2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
91 struct partial_datagram {
92 struct list_head list;
98 struct list_head frag_info;
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, const void *daddr,
163 const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166 unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168 struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170 const struct net_device *dev,
171 const unsigned char *haddr);
172 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
173 struct net_device *dev);
174 static void ether1394_iso(struct hpsb_iso *iso);
176 static const struct ethtool_ops ethtool_ops;
178 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
179 quadlet_t *data, u64 addr, size_t len, u16 flags);
180 static void ether1394_add_host(struct hpsb_host *host);
181 static void ether1394_remove_host(struct hpsb_host *host);
182 static void ether1394_host_reset(struct hpsb_host *host);
184 /* Function for incoming 1394 packets */
185 static const struct hpsb_address_ops addr_ops = {
186 .write = ether1394_write,
189 /* Ieee1394 highlevel driver functions */
190 static struct hpsb_highlevel eth1394_highlevel = {
192 .add_host = ether1394_add_host,
193 .remove_host = ether1394_remove_host,
194 .host_reset = ether1394_host_reset,
197 static int ether1394_recv_init(struct eth1394_priv *priv)
199 unsigned int iso_buf_size;
201 /* FIXME: rawiso limits us to PAGE_SIZE */
202 iso_buf_size = min((unsigned int)PAGE_SIZE,
203 2 * (1U << (priv->host->csr.max_rec + 1)));
205 priv->iso = hpsb_iso_recv_init(priv->host,
206 ETHER1394_GASP_BUFFERS * iso_buf_size,
207 ETHER1394_GASP_BUFFERS,
208 priv->broadcast_channel,
209 HPSB_ISO_DMA_PACKET_PER_BUFFER,
211 if (priv->iso == NULL) {
212 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
213 priv->bc_state = ETHER1394_BC_ERROR;
217 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
218 priv->bc_state = ETHER1394_BC_STOPPED;
220 priv->bc_state = ETHER1394_BC_RUNNING;
224 /* This is called after an "ifup" */
225 static int ether1394_open(struct net_device *dev)
227 struct eth1394_priv *priv = netdev_priv(dev);
230 if (priv->bc_state == ETHER1394_BC_ERROR) {
231 ret = ether1394_recv_init(priv);
235 netif_start_queue(dev);
239 /* This is called after an "ifdown" */
240 static int ether1394_stop(struct net_device *dev)
242 /* flush priv->wake */
243 flush_scheduled_work();
245 netif_stop_queue(dev);
249 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
250 * so that's what we do. Should we increment the stat counters too? */
251 static void ether1394_tx_timeout(struct net_device *dev)
253 struct hpsb_host *host =
254 ((struct eth1394_priv *)netdev_priv(dev))->host;
256 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
257 ether1394_host_reset(host);
260 static inline int ether1394_max_mtu(struct hpsb_host* host)
262 return (1 << (host->csr.max_rec + 1))
263 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
266 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 max_mtu = ether1394_max_mtu(
274 ((struct eth1394_priv *)netdev_priv(dev))->host);
275 if (new_mtu > max_mtu) {
276 ETH1394_PRINT(KERN_INFO, dev->name,
277 "Local node constrains MTU to %d\n", max_mtu);
285 static void purge_partial_datagram(struct list_head *old)
287 struct partial_datagram *pd;
288 struct list_head *lh, *n;
289 struct fragment_info *fi;
291 pd = list_entry(old, struct partial_datagram, list);
293 list_for_each_safe(lh, n, &pd->frag_info) {
294 fi = list_entry(lh, struct fragment_info, list);
303 /******************************************
304 * 1394 bus activity functions
305 ******************************************/
307 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
308 struct unit_directory *ud)
310 struct eth1394_node_ref *node;
312 list_for_each_entry(node, inl, list)
319 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
322 struct eth1394_node_ref *node;
324 list_for_each_entry(node, inl, list)
325 if (node->ud->ne->guid == guid)
331 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
334 struct eth1394_node_ref *node;
336 list_for_each_entry(node, inl, list)
337 if (node->ud->ne->nodeid == nodeid)
343 static int eth1394_new_node(struct eth1394_host_info *hi,
344 struct unit_directory *ud)
346 struct eth1394_priv *priv;
347 struct eth1394_node_ref *new_node;
348 struct eth1394_node_info *node_info;
350 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
360 spin_lock_init(&node_info->pdg.lock);
361 INIT_LIST_HEAD(&node_info->pdg.list);
362 node_info->pdg.sz = 0;
363 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
365 dev_set_drvdata(&ud->device, node_info);
368 priv = netdev_priv(hi->dev);
369 list_add_tail(&new_node->list, &priv->ip_node_list);
373 static int eth1394_probe(struct device *dev)
375 struct unit_directory *ud;
376 struct eth1394_host_info *hi;
378 ud = container_of(dev, struct unit_directory, device);
379 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
383 return eth1394_new_node(hi, ud);
386 static int eth1394_remove(struct device *dev)
388 struct unit_directory *ud;
389 struct eth1394_host_info *hi;
390 struct eth1394_priv *priv;
391 struct eth1394_node_ref *old_node;
392 struct eth1394_node_info *node_info;
393 struct list_head *lh, *n;
396 ud = container_of(dev, struct unit_directory, device);
397 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
401 priv = netdev_priv(hi->dev);
403 old_node = eth1394_find_node(&priv->ip_node_list, ud);
407 list_del(&old_node->list);
410 node_info = dev_get_drvdata(&ud->device);
412 spin_lock_irqsave(&node_info->pdg.lock, flags);
413 /* The partial datagram list should be empty, but we'll just
414 * make sure anyway... */
415 list_for_each_safe(lh, n, &node_info->pdg.list)
416 purge_partial_datagram(lh);
417 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
420 dev_set_drvdata(&ud->device, NULL);
424 static int eth1394_update(struct unit_directory *ud)
426 struct eth1394_host_info *hi;
427 struct eth1394_priv *priv;
428 struct eth1394_node_ref *node;
430 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
434 priv = netdev_priv(hi->dev);
435 node = eth1394_find_node(&priv->ip_node_list, ud);
439 return eth1394_new_node(hi, ud);
442 static const struct ieee1394_device_id eth1394_id_table[] = {
444 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
445 IEEE1394_MATCH_VERSION),
446 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
447 .version = ETHER1394_GASP_VERSION,
452 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
454 static struct hpsb_protocol_driver eth1394_proto_driver = {
456 .id_table = eth1394_id_table,
457 .update = eth1394_update,
459 .probe = eth1394_probe,
460 .remove = eth1394_remove,
464 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
468 struct eth1394_priv *priv = netdev_priv(dev);
469 struct hpsb_host *host = priv->host;
470 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
471 int max_speed = IEEE1394_SPEED_MAX;
473 spin_lock_irqsave(&priv->lock, flags);
475 memset(priv->ud_list, 0, sizeof(priv->ud_list));
476 priv->bc_maxpayload = 512;
478 /* Determine speed limit */
479 /* FIXME: This is broken for nodes with link speed < PHY speed,
480 * and it is suboptimal for S200B...S800B hardware.
481 * The result of nodemgr's speed probe should be used somehow. */
482 for (i = 0; i < host->node_count; i++) {
483 /* take care of S100B...S400B PHY ports */
484 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
485 max_speed = IEEE1394_SPEED_100;
488 if (max_speed > host->speed[i])
489 max_speed = host->speed[i];
491 priv->bc_sspd = max_speed;
494 /* Use the RFC 2734 default 1500 octets or the maximum payload
496 dev->mtu = min(1500, ether1394_max_mtu(host));
498 /* Set our hardware address while we're at it */
499 memcpy(dev->dev_addr, &guid, sizeof(u64));
500 memset(dev->broadcast, 0xff, sizeof(u64));
503 spin_unlock_irqrestore(&priv->lock, flags);
506 static const struct header_ops ether1394_header_ops = {
507 .create = ether1394_header,
508 .rebuild = ether1394_rebuild_header,
509 .cache = ether1394_header_cache,
510 .cache_update = ether1394_header_cache_update,
511 .parse = ether1394_header_parse,
514 static const struct net_device_ops ether1394_netdev_ops = {
515 .ndo_open = ether1394_open,
516 .ndo_stop = ether1394_stop,
517 .ndo_start_xmit = ether1394_tx,
518 .ndo_tx_timeout = ether1394_tx_timeout,
519 .ndo_change_mtu = ether1394_change_mtu,
522 static void ether1394_init_dev(struct net_device *dev)
525 dev->header_ops = ðer1394_header_ops;
526 dev->netdev_ops = ðer1394_netdev_ops;
528 SET_ETHTOOL_OPS(dev, ðtool_ops);
530 dev->watchdog_timeo = ETHER1394_TIMEOUT;
531 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
532 dev->features = NETIF_F_HIGHDMA;
533 dev->addr_len = ETH1394_ALEN;
534 dev->hard_header_len = ETH1394_HLEN;
535 dev->type = ARPHRD_IEEE1394;
537 /* FIXME: This value was copied from ether_setup(). Is it too much? */
538 dev->tx_queue_len = 1000;
542 * Wake the queue up after commonly encountered transmit failure conditions are
543 * hopefully over. Currently only tlabel exhaustion is accounted for.
545 static void ether1394_wake_queue(struct work_struct *work)
547 struct eth1394_priv *priv;
548 struct hpsb_packet *packet;
550 priv = container_of(work, struct eth1394_priv, wake);
551 packet = hpsb_alloc_packet(0);
553 /* This is really bad, but unjam the queue anyway. */
557 packet->host = priv->host;
558 packet->node_id = priv->wake_node;
560 * A transaction label is all we really want. If we get one, it almost
561 * always means we can get a lot more because the ieee1394 core recycled
562 * a whole batch of tlabels, at last.
564 if (hpsb_get_tlabel(packet) == 0)
565 hpsb_free_tlabel(packet);
567 hpsb_free_packet(packet);
569 netif_wake_queue(priv->wake_dev);
573 * This function is called every time a card is found. It is generally called
574 * when the module is installed. This is where we add all of our ethernet
575 * devices. One for each host.
577 static void ether1394_add_host(struct hpsb_host *host)
579 struct eth1394_host_info *hi = NULL;
580 struct net_device *dev = NULL;
581 struct eth1394_priv *priv;
584 if (hpsb_config_rom_ip1394_add(host) != 0) {
585 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
589 fifo_addr = hpsb_allocate_and_register_addrspace(
590 ð1394_highlevel, host, &addr_ops,
591 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
592 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
593 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
594 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
595 hpsb_config_rom_ip1394_remove(host);
599 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
601 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
605 SET_NETDEV_DEV(dev, &host->device);
607 priv = netdev_priv(dev);
608 INIT_LIST_HEAD(&priv->ip_node_list);
609 spin_lock_init(&priv->lock);
611 priv->local_fifo = fifo_addr;
612 INIT_WORK(&priv->wake, ether1394_wake_queue);
613 priv->wake_dev = dev;
615 hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi));
617 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
621 ether1394_reset_priv(dev, 1);
623 if (register_netdev(dev)) {
624 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
628 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
634 /* Ignore validity in hopes that it will be set in the future. It'll
635 * be checked when the eth device is opened. */
636 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
638 ether1394_recv_init(priv);
644 hpsb_destroy_hostinfo(ð1394_highlevel, host);
645 hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr);
646 hpsb_config_rom_ip1394_remove(host);
649 /* Remove a card from our list */
650 static void ether1394_remove_host(struct hpsb_host *host)
652 struct eth1394_host_info *hi;
653 struct eth1394_priv *priv;
655 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
658 priv = netdev_priv(hi->dev);
659 hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo);
660 hpsb_config_rom_ip1394_remove(host);
662 hpsb_iso_shutdown(priv->iso);
663 unregister_netdev(hi->dev);
664 free_netdev(hi->dev);
667 /* A bus reset happened */
668 static void ether1394_host_reset(struct hpsb_host *host)
670 struct eth1394_host_info *hi;
671 struct eth1394_priv *priv;
672 struct net_device *dev;
673 struct list_head *lh, *n;
674 struct eth1394_node_ref *node;
675 struct eth1394_node_info *node_info;
678 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
680 /* This can happen for hosts that we don't use */
685 priv = netdev_priv(dev);
687 /* Reset our private host data, but not our MTU */
688 netif_stop_queue(dev);
689 ether1394_reset_priv(dev, 0);
691 list_for_each_entry(node, &priv->ip_node_list, list) {
692 node_info = dev_get_drvdata(&node->ud->device);
694 spin_lock_irqsave(&node_info->pdg.lock, flags);
696 list_for_each_safe(lh, n, &node_info->pdg.list)
697 purge_partial_datagram(lh);
699 INIT_LIST_HEAD(&(node_info->pdg.list));
700 node_info->pdg.sz = 0;
702 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
705 netif_wake_queue(dev);
708 /******************************************
709 * HW Header net device functions
710 ******************************************/
711 /* These functions have been adapted from net/ethernet/eth.c */
713 /* Create a fake MAC header for an arbitrary protocol layer.
714 * saddr=NULL means use device source address
715 * daddr=NULL means leave destination address (eg unresolved arp). */
716 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
717 unsigned short type, const void *daddr,
718 const void *saddr, unsigned len)
720 struct eth1394hdr *eth =
721 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
723 eth->h_proto = htons(type);
725 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
726 memset(eth->h_dest, 0, dev->addr_len);
727 return dev->hard_header_len;
731 memcpy(eth->h_dest, daddr, dev->addr_len);
732 return dev->hard_header_len;
735 return -dev->hard_header_len;
738 /* Rebuild the faked MAC header. This is called after an ARP
739 * (or in future other address resolution) has completed on this
740 * sk_buff. We now let ARP fill in the other fields.
742 * This routine CANNOT use cached dst->neigh!
743 * Really, it is used only when dst->neigh is wrong.
745 static int ether1394_rebuild_header(struct sk_buff *skb)
747 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
749 if (eth->h_proto == htons(ETH_P_IP))
750 return arp_find((unsigned char *)ð->h_dest, skb);
752 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
753 "unable to resolve type %04x addresses\n",
754 ntohs(eth->h_proto));
758 static int ether1394_header_parse(const struct sk_buff *skb,
759 unsigned char *haddr)
761 memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
765 static int ether1394_header_cache(const struct neighbour *neigh,
768 __be16 type = hh->hh_type;
769 struct net_device *dev = neigh->dev;
770 struct eth1394hdr *eth =
771 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
773 if (type == htons(ETH_P_802_3))
777 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
779 hh->hh_len = ETH1394_HLEN;
783 /* Called by Address Resolution module to notify changes in address. */
784 static void ether1394_header_cache_update(struct hh_cache *hh,
785 const struct net_device *dev,
786 const unsigned char * haddr)
788 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
791 /******************************************
792 * Datagram reception code
793 ******************************************/
795 /* Copied from net/ethernet/eth.c */
796 static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
798 struct eth1394hdr *eth;
801 skb_reset_mac_header(skb);
802 skb_pull(skb, ETH1394_HLEN);
803 eth = eth1394_hdr(skb);
805 if (*eth->h_dest & 1) {
806 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
807 skb->pkt_type = PACKET_BROADCAST;
810 skb->pkt_type = PACKET_MULTICAST;
813 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
814 skb->pkt_type = PACKET_OTHERHOST;
817 if (ntohs(eth->h_proto) >= 1536)
822 if (*(unsigned short *)rawp == 0xFFFF)
823 return htons(ETH_P_802_3);
825 return htons(ETH_P_802_2);
828 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
829 * We also perform ARP translation here, if need be. */
830 static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
831 nodeid_t srcid, nodeid_t destid,
834 struct eth1394_priv *priv = netdev_priv(dev);
838 /* Setup our hw addresses. We use these to build the ethernet header. */
839 if (destid == (LOCAL_BUS | ALL_NODES))
840 dest_hw = ~cpu_to_be64(0); /* broadcast */
842 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
843 priv->host->csr.guid_lo);
845 /* If this is an ARP packet, convert it. First, we want to make
846 * use of some of the fields, since they tell us a little bit
847 * about the sending machine. */
848 if (ether_type == htons(ETH_P_ARP)) {
849 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
850 struct arphdr *arp = (struct arphdr *)skb->data;
851 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
852 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
853 ntohl(arp1394->fifo_lo);
854 u8 max_rec = min(priv->host->csr.max_rec,
855 (u8)(arp1394->max_rec));
856 int sspd = arp1394->sspd;
858 struct eth1394_node_ref *node;
859 struct eth1394_node_info *node_info;
862 /* Sanity check. MacOSX seems to be sending us 131 in this
863 * field (atleast on my Panther G5). Not sure why. */
864 if (sspd > 5 || sspd < 0)
867 maxpayload = min(eth1394_speedto_maxpayload[sspd],
868 (u16)(1 << (max_rec + 1)));
870 guid = get_unaligned(&arp1394->s_uniq_id);
871 node = eth1394_find_node_guid(&priv->ip_node_list,
874 return cpu_to_be16(0);
876 node_info = dev_get_drvdata(&node->ud->device);
878 /* Update our speed/payload/fifo_offset table */
879 node_info->maxpayload = maxpayload;
880 node_info->sspd = sspd;
881 node_info->fifo = fifo_addr;
883 /* Now that we're done with the 1394 specific stuff, we'll
884 * need to alter some of the data. Believe it or not, all
885 * that needs to be done is sender_IP_address needs to be
886 * moved, the destination hardware address get stuffed
887 * in and the hardware address length set to 8.
889 * IMPORTANT: The code below overwrites 1394 specific data
890 * needed above so keep the munging of the data for the
891 * higher level IP stack last. */
894 arp_ptr += arp->ar_hln; /* skip over sender unique id */
895 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
896 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
898 if (arp->ar_op == htons(ARPOP_REQUEST))
899 memset(arp_ptr, 0, sizeof(u64));
901 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
904 /* Now add the ethernet header. */
905 if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
907 ret = ether1394_type_trans(skb, dev);
912 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
914 struct fragment_info *fi;
915 int end = offset + len;
917 list_for_each_entry(fi, frag_list, list)
918 if (offset < fi->offset + fi->len && end > fi->offset)
924 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
926 struct partial_datagram *pd;
928 list_for_each_entry(pd, pdgl, list)
935 /* Assumes that new fragment does not overlap any existing fragments */
936 static int new_fragment(struct list_head *frag_info, int offset, int len)
938 struct list_head *lh;
939 struct fragment_info *fi, *fi2, *new;
941 list_for_each(lh, frag_info) {
942 fi = list_entry(lh, struct fragment_info, list);
943 if (fi->offset + fi->len == offset) {
944 /* The new fragment can be tacked on to the end */
946 /* Did the new fragment plug a hole? */
947 fi2 = list_entry(lh->next, struct fragment_info, list);
948 if (fi->offset + fi->len == fi2->offset) {
949 /* glue fragments together */
955 } else if (offset + len == fi->offset) {
956 /* The new fragment can be tacked on to the beginning */
959 /* Did the new fragment plug a hole? */
960 fi2 = list_entry(lh->prev, struct fragment_info, list);
961 if (fi2->offset + fi2->len == fi->offset) {
962 /* glue fragments together */
968 } else if (offset > fi->offset + fi->len) {
970 } else if (offset + len < fi->offset) {
976 new = kmalloc(sizeof(*new), GFP_ATOMIC);
980 new->offset = offset;
983 list_add(&new->list, lh);
987 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
988 int dgl, int dg_size, char *frag_buf,
989 int frag_off, int frag_len)
991 struct partial_datagram *new;
993 new = kmalloc(sizeof(*new), GFP_ATOMIC);
997 INIT_LIST_HEAD(&new->frag_info);
999 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1005 new->dg_size = dg_size;
1007 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1009 struct fragment_info *fi = list_entry(new->frag_info.next,
1010 struct fragment_info,
1017 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1018 new->pbuf = skb_put(new->skb, dg_size);
1019 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1021 list_add(&new->list, pdgl);
1025 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1026 char *frag_buf, int frag_off, int frag_len)
1028 struct partial_datagram *pd =
1029 list_entry(lh, struct partial_datagram, list);
1031 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1034 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1036 /* Move list entry to beginnig of list so that oldest partial
1037 * datagrams percolate to the end of the list */
1038 list_move(lh, pdgl);
1042 static int is_datagram_complete(struct list_head *lh, int dg_size)
1044 struct partial_datagram *pd;
1045 struct fragment_info *fi;
1047 pd = list_entry(lh, struct partial_datagram, list);
1048 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1050 return (fi->len == dg_size);
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054 * ethernet header, and fill it with some of our other fields. This is
1055 * an incoming packet from the 1394 bus. */
1056 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1059 struct sk_buff *skb;
1060 unsigned long flags;
1061 struct eth1394_priv *priv = netdev_priv(dev);
1062 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1063 __be16 ether_type = cpu_to_be16(0); /* initialized to clear warning */
1065 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1066 struct eth1394_node_info *node_info;
1069 struct eth1394_node_ref *node;
1070 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1071 if (unlikely(!node)) {
1072 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1073 "lookup failure: " NODE_BUS_FMT,
1074 NODE_BUS_ARGS(priv->host, srcid));
1075 dev->stats.rx_dropped++;
1080 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1083 node_info = dev_get_drvdata(&ud->device);
1085 /* First, did we receive a fragmented or unfragmented datagram? */
1086 hdr->words.word1 = ntohs(hdr->words.word1);
1088 hdr_len = hdr_type_len[hdr->common.lf];
1090 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1091 /* An unfragmented datagram has been received by the ieee1394
1092 * bus. Build an skbuff around it so we can pass it to the
1093 * high level network layer. */
1095 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1096 if (unlikely(!skb)) {
1097 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1098 dev->stats.rx_dropped++;
1101 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1102 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1104 ether_type = hdr->uf.ether_type;
1106 /* A datagram fragment has been received, now the fun begins. */
1108 struct list_head *pdgl, *lh;
1109 struct partial_datagram *pd;
1111 int fg_len = len - hdr_len;
1115 struct pdg_list *pdg = &(node_info->pdg);
1117 hdr->words.word3 = ntohs(hdr->words.word3);
1118 /* The 4th header word is reserved so no need to do ntohs() */
1120 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1121 ether_type = hdr->ff.ether_type;
1123 dg_size = hdr->ff.dg_size + 1;
1126 hdr->words.word2 = ntohs(hdr->words.word2);
1128 dg_size = hdr->sf.dg_size + 1;
1129 fg_off = hdr->sf.fg_off;
1131 spin_lock_irqsave(&pdg->lock, flags);
1133 pdgl = &(pdg->list);
1134 lh = find_partial_datagram(pdgl, dgl);
1137 while (pdg->sz >= max_partial_datagrams) {
1138 /* remove the oldest */
1139 purge_partial_datagram(pdgl->prev);
1143 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1144 buf + hdr_len, fg_off,
1147 spin_unlock_irqrestore(&pdg->lock, flags);
1151 lh = find_partial_datagram(pdgl, dgl);
1153 pd = list_entry(lh, struct partial_datagram, list);
1155 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1156 /* Overlapping fragments, obliterate old
1157 * datagram and start new one. */
1158 purge_partial_datagram(lh);
1159 retval = new_partial_datagram(dev, pdgl, dgl,
1165 spin_unlock_irqrestore(&pdg->lock, flags);
1169 retval = update_partial_datagram(pdgl, lh,
1173 /* Couldn't save off fragment anyway
1174 * so might as well obliterate the
1176 purge_partial_datagram(lh);
1178 spin_unlock_irqrestore(&pdg->lock, flags);
1181 } /* fragment overlap */
1182 } /* new datagram or add to existing one */
1184 pd = list_entry(lh, struct partial_datagram, list);
1186 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1187 pd->ether_type = ether_type;
1189 if (is_datagram_complete(lh, dg_size)) {
1190 ether_type = pd->ether_type;
1192 skb = skb_get(pd->skb);
1193 purge_partial_datagram(lh);
1194 spin_unlock_irqrestore(&pdg->lock, flags);
1196 /* Datagram is not complete, we're done for the
1198 spin_unlock_irqrestore(&pdg->lock, flags);
1201 } /* unframgented datagram or fragmented one */
1203 /* Write metadata, and then pass to the receive level */
1205 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1207 /* Parse the encapsulation header. This actually does the job of
1208 * converting to an ethernet frame header, aswell as arp
1209 * conversion if needed. ARP conversion is easier in this
1210 * direction, since we are using ethernet as our backend. */
1211 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1214 spin_lock_irqsave(&priv->lock, flags);
1216 if (!skb->protocol) {
1217 dev->stats.rx_errors++;
1218 dev->stats.rx_dropped++;
1219 dev_kfree_skb_any(skb);
1220 } else if (netif_rx(skb) == NET_RX_DROP) {
1221 dev->stats.rx_errors++;
1222 dev->stats.rx_dropped++;
1224 dev->stats.rx_packets++;
1225 dev->stats.rx_bytes += skb->len;
1228 spin_unlock_irqrestore(&priv->lock, flags);
1231 if (netif_queue_stopped(dev))
1232 netif_wake_queue(dev);
1237 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1238 quadlet_t *data, u64 addr, size_t len, u16 flags)
1240 struct eth1394_host_info *hi;
1242 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
1243 if (unlikely(!hi)) {
1244 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1246 return RCODE_ADDRESS_ERROR;
1249 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1250 return RCODE_ADDRESS_ERROR;
1252 return RCODE_COMPLETE;
1255 static void ether1394_iso(struct hpsb_iso *iso)
1259 struct eth1394_host_info *hi;
1260 struct net_device *dev;
1261 struct eth1394_priv *priv;
1268 hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host);
1269 if (unlikely(!hi)) {
1270 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1277 nready = hpsb_iso_n_ready(iso);
1278 for (i = 0; i < nready; i++) {
1279 struct hpsb_iso_packet_info *info =
1280 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1281 data = (__be32 *)(iso->data_buf.kvirt + info->offset);
1283 /* skip over GASP header */
1284 buf = (char *)data + 8;
1285 len = info->len - 8;
1287 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1288 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1289 source_id = be32_to_cpu(data[0]) >> 16;
1291 priv = netdev_priv(dev);
1293 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1294 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1295 /* This packet is not for us */
1298 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1302 hpsb_iso_recv_release_packets(iso, i);
1306 /******************************************
1307 * Datagram transmission code
1308 ******************************************/
1310 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1311 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1312 * needs to be munged a bit. The remainder of the arphdr is formatted based
1313 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1316 * Now that the EUI is used for the hardware address all we need to do to make
1317 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1318 * speed, and unicast FIFO address information between the sender_unique_id
1319 * and the IP addresses.
1321 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1322 struct net_device *dev)
1324 struct eth1394_priv *priv = netdev_priv(dev);
1325 struct arphdr *arp = (struct arphdr *)skb->data;
1326 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1327 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1329 arp1394->hw_addr_len = 16;
1330 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1331 arp1394->max_rec = priv->host->csr.max_rec;
1332 arp1394->sspd = priv->host->csr.lnk_spd;
1333 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1334 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1337 /* We need to encapsulate the standard header with our own. We use the
1338 * ethernet header's proto for our own. */
1339 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1341 union eth1394_hdr *hdr,
1342 u16 dg_size, u16 dgl)
1344 unsigned int adj_max_payload =
1345 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1347 /* Does it all fit in one packet? */
1348 if (dg_size <= adj_max_payload) {
1349 hdr->uf.lf = ETH1394_HDR_LF_UF;
1350 hdr->uf.ether_type = proto;
1352 hdr->ff.lf = ETH1394_HDR_LF_FF;
1353 hdr->ff.ether_type = proto;
1354 hdr->ff.dg_size = dg_size - 1;
1356 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1358 return DIV_ROUND_UP(dg_size, adj_max_payload);
1361 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1362 unsigned int max_payload,
1363 union eth1394_hdr *hdr)
1365 union eth1394_hdr *bufhdr;
1366 int ftype = hdr->common.lf;
1367 int hdrsz = hdr_type_len[ftype];
1368 unsigned int adj_max_payload = max_payload - hdrsz;
1371 case ETH1394_HDR_LF_UF:
1372 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1373 bufhdr->words.word1 = htons(hdr->words.word1);
1374 bufhdr->words.word2 = hdr->words.word2;
1377 case ETH1394_HDR_LF_FF:
1378 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1379 bufhdr->words.word1 = htons(hdr->words.word1);
1380 bufhdr->words.word2 = hdr->words.word2;
1381 bufhdr->words.word3 = htons(hdr->words.word3);
1382 bufhdr->words.word4 = 0;
1384 /* Set frag type here for future interior fragments */
1385 hdr->common.lf = ETH1394_HDR_LF_IF;
1390 hdr->sf.fg_off += adj_max_payload;
1391 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1392 if (max_payload >= skb->len)
1393 hdr->common.lf = ETH1394_HDR_LF_LF;
1394 bufhdr->words.word1 = htons(hdr->words.word1);
1395 bufhdr->words.word2 = htons(hdr->words.word2);
1396 bufhdr->words.word3 = htons(hdr->words.word3);
1397 bufhdr->words.word4 = 0;
1399 return min(max_payload, skb->len);
1402 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1404 struct hpsb_packet *p;
1406 p = hpsb_alloc_packet(0);
1409 p->generation = get_hpsb_generation(host);
1410 p->type = hpsb_async;
1415 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1416 struct hpsb_host *host, nodeid_t node,
1417 u64 addr, void *data, int tx_len)
1421 if (hpsb_get_tlabel(p))
1424 p->tcode = TCODE_WRITEB;
1425 p->header_size = 16;
1426 p->expect_response = 1;
1428 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1429 p->header[1] = host->node_id << 16 | addr >> 32;
1430 p->header[2] = addr & 0xffffffff;
1431 p->header[3] = tx_len << 16;
1432 p->data_size = (tx_len + 3) & ~3;
1438 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1439 struct eth1394_priv *priv,
1440 struct sk_buff *skb, int length)
1443 p->tcode = TCODE_STREAM_DATA;
1445 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1446 TCODE_STREAM_DATA << 4;
1447 p->data_size = length;
1448 p->data = (quadlet_t *)skb->data - 2;
1449 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1450 ETHER1394_GASP_SPECIFIER_ID_HI);
1451 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1452 ETHER1394_GASP_VERSION);
1454 p->speed_code = priv->bc_sspd;
1456 /* prevent hpsb_send_packet() from overriding our speed code */
1457 p->node_id = LOCAL_BUS | ALL_NODES;
1460 static void ether1394_free_packet(struct hpsb_packet *packet)
1462 if (packet->tcode != TCODE_STREAM_DATA)
1463 hpsb_free_tlabel(packet);
1464 hpsb_free_packet(packet);
1467 static void ether1394_complete_cb(void *__ptask);
1469 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1471 struct eth1394_priv *priv = ptask->priv;
1472 struct hpsb_packet *packet = NULL;
1474 packet = ether1394_alloc_common_packet(priv->host);
1478 if (ptask->tx_type == ETH1394_GASP) {
1479 int length = tx_len + 2 * sizeof(quadlet_t);
1481 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1482 } else if (ether1394_prep_write_packet(packet, priv->host,
1484 ptask->addr, ptask->skb->data,
1486 hpsb_free_packet(packet);
1490 ptask->packet = packet;
1491 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1494 if (hpsb_send_packet(packet) < 0) {
1495 ether1394_free_packet(packet);
1502 /* Task function to be run when a datagram transmission is completed */
1503 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1505 struct sk_buff *skb = ptask->skb;
1506 struct net_device *dev = skb->dev;
1507 struct eth1394_priv *priv = netdev_priv(dev);
1508 unsigned long flags;
1511 spin_lock_irqsave(&priv->lock, flags);
1513 dev->stats.tx_dropped++;
1514 dev->stats.tx_errors++;
1516 dev->stats.tx_bytes += skb->len;
1517 dev->stats.tx_packets++;
1519 spin_unlock_irqrestore(&priv->lock, flags);
1521 dev_kfree_skb_any(skb);
1522 kmem_cache_free(packet_task_cache, ptask);
1525 /* Callback for when a packet has been sent and the status of that packet is
1527 static void ether1394_complete_cb(void *__ptask)
1529 struct packet_task *ptask = (struct packet_task *)__ptask;
1530 struct hpsb_packet *packet = ptask->packet;
1533 if (packet->tcode != TCODE_STREAM_DATA)
1534 fail = hpsb_packet_success(packet);
1536 ether1394_free_packet(packet);
1538 ptask->outstanding_pkts--;
1539 if (ptask->outstanding_pkts > 0 && !fail) {
1542 /* Add the encapsulation header to the fragment */
1543 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1545 err = ether1394_send_packet(ptask, tx_len);
1548 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1550 ether1394_dg_complete(ptask, 1);
1553 ether1394_dg_complete(ptask, fail);
1557 /* Transmit a packet (called by kernel) */
1558 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
1559 struct net_device *dev)
1561 struct eth1394hdr hdr_buf;
1562 struct eth1394_priv *priv = netdev_priv(dev);
1564 unsigned long flags;
1566 eth1394_tx_type tx_type;
1567 unsigned int tx_len;
1568 unsigned int max_payload;
1571 struct packet_task *ptask;
1572 struct eth1394_node_ref *node;
1573 struct eth1394_node_info *node_info = NULL;
1575 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1579 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1580 * it does not set our validity bit. We need to compensate for
1581 * that somewhere else, but not in eth1394. */
1583 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1587 skb = skb_share_check(skb, GFP_ATOMIC);
1591 /* Get rid of the fake eth1394 header, but first make a copy.
1592 * We might need to rebuild the header on tx failure. */
1593 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1594 skb_pull(skb, ETH1394_HLEN);
1596 proto = hdr_buf.h_proto;
1599 /* Set the transmission type for the packet. ARP packets and IP
1600 * broadcast packets are sent via GASP. */
1601 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1602 proto == htons(ETH_P_ARP) ||
1603 (proto == htons(ETH_P_IP) &&
1604 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1605 tx_type = ETH1394_GASP;
1606 dest_node = LOCAL_BUS | ALL_NODES;
1607 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1608 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1610 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1613 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1615 node = eth1394_find_node_guid(&priv->ip_node_list,
1620 node_info = dev_get_drvdata(&node->ud->device);
1621 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1624 dest_node = node->ud->ne->nodeid;
1625 max_payload = node_info->maxpayload;
1626 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1628 dgl = node_info->dgl;
1629 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1631 tx_type = ETH1394_WRREQ;
1634 /* If this is an ARP packet, convert it */
1635 if (proto == htons(ETH_P_ARP))
1636 ether1394_arp_to_1394arp(skb, dev);
1638 ptask->hdr.words.word1 = 0;
1639 ptask->hdr.words.word2 = 0;
1640 ptask->hdr.words.word3 = 0;
1641 ptask->hdr.words.word4 = 0;
1644 ptask->tx_type = tx_type;
1646 if (tx_type != ETH1394_GASP) {
1649 spin_lock_irqsave(&priv->lock, flags);
1650 addr = node_info->fifo;
1651 spin_unlock_irqrestore(&priv->lock, flags);
1654 ptask->dest_node = dest_node;
1657 ptask->tx_type = tx_type;
1658 ptask->max_payload = max_payload;
1659 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1660 proto, &ptask->hdr, dg_size, dgl);
1662 /* Add the encapsulation header to the fragment */
1663 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1664 dev->trans_start = jiffies;
1665 if (ether1394_send_packet(ptask, tx_len)) {
1666 if (dest_node == (LOCAL_BUS | ALL_NODES))
1669 /* At this point we want to restore the packet. When we return
1670 * here with NETDEV_TX_BUSY we will get another entrance in this
1671 * routine with the same skb and we need it to look the same.
1672 * So we pull 4 more bytes, then build the header again. */
1674 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1675 hdr_buf.h_dest, NULL, 0);
1677 /* Most failures of ether1394_send_packet are recoverable. */
1678 netif_stop_queue(dev);
1679 priv->wake_node = dest_node;
1680 schedule_work(&priv->wake);
1681 kmem_cache_free(packet_task_cache, ptask);
1682 return NETDEV_TX_BUSY;
1685 return NETDEV_TX_OK;
1688 kmem_cache_free(packet_task_cache, ptask);
1693 spin_lock_irqsave(&priv->lock, flags);
1694 dev->stats.tx_dropped++;
1695 dev->stats.tx_errors++;
1696 spin_unlock_irqrestore(&priv->lock, flags);
1698 return NETDEV_TX_OK;
1701 static void ether1394_get_drvinfo(struct net_device *dev,
1702 struct ethtool_drvinfo *info)
1704 strcpy(info->driver, driver_name);
1705 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1708 static const struct ethtool_ops ethtool_ops = {
1709 .get_drvinfo = ether1394_get_drvinfo
1712 static int __init ether1394_init_module(void)
1716 packet_task_cache = kmem_cache_create("packet_task",
1717 sizeof(struct packet_task),
1719 if (!packet_task_cache)
1722 hpsb_register_highlevel(ð1394_highlevel);
1723 err = hpsb_register_protocol(ð1394_proto_driver);
1725 hpsb_unregister_highlevel(ð1394_highlevel);
1726 kmem_cache_destroy(packet_task_cache);
1731 static void __exit ether1394_exit_module(void)
1733 hpsb_unregister_protocol(ð1394_proto_driver);
1734 hpsb_unregister_highlevel(ð1394_highlevel);
1735 kmem_cache_destroy(packet_task_cache);
1738 module_init(ether1394_init_module);
1739 module_exit(ether1394_exit_module);