]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/hv/vmbus_drv.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device  *hv_acpi_dev;
47
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50
51
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54         static bool panic_reported;
55
56         /*
57          * We prefer to report panic on 'die' chain as we have proper
58          * registers to report, but if we miss it (e.g. on BUG()) we need
59          * to report it on 'panic'.
60          */
61         if (panic_reported)
62                 return;
63         panic_reported = true;
64
65         wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66         wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67         wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68         wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69         wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70
71         /*
72          * Let Hyper-V know there is crash data available
73          */
74         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78                               void *args)
79 {
80         struct pt_regs *regs;
81
82         regs = current_pt_regs();
83
84         hyperv_report_panic(regs);
85         return NOTIFY_DONE;
86 }
87
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89                             void *args)
90 {
91         struct die_args *die = (struct die_args *)args;
92         struct pt_regs *regs = die->regs;
93
94         hyperv_report_panic(regs);
95         return NOTIFY_DONE;
96 }
97
98 static struct notifier_block hyperv_die_block = {
99         .notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102         .notifier_call = hyperv_panic_event,
103 };
104
105 struct resource *hyperv_mmio;
106
107 static int vmbus_exists(void)
108 {
109         if (hv_acpi_dev == NULL)
110                 return -ENODEV;
111
112         return 0;
113 }
114
115 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
116 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
117 {
118         int i;
119         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
120                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
121 }
122
123 static u8 channel_monitor_group(struct vmbus_channel *channel)
124 {
125         return (u8)channel->offermsg.monitorid / 32;
126 }
127
128 static u8 channel_monitor_offset(struct vmbus_channel *channel)
129 {
130         return (u8)channel->offermsg.monitorid % 32;
131 }
132
133 static u32 channel_pending(struct vmbus_channel *channel,
134                            struct hv_monitor_page *monitor_page)
135 {
136         u8 monitor_group = channel_monitor_group(channel);
137         return monitor_page->trigger_group[monitor_group].pending;
138 }
139
140 static u32 channel_latency(struct vmbus_channel *channel,
141                            struct hv_monitor_page *monitor_page)
142 {
143         u8 monitor_group = channel_monitor_group(channel);
144         u8 monitor_offset = channel_monitor_offset(channel);
145         return monitor_page->latency[monitor_group][monitor_offset];
146 }
147
148 static u32 channel_conn_id(struct vmbus_channel *channel,
149                            struct hv_monitor_page *monitor_page)
150 {
151         u8 monitor_group = channel_monitor_group(channel);
152         u8 monitor_offset = channel_monitor_offset(channel);
153         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
154 }
155
156 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
157                        char *buf)
158 {
159         struct hv_device *hv_dev = device_to_hv_device(dev);
160
161         if (!hv_dev->channel)
162                 return -ENODEV;
163         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
164 }
165 static DEVICE_ATTR_RO(id);
166
167 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
168                           char *buf)
169 {
170         struct hv_device *hv_dev = device_to_hv_device(dev);
171
172         if (!hv_dev->channel)
173                 return -ENODEV;
174         return sprintf(buf, "%d\n", hv_dev->channel->state);
175 }
176 static DEVICE_ATTR_RO(state);
177
178 static ssize_t monitor_id_show(struct device *dev,
179                                struct device_attribute *dev_attr, char *buf)
180 {
181         struct hv_device *hv_dev = device_to_hv_device(dev);
182
183         if (!hv_dev->channel)
184                 return -ENODEV;
185         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
186 }
187 static DEVICE_ATTR_RO(monitor_id);
188
189 static ssize_t class_id_show(struct device *dev,
190                                struct device_attribute *dev_attr, char *buf)
191 {
192         struct hv_device *hv_dev = device_to_hv_device(dev);
193
194         if (!hv_dev->channel)
195                 return -ENODEV;
196         return sprintf(buf, "{%pUl}\n",
197                        hv_dev->channel->offermsg.offer.if_type.b);
198 }
199 static DEVICE_ATTR_RO(class_id);
200
201 static ssize_t device_id_show(struct device *dev,
202                               struct device_attribute *dev_attr, char *buf)
203 {
204         struct hv_device *hv_dev = device_to_hv_device(dev);
205
206         if (!hv_dev->channel)
207                 return -ENODEV;
208         return sprintf(buf, "{%pUl}\n",
209                        hv_dev->channel->offermsg.offer.if_instance.b);
210 }
211 static DEVICE_ATTR_RO(device_id);
212
213 static ssize_t modalias_show(struct device *dev,
214                              struct device_attribute *dev_attr, char *buf)
215 {
216         struct hv_device *hv_dev = device_to_hv_device(dev);
217         char alias_name[VMBUS_ALIAS_LEN + 1];
218
219         print_alias_name(hv_dev, alias_name);
220         return sprintf(buf, "vmbus:%s\n", alias_name);
221 }
222 static DEVICE_ATTR_RO(modalias);
223
224 static ssize_t server_monitor_pending_show(struct device *dev,
225                                            struct device_attribute *dev_attr,
226                                            char *buf)
227 {
228         struct hv_device *hv_dev = device_to_hv_device(dev);
229
230         if (!hv_dev->channel)
231                 return -ENODEV;
232         return sprintf(buf, "%d\n",
233                        channel_pending(hv_dev->channel,
234                                        vmbus_connection.monitor_pages[1]));
235 }
236 static DEVICE_ATTR_RO(server_monitor_pending);
237
238 static ssize_t client_monitor_pending_show(struct device *dev,
239                                            struct device_attribute *dev_attr,
240                                            char *buf)
241 {
242         struct hv_device *hv_dev = device_to_hv_device(dev);
243
244         if (!hv_dev->channel)
245                 return -ENODEV;
246         return sprintf(buf, "%d\n",
247                        channel_pending(hv_dev->channel,
248                                        vmbus_connection.monitor_pages[1]));
249 }
250 static DEVICE_ATTR_RO(client_monitor_pending);
251
252 static ssize_t server_monitor_latency_show(struct device *dev,
253                                            struct device_attribute *dev_attr,
254                                            char *buf)
255 {
256         struct hv_device *hv_dev = device_to_hv_device(dev);
257
258         if (!hv_dev->channel)
259                 return -ENODEV;
260         return sprintf(buf, "%d\n",
261                        channel_latency(hv_dev->channel,
262                                        vmbus_connection.monitor_pages[0]));
263 }
264 static DEVICE_ATTR_RO(server_monitor_latency);
265
266 static ssize_t client_monitor_latency_show(struct device *dev,
267                                            struct device_attribute *dev_attr,
268                                            char *buf)
269 {
270         struct hv_device *hv_dev = device_to_hv_device(dev);
271
272         if (!hv_dev->channel)
273                 return -ENODEV;
274         return sprintf(buf, "%d\n",
275                        channel_latency(hv_dev->channel,
276                                        vmbus_connection.monitor_pages[1]));
277 }
278 static DEVICE_ATTR_RO(client_monitor_latency);
279
280 static ssize_t server_monitor_conn_id_show(struct device *dev,
281                                            struct device_attribute *dev_attr,
282                                            char *buf)
283 {
284         struct hv_device *hv_dev = device_to_hv_device(dev);
285
286         if (!hv_dev->channel)
287                 return -ENODEV;
288         return sprintf(buf, "%d\n",
289                        channel_conn_id(hv_dev->channel,
290                                        vmbus_connection.monitor_pages[0]));
291 }
292 static DEVICE_ATTR_RO(server_monitor_conn_id);
293
294 static ssize_t client_monitor_conn_id_show(struct device *dev,
295                                            struct device_attribute *dev_attr,
296                                            char *buf)
297 {
298         struct hv_device *hv_dev = device_to_hv_device(dev);
299
300         if (!hv_dev->channel)
301                 return -ENODEV;
302         return sprintf(buf, "%d\n",
303                        channel_conn_id(hv_dev->channel,
304                                        vmbus_connection.monitor_pages[1]));
305 }
306 static DEVICE_ATTR_RO(client_monitor_conn_id);
307
308 static ssize_t out_intr_mask_show(struct device *dev,
309                                   struct device_attribute *dev_attr, char *buf)
310 {
311         struct hv_device *hv_dev = device_to_hv_device(dev);
312         struct hv_ring_buffer_debug_info outbound;
313
314         if (!hv_dev->channel)
315                 return -ENODEV;
316         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
318 }
319 static DEVICE_ATTR_RO(out_intr_mask);
320
321 static ssize_t out_read_index_show(struct device *dev,
322                                    struct device_attribute *dev_attr, char *buf)
323 {
324         struct hv_device *hv_dev = device_to_hv_device(dev);
325         struct hv_ring_buffer_debug_info outbound;
326
327         if (!hv_dev->channel)
328                 return -ENODEV;
329         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
330         return sprintf(buf, "%d\n", outbound.current_read_index);
331 }
332 static DEVICE_ATTR_RO(out_read_index);
333
334 static ssize_t out_write_index_show(struct device *dev,
335                                     struct device_attribute *dev_attr,
336                                     char *buf)
337 {
338         struct hv_device *hv_dev = device_to_hv_device(dev);
339         struct hv_ring_buffer_debug_info outbound;
340
341         if (!hv_dev->channel)
342                 return -ENODEV;
343         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
344         return sprintf(buf, "%d\n", outbound.current_write_index);
345 }
346 static DEVICE_ATTR_RO(out_write_index);
347
348 static ssize_t out_read_bytes_avail_show(struct device *dev,
349                                          struct device_attribute *dev_attr,
350                                          char *buf)
351 {
352         struct hv_device *hv_dev = device_to_hv_device(dev);
353         struct hv_ring_buffer_debug_info outbound;
354
355         if (!hv_dev->channel)
356                 return -ENODEV;
357         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
358         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
359 }
360 static DEVICE_ATTR_RO(out_read_bytes_avail);
361
362 static ssize_t out_write_bytes_avail_show(struct device *dev,
363                                           struct device_attribute *dev_attr,
364                                           char *buf)
365 {
366         struct hv_device *hv_dev = device_to_hv_device(dev);
367         struct hv_ring_buffer_debug_info outbound;
368
369         if (!hv_dev->channel)
370                 return -ENODEV;
371         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
372         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
373 }
374 static DEVICE_ATTR_RO(out_write_bytes_avail);
375
376 static ssize_t in_intr_mask_show(struct device *dev,
377                                  struct device_attribute *dev_attr, char *buf)
378 {
379         struct hv_device *hv_dev = device_to_hv_device(dev);
380         struct hv_ring_buffer_debug_info inbound;
381
382         if (!hv_dev->channel)
383                 return -ENODEV;
384         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
386 }
387 static DEVICE_ATTR_RO(in_intr_mask);
388
389 static ssize_t in_read_index_show(struct device *dev,
390                                   struct device_attribute *dev_attr, char *buf)
391 {
392         struct hv_device *hv_dev = device_to_hv_device(dev);
393         struct hv_ring_buffer_debug_info inbound;
394
395         if (!hv_dev->channel)
396                 return -ENODEV;
397         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398         return sprintf(buf, "%d\n", inbound.current_read_index);
399 }
400 static DEVICE_ATTR_RO(in_read_index);
401
402 static ssize_t in_write_index_show(struct device *dev,
403                                    struct device_attribute *dev_attr, char *buf)
404 {
405         struct hv_device *hv_dev = device_to_hv_device(dev);
406         struct hv_ring_buffer_debug_info inbound;
407
408         if (!hv_dev->channel)
409                 return -ENODEV;
410         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
411         return sprintf(buf, "%d\n", inbound.current_write_index);
412 }
413 static DEVICE_ATTR_RO(in_write_index);
414
415 static ssize_t in_read_bytes_avail_show(struct device *dev,
416                                         struct device_attribute *dev_attr,
417                                         char *buf)
418 {
419         struct hv_device *hv_dev = device_to_hv_device(dev);
420         struct hv_ring_buffer_debug_info inbound;
421
422         if (!hv_dev->channel)
423                 return -ENODEV;
424         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
425         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
426 }
427 static DEVICE_ATTR_RO(in_read_bytes_avail);
428
429 static ssize_t in_write_bytes_avail_show(struct device *dev,
430                                          struct device_attribute *dev_attr,
431                                          char *buf)
432 {
433         struct hv_device *hv_dev = device_to_hv_device(dev);
434         struct hv_ring_buffer_debug_info inbound;
435
436         if (!hv_dev->channel)
437                 return -ENODEV;
438         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
440 }
441 static DEVICE_ATTR_RO(in_write_bytes_avail);
442
443 static ssize_t channel_vp_mapping_show(struct device *dev,
444                                        struct device_attribute *dev_attr,
445                                        char *buf)
446 {
447         struct hv_device *hv_dev = device_to_hv_device(dev);
448         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
449         unsigned long flags;
450         int buf_size = PAGE_SIZE, n_written, tot_written;
451         struct list_head *cur;
452
453         if (!channel)
454                 return -ENODEV;
455
456         tot_written = snprintf(buf, buf_size, "%u:%u\n",
457                 channel->offermsg.child_relid, channel->target_cpu);
458
459         spin_lock_irqsave(&channel->lock, flags);
460
461         list_for_each(cur, &channel->sc_list) {
462                 if (tot_written >= buf_size - 1)
463                         break;
464
465                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
466                 n_written = scnprintf(buf + tot_written,
467                                      buf_size - tot_written,
468                                      "%u:%u\n",
469                                      cur_sc->offermsg.child_relid,
470                                      cur_sc->target_cpu);
471                 tot_written += n_written;
472         }
473
474         spin_unlock_irqrestore(&channel->lock, flags);
475
476         return tot_written;
477 }
478 static DEVICE_ATTR_RO(channel_vp_mapping);
479
480 static ssize_t vendor_show(struct device *dev,
481                            struct device_attribute *dev_attr,
482                            char *buf)
483 {
484         struct hv_device *hv_dev = device_to_hv_device(dev);
485         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
486 }
487 static DEVICE_ATTR_RO(vendor);
488
489 static ssize_t device_show(struct device *dev,
490                            struct device_attribute *dev_attr,
491                            char *buf)
492 {
493         struct hv_device *hv_dev = device_to_hv_device(dev);
494         return sprintf(buf, "0x%x\n", hv_dev->device_id);
495 }
496 static DEVICE_ATTR_RO(device);
497
498 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
499 static struct attribute *vmbus_attrs[] = {
500         &dev_attr_id.attr,
501         &dev_attr_state.attr,
502         &dev_attr_monitor_id.attr,
503         &dev_attr_class_id.attr,
504         &dev_attr_device_id.attr,
505         &dev_attr_modalias.attr,
506         &dev_attr_server_monitor_pending.attr,
507         &dev_attr_client_monitor_pending.attr,
508         &dev_attr_server_monitor_latency.attr,
509         &dev_attr_client_monitor_latency.attr,
510         &dev_attr_server_monitor_conn_id.attr,
511         &dev_attr_client_monitor_conn_id.attr,
512         &dev_attr_out_intr_mask.attr,
513         &dev_attr_out_read_index.attr,
514         &dev_attr_out_write_index.attr,
515         &dev_attr_out_read_bytes_avail.attr,
516         &dev_attr_out_write_bytes_avail.attr,
517         &dev_attr_in_intr_mask.attr,
518         &dev_attr_in_read_index.attr,
519         &dev_attr_in_write_index.attr,
520         &dev_attr_in_read_bytes_avail.attr,
521         &dev_attr_in_write_bytes_avail.attr,
522         &dev_attr_channel_vp_mapping.attr,
523         &dev_attr_vendor.attr,
524         &dev_attr_device.attr,
525         NULL,
526 };
527 ATTRIBUTE_GROUPS(vmbus);
528
529 /*
530  * vmbus_uevent - add uevent for our device
531  *
532  * This routine is invoked when a device is added or removed on the vmbus to
533  * generate a uevent to udev in the userspace. The udev will then look at its
534  * rule and the uevent generated here to load the appropriate driver
535  *
536  * The alias string will be of the form vmbus:guid where guid is the string
537  * representation of the device guid (each byte of the guid will be
538  * represented with two hex characters.
539  */
540 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
541 {
542         struct hv_device *dev = device_to_hv_device(device);
543         int ret;
544         char alias_name[VMBUS_ALIAS_LEN + 1];
545
546         print_alias_name(dev, alias_name);
547         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
548         return ret;
549 }
550
551 static const uuid_le null_guid;
552
553 static inline bool is_null_guid(const uuid_le *guid)
554 {
555         if (uuid_le_cmp(*guid, null_guid))
556                 return false;
557         return true;
558 }
559
560 /*
561  * Return a matching hv_vmbus_device_id pointer.
562  * If there is no match, return NULL.
563  */
564 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
565                                         const struct hv_vmbus_device_id *id,
566                                         const uuid_le *guid)
567 {
568         for (; !is_null_guid(&id->guid); id++)
569                 if (!uuid_le_cmp(id->guid, *guid))
570                         return id;
571
572         return NULL;
573 }
574
575
576
577 /*
578  * vmbus_match - Attempt to match the specified device to the specified driver
579  */
580 static int vmbus_match(struct device *device, struct device_driver *driver)
581 {
582         struct hv_driver *drv = drv_to_hv_drv(driver);
583         struct hv_device *hv_dev = device_to_hv_device(device);
584
585         /* The hv_sock driver handles all hv_sock offers. */
586         if (is_hvsock_channel(hv_dev->channel))
587                 return drv->hvsock;
588
589         if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
590                 return 1;
591
592         return 0;
593 }
594
595 /*
596  * vmbus_probe - Add the new vmbus's child device
597  */
598 static int vmbus_probe(struct device *child_device)
599 {
600         int ret = 0;
601         struct hv_driver *drv =
602                         drv_to_hv_drv(child_device->driver);
603         struct hv_device *dev = device_to_hv_device(child_device);
604         const struct hv_vmbus_device_id *dev_id;
605
606         dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
607         if (drv->probe) {
608                 ret = drv->probe(dev, dev_id);
609                 if (ret != 0)
610                         pr_err("probe failed for device %s (%d)\n",
611                                dev_name(child_device), ret);
612
613         } else {
614                 pr_err("probe not set for driver %s\n",
615                        dev_name(child_device));
616                 ret = -ENODEV;
617         }
618         return ret;
619 }
620
621 /*
622  * vmbus_remove - Remove a vmbus device
623  */
624 static int vmbus_remove(struct device *child_device)
625 {
626         struct hv_driver *drv;
627         struct hv_device *dev = device_to_hv_device(child_device);
628
629         if (child_device->driver) {
630                 drv = drv_to_hv_drv(child_device->driver);
631                 if (drv->remove)
632                         drv->remove(dev);
633         }
634
635         return 0;
636 }
637
638
639 /*
640  * vmbus_shutdown - Shutdown a vmbus device
641  */
642 static void vmbus_shutdown(struct device *child_device)
643 {
644         struct hv_driver *drv;
645         struct hv_device *dev = device_to_hv_device(child_device);
646
647
648         /* The device may not be attached yet */
649         if (!child_device->driver)
650                 return;
651
652         drv = drv_to_hv_drv(child_device->driver);
653
654         if (drv->shutdown)
655                 drv->shutdown(dev);
656
657         return;
658 }
659
660
661 /*
662  * vmbus_device_release - Final callback release of the vmbus child device
663  */
664 static void vmbus_device_release(struct device *device)
665 {
666         struct hv_device *hv_dev = device_to_hv_device(device);
667         struct vmbus_channel *channel = hv_dev->channel;
668
669         hv_process_channel_removal(channel,
670                                    channel->offermsg.child_relid);
671         kfree(hv_dev);
672
673 }
674
675 /* The one and only one */
676 static struct bus_type  hv_bus = {
677         .name =         "vmbus",
678         .match =                vmbus_match,
679         .shutdown =             vmbus_shutdown,
680         .remove =               vmbus_remove,
681         .probe =                vmbus_probe,
682         .uevent =               vmbus_uevent,
683         .dev_groups =           vmbus_groups,
684 };
685
686 struct onmessage_work_context {
687         struct work_struct work;
688         struct hv_message msg;
689 };
690
691 static void vmbus_onmessage_work(struct work_struct *work)
692 {
693         struct onmessage_work_context *ctx;
694
695         /* Do not process messages if we're in DISCONNECTED state */
696         if (vmbus_connection.conn_state == DISCONNECTED)
697                 return;
698
699         ctx = container_of(work, struct onmessage_work_context,
700                            work);
701         vmbus_onmessage(&ctx->msg);
702         kfree(ctx);
703 }
704
705 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
706 {
707         struct clock_event_device *dev = hv_context.clk_evt[cpu];
708
709         if (dev->event_handler)
710                 dev->event_handler(dev);
711
712         msg->header.message_type = HVMSG_NONE;
713
714         /*
715          * Make sure the write to MessageType (ie set to
716          * HVMSG_NONE) happens before we read the
717          * MessagePending and EOMing. Otherwise, the EOMing
718          * will not deliver any more messages since there is
719          * no empty slot
720          */
721         mb();
722
723         if (msg->header.message_flags.msg_pending) {
724                 /*
725                  * This will cause message queue rescan to
726                  * possibly deliver another msg from the
727                  * hypervisor
728                  */
729                 wrmsrl(HV_X64_MSR_EOM, 0);
730         }
731 }
732
733 static void vmbus_on_msg_dpc(unsigned long data)
734 {
735         int cpu = smp_processor_id();
736         void *page_addr = hv_context.synic_message_page[cpu];
737         struct hv_message *msg = (struct hv_message *)page_addr +
738                                   VMBUS_MESSAGE_SINT;
739         struct vmbus_channel_message_header *hdr;
740         struct vmbus_channel_message_table_entry *entry;
741         struct onmessage_work_context *ctx;
742
743         while (1) {
744                 if (msg->header.message_type == HVMSG_NONE)
745                         /* no msg */
746                         break;
747
748                 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
749
750                 if (hdr->msgtype >= CHANNELMSG_COUNT) {
751                         WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
752                         goto msg_handled;
753                 }
754
755                 entry = &channel_message_table[hdr->msgtype];
756                 if (entry->handler_type == VMHT_BLOCKING) {
757                         ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
758                         if (ctx == NULL)
759                                 continue;
760
761                         INIT_WORK(&ctx->work, vmbus_onmessage_work);
762                         memcpy(&ctx->msg, msg, sizeof(*msg));
763
764                         queue_work(vmbus_connection.work_queue, &ctx->work);
765                 } else
766                         entry->message_handler(hdr);
767
768 msg_handled:
769                 msg->header.message_type = HVMSG_NONE;
770
771                 /*
772                  * Make sure the write to MessageType (ie set to
773                  * HVMSG_NONE) happens before we read the
774                  * MessagePending and EOMing. Otherwise, the EOMing
775                  * will not deliver any more messages since there is
776                  * no empty slot
777                  */
778                 mb();
779
780                 if (msg->header.message_flags.msg_pending) {
781                         /*
782                          * This will cause message queue rescan to
783                          * possibly deliver another msg from the
784                          * hypervisor
785                          */
786                         wrmsrl(HV_X64_MSR_EOM, 0);
787                 }
788         }
789 }
790
791 static void vmbus_isr(void)
792 {
793         int cpu = smp_processor_id();
794         void *page_addr;
795         struct hv_message *msg;
796         union hv_synic_event_flags *event;
797         bool handled = false;
798
799         page_addr = hv_context.synic_event_page[cpu];
800         if (page_addr == NULL)
801                 return;
802
803         event = (union hv_synic_event_flags *)page_addr +
804                                          VMBUS_MESSAGE_SINT;
805         /*
806          * Check for events before checking for messages. This is the order
807          * in which events and messages are checked in Windows guests on
808          * Hyper-V, and the Windows team suggested we do the same.
809          */
810
811         if ((vmbus_proto_version == VERSION_WS2008) ||
812                 (vmbus_proto_version == VERSION_WIN7)) {
813
814                 /* Since we are a child, we only need to check bit 0 */
815                 if (sync_test_and_clear_bit(0,
816                         (unsigned long *) &event->flags32[0])) {
817                         handled = true;
818                 }
819         } else {
820                 /*
821                  * Our host is win8 or above. The signaling mechanism
822                  * has changed and we can directly look at the event page.
823                  * If bit n is set then we have an interrup on the channel
824                  * whose id is n.
825                  */
826                 handled = true;
827         }
828
829         if (handled)
830                 tasklet_schedule(hv_context.event_dpc[cpu]);
831
832
833         page_addr = hv_context.synic_message_page[cpu];
834         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
835
836         /* Check if there are actual msgs to be processed */
837         if (msg->header.message_type != HVMSG_NONE) {
838                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
839                         hv_process_timer_expiration(msg, cpu);
840                 else
841                         tasklet_schedule(&msg_dpc);
842         }
843 }
844
845
846 /*
847  * vmbus_bus_init -Main vmbus driver initialization routine.
848  *
849  * Here, we
850  *      - initialize the vmbus driver context
851  *      - invoke the vmbus hv main init routine
852  *      - retrieve the channel offers
853  */
854 static int vmbus_bus_init(void)
855 {
856         int ret;
857
858         /* Hypervisor initialization...setup hypercall page..etc */
859         ret = hv_init();
860         if (ret != 0) {
861                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
862                 return ret;
863         }
864
865         tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
866
867         ret = bus_register(&hv_bus);
868         if (ret)
869                 goto err_cleanup;
870
871         hv_setup_vmbus_irq(vmbus_isr);
872
873         ret = hv_synic_alloc();
874         if (ret)
875                 goto err_alloc;
876         /*
877          * Initialize the per-cpu interrupt state and
878          * connect to the host.
879          */
880         on_each_cpu(hv_synic_init, NULL, 1);
881         ret = vmbus_connect();
882         if (ret)
883                 goto err_connect;
884
885         if (vmbus_proto_version > VERSION_WIN7)
886                 cpu_hotplug_disable();
887
888         /*
889          * Only register if the crash MSRs are available
890          */
891         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
892                 register_die_notifier(&hyperv_die_block);
893                 atomic_notifier_chain_register(&panic_notifier_list,
894                                                &hyperv_panic_block);
895         }
896
897         vmbus_request_offers();
898
899         return 0;
900
901 err_connect:
902         on_each_cpu(hv_synic_cleanup, NULL, 1);
903 err_alloc:
904         hv_synic_free();
905         hv_remove_vmbus_irq();
906
907         bus_unregister(&hv_bus);
908
909 err_cleanup:
910         hv_cleanup();
911
912         return ret;
913 }
914
915 /**
916  * __vmbus_child_driver_register() - Register a vmbus's driver
917  * @hv_driver: Pointer to driver structure you want to register
918  * @owner: owner module of the drv
919  * @mod_name: module name string
920  *
921  * Registers the given driver with Linux through the 'driver_register()' call
922  * and sets up the hyper-v vmbus handling for this driver.
923  * It will return the state of the 'driver_register()' call.
924  *
925  */
926 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
927 {
928         int ret;
929
930         pr_info("registering driver %s\n", hv_driver->name);
931
932         ret = vmbus_exists();
933         if (ret < 0)
934                 return ret;
935
936         hv_driver->driver.name = hv_driver->name;
937         hv_driver->driver.owner = owner;
938         hv_driver->driver.mod_name = mod_name;
939         hv_driver->driver.bus = &hv_bus;
940
941         ret = driver_register(&hv_driver->driver);
942
943         return ret;
944 }
945 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
946
947 /**
948  * vmbus_driver_unregister() - Unregister a vmbus's driver
949  * @hv_driver: Pointer to driver structure you want to
950  *             un-register
951  *
952  * Un-register the given driver that was previous registered with a call to
953  * vmbus_driver_register()
954  */
955 void vmbus_driver_unregister(struct hv_driver *hv_driver)
956 {
957         pr_info("unregistering driver %s\n", hv_driver->name);
958
959         if (!vmbus_exists())
960                 driver_unregister(&hv_driver->driver);
961 }
962 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
963
964 /*
965  * vmbus_device_create - Creates and registers a new child device
966  * on the vmbus.
967  */
968 struct hv_device *vmbus_device_create(const uuid_le *type,
969                                       const uuid_le *instance,
970                                       struct vmbus_channel *channel)
971 {
972         struct hv_device *child_device_obj;
973
974         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
975         if (!child_device_obj) {
976                 pr_err("Unable to allocate device object for child device\n");
977                 return NULL;
978         }
979
980         child_device_obj->channel = channel;
981         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
982         memcpy(&child_device_obj->dev_instance, instance,
983                sizeof(uuid_le));
984         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
985
986
987         return child_device_obj;
988 }
989
990 /*
991  * vmbus_device_register - Register the child device
992  */
993 int vmbus_device_register(struct hv_device *child_device_obj)
994 {
995         int ret = 0;
996
997         dev_set_name(&child_device_obj->device, "vmbus_%d",
998                      child_device_obj->channel->id);
999
1000         child_device_obj->device.bus = &hv_bus;
1001         child_device_obj->device.parent = &hv_acpi_dev->dev;
1002         child_device_obj->device.release = vmbus_device_release;
1003
1004         /*
1005          * Register with the LDM. This will kick off the driver/device
1006          * binding...which will eventually call vmbus_match() and vmbus_probe()
1007          */
1008         ret = device_register(&child_device_obj->device);
1009
1010         if (ret)
1011                 pr_err("Unable to register child device\n");
1012         else
1013                 pr_debug("child device %s registered\n",
1014                         dev_name(&child_device_obj->device));
1015
1016         return ret;
1017 }
1018
1019 /*
1020  * vmbus_device_unregister - Remove the specified child device
1021  * from the vmbus.
1022  */
1023 void vmbus_device_unregister(struct hv_device *device_obj)
1024 {
1025         pr_debug("child device %s unregistered\n",
1026                 dev_name(&device_obj->device));
1027
1028         /*
1029          * Kick off the process of unregistering the device.
1030          * This will call vmbus_remove() and eventually vmbus_device_release()
1031          */
1032         device_unregister(&device_obj->device);
1033 }
1034
1035
1036 /*
1037  * VMBUS is an acpi enumerated device. Get the information we
1038  * need from DSDT.
1039  */
1040 #define VTPM_BASE_ADDRESS 0xfed40000
1041 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1042 {
1043         resource_size_t start = 0;
1044         resource_size_t end = 0;
1045         struct resource *new_res;
1046         struct resource **old_res = &hyperv_mmio;
1047         struct resource **prev_res = NULL;
1048
1049         switch (res->type) {
1050
1051         /*
1052          * "Address" descriptors are for bus windows. Ignore
1053          * "memory" descriptors, which are for registers on
1054          * devices.
1055          */
1056         case ACPI_RESOURCE_TYPE_ADDRESS32:
1057                 start = res->data.address32.address.minimum;
1058                 end = res->data.address32.address.maximum;
1059                 break;
1060
1061         case ACPI_RESOURCE_TYPE_ADDRESS64:
1062                 start = res->data.address64.address.minimum;
1063                 end = res->data.address64.address.maximum;
1064                 break;
1065
1066         default:
1067                 /* Unused resource type */
1068                 return AE_OK;
1069
1070         }
1071         /*
1072          * Ignore ranges that are below 1MB, as they're not
1073          * necessary or useful here.
1074          */
1075         if (end < 0x100000)
1076                 return AE_OK;
1077
1078         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1079         if (!new_res)
1080                 return AE_NO_MEMORY;
1081
1082         /* If this range overlaps the virtual TPM, truncate it. */
1083         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1084                 end = VTPM_BASE_ADDRESS;
1085
1086         new_res->name = "hyperv mmio";
1087         new_res->flags = IORESOURCE_MEM;
1088         new_res->start = start;
1089         new_res->end = end;
1090
1091         /*
1092          * Stick ranges from higher in address space at the front of the list.
1093          * If two ranges are adjacent, merge them.
1094          */
1095         do {
1096                 if (!*old_res) {
1097                         *old_res = new_res;
1098                         break;
1099                 }
1100
1101                 if (((*old_res)->end + 1) == new_res->start) {
1102                         (*old_res)->end = new_res->end;
1103                         kfree(new_res);
1104                         break;
1105                 }
1106
1107                 if ((*old_res)->start == new_res->end + 1) {
1108                         (*old_res)->start = new_res->start;
1109                         kfree(new_res);
1110                         break;
1111                 }
1112
1113                 if ((*old_res)->end < new_res->start) {
1114                         new_res->sibling = *old_res;
1115                         if (prev_res)
1116                                 (*prev_res)->sibling = new_res;
1117                         *old_res = new_res;
1118                         break;
1119                 }
1120
1121                 prev_res = old_res;
1122                 old_res = &(*old_res)->sibling;
1123
1124         } while (1);
1125
1126         return AE_OK;
1127 }
1128
1129 static int vmbus_acpi_remove(struct acpi_device *device)
1130 {
1131         struct resource *cur_res;
1132         struct resource *next_res;
1133
1134         if (hyperv_mmio) {
1135                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1136                         next_res = cur_res->sibling;
1137                         kfree(cur_res);
1138                 }
1139         }
1140
1141         return 0;
1142 }
1143
1144 /**
1145  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1146  * @new:                If successful, supplied a pointer to the
1147  *                      allocated MMIO space.
1148  * @device_obj:         Identifies the caller
1149  * @min:                Minimum guest physical address of the
1150  *                      allocation
1151  * @max:                Maximum guest physical address
1152  * @size:               Size of the range to be allocated
1153  * @align:              Alignment of the range to be allocated
1154  * @fb_overlap_ok:      Whether this allocation can be allowed
1155  *                      to overlap the video frame buffer.
1156  *
1157  * This function walks the resources granted to VMBus by the
1158  * _CRS object in the ACPI namespace underneath the parent
1159  * "bridge" whether that's a root PCI bus in the Generation 1
1160  * case or a Module Device in the Generation 2 case.  It then
1161  * attempts to allocate from the global MMIO pool in a way that
1162  * matches the constraints supplied in these parameters and by
1163  * that _CRS.
1164  *
1165  * Return: 0 on success, -errno on failure
1166  */
1167 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1168                         resource_size_t min, resource_size_t max,
1169                         resource_size_t size, resource_size_t align,
1170                         bool fb_overlap_ok)
1171 {
1172         struct resource *iter;
1173         resource_size_t range_min, range_max, start, local_min, local_max;
1174         const char *dev_n = dev_name(&device_obj->device);
1175         u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1176         int i;
1177
1178         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1179                 if ((iter->start >= max) || (iter->end <= min))
1180                         continue;
1181
1182                 range_min = iter->start;
1183                 range_max = iter->end;
1184
1185                 /* If this range overlaps the frame buffer, split it into
1186                    two tries. */
1187                 for (i = 0; i < 2; i++) {
1188                         local_min = range_min;
1189                         local_max = range_max;
1190                         if (fb_overlap_ok || (range_min >= fb_end) ||
1191                             (range_max <= screen_info.lfb_base)) {
1192                                 i++;
1193                         } else {
1194                                 if ((range_min <= screen_info.lfb_base) &&
1195                                     (range_max >= screen_info.lfb_base)) {
1196                                         /*
1197                                          * The frame buffer is in this window,
1198                                          * so trim this into the part that
1199                                          * preceeds the frame buffer.
1200                                          */
1201                                         local_max = screen_info.lfb_base - 1;
1202                                         range_min = fb_end;
1203                                 } else {
1204                                         range_min = fb_end;
1205                                         continue;
1206                                 }
1207                         }
1208
1209                         start = (local_min + align - 1) & ~(align - 1);
1210                         for (; start + size - 1 <= local_max; start += align) {
1211                                 *new = request_mem_region_exclusive(start, size,
1212                                                                     dev_n);
1213                                 if (*new)
1214                                         return 0;
1215                         }
1216                 }
1217         }
1218
1219         return -ENXIO;
1220 }
1221 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1222
1223 /**
1224  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1225  * @cpu_number: CPU number in Linux terms
1226  *
1227  * This function returns the mapping between the Linux processor
1228  * number and the hypervisor's virtual processor number, useful
1229  * in making hypercalls and such that talk about specific
1230  * processors.
1231  *
1232  * Return: Virtual processor number in Hyper-V terms
1233  */
1234 int vmbus_cpu_number_to_vp_number(int cpu_number)
1235 {
1236         return hv_context.vp_index[cpu_number];
1237 }
1238 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1239
1240 static int vmbus_acpi_add(struct acpi_device *device)
1241 {
1242         acpi_status result;
1243         int ret_val = -ENODEV;
1244         struct acpi_device *ancestor;
1245
1246         hv_acpi_dev = device;
1247
1248         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1249                                         vmbus_walk_resources, NULL);
1250
1251         if (ACPI_FAILURE(result))
1252                 goto acpi_walk_err;
1253         /*
1254          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1255          * firmware) is the VMOD that has the mmio ranges. Get that.
1256          */
1257         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1258                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1259                                              vmbus_walk_resources, NULL);
1260
1261                 if (ACPI_FAILURE(result))
1262                         continue;
1263                 if (hyperv_mmio)
1264                         break;
1265         }
1266         ret_val = 0;
1267
1268 acpi_walk_err:
1269         complete(&probe_event);
1270         if (ret_val)
1271                 vmbus_acpi_remove(device);
1272         return ret_val;
1273 }
1274
1275 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1276         {"VMBUS", 0},
1277         {"VMBus", 0},
1278         {"", 0},
1279 };
1280 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1281
1282 static struct acpi_driver vmbus_acpi_driver = {
1283         .name = "vmbus",
1284         .ids = vmbus_acpi_device_ids,
1285         .ops = {
1286                 .add = vmbus_acpi_add,
1287                 .remove = vmbus_acpi_remove,
1288         },
1289 };
1290
1291 static void hv_kexec_handler(void)
1292 {
1293         int cpu;
1294
1295         hv_synic_clockevents_cleanup();
1296         vmbus_initiate_unload();
1297         for_each_online_cpu(cpu)
1298                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1299         hv_cleanup();
1300 };
1301
1302 static void hv_crash_handler(struct pt_regs *regs)
1303 {
1304         vmbus_initiate_unload();
1305         /*
1306          * In crash handler we can't schedule synic cleanup for all CPUs,
1307          * doing the cleanup for current CPU only. This should be sufficient
1308          * for kdump.
1309          */
1310         hv_synic_cleanup(NULL);
1311         hv_cleanup();
1312 };
1313
1314 static int __init hv_acpi_init(void)
1315 {
1316         int ret, t;
1317
1318         if (x86_hyper != &x86_hyper_ms_hyperv)
1319                 return -ENODEV;
1320
1321         init_completion(&probe_event);
1322
1323         /*
1324          * Get ACPI resources first.
1325          */
1326         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1327
1328         if (ret)
1329                 return ret;
1330
1331         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1332         if (t == 0) {
1333                 ret = -ETIMEDOUT;
1334                 goto cleanup;
1335         }
1336
1337         ret = vmbus_bus_init();
1338         if (ret)
1339                 goto cleanup;
1340
1341         hv_setup_kexec_handler(hv_kexec_handler);
1342         hv_setup_crash_handler(hv_crash_handler);
1343
1344         return 0;
1345
1346 cleanup:
1347         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1348         hv_acpi_dev = NULL;
1349         return ret;
1350 }
1351
1352 static void __exit vmbus_exit(void)
1353 {
1354         int cpu;
1355
1356         hv_remove_kexec_handler();
1357         hv_remove_crash_handler();
1358         vmbus_connection.conn_state = DISCONNECTED;
1359         hv_synic_clockevents_cleanup();
1360         vmbus_disconnect();
1361         hv_remove_vmbus_irq();
1362         tasklet_kill(&msg_dpc);
1363         vmbus_free_channels();
1364         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1365                 unregister_die_notifier(&hyperv_die_block);
1366                 atomic_notifier_chain_unregister(&panic_notifier_list,
1367                                                  &hyperv_panic_block);
1368         }
1369         bus_unregister(&hv_bus);
1370         hv_cleanup();
1371         for_each_online_cpu(cpu) {
1372                 tasklet_kill(hv_context.event_dpc[cpu]);
1373                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1374         }
1375         hv_synic_free();
1376         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1377         if (vmbus_proto_version > VERSION_WIN7)
1378                 cpu_hotplug_enable();
1379 }
1380
1381
1382 MODULE_LICENSE("GPL");
1383
1384 subsys_initcall(hv_acpi_init);
1385 module_exit(vmbus_exit);