]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/hv/vmbus_drv.c
drm: sun4i: use vblank hooks in struct drm_crtc_funcs
[karo-tx-linux.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49         struct list_head node;
50         struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device  *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57
58 static void hyperv_report_panic(struct pt_regs *regs)
59 {
60         static bool panic_reported;
61
62         /*
63          * We prefer to report panic on 'die' chain as we have proper
64          * registers to report, but if we miss it (e.g. on BUG()) we need
65          * to report it on 'panic'.
66          */
67         if (panic_reported)
68                 return;
69         panic_reported = true;
70
71         wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
72         wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
73         wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
74         wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
75         wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
76
77         /*
78          * Let Hyper-V know there is crash data available
79          */
80         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
81 }
82
83 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
84                               void *args)
85 {
86         struct pt_regs *regs;
87
88         regs = current_pt_regs();
89
90         hyperv_report_panic(regs);
91         return NOTIFY_DONE;
92 }
93
94 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
95                             void *args)
96 {
97         struct die_args *die = (struct die_args *)args;
98         struct pt_regs *regs = die->regs;
99
100         hyperv_report_panic(regs);
101         return NOTIFY_DONE;
102 }
103
104 static struct notifier_block hyperv_die_block = {
105         .notifier_call = hyperv_die_event,
106 };
107 static struct notifier_block hyperv_panic_block = {
108         .notifier_call = hyperv_panic_event,
109 };
110
111 static const char *fb_mmio_name = "fb_range";
112 static struct resource *fb_mmio;
113 static struct resource *hyperv_mmio;
114 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
115
116 static int vmbus_exists(void)
117 {
118         if (hv_acpi_dev == NULL)
119                 return -ENODEV;
120
121         return 0;
122 }
123
124 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
125 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
126 {
127         int i;
128         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
129                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
130 }
131
132 static u8 channel_monitor_group(struct vmbus_channel *channel)
133 {
134         return (u8)channel->offermsg.monitorid / 32;
135 }
136
137 static u8 channel_monitor_offset(struct vmbus_channel *channel)
138 {
139         return (u8)channel->offermsg.monitorid % 32;
140 }
141
142 static u32 channel_pending(struct vmbus_channel *channel,
143                            struct hv_monitor_page *monitor_page)
144 {
145         u8 monitor_group = channel_monitor_group(channel);
146         return monitor_page->trigger_group[monitor_group].pending;
147 }
148
149 static u32 channel_latency(struct vmbus_channel *channel,
150                            struct hv_monitor_page *monitor_page)
151 {
152         u8 monitor_group = channel_monitor_group(channel);
153         u8 monitor_offset = channel_monitor_offset(channel);
154         return monitor_page->latency[monitor_group][monitor_offset];
155 }
156
157 static u32 channel_conn_id(struct vmbus_channel *channel,
158                            struct hv_monitor_page *monitor_page)
159 {
160         u8 monitor_group = channel_monitor_group(channel);
161         u8 monitor_offset = channel_monitor_offset(channel);
162         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
163 }
164
165 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
166                        char *buf)
167 {
168         struct hv_device *hv_dev = device_to_hv_device(dev);
169
170         if (!hv_dev->channel)
171                 return -ENODEV;
172         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
173 }
174 static DEVICE_ATTR_RO(id);
175
176 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
177                           char *buf)
178 {
179         struct hv_device *hv_dev = device_to_hv_device(dev);
180
181         if (!hv_dev->channel)
182                 return -ENODEV;
183         return sprintf(buf, "%d\n", hv_dev->channel->state);
184 }
185 static DEVICE_ATTR_RO(state);
186
187 static ssize_t monitor_id_show(struct device *dev,
188                                struct device_attribute *dev_attr, char *buf)
189 {
190         struct hv_device *hv_dev = device_to_hv_device(dev);
191
192         if (!hv_dev->channel)
193                 return -ENODEV;
194         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
195 }
196 static DEVICE_ATTR_RO(monitor_id);
197
198 static ssize_t class_id_show(struct device *dev,
199                                struct device_attribute *dev_attr, char *buf)
200 {
201         struct hv_device *hv_dev = device_to_hv_device(dev);
202
203         if (!hv_dev->channel)
204                 return -ENODEV;
205         return sprintf(buf, "{%pUl}\n",
206                        hv_dev->channel->offermsg.offer.if_type.b);
207 }
208 static DEVICE_ATTR_RO(class_id);
209
210 static ssize_t device_id_show(struct device *dev,
211                               struct device_attribute *dev_attr, char *buf)
212 {
213         struct hv_device *hv_dev = device_to_hv_device(dev);
214
215         if (!hv_dev->channel)
216                 return -ENODEV;
217         return sprintf(buf, "{%pUl}\n",
218                        hv_dev->channel->offermsg.offer.if_instance.b);
219 }
220 static DEVICE_ATTR_RO(device_id);
221
222 static ssize_t modalias_show(struct device *dev,
223                              struct device_attribute *dev_attr, char *buf)
224 {
225         struct hv_device *hv_dev = device_to_hv_device(dev);
226         char alias_name[VMBUS_ALIAS_LEN + 1];
227
228         print_alias_name(hv_dev, alias_name);
229         return sprintf(buf, "vmbus:%s\n", alias_name);
230 }
231 static DEVICE_ATTR_RO(modalias);
232
233 static ssize_t server_monitor_pending_show(struct device *dev,
234                                            struct device_attribute *dev_attr,
235                                            char *buf)
236 {
237         struct hv_device *hv_dev = device_to_hv_device(dev);
238
239         if (!hv_dev->channel)
240                 return -ENODEV;
241         return sprintf(buf, "%d\n",
242                        channel_pending(hv_dev->channel,
243                                        vmbus_connection.monitor_pages[1]));
244 }
245 static DEVICE_ATTR_RO(server_monitor_pending);
246
247 static ssize_t client_monitor_pending_show(struct device *dev,
248                                            struct device_attribute *dev_attr,
249                                            char *buf)
250 {
251         struct hv_device *hv_dev = device_to_hv_device(dev);
252
253         if (!hv_dev->channel)
254                 return -ENODEV;
255         return sprintf(buf, "%d\n",
256                        channel_pending(hv_dev->channel,
257                                        vmbus_connection.monitor_pages[1]));
258 }
259 static DEVICE_ATTR_RO(client_monitor_pending);
260
261 static ssize_t server_monitor_latency_show(struct device *dev,
262                                            struct device_attribute *dev_attr,
263                                            char *buf)
264 {
265         struct hv_device *hv_dev = device_to_hv_device(dev);
266
267         if (!hv_dev->channel)
268                 return -ENODEV;
269         return sprintf(buf, "%d\n",
270                        channel_latency(hv_dev->channel,
271                                        vmbus_connection.monitor_pages[0]));
272 }
273 static DEVICE_ATTR_RO(server_monitor_latency);
274
275 static ssize_t client_monitor_latency_show(struct device *dev,
276                                            struct device_attribute *dev_attr,
277                                            char *buf)
278 {
279         struct hv_device *hv_dev = device_to_hv_device(dev);
280
281         if (!hv_dev->channel)
282                 return -ENODEV;
283         return sprintf(buf, "%d\n",
284                        channel_latency(hv_dev->channel,
285                                        vmbus_connection.monitor_pages[1]));
286 }
287 static DEVICE_ATTR_RO(client_monitor_latency);
288
289 static ssize_t server_monitor_conn_id_show(struct device *dev,
290                                            struct device_attribute *dev_attr,
291                                            char *buf)
292 {
293         struct hv_device *hv_dev = device_to_hv_device(dev);
294
295         if (!hv_dev->channel)
296                 return -ENODEV;
297         return sprintf(buf, "%d\n",
298                        channel_conn_id(hv_dev->channel,
299                                        vmbus_connection.monitor_pages[0]));
300 }
301 static DEVICE_ATTR_RO(server_monitor_conn_id);
302
303 static ssize_t client_monitor_conn_id_show(struct device *dev,
304                                            struct device_attribute *dev_attr,
305                                            char *buf)
306 {
307         struct hv_device *hv_dev = device_to_hv_device(dev);
308
309         if (!hv_dev->channel)
310                 return -ENODEV;
311         return sprintf(buf, "%d\n",
312                        channel_conn_id(hv_dev->channel,
313                                        vmbus_connection.monitor_pages[1]));
314 }
315 static DEVICE_ATTR_RO(client_monitor_conn_id);
316
317 static ssize_t out_intr_mask_show(struct device *dev,
318                                   struct device_attribute *dev_attr, char *buf)
319 {
320         struct hv_device *hv_dev = device_to_hv_device(dev);
321         struct hv_ring_buffer_debug_info outbound;
322
323         if (!hv_dev->channel)
324                 return -ENODEV;
325         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
326         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329
330 static ssize_t out_read_index_show(struct device *dev,
331                                    struct device_attribute *dev_attr, char *buf)
332 {
333         struct hv_device *hv_dev = device_to_hv_device(dev);
334         struct hv_ring_buffer_debug_info outbound;
335
336         if (!hv_dev->channel)
337                 return -ENODEV;
338         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
339         return sprintf(buf, "%d\n", outbound.current_read_index);
340 }
341 static DEVICE_ATTR_RO(out_read_index);
342
343 static ssize_t out_write_index_show(struct device *dev,
344                                     struct device_attribute *dev_attr,
345                                     char *buf)
346 {
347         struct hv_device *hv_dev = device_to_hv_device(dev);
348         struct hv_ring_buffer_debug_info outbound;
349
350         if (!hv_dev->channel)
351                 return -ENODEV;
352         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
353         return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358                                          struct device_attribute *dev_attr,
359                                          char *buf)
360 {
361         struct hv_device *hv_dev = device_to_hv_device(dev);
362         struct hv_ring_buffer_debug_info outbound;
363
364         if (!hv_dev->channel)
365                 return -ENODEV;
366         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
367         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
368 }
369 static DEVICE_ATTR_RO(out_read_bytes_avail);
370
371 static ssize_t out_write_bytes_avail_show(struct device *dev,
372                                           struct device_attribute *dev_attr,
373                                           char *buf)
374 {
375         struct hv_device *hv_dev = device_to_hv_device(dev);
376         struct hv_ring_buffer_debug_info outbound;
377
378         if (!hv_dev->channel)
379                 return -ENODEV;
380         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
381         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
382 }
383 static DEVICE_ATTR_RO(out_write_bytes_avail);
384
385 static ssize_t in_intr_mask_show(struct device *dev,
386                                  struct device_attribute *dev_attr, char *buf)
387 {
388         struct hv_device *hv_dev = device_to_hv_device(dev);
389         struct hv_ring_buffer_debug_info inbound;
390
391         if (!hv_dev->channel)
392                 return -ENODEV;
393         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
394         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
395 }
396 static DEVICE_ATTR_RO(in_intr_mask);
397
398 static ssize_t in_read_index_show(struct device *dev,
399                                   struct device_attribute *dev_attr, char *buf)
400 {
401         struct hv_device *hv_dev = device_to_hv_device(dev);
402         struct hv_ring_buffer_debug_info inbound;
403
404         if (!hv_dev->channel)
405                 return -ENODEV;
406         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
407         return sprintf(buf, "%d\n", inbound.current_read_index);
408 }
409 static DEVICE_ATTR_RO(in_read_index);
410
411 static ssize_t in_write_index_show(struct device *dev,
412                                    struct device_attribute *dev_attr, char *buf)
413 {
414         struct hv_device *hv_dev = device_to_hv_device(dev);
415         struct hv_ring_buffer_debug_info inbound;
416
417         if (!hv_dev->channel)
418                 return -ENODEV;
419         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
420         return sprintf(buf, "%d\n", inbound.current_write_index);
421 }
422 static DEVICE_ATTR_RO(in_write_index);
423
424 static ssize_t in_read_bytes_avail_show(struct device *dev,
425                                         struct device_attribute *dev_attr,
426                                         char *buf)
427 {
428         struct hv_device *hv_dev = device_to_hv_device(dev);
429         struct hv_ring_buffer_debug_info inbound;
430
431         if (!hv_dev->channel)
432                 return -ENODEV;
433         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
435 }
436 static DEVICE_ATTR_RO(in_read_bytes_avail);
437
438 static ssize_t in_write_bytes_avail_show(struct device *dev,
439                                          struct device_attribute *dev_attr,
440                                          char *buf)
441 {
442         struct hv_device *hv_dev = device_to_hv_device(dev);
443         struct hv_ring_buffer_debug_info inbound;
444
445         if (!hv_dev->channel)
446                 return -ENODEV;
447         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
448         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
449 }
450 static DEVICE_ATTR_RO(in_write_bytes_avail);
451
452 static ssize_t channel_vp_mapping_show(struct device *dev,
453                                        struct device_attribute *dev_attr,
454                                        char *buf)
455 {
456         struct hv_device *hv_dev = device_to_hv_device(dev);
457         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
458         unsigned long flags;
459         int buf_size = PAGE_SIZE, n_written, tot_written;
460         struct list_head *cur;
461
462         if (!channel)
463                 return -ENODEV;
464
465         tot_written = snprintf(buf, buf_size, "%u:%u\n",
466                 channel->offermsg.child_relid, channel->target_cpu);
467
468         spin_lock_irqsave(&channel->lock, flags);
469
470         list_for_each(cur, &channel->sc_list) {
471                 if (tot_written >= buf_size - 1)
472                         break;
473
474                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
475                 n_written = scnprintf(buf + tot_written,
476                                      buf_size - tot_written,
477                                      "%u:%u\n",
478                                      cur_sc->offermsg.child_relid,
479                                      cur_sc->target_cpu);
480                 tot_written += n_written;
481         }
482
483         spin_unlock_irqrestore(&channel->lock, flags);
484
485         return tot_written;
486 }
487 static DEVICE_ATTR_RO(channel_vp_mapping);
488
489 static ssize_t vendor_show(struct device *dev,
490                            struct device_attribute *dev_attr,
491                            char *buf)
492 {
493         struct hv_device *hv_dev = device_to_hv_device(dev);
494         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
495 }
496 static DEVICE_ATTR_RO(vendor);
497
498 static ssize_t device_show(struct device *dev,
499                            struct device_attribute *dev_attr,
500                            char *buf)
501 {
502         struct hv_device *hv_dev = device_to_hv_device(dev);
503         return sprintf(buf, "0x%x\n", hv_dev->device_id);
504 }
505 static DEVICE_ATTR_RO(device);
506
507 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
508 static struct attribute *vmbus_dev_attrs[] = {
509         &dev_attr_id.attr,
510         &dev_attr_state.attr,
511         &dev_attr_monitor_id.attr,
512         &dev_attr_class_id.attr,
513         &dev_attr_device_id.attr,
514         &dev_attr_modalias.attr,
515         &dev_attr_server_monitor_pending.attr,
516         &dev_attr_client_monitor_pending.attr,
517         &dev_attr_server_monitor_latency.attr,
518         &dev_attr_client_monitor_latency.attr,
519         &dev_attr_server_monitor_conn_id.attr,
520         &dev_attr_client_monitor_conn_id.attr,
521         &dev_attr_out_intr_mask.attr,
522         &dev_attr_out_read_index.attr,
523         &dev_attr_out_write_index.attr,
524         &dev_attr_out_read_bytes_avail.attr,
525         &dev_attr_out_write_bytes_avail.attr,
526         &dev_attr_in_intr_mask.attr,
527         &dev_attr_in_read_index.attr,
528         &dev_attr_in_write_index.attr,
529         &dev_attr_in_read_bytes_avail.attr,
530         &dev_attr_in_write_bytes_avail.attr,
531         &dev_attr_channel_vp_mapping.attr,
532         &dev_attr_vendor.attr,
533         &dev_attr_device.attr,
534         NULL,
535 };
536 ATTRIBUTE_GROUPS(vmbus_dev);
537
538 /*
539  * vmbus_uevent - add uevent for our device
540  *
541  * This routine is invoked when a device is added or removed on the vmbus to
542  * generate a uevent to udev in the userspace. The udev will then look at its
543  * rule and the uevent generated here to load the appropriate driver
544  *
545  * The alias string will be of the form vmbus:guid where guid is the string
546  * representation of the device guid (each byte of the guid will be
547  * represented with two hex characters.
548  */
549 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
550 {
551         struct hv_device *dev = device_to_hv_device(device);
552         int ret;
553         char alias_name[VMBUS_ALIAS_LEN + 1];
554
555         print_alias_name(dev, alias_name);
556         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
557         return ret;
558 }
559
560 static const uuid_le null_guid;
561
562 static inline bool is_null_guid(const uuid_le *guid)
563 {
564         if (uuid_le_cmp(*guid, null_guid))
565                 return false;
566         return true;
567 }
568
569 /*
570  * Return a matching hv_vmbus_device_id pointer.
571  * If there is no match, return NULL.
572  */
573 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
574                                         const uuid_le *guid)
575 {
576         const struct hv_vmbus_device_id *id = NULL;
577         struct vmbus_dynid *dynid;
578
579         /* Look at the dynamic ids first, before the static ones */
580         spin_lock(&drv->dynids.lock);
581         list_for_each_entry(dynid, &drv->dynids.list, node) {
582                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
583                         id = &dynid->id;
584                         break;
585                 }
586         }
587         spin_unlock(&drv->dynids.lock);
588
589         if (id)
590                 return id;
591
592         id = drv->id_table;
593         if (id == NULL)
594                 return NULL; /* empty device table */
595
596         for (; !is_null_guid(&id->guid); id++)
597                 if (!uuid_le_cmp(id->guid, *guid))
598                         return id;
599
600         return NULL;
601 }
602
603 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
604 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
605 {
606         struct vmbus_dynid *dynid;
607
608         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
609         if (!dynid)
610                 return -ENOMEM;
611
612         dynid->id.guid = *guid;
613
614         spin_lock(&drv->dynids.lock);
615         list_add_tail(&dynid->node, &drv->dynids.list);
616         spin_unlock(&drv->dynids.lock);
617
618         return driver_attach(&drv->driver);
619 }
620
621 static void vmbus_free_dynids(struct hv_driver *drv)
622 {
623         struct vmbus_dynid *dynid, *n;
624
625         spin_lock(&drv->dynids.lock);
626         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
627                 list_del(&dynid->node);
628                 kfree(dynid);
629         }
630         spin_unlock(&drv->dynids.lock);
631 }
632
633 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
634 static int get_uuid_le(const char *str, uuid_le *uu)
635 {
636         unsigned int b[16];
637         int i;
638
639         if (strlen(str) < 37)
640                 return -1;
641
642         for (i = 0; i < 36; i++) {
643                 switch (i) {
644                 case 8: case 13: case 18: case 23:
645                         if (str[i] != '-')
646                                 return -1;
647                         break;
648                 default:
649                         if (!isxdigit(str[i]))
650                                 return -1;
651                 }
652         }
653
654         /* unparse little endian output byte order */
655         if (sscanf(str,
656                    "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
657                    &b[3], &b[2], &b[1], &b[0],
658                    &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
659                    &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
660                 return -1;
661
662         for (i = 0; i < 16; i++)
663                 uu->b[i] = b[i];
664         return 0;
665 }
666
667 /*
668  * store_new_id - sysfs frontend to vmbus_add_dynid()
669  *
670  * Allow GUIDs to be added to an existing driver via sysfs.
671  */
672 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
673                             size_t count)
674 {
675         struct hv_driver *drv = drv_to_hv_drv(driver);
676         uuid_le guid = NULL_UUID_LE;
677         ssize_t retval;
678
679         if (get_uuid_le(buf, &guid) != 0)
680                 return -EINVAL;
681
682         if (hv_vmbus_get_id(drv, &guid))
683                 return -EEXIST;
684
685         retval = vmbus_add_dynid(drv, &guid);
686         if (retval)
687                 return retval;
688         return count;
689 }
690 static DRIVER_ATTR_WO(new_id);
691
692 /*
693  * store_remove_id - remove a PCI device ID from this driver
694  *
695  * Removes a dynamic pci device ID to this driver.
696  */
697 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
698                                size_t count)
699 {
700         struct hv_driver *drv = drv_to_hv_drv(driver);
701         struct vmbus_dynid *dynid, *n;
702         uuid_le guid = NULL_UUID_LE;
703         size_t retval = -ENODEV;
704
705         if (get_uuid_le(buf, &guid))
706                 return -EINVAL;
707
708         spin_lock(&drv->dynids.lock);
709         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
710                 struct hv_vmbus_device_id *id = &dynid->id;
711
712                 if (!uuid_le_cmp(id->guid, guid)) {
713                         list_del(&dynid->node);
714                         kfree(dynid);
715                         retval = count;
716                         break;
717                 }
718         }
719         spin_unlock(&drv->dynids.lock);
720
721         return retval;
722 }
723 static DRIVER_ATTR_WO(remove_id);
724
725 static struct attribute *vmbus_drv_attrs[] = {
726         &driver_attr_new_id.attr,
727         &driver_attr_remove_id.attr,
728         NULL,
729 };
730 ATTRIBUTE_GROUPS(vmbus_drv);
731
732
733 /*
734  * vmbus_match - Attempt to match the specified device to the specified driver
735  */
736 static int vmbus_match(struct device *device, struct device_driver *driver)
737 {
738         struct hv_driver *drv = drv_to_hv_drv(driver);
739         struct hv_device *hv_dev = device_to_hv_device(device);
740
741         /* The hv_sock driver handles all hv_sock offers. */
742         if (is_hvsock_channel(hv_dev->channel))
743                 return drv->hvsock;
744
745         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
746                 return 1;
747
748         return 0;
749 }
750
751 /*
752  * vmbus_probe - Add the new vmbus's child device
753  */
754 static int vmbus_probe(struct device *child_device)
755 {
756         int ret = 0;
757         struct hv_driver *drv =
758                         drv_to_hv_drv(child_device->driver);
759         struct hv_device *dev = device_to_hv_device(child_device);
760         const struct hv_vmbus_device_id *dev_id;
761
762         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
763         if (drv->probe) {
764                 ret = drv->probe(dev, dev_id);
765                 if (ret != 0)
766                         pr_err("probe failed for device %s (%d)\n",
767                                dev_name(child_device), ret);
768
769         } else {
770                 pr_err("probe not set for driver %s\n",
771                        dev_name(child_device));
772                 ret = -ENODEV;
773         }
774         return ret;
775 }
776
777 /*
778  * vmbus_remove - Remove a vmbus device
779  */
780 static int vmbus_remove(struct device *child_device)
781 {
782         struct hv_driver *drv;
783         struct hv_device *dev = device_to_hv_device(child_device);
784
785         if (child_device->driver) {
786                 drv = drv_to_hv_drv(child_device->driver);
787                 if (drv->remove)
788                         drv->remove(dev);
789         }
790
791         return 0;
792 }
793
794
795 /*
796  * vmbus_shutdown - Shutdown a vmbus device
797  */
798 static void vmbus_shutdown(struct device *child_device)
799 {
800         struct hv_driver *drv;
801         struct hv_device *dev = device_to_hv_device(child_device);
802
803
804         /* The device may not be attached yet */
805         if (!child_device->driver)
806                 return;
807
808         drv = drv_to_hv_drv(child_device->driver);
809
810         if (drv->shutdown)
811                 drv->shutdown(dev);
812
813         return;
814 }
815
816
817 /*
818  * vmbus_device_release - Final callback release of the vmbus child device
819  */
820 static void vmbus_device_release(struct device *device)
821 {
822         struct hv_device *hv_dev = device_to_hv_device(device);
823         struct vmbus_channel *channel = hv_dev->channel;
824
825         hv_process_channel_removal(channel,
826                                    channel->offermsg.child_relid);
827         kfree(hv_dev);
828
829 }
830
831 /* The one and only one */
832 static struct bus_type  hv_bus = {
833         .name =         "vmbus",
834         .match =                vmbus_match,
835         .shutdown =             vmbus_shutdown,
836         .remove =               vmbus_remove,
837         .probe =                vmbus_probe,
838         .uevent =               vmbus_uevent,
839         .dev_groups =           vmbus_dev_groups,
840         .drv_groups =           vmbus_drv_groups,
841 };
842
843 struct onmessage_work_context {
844         struct work_struct work;
845         struct hv_message msg;
846 };
847
848 static void vmbus_onmessage_work(struct work_struct *work)
849 {
850         struct onmessage_work_context *ctx;
851
852         /* Do not process messages if we're in DISCONNECTED state */
853         if (vmbus_connection.conn_state == DISCONNECTED)
854                 return;
855
856         ctx = container_of(work, struct onmessage_work_context,
857                            work);
858         vmbus_onmessage(&ctx->msg);
859         kfree(ctx);
860 }
861
862 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
863 {
864         struct clock_event_device *dev = hv_context.clk_evt[cpu];
865
866         if (dev->event_handler)
867                 dev->event_handler(dev);
868
869         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
870 }
871
872 void vmbus_on_msg_dpc(unsigned long data)
873 {
874         int cpu = smp_processor_id();
875         void *page_addr = hv_context.synic_message_page[cpu];
876         struct hv_message *msg = (struct hv_message *)page_addr +
877                                   VMBUS_MESSAGE_SINT;
878         struct vmbus_channel_message_header *hdr;
879         struct vmbus_channel_message_table_entry *entry;
880         struct onmessage_work_context *ctx;
881         u32 message_type = msg->header.message_type;
882
883         if (message_type == HVMSG_NONE)
884                 /* no msg */
885                 return;
886
887         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
888
889         if (hdr->msgtype >= CHANNELMSG_COUNT) {
890                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
891                 goto msg_handled;
892         }
893
894         entry = &channel_message_table[hdr->msgtype];
895         if (entry->handler_type == VMHT_BLOCKING) {
896                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
897                 if (ctx == NULL)
898                         return;
899
900                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
901                 memcpy(&ctx->msg, msg, sizeof(*msg));
902
903                 queue_work(vmbus_connection.work_queue, &ctx->work);
904         } else
905                 entry->message_handler(hdr);
906
907 msg_handled:
908         vmbus_signal_eom(msg, message_type);
909 }
910
911 static void vmbus_isr(void)
912 {
913         int cpu = smp_processor_id();
914         void *page_addr;
915         struct hv_message *msg;
916         union hv_synic_event_flags *event;
917         bool handled = false;
918
919         page_addr = hv_context.synic_event_page[cpu];
920         if (page_addr == NULL)
921                 return;
922
923         event = (union hv_synic_event_flags *)page_addr +
924                                          VMBUS_MESSAGE_SINT;
925         /*
926          * Check for events before checking for messages. This is the order
927          * in which events and messages are checked in Windows guests on
928          * Hyper-V, and the Windows team suggested we do the same.
929          */
930
931         if ((vmbus_proto_version == VERSION_WS2008) ||
932                 (vmbus_proto_version == VERSION_WIN7)) {
933
934                 /* Since we are a child, we only need to check bit 0 */
935                 if (sync_test_and_clear_bit(0,
936                         (unsigned long *) &event->flags32[0])) {
937                         handled = true;
938                 }
939         } else {
940                 /*
941                  * Our host is win8 or above. The signaling mechanism
942                  * has changed and we can directly look at the event page.
943                  * If bit n is set then we have an interrup on the channel
944                  * whose id is n.
945                  */
946                 handled = true;
947         }
948
949         if (handled)
950                 tasklet_schedule(hv_context.event_dpc[cpu]);
951
952
953         page_addr = hv_context.synic_message_page[cpu];
954         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
955
956         /* Check if there are actual msgs to be processed */
957         if (msg->header.message_type != HVMSG_NONE) {
958                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
959                         hv_process_timer_expiration(msg, cpu);
960                 else
961                         tasklet_schedule(hv_context.msg_dpc[cpu]);
962         }
963
964         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
965 }
966
967
968 /*
969  * vmbus_bus_init -Main vmbus driver initialization routine.
970  *
971  * Here, we
972  *      - initialize the vmbus driver context
973  *      - invoke the vmbus hv main init routine
974  *      - retrieve the channel offers
975  */
976 static int vmbus_bus_init(void)
977 {
978         int ret;
979
980         /* Hypervisor initialization...setup hypercall page..etc */
981         ret = hv_init();
982         if (ret != 0) {
983                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
984                 return ret;
985         }
986
987         ret = bus_register(&hv_bus);
988         if (ret)
989                 goto err_cleanup;
990
991         hv_setup_vmbus_irq(vmbus_isr);
992
993         ret = hv_synic_alloc();
994         if (ret)
995                 goto err_alloc;
996         /*
997          * Initialize the per-cpu interrupt state and
998          * connect to the host.
999          */
1000         on_each_cpu(hv_synic_init, NULL, 1);
1001         ret = vmbus_connect();
1002         if (ret)
1003                 goto err_connect;
1004
1005         if (vmbus_proto_version > VERSION_WIN7)
1006                 cpu_hotplug_disable();
1007
1008         /*
1009          * Only register if the crash MSRs are available
1010          */
1011         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1012                 register_die_notifier(&hyperv_die_block);
1013                 atomic_notifier_chain_register(&panic_notifier_list,
1014                                                &hyperv_panic_block);
1015         }
1016
1017         vmbus_request_offers();
1018
1019         return 0;
1020
1021 err_connect:
1022         on_each_cpu(hv_synic_cleanup, NULL, 1);
1023 err_alloc:
1024         hv_synic_free();
1025         hv_remove_vmbus_irq();
1026
1027         bus_unregister(&hv_bus);
1028
1029 err_cleanup:
1030         hv_cleanup(false);
1031
1032         return ret;
1033 }
1034
1035 /**
1036  * __vmbus_child_driver_register() - Register a vmbus's driver
1037  * @hv_driver: Pointer to driver structure you want to register
1038  * @owner: owner module of the drv
1039  * @mod_name: module name string
1040  *
1041  * Registers the given driver with Linux through the 'driver_register()' call
1042  * and sets up the hyper-v vmbus handling for this driver.
1043  * It will return the state of the 'driver_register()' call.
1044  *
1045  */
1046 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1047 {
1048         int ret;
1049
1050         pr_info("registering driver %s\n", hv_driver->name);
1051
1052         ret = vmbus_exists();
1053         if (ret < 0)
1054                 return ret;
1055
1056         hv_driver->driver.name = hv_driver->name;
1057         hv_driver->driver.owner = owner;
1058         hv_driver->driver.mod_name = mod_name;
1059         hv_driver->driver.bus = &hv_bus;
1060
1061         spin_lock_init(&hv_driver->dynids.lock);
1062         INIT_LIST_HEAD(&hv_driver->dynids.list);
1063
1064         ret = driver_register(&hv_driver->driver);
1065
1066         return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1069
1070 /**
1071  * vmbus_driver_unregister() - Unregister a vmbus's driver
1072  * @hv_driver: Pointer to driver structure you want to
1073  *             un-register
1074  *
1075  * Un-register the given driver that was previous registered with a call to
1076  * vmbus_driver_register()
1077  */
1078 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1079 {
1080         pr_info("unregistering driver %s\n", hv_driver->name);
1081
1082         if (!vmbus_exists()) {
1083                 driver_unregister(&hv_driver->driver);
1084                 vmbus_free_dynids(hv_driver);
1085         }
1086 }
1087 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1088
1089 /*
1090  * vmbus_device_create - Creates and registers a new child device
1091  * on the vmbus.
1092  */
1093 struct hv_device *vmbus_device_create(const uuid_le *type,
1094                                       const uuid_le *instance,
1095                                       struct vmbus_channel *channel)
1096 {
1097         struct hv_device *child_device_obj;
1098
1099         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1100         if (!child_device_obj) {
1101                 pr_err("Unable to allocate device object for child device\n");
1102                 return NULL;
1103         }
1104
1105         child_device_obj->channel = channel;
1106         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1107         memcpy(&child_device_obj->dev_instance, instance,
1108                sizeof(uuid_le));
1109         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1110
1111
1112         return child_device_obj;
1113 }
1114
1115 /*
1116  * vmbus_device_register - Register the child device
1117  */
1118 int vmbus_device_register(struct hv_device *child_device_obj)
1119 {
1120         int ret = 0;
1121
1122         dev_set_name(&child_device_obj->device, "%pUl",
1123                      child_device_obj->channel->offermsg.offer.if_instance.b);
1124
1125         child_device_obj->device.bus = &hv_bus;
1126         child_device_obj->device.parent = &hv_acpi_dev->dev;
1127         child_device_obj->device.release = vmbus_device_release;
1128
1129         /*
1130          * Register with the LDM. This will kick off the driver/device
1131          * binding...which will eventually call vmbus_match() and vmbus_probe()
1132          */
1133         ret = device_register(&child_device_obj->device);
1134
1135         if (ret)
1136                 pr_err("Unable to register child device\n");
1137         else
1138                 pr_debug("child device %s registered\n",
1139                         dev_name(&child_device_obj->device));
1140
1141         return ret;
1142 }
1143
1144 /*
1145  * vmbus_device_unregister - Remove the specified child device
1146  * from the vmbus.
1147  */
1148 void vmbus_device_unregister(struct hv_device *device_obj)
1149 {
1150         pr_debug("child device %s unregistered\n",
1151                 dev_name(&device_obj->device));
1152
1153         /*
1154          * Kick off the process of unregistering the device.
1155          * This will call vmbus_remove() and eventually vmbus_device_release()
1156          */
1157         device_unregister(&device_obj->device);
1158 }
1159
1160
1161 /*
1162  * VMBUS is an acpi enumerated device. Get the information we
1163  * need from DSDT.
1164  */
1165 #define VTPM_BASE_ADDRESS 0xfed40000
1166 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1167 {
1168         resource_size_t start = 0;
1169         resource_size_t end = 0;
1170         struct resource *new_res;
1171         struct resource **old_res = &hyperv_mmio;
1172         struct resource **prev_res = NULL;
1173
1174         switch (res->type) {
1175
1176         /*
1177          * "Address" descriptors are for bus windows. Ignore
1178          * "memory" descriptors, which are for registers on
1179          * devices.
1180          */
1181         case ACPI_RESOURCE_TYPE_ADDRESS32:
1182                 start = res->data.address32.address.minimum;
1183                 end = res->data.address32.address.maximum;
1184                 break;
1185
1186         case ACPI_RESOURCE_TYPE_ADDRESS64:
1187                 start = res->data.address64.address.minimum;
1188                 end = res->data.address64.address.maximum;
1189                 break;
1190
1191         default:
1192                 /* Unused resource type */
1193                 return AE_OK;
1194
1195         }
1196         /*
1197          * Ignore ranges that are below 1MB, as they're not
1198          * necessary or useful here.
1199          */
1200         if (end < 0x100000)
1201                 return AE_OK;
1202
1203         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1204         if (!new_res)
1205                 return AE_NO_MEMORY;
1206
1207         /* If this range overlaps the virtual TPM, truncate it. */
1208         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1209                 end = VTPM_BASE_ADDRESS;
1210
1211         new_res->name = "hyperv mmio";
1212         new_res->flags = IORESOURCE_MEM;
1213         new_res->start = start;
1214         new_res->end = end;
1215
1216         /*
1217          * If two ranges are adjacent, merge them.
1218          */
1219         do {
1220                 if (!*old_res) {
1221                         *old_res = new_res;
1222                         break;
1223                 }
1224
1225                 if (((*old_res)->end + 1) == new_res->start) {
1226                         (*old_res)->end = new_res->end;
1227                         kfree(new_res);
1228                         break;
1229                 }
1230
1231                 if ((*old_res)->start == new_res->end + 1) {
1232                         (*old_res)->start = new_res->start;
1233                         kfree(new_res);
1234                         break;
1235                 }
1236
1237                 if ((*old_res)->start > new_res->end) {
1238                         new_res->sibling = *old_res;
1239                         if (prev_res)
1240                                 (*prev_res)->sibling = new_res;
1241                         *old_res = new_res;
1242                         break;
1243                 }
1244
1245                 prev_res = old_res;
1246                 old_res = &(*old_res)->sibling;
1247
1248         } while (1);
1249
1250         return AE_OK;
1251 }
1252
1253 static int vmbus_acpi_remove(struct acpi_device *device)
1254 {
1255         struct resource *cur_res;
1256         struct resource *next_res;
1257
1258         if (hyperv_mmio) {
1259                 if (fb_mmio) {
1260                         __release_region(hyperv_mmio, fb_mmio->start,
1261                                          resource_size(fb_mmio));
1262                         fb_mmio = NULL;
1263                 }
1264
1265                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1266                         next_res = cur_res->sibling;
1267                         kfree(cur_res);
1268                 }
1269         }
1270
1271         return 0;
1272 }
1273
1274 static void vmbus_reserve_fb(void)
1275 {
1276         int size;
1277         /*
1278          * Make a claim for the frame buffer in the resource tree under the
1279          * first node, which will be the one below 4GB.  The length seems to
1280          * be underreported, particularly in a Generation 1 VM.  So start out
1281          * reserving a larger area and make it smaller until it succeeds.
1282          */
1283
1284         if (screen_info.lfb_base) {
1285                 if (efi_enabled(EFI_BOOT))
1286                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1287                 else
1288                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1289
1290                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1291                         fb_mmio = __request_region(hyperv_mmio,
1292                                                    screen_info.lfb_base, size,
1293                                                    fb_mmio_name, 0);
1294                 }
1295         }
1296 }
1297
1298 /**
1299  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1300  * @new:                If successful, supplied a pointer to the
1301  *                      allocated MMIO space.
1302  * @device_obj:         Identifies the caller
1303  * @min:                Minimum guest physical address of the
1304  *                      allocation
1305  * @max:                Maximum guest physical address
1306  * @size:               Size of the range to be allocated
1307  * @align:              Alignment of the range to be allocated
1308  * @fb_overlap_ok:      Whether this allocation can be allowed
1309  *                      to overlap the video frame buffer.
1310  *
1311  * This function walks the resources granted to VMBus by the
1312  * _CRS object in the ACPI namespace underneath the parent
1313  * "bridge" whether that's a root PCI bus in the Generation 1
1314  * case or a Module Device in the Generation 2 case.  It then
1315  * attempts to allocate from the global MMIO pool in a way that
1316  * matches the constraints supplied in these parameters and by
1317  * that _CRS.
1318  *
1319  * Return: 0 on success, -errno on failure
1320  */
1321 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1322                         resource_size_t min, resource_size_t max,
1323                         resource_size_t size, resource_size_t align,
1324                         bool fb_overlap_ok)
1325 {
1326         struct resource *iter, *shadow;
1327         resource_size_t range_min, range_max, start;
1328         const char *dev_n = dev_name(&device_obj->device);
1329         int retval;
1330
1331         retval = -ENXIO;
1332         down(&hyperv_mmio_lock);
1333
1334         /*
1335          * If overlaps with frame buffers are allowed, then first attempt to
1336          * make the allocation from within the reserved region.  Because it
1337          * is already reserved, no shadow allocation is necessary.
1338          */
1339         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1340             !(max < fb_mmio->start)) {
1341
1342                 range_min = fb_mmio->start;
1343                 range_max = fb_mmio->end;
1344                 start = (range_min + align - 1) & ~(align - 1);
1345                 for (; start + size - 1 <= range_max; start += align) {
1346                         *new = request_mem_region_exclusive(start, size, dev_n);
1347                         if (*new) {
1348                                 retval = 0;
1349                                 goto exit;
1350                         }
1351                 }
1352         }
1353
1354         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1355                 if ((iter->start >= max) || (iter->end <= min))
1356                         continue;
1357
1358                 range_min = iter->start;
1359                 range_max = iter->end;
1360                 start = (range_min + align - 1) & ~(align - 1);
1361                 for (; start + size - 1 <= range_max; start += align) {
1362                         shadow = __request_region(iter, start, size, NULL,
1363                                                   IORESOURCE_BUSY);
1364                         if (!shadow)
1365                                 continue;
1366
1367                         *new = request_mem_region_exclusive(start, size, dev_n);
1368                         if (*new) {
1369                                 shadow->name = (char *)*new;
1370                                 retval = 0;
1371                                 goto exit;
1372                         }
1373
1374                         __release_region(iter, start, size);
1375                 }
1376         }
1377
1378 exit:
1379         up(&hyperv_mmio_lock);
1380         return retval;
1381 }
1382 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1383
1384 /**
1385  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1386  * @start:              Base address of region to release.
1387  * @size:               Size of the range to be allocated
1388  *
1389  * This function releases anything requested by
1390  * vmbus_mmio_allocate().
1391  */
1392 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1393 {
1394         struct resource *iter;
1395
1396         down(&hyperv_mmio_lock);
1397         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1398                 if ((iter->start >= start + size) || (iter->end <= start))
1399                         continue;
1400
1401                 __release_region(iter, start, size);
1402         }
1403         release_mem_region(start, size);
1404         up(&hyperv_mmio_lock);
1405
1406 }
1407 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1408
1409 /**
1410  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1411  * @cpu_number: CPU number in Linux terms
1412  *
1413  * This function returns the mapping between the Linux processor
1414  * number and the hypervisor's virtual processor number, useful
1415  * in making hypercalls and such that talk about specific
1416  * processors.
1417  *
1418  * Return: Virtual processor number in Hyper-V terms
1419  */
1420 int vmbus_cpu_number_to_vp_number(int cpu_number)
1421 {
1422         return hv_context.vp_index[cpu_number];
1423 }
1424 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1425
1426 static int vmbus_acpi_add(struct acpi_device *device)
1427 {
1428         acpi_status result;
1429         int ret_val = -ENODEV;
1430         struct acpi_device *ancestor;
1431
1432         hv_acpi_dev = device;
1433
1434         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1435                                         vmbus_walk_resources, NULL);
1436
1437         if (ACPI_FAILURE(result))
1438                 goto acpi_walk_err;
1439         /*
1440          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1441          * firmware) is the VMOD that has the mmio ranges. Get that.
1442          */
1443         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1444                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1445                                              vmbus_walk_resources, NULL);
1446
1447                 if (ACPI_FAILURE(result))
1448                         continue;
1449                 if (hyperv_mmio) {
1450                         vmbus_reserve_fb();
1451                         break;
1452                 }
1453         }
1454         ret_val = 0;
1455
1456 acpi_walk_err:
1457         complete(&probe_event);
1458         if (ret_val)
1459                 vmbus_acpi_remove(device);
1460         return ret_val;
1461 }
1462
1463 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1464         {"VMBUS", 0},
1465         {"VMBus", 0},
1466         {"", 0},
1467 };
1468 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1469
1470 static struct acpi_driver vmbus_acpi_driver = {
1471         .name = "vmbus",
1472         .ids = vmbus_acpi_device_ids,
1473         .ops = {
1474                 .add = vmbus_acpi_add,
1475                 .remove = vmbus_acpi_remove,
1476         },
1477 };
1478
1479 static void hv_kexec_handler(void)
1480 {
1481         int cpu;
1482
1483         hv_synic_clockevents_cleanup();
1484         vmbus_initiate_unload(false);
1485         for_each_online_cpu(cpu)
1486                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1487         hv_cleanup(false);
1488 };
1489
1490 static void hv_crash_handler(struct pt_regs *regs)
1491 {
1492         vmbus_initiate_unload(true);
1493         /*
1494          * In crash handler we can't schedule synic cleanup for all CPUs,
1495          * doing the cleanup for current CPU only. This should be sufficient
1496          * for kdump.
1497          */
1498         hv_synic_cleanup(NULL);
1499         hv_cleanup(true);
1500 };
1501
1502 static int __init hv_acpi_init(void)
1503 {
1504         int ret, t;
1505
1506         if (x86_hyper != &x86_hyper_ms_hyperv)
1507                 return -ENODEV;
1508
1509         init_completion(&probe_event);
1510
1511         /*
1512          * Get ACPI resources first.
1513          */
1514         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1515
1516         if (ret)
1517                 return ret;
1518
1519         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1520         if (t == 0) {
1521                 ret = -ETIMEDOUT;
1522                 goto cleanup;
1523         }
1524
1525         ret = vmbus_bus_init();
1526         if (ret)
1527                 goto cleanup;
1528
1529         hv_setup_kexec_handler(hv_kexec_handler);
1530         hv_setup_crash_handler(hv_crash_handler);
1531
1532         return 0;
1533
1534 cleanup:
1535         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1536         hv_acpi_dev = NULL;
1537         return ret;
1538 }
1539
1540 static void __exit vmbus_exit(void)
1541 {
1542         int cpu;
1543
1544         hv_remove_kexec_handler();
1545         hv_remove_crash_handler();
1546         vmbus_connection.conn_state = DISCONNECTED;
1547         hv_synic_clockevents_cleanup();
1548         vmbus_disconnect();
1549         hv_remove_vmbus_irq();
1550         for_each_online_cpu(cpu)
1551                 tasklet_kill(hv_context.msg_dpc[cpu]);
1552         vmbus_free_channels();
1553         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1554                 unregister_die_notifier(&hyperv_die_block);
1555                 atomic_notifier_chain_unregister(&panic_notifier_list,
1556                                                  &hyperv_panic_block);
1557         }
1558         bus_unregister(&hv_bus);
1559         hv_cleanup(false);
1560         for_each_online_cpu(cpu) {
1561                 tasklet_kill(hv_context.event_dpc[cpu]);
1562                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1563         }
1564         hv_synic_free();
1565         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1566         if (vmbus_proto_version > VERSION_WIN7)
1567                 cpu_hotplug_enable();
1568 }
1569
1570
1571 MODULE_LICENSE("GPL");
1572
1573 subsys_initcall(hv_acpi_init);
1574 module_exit(vmbus_exit);