crtc->state->event->pipe = drm_crtc_index(crtc);
631
632                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
633
634                 spin_lock_irqsave(&dev->event_lock, flags);
635                 vc4_crtc->event = crtc->state->event;
636                 crtc->state->event = NULL;
637
638                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
639                           vc4_state->mm.start);
640
641                 spin_unlock_irqrestore(&dev->event_lock, flags);
642         } else {
643                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
644                           vc4_state->mm.start);
645         }
646
647         if (debug_dump_regs) {
648                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
649                 vc4_hvs_dump_state(dev);
650         }
651 }
652
653 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
654 {
655         struct vc4_dev *vc4 = to_vc4_dev(dev);
656         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
657
658         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
659
660         return 0;
661 }
662
663 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
664 {
665         struct vc4_dev *vc4 = to_vc4_dev(dev);
666         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
667
668         CRTC_WRITE(PV_INTEN, 0);
669 }
670
671 /* Must be called with the event lock held */
672 bool vc4_event_pending(struct drm_crtc *crtc)
673 {
674         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
675
676         return !!vc4_crtc->event;
677 }
678
679 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
680 {
681         struct drm_crtc *crtc = &vc4_crtc->base;
682         struct drm_device *dev = crtc->dev;
683         struct vc4_dev *vc4 = to_vc4_dev(dev);
684         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
685         u32 chan = vc4_crtc->channel;
686         unsigned long flags;
687
688         spin_lock_irqsave(&dev->event_lock, flags);
689         if (vc4_crtc->event &&
690             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
691                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
692                 vc4_crtc->event = NULL;
693                 drm_crtc_vblank_put(crtc);
694         }
695         spin_unlock_irqrestore(&dev->event_lock, flags);
696 }
697
698 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
699 {
700         struct vc4_crtc *vc4_crtc = data;
701         u32 stat = CRTC_READ(PV_INTSTAT);
702         irqreturn_t ret = IRQ_NONE;
703
704         if (stat & PV_INT_VFP_START) {
705                 vc4_crtc->t_vblank = ktime_get();
706                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
707                 drm_crtc_handle_vblank(&vc4_crtc->base);
708                 vc4_crtc_handle_page_flip(vc4_crtc);
709                 ret = IRQ_HANDLED;
710         }
711
712         return ret;
713 }
714
715 struct vc4_async_flip_state {
716         struct drm_crtc *crtc;
717         struct drm_framebuffer *fb;
718         struct drm_pending_vblank_event *event;
719
720         struct vc4_seqno_cb cb;
721 };
722
723 /* Called when the V3D execution for the BO being flipped to is done, so that
724  * we can actually update the plane's address to point to it.
725  */
726 static void
727 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
728 {
729         struct vc4_async_flip_state *flip_state =
730                 container_of(cb, struct vc4_async_flip_state, cb);
731         struct drm_crtc *crtc = flip_state->crtc;
732         struct drm_device *dev = crtc->dev;
733         struct vc4_dev *vc4 = to_vc4_dev(dev);
734         struct drm_plane *plane = crtc->primary;
735
736         vc4_plane_async_set_fb(plane, flip_state->fb);
737         if (flip_state->event) {
738                 unsigned long flags;
739
740                 spin_lock_irqsave(&dev->event_lock, flags);
741                 drm_crtc_send_vblank_event(crtc, flip_state->event);
742                 spin_unlock_irqrestore(&dev->event_lock, flags);
743         }
744
745         drm_crtc_vblank_put(crtc);
746         drm_framebuffer_unreference(flip_state->fb);
747         kfree(flip_state);
748
749         up(&vc4->async_modeset);
750 }
751
752 /* Implements async (non-vblank-synced) page flips.
753  *
754  * The page flip ioctl needs to return immediately, so we grab the
755  * modeset semaphore on the pipe, and queue the address update for
756  * when V3D is done with the BO being flipped to.
757  */
758 static int vc4_async_page_flip(struct drm_crtc *crtc,
759                                struct drm_framebuffer *fb,
760                                struct drm_pending_vblank_event *event,
761                                uint32_t flags)
762 {
763         struct drm_device *dev = crtc->dev;
764         struct vc4_dev *vc4 = to_vc4_dev(dev);
765         struct drm_plane *plane = crtc->primary;
766         int ret = 0;
767         struct vc4_async_flip_state *flip_state;
768         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
769         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
770
771         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
772         if (!flip_state)
773                 return -ENOMEM;
774
775         drm_framebuffer_reference(fb);
776         flip_state->fb = fb;
777         flip_state->crtc = crtc;
778         flip_state->event = event;
779
780         /* Make sure all other async modesetes have landed. */
781         ret = down_interruptible(&vc4->async_modeset);
782         if (ret) {
783                 drm_framebuffer_unreference(fb);
784                 kfree(flip_state);
785                 return ret;
786         }
787
788         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
789
790         /* Immediately update the plane's legacy fb pointer, so that later
791          * modeset prep sees the state that will be present when the semaphore
792          * is released.
793          */
794         drm_atomic_set_fb_for_plane(plane->state, fb);
795         plane->fb = fb;
796
797         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
798                            vc4_async_page_flip_complete);
799
800         /* Driver takes ownership of state on successful async commit. */
801         return 0;
802 }
803
804 static int vc4_page_flip(struct drm_crtc *crtc,
805                          struct drm_framebuffer *fb,
806                          struct drm_pending_vblank_event *event,
807                          uint32_t flags)
808 {
809         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
810                 return vc4_async_page_flip(crtc, fb, event, flags);
811         else
812                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
813 }
814
815 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
816 {
817         struct vc4_crtc_state *vc4_state;
818
819         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
820         if (!vc4_state)
821                 return NULL;
822
823         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
824         return &vc4_state->base;
825 }
826
827 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
828                                    struct drm_crtc_state *state)
829 {
830         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
831         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
832
833         if (vc4_state->mm.allocated) {
834                 unsigned long flags;
835
836                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
837                 drm_mm_remove_node(&vc4_state->mm);
838                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
839
840         }
841
842         __drm_atomic_helper_crtc_destroy_state(state);
843 }
844
845 static const struct drm_crtc_funcs vc4_crtc_funcs = {
846         .set_config = drm_atomic_helper_set_config,
847         .destroy = vc4_crtc_destroy,
848         .page_flip = vc4_page_flip,
849         .set_property = NULL,
850         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
851         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
852         .reset = drm_atomic_helper_crtc_reset,
853         .atomic_duplicate_state = vc4_crtc_duplicate_state,
854         .atomic_destroy_state = vc4_crtc_destroy_state,
855         .gamma_set = vc4_crtc_gamma_set,
856 };
857
858 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
859         .mode_set_nofb = vc4_crtc_mode_set_nofb,
860         .disable = vc4_crtc_disable,
861         .enable = vc4_crtc_enable,
862         .mode_fixup = vc4_crtc_mode_fixup,
863         .atomic_check = vc4_crtc_atomic_check,
864         .atomic_flush = vc4_crtc_atomic_flush,
865 };
866
867 static const struct vc4_crtc_data pv0_data = {
868         .hvs_channel = 0,
869         .encoder_types = {
870                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
871                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
872         },
873 };
874
875 static const struct vc4_crtc_data pv1_data = {
876         .hvs_channel = 2,
877         .encoder_types = {
878                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
879                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
880         },
881 };
882
883 static const struct vc4_crtc_data pv2_data = {
884         .hvs_channel = 1,
885         .encoder_types = {
886                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
887                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
888         },
889 };
890
891 static const struct of_device_id vc4_crtc_dt_match[] = {
892         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
893         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
894         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
895         {}
896 };
897
898 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
899                                         struct drm_crtc *crtc)
900 {
901         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
902         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
903         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
904         struct drm_encoder *encoder;
905
906         drm_for_each_encoder(encoder, drm) {
907                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
908                 int i;
909
910                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
911                         if (vc4_encoder->type == encoder_types[i]) {
912                                 vc4_encoder->clock_select = i;
913                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
914                                 break;
915                         }
916                 }
917         }
918 }
919
920 static void
921 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
922 {
923         struct drm_device *drm = vc4_crtc->base.dev;
924         struct vc4_dev *vc4 = to_vc4_dev(drm);
925         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
926         /* Top/base are supposed to be 4-pixel aligned, but the
927          * Raspberry Pi firmware fills the low bits (which are
928          * presumably ignored).
929          */
930         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
931         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
932
933         vc4_crtc->cob_size = top - base + 4;
934 }
935
936 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
937 {
938         struct platform_device *pdev = to_platform_device(dev);
939         struct drm_device *drm = dev_get_drvdata(master);
940         struct vc4_dev *vc4 = to_vc4_dev(drm);
941         struct vc4_crtc *vc4_crtc;
942         struct drm_crtc *crtc;
943         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
944         const struct of_device_id *match;
945         int ret, i;
946
947         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
948         if (!vc4_crtc)
949                 return -ENOMEM;
950         crtc = &vc4_crtc->base;
951
952         match = of_match_device(vc4_crtc_dt_match, dev);
953         if (!match)
954                 return -ENODEV;
955         vc4_crtc->data = match->data;
956
957         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
958         if (IS_ERR(vc4_crtc->regs))
959                 return PTR_ERR(vc4_crtc->regs);
960
961         /* For now, we create just the primary and the legacy cursor
962          * planes.  We should be able to stack more planes on easily,
963          * but to do that we would need to compute the bandwidth
964          * requirement of the plane configuration, and reject ones
965          * that will take too much.
966          */
967         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
968         if (IS_ERR(primary_plane)) {
969                 dev_err(dev, "failed to construct primary plane\n");
970                 ret = PTR_ERR(primary_plane);
971                 goto err;
972         }
973
974         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
975                                   &vc4_crtc_funcs, NULL);
976         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
977         primary_plane->crtc = crtc;
978         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
979         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
980         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
981
982         /* Set up some arbitrary number of planes.  We're not limited
983          * by a set number of physical registers, just the space in
984          * the HVS (16k) and how small an plane can be (28 bytes).
985          * However, each plane we set up takes up some memory, and
986          * increases the cost of looping over planes, which atomic
987          * modesetting does quite a bit.  As a result, we pick a
988          * modest number of planes to expose, that should hopefully
989          * still cover any sane usecase.
990          */
991         for (i = 0; i < 8; i++) {
992                 struct drm_plane *plane =
993                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
994
995                 if (IS_ERR(plane))
996                         continue;
997
998                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
999         }
1000
1001         /* Set up the legacy cursor after overlay initialization,
1002          * since we overlay planes on the CRTC in the order they were
1003          * initialized.
1004          */
1005         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1006         if (!IS_ERR(cursor_plane)) {
1007                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1008                 cursor_plane->crtc = crtc;
1009                 crtc->cursor = cursor_plane;
1010         }
1011
1012         vc4_crtc_get_cob_allocation(vc4_crtc);
1013
1014         CRTC_WRITE(PV_INTEN, 0);
1015         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1016         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1017                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1018         if (ret)
1019                 goto err_destroy_planes;
1020
1021         vc4_set_crtc_possible_masks(drm, crtc);
1022
1023         for (i = 0; i < crtc->gamma_size; i++) {
1024                 vc4_crtc->lut_r[i] = i;
1025                 vc4_crtc->lut_g[i] = i;
1026                 vc4_crtc->lut_b[i] = i;
1027         }
1028
1029         platform_set_drvdata(pdev, vc4_crtc);
1030
1031         return 0;
1032
1033 err_destroy_planes:
1034         list_for_each_entry_safe(destroy_plane, temp,
1035                                  &drm->mode_config.plane_list, head) {
1036                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1037                     destroy_plane->funcs->destroy(destroy_plane);
1038         }
1039 err:
1040         return ret;
1041 }
1042
1043 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1044                             void *data)
1045 {
1046         struct platform_device *pdev = to_platform_device(dev);
1047         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1048
1049         vc4_crtc_destroy(&vc4_crtc->base);
1050
1051         CRTC_WRITE(PV_INTEN, 0);
1052
1053         platform_set_drvdata(pdev, NULL);
1054 }
1055
1056 static const struct component_ops vc4_crtc_ops = {
1057         .bind   = vc4_crtc_bind,
1058         .unbind = vc4_crtc_unbind,
1059 };
1060
1061 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1062 {
1063         return component_add(&pdev->dev, &vc4_crtc_ops);
1064 }
1065
1066 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1067 {
1068         component_del(&pdev->dev, &vc4_crtc_ops);
1069         return 0;
1070 }
1071
1072 struct platform_driver vc4_crtc_driver = {
1073         .probe = vc4_crtc_dev_probe,
1074         .remove = vc4_crtc_dev_remove,
1075         .driver = {
1076                 .name = "vc4_crtc",
1077                 .of_match_table = vc4_crtc_dt_match,
1078         },
1079 };