]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/infiniband/core/verbs.c
98869ebb5097faf6bd58472ad00caee8ab539b88
[karo-tx-linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231                 const char *caller)
232 {
233         struct ib_pd *pd;
234         int mr_access_flags = 0;
235
236         pd = device->alloc_pd(device, NULL, NULL);
237         if (IS_ERR(pd))
238                 return pd;
239
240         pd->device = device;
241         pd->uobject = NULL;
242         pd->__internal_mr = NULL;
243         atomic_set(&pd->usecnt, 0);
244         pd->flags = flags;
245
246         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247                 pd->local_dma_lkey = device->local_dma_lkey;
248         else
249                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250
251         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252                 pr_warn("%s: enabling unsafe global rkey\n", caller);
253                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254         }
255
256         if (mr_access_flags) {
257                 struct ib_mr *mr;
258
259                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
260                 if (IS_ERR(mr)) {
261                         ib_dealloc_pd(pd);
262                         return ERR_CAST(mr);
263                 }
264
265                 mr->device      = pd->device;
266                 mr->pd          = pd;
267                 mr->uobject     = NULL;
268                 mr->need_inval  = false;
269
270                 pd->__internal_mr = mr;
271
272                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273                         pd->local_dma_lkey = pd->__internal_mr->lkey;
274
275                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277         }
278
279         return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282
283 /**
284  * ib_dealloc_pd - Deallocates a protection domain.
285  * @pd: The protection domain to deallocate.
286  *
287  * It is an error to call this function while any resources in the pd still
288  * exist.  The caller is responsible to synchronously destroy them and
289  * guarantee no new allocations will happen.
290  */
291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293         int ret;
294
295         if (pd->__internal_mr) {
296                 ret = pd->device->dereg_mr(pd->__internal_mr);
297                 WARN_ON(ret);
298                 pd->__internal_mr = NULL;
299         }
300
301         /* uverbs manipulates usecnt with proper locking, while the kabi
302            requires the caller to guarantee we can't race here. */
303         WARN_ON(atomic_read(&pd->usecnt));
304
305         /* Making delalloc_pd a void return is a WIP, no driver should return
306            an error here. */
307         ret = pd->device->dealloc_pd(pd);
308         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311
312 /* Address handles */
313
314 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
315 {
316         struct ib_ah *ah;
317
318         ah = pd->device->create_ah(pd, ah_attr, NULL);
319
320         if (!IS_ERR(ah)) {
321                 ah->device  = pd->device;
322                 ah->pd      = pd;
323                 ah->uobject = NULL;
324                 atomic_inc(&pd->usecnt);
325         }
326
327         return ah;
328 }
329 EXPORT_SYMBOL(rdma_create_ah);
330
331 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
332 {
333         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
334         struct iphdr ip4h_checked;
335         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
336
337         /* If it's IPv6, the version must be 6, otherwise, the first
338          * 20 bytes (before the IPv4 header) are garbled.
339          */
340         if (ip6h->version != 6)
341                 return (ip4h->version == 4) ? 4 : 0;
342         /* version may be 6 or 4 because the first 20 bytes could be garbled */
343
344         /* RoCE v2 requires no options, thus header length
345          * must be 5 words
346          */
347         if (ip4h->ihl != 5)
348                 return 6;
349
350         /* Verify checksum.
351          * We can't write on scattered buffers so we need to copy to
352          * temp buffer.
353          */
354         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
355         ip4h_checked.check = 0;
356         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
357         /* if IPv4 header checksum is OK, believe it */
358         if (ip4h->check == ip4h_checked.check)
359                 return 4;
360         return 6;
361 }
362 EXPORT_SYMBOL(ib_get_rdma_header_version);
363
364 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
365                                                      u8 port_num,
366                                                      const struct ib_grh *grh)
367 {
368         int grh_version;
369
370         if (rdma_protocol_ib(device, port_num))
371                 return RDMA_NETWORK_IB;
372
373         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
374
375         if (grh_version == 4)
376                 return RDMA_NETWORK_IPV4;
377
378         if (grh->next_hdr == IPPROTO_UDP)
379                 return RDMA_NETWORK_IPV6;
380
381         return RDMA_NETWORK_ROCE_V1;
382 }
383
384 struct find_gid_index_context {
385         u16 vlan_id;
386         enum ib_gid_type gid_type;
387 };
388
389 static bool find_gid_index(const union ib_gid *gid,
390                            const struct ib_gid_attr *gid_attr,
391                            void *context)
392 {
393         struct find_gid_index_context *ctx =
394                 (struct find_gid_index_context *)context;
395
396         if (ctx->gid_type != gid_attr->gid_type)
397                 return false;
398
399         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
400             (is_vlan_dev(gid_attr->ndev) &&
401              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
402                 return false;
403
404         return true;
405 }
406
407 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
408                                    u16 vlan_id, const union ib_gid *sgid,
409                                    enum ib_gid_type gid_type,
410                                    u16 *gid_index)
411 {
412         struct find_gid_index_context context = {.vlan_id = vlan_id,
413                                                  .gid_type = gid_type};
414
415         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
416                                      &context, gid_index);
417 }
418
419 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
420                               enum rdma_network_type net_type,
421                               union ib_gid *sgid, union ib_gid *dgid)
422 {
423         struct sockaddr_in  src_in;
424         struct sockaddr_in  dst_in;
425         __be32 src_saddr, dst_saddr;
426
427         if (!sgid || !dgid)
428                 return -EINVAL;
429
430         if (net_type == RDMA_NETWORK_IPV4) {
431                 memcpy(&src_in.sin_addr.s_addr,
432                        &hdr->roce4grh.saddr, 4);
433                 memcpy(&dst_in.sin_addr.s_addr,
434                        &hdr->roce4grh.daddr, 4);
435                 src_saddr = src_in.sin_addr.s_addr;
436                 dst_saddr = dst_in.sin_addr.s_addr;
437                 ipv6_addr_set_v4mapped(src_saddr,
438                                        (struct in6_addr *)sgid);
439                 ipv6_addr_set_v4mapped(dst_saddr,
440                                        (struct in6_addr *)dgid);
441                 return 0;
442         } else if (net_type == RDMA_NETWORK_IPV6 ||
443                    net_type == RDMA_NETWORK_IB) {
444                 *dgid = hdr->ibgrh.dgid;
445                 *sgid = hdr->ibgrh.sgid;
446                 return 0;
447         } else {
448                 return -EINVAL;
449         }
450 }
451 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
452
453 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
454                        const struct ib_wc *wc, const struct ib_grh *grh,
455                        struct rdma_ah_attr *ah_attr)
456 {
457         u32 flow_class;
458         u16 gid_index;
459         int ret;
460         enum rdma_network_type net_type = RDMA_NETWORK_IB;
461         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
462         int hoplimit = 0xff;
463         union ib_gid dgid;
464         union ib_gid sgid;
465
466         memset(ah_attr, 0, sizeof *ah_attr);
467         if (rdma_cap_eth_ah(device, port_num)) {
468                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
469                         net_type = wc->network_hdr_type;
470                 else
471                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
472                 gid_type = ib_network_to_gid_type(net_type);
473         }
474         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
475                                         &sgid, &dgid);
476         if (ret)
477                 return ret;
478
479         if (rdma_protocol_roce(device, port_num)) {
480                 int if_index = 0;
481                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
482                                 wc->vlan_id : 0xffff;
483                 struct net_device *idev;
484                 struct net_device *resolved_dev;
485
486                 if (!(wc->wc_flags & IB_WC_GRH))
487                         return -EPROTOTYPE;
488
489                 if (!device->get_netdev)
490                         return -EOPNOTSUPP;
491
492                 idev = device->get_netdev(device, port_num);
493                 if (!idev)
494                         return -ENODEV;
495
496                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
497                                                    ah_attr->dmac,
498                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
499                                                    NULL : &vlan_id,
500                                                    &if_index, &hoplimit);
501                 if (ret) {
502                         dev_put(idev);
503                         return ret;
504                 }
505
506                 resolved_dev = dev_get_by_index(&init_net, if_index);
507                 if (resolved_dev->flags & IFF_LOOPBACK) {
508                         dev_put(resolved_dev);
509                         resolved_dev = idev;
510                         dev_hold(resolved_dev);
511                 }
512                 rcu_read_lock();
513                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
514                                                                    resolved_dev))
515                         ret = -EHOSTUNREACH;
516                 rcu_read_unlock();
517                 dev_put(idev);
518                 dev_put(resolved_dev);
519                 if (ret)
520                         return ret;
521
522                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
523                                               &dgid, gid_type, &gid_index);
524                 if (ret)
525                         return ret;
526         }
527
528         rdma_ah_set_dlid(ah_attr, wc->slid);
529         rdma_ah_set_sl(ah_attr, wc->sl);
530         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
531         rdma_ah_set_port_num(ah_attr, port_num);
532
533         if (wc->wc_flags & IB_WC_GRH) {
534                 if (!rdma_cap_eth_ah(device, port_num)) {
535                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
536                                 ret = ib_find_cached_gid_by_port(device, &dgid,
537                                                                  IB_GID_TYPE_IB,
538                                                                  port_num, NULL,
539                                                                  &gid_index);
540                                 if (ret)
541                                         return ret;
542                         } else {
543                                 gid_index = 0;
544                         }
545                 }
546
547                 flow_class = be32_to_cpu(grh->version_tclass_flow);
548                 rdma_ah_set_grh(ah_attr, &sgid,
549                                 flow_class & 0xFFFFF,
550                                 (u8)gid_index, hoplimit,
551                                 (flow_class >> 20) & 0xFF);
552
553         }
554         return 0;
555 }
556 EXPORT_SYMBOL(ib_init_ah_from_wc);
557
558 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
559                                    const struct ib_grh *grh, u8 port_num)
560 {
561         struct rdma_ah_attr ah_attr;
562         int ret;
563
564         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
565         if (ret)
566                 return ERR_PTR(ret);
567
568         return rdma_create_ah(pd, &ah_attr);
569 }
570 EXPORT_SYMBOL(ib_create_ah_from_wc);
571
572 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
573 {
574         return ah->device->modify_ah ?
575                 ah->device->modify_ah(ah, ah_attr) :
576                 -ENOSYS;
577 }
578 EXPORT_SYMBOL(rdma_modify_ah);
579
580 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
581 {
582         return ah->device->query_ah ?
583                 ah->device->query_ah(ah, ah_attr) :
584                 -ENOSYS;
585 }
586 EXPORT_SYMBOL(rdma_query_ah);
587
588 int rdma_destroy_ah(struct ib_ah *ah)
589 {
590         struct ib_pd *pd;
591         int ret;
592
593         pd = ah->pd;
594         ret = ah->device->destroy_ah(ah);
595         if (!ret)
596                 atomic_dec(&pd->usecnt);
597
598         return ret;
599 }
600 EXPORT_SYMBOL(rdma_destroy_ah);
601
602 /* Shared receive queues */
603
604 struct ib_srq *ib_create_srq(struct ib_pd *pd,
605                              struct ib_srq_init_attr *srq_init_attr)
606 {
607         struct ib_srq *srq;
608
609         if (!pd->device->create_srq)
610                 return ERR_PTR(-ENOSYS);
611
612         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
613
614         if (!IS_ERR(srq)) {
615                 srq->device        = pd->device;
616                 srq->pd            = pd;
617                 srq->uobject       = NULL;
618                 srq->event_handler = srq_init_attr->event_handler;
619                 srq->srq_context   = srq_init_attr->srq_context;
620                 srq->srq_type      = srq_init_attr->srq_type;
621                 if (srq->srq_type == IB_SRQT_XRC) {
622                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
623                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
624                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
625                         atomic_inc(&srq->ext.xrc.cq->usecnt);
626                 }
627                 atomic_inc(&pd->usecnt);
628                 atomic_set(&srq->usecnt, 0);
629         }
630
631         return srq;
632 }
633 EXPORT_SYMBOL(ib_create_srq);
634
635 int ib_modify_srq(struct ib_srq *srq,
636                   struct ib_srq_attr *srq_attr,
637                   enum ib_srq_attr_mask srq_attr_mask)
638 {
639         return srq->device->modify_srq ?
640                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
641                 -ENOSYS;
642 }
643 EXPORT_SYMBOL(ib_modify_srq);
644
645 int ib_query_srq(struct ib_srq *srq,
646                  struct ib_srq_attr *srq_attr)
647 {
648         return srq->device->query_srq ?
649                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_query_srq);
652
653 int ib_destroy_srq(struct ib_srq *srq)
654 {
655         struct ib_pd *pd;
656         enum ib_srq_type srq_type;
657         struct ib_xrcd *uninitialized_var(xrcd);
658         struct ib_cq *uninitialized_var(cq);
659         int ret;
660
661         if (atomic_read(&srq->usecnt))
662                 return -EBUSY;
663
664         pd = srq->pd;
665         srq_type = srq->srq_type;
666         if (srq_type == IB_SRQT_XRC) {
667                 xrcd = srq->ext.xrc.xrcd;
668                 cq = srq->ext.xrc.cq;
669         }
670
671         ret = srq->device->destroy_srq(srq);
672         if (!ret) {
673                 atomic_dec(&pd->usecnt);
674                 if (srq_type == IB_SRQT_XRC) {
675                         atomic_dec(&xrcd->usecnt);
676                         atomic_dec(&cq->usecnt);
677                 }
678         }
679
680         return ret;
681 }
682 EXPORT_SYMBOL(ib_destroy_srq);
683
684 /* Queue pairs */
685
686 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
687 {
688         struct ib_qp *qp = context;
689         unsigned long flags;
690
691         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
692         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
693                 if (event->element.qp->event_handler)
694                         event->element.qp->event_handler(event, event->element.qp->qp_context);
695         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
696 }
697
698 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
699 {
700         mutex_lock(&xrcd->tgt_qp_mutex);
701         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
702         mutex_unlock(&xrcd->tgt_qp_mutex);
703 }
704
705 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
706                                   void (*event_handler)(struct ib_event *, void *),
707                                   void *qp_context)
708 {
709         struct ib_qp *qp;
710         unsigned long flags;
711
712         qp = kzalloc(sizeof *qp, GFP_KERNEL);
713         if (!qp)
714                 return ERR_PTR(-ENOMEM);
715
716         qp->real_qp = real_qp;
717         atomic_inc(&real_qp->usecnt);
718         qp->device = real_qp->device;
719         qp->event_handler = event_handler;
720         qp->qp_context = qp_context;
721         qp->qp_num = real_qp->qp_num;
722         qp->qp_type = real_qp->qp_type;
723
724         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
725         list_add(&qp->open_list, &real_qp->open_list);
726         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
727
728         return qp;
729 }
730
731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
732                          struct ib_qp_open_attr *qp_open_attr)
733 {
734         struct ib_qp *qp, *real_qp;
735
736         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
737                 return ERR_PTR(-EINVAL);
738
739         qp = ERR_PTR(-EINVAL);
740         mutex_lock(&xrcd->tgt_qp_mutex);
741         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
742                 if (real_qp->qp_num == qp_open_attr->qp_num) {
743                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
744                                           qp_open_attr->qp_context);
745                         break;
746                 }
747         }
748         mutex_unlock(&xrcd->tgt_qp_mutex);
749         return qp;
750 }
751 EXPORT_SYMBOL(ib_open_qp);
752
753 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
754                 struct ib_qp_init_attr *qp_init_attr)
755 {
756         struct ib_qp *real_qp = qp;
757
758         qp->event_handler = __ib_shared_qp_event_handler;
759         qp->qp_context = qp;
760         qp->pd = NULL;
761         qp->send_cq = qp->recv_cq = NULL;
762         qp->srq = NULL;
763         qp->xrcd = qp_init_attr->xrcd;
764         atomic_inc(&qp_init_attr->xrcd->usecnt);
765         INIT_LIST_HEAD(&qp->open_list);
766
767         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
768                           qp_init_attr->qp_context);
769         if (!IS_ERR(qp))
770                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
771         else
772                 real_qp->device->destroy_qp(real_qp);
773         return qp;
774 }
775
776 struct ib_qp *ib_create_qp(struct ib_pd *pd,
777                            struct ib_qp_init_attr *qp_init_attr)
778 {
779         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
780         struct ib_qp *qp;
781         int ret;
782
783         if (qp_init_attr->rwq_ind_tbl &&
784             (qp_init_attr->recv_cq ||
785             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
786             qp_init_attr->cap.max_recv_sge))
787                 return ERR_PTR(-EINVAL);
788
789         /*
790          * If the callers is using the RDMA API calculate the resources
791          * needed for the RDMA READ/WRITE operations.
792          *
793          * Note that these callers need to pass in a port number.
794          */
795         if (qp_init_attr->cap.max_rdma_ctxs)
796                 rdma_rw_init_qp(device, qp_init_attr);
797
798         qp = device->create_qp(pd, qp_init_attr, NULL);
799         if (IS_ERR(qp))
800                 return qp;
801
802         qp->device     = device;
803         qp->real_qp    = qp;
804         qp->uobject    = NULL;
805         qp->qp_type    = qp_init_attr->qp_type;
806         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
807
808         atomic_set(&qp->usecnt, 0);
809         qp->mrs_used = 0;
810         spin_lock_init(&qp->mr_lock);
811         INIT_LIST_HEAD(&qp->rdma_mrs);
812         INIT_LIST_HEAD(&qp->sig_mrs);
813
814         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
815                 return ib_create_xrc_qp(qp, qp_init_attr);
816
817         qp->event_handler = qp_init_attr->event_handler;
818         qp->qp_context = qp_init_attr->qp_context;
819         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
820                 qp->recv_cq = NULL;
821                 qp->srq = NULL;
822         } else {
823                 qp->recv_cq = qp_init_attr->recv_cq;
824                 if (qp_init_attr->recv_cq)
825                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
826                 qp->srq = qp_init_attr->srq;
827                 if (qp->srq)
828                         atomic_inc(&qp_init_attr->srq->usecnt);
829         }
830
831         qp->pd      = pd;
832         qp->send_cq = qp_init_attr->send_cq;
833         qp->xrcd    = NULL;
834
835         atomic_inc(&pd->usecnt);
836         if (qp_init_attr->send_cq)
837                 atomic_inc(&qp_init_attr->send_cq->usecnt);
838         if (qp_init_attr->rwq_ind_tbl)
839                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
840
841         if (qp_init_attr->cap.max_rdma_ctxs) {
842                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
843                 if (ret) {
844                         pr_err("failed to init MR pool ret= %d\n", ret);
845                         ib_destroy_qp(qp);
846                         return ERR_PTR(ret);
847                 }
848         }
849
850         /*
851          * Note: all hw drivers guarantee that max_send_sge is lower than
852          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
853          * max_send_sge <= max_sge_rd.
854          */
855         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
856         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
857                                  device->attrs.max_sge_rd);
858
859         return qp;
860 }
861 EXPORT_SYMBOL(ib_create_qp);
862
863 static const struct {
864         int                     valid;
865         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
866         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
867 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
868         [IB_QPS_RESET] = {
869                 [IB_QPS_RESET] = { .valid = 1 },
870                 [IB_QPS_INIT]  = {
871                         .valid = 1,
872                         .req_param = {
873                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
874                                                 IB_QP_PORT                      |
875                                                 IB_QP_QKEY),
876                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
877                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
878                                                 IB_QP_PORT                      |
879                                                 IB_QP_ACCESS_FLAGS),
880                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
881                                                 IB_QP_PORT                      |
882                                                 IB_QP_ACCESS_FLAGS),
883                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
884                                                 IB_QP_PORT                      |
885                                                 IB_QP_ACCESS_FLAGS),
886                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
887                                                 IB_QP_PORT                      |
888                                                 IB_QP_ACCESS_FLAGS),
889                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
890                                                 IB_QP_QKEY),
891                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
892                                                 IB_QP_QKEY),
893                         }
894                 },
895         },
896         [IB_QPS_INIT]  = {
897                 [IB_QPS_RESET] = { .valid = 1 },
898                 [IB_QPS_ERR] =   { .valid = 1 },
899                 [IB_QPS_INIT]  = {
900                         .valid = 1,
901                         .opt_param = {
902                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
903                                                 IB_QP_PORT                      |
904                                                 IB_QP_QKEY),
905                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
906                                                 IB_QP_PORT                      |
907                                                 IB_QP_ACCESS_FLAGS),
908                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
909                                                 IB_QP_PORT                      |
910                                                 IB_QP_ACCESS_FLAGS),
911                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
912                                                 IB_QP_PORT                      |
913                                                 IB_QP_ACCESS_FLAGS),
914                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
915                                                 IB_QP_PORT                      |
916                                                 IB_QP_ACCESS_FLAGS),
917                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
918                                                 IB_QP_QKEY),
919                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
920                                                 IB_QP_QKEY),
921                         }
922                 },
923                 [IB_QPS_RTR]   = {
924                         .valid = 1,
925                         .req_param = {
926                                 [IB_QPT_UC]  = (IB_QP_AV                        |
927                                                 IB_QP_PATH_MTU                  |
928                                                 IB_QP_DEST_QPN                  |
929                                                 IB_QP_RQ_PSN),
930                                 [IB_QPT_RC]  = (IB_QP_AV                        |
931                                                 IB_QP_PATH_MTU                  |
932                                                 IB_QP_DEST_QPN                  |
933                                                 IB_QP_RQ_PSN                    |
934                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
935                                                 IB_QP_MIN_RNR_TIMER),
936                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
937                                                 IB_QP_PATH_MTU                  |
938                                                 IB_QP_DEST_QPN                  |
939                                                 IB_QP_RQ_PSN),
940                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
941                                                 IB_QP_PATH_MTU                  |
942                                                 IB_QP_DEST_QPN                  |
943                                                 IB_QP_RQ_PSN                    |
944                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
945                                                 IB_QP_MIN_RNR_TIMER),
946                         },
947                         .opt_param = {
948                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
949                                                  IB_QP_QKEY),
950                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
951                                                  IB_QP_ACCESS_FLAGS             |
952                                                  IB_QP_PKEY_INDEX),
953                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
954                                                  IB_QP_ACCESS_FLAGS             |
955                                                  IB_QP_PKEY_INDEX),
956                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
957                                                  IB_QP_ACCESS_FLAGS             |
958                                                  IB_QP_PKEY_INDEX),
959                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
960                                                  IB_QP_ACCESS_FLAGS             |
961                                                  IB_QP_PKEY_INDEX),
962                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
963                                                  IB_QP_QKEY),
964                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
965                                                  IB_QP_QKEY),
966                          },
967                 },
968         },
969         [IB_QPS_RTR]   = {
970                 [IB_QPS_RESET] = { .valid = 1 },
971                 [IB_QPS_ERR] =   { .valid = 1 },
972                 [IB_QPS_RTS]   = {
973                         .valid = 1,
974                         .req_param = {
975                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
976                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
977                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
978                                                 IB_QP_RETRY_CNT                 |
979                                                 IB_QP_RNR_RETRY                 |
980                                                 IB_QP_SQ_PSN                    |
981                                                 IB_QP_MAX_QP_RD_ATOMIC),
982                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
983                                                 IB_QP_RETRY_CNT                 |
984                                                 IB_QP_RNR_RETRY                 |
985                                                 IB_QP_SQ_PSN                    |
986                                                 IB_QP_MAX_QP_RD_ATOMIC),
987                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
988                                                 IB_QP_SQ_PSN),
989                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
990                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
991                         },
992                         .opt_param = {
993                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
994                                                  IB_QP_QKEY),
995                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
996                                                  IB_QP_ALT_PATH                 |
997                                                  IB_QP_ACCESS_FLAGS             |
998                                                  IB_QP_PATH_MIG_STATE),
999                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1000                                                  IB_QP_ALT_PATH                 |
1001                                                  IB_QP_ACCESS_FLAGS             |
1002                                                  IB_QP_MIN_RNR_TIMER            |
1003                                                  IB_QP_PATH_MIG_STATE),
1004                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1005                                                  IB_QP_ALT_PATH                 |
1006                                                  IB_QP_ACCESS_FLAGS             |
1007                                                  IB_QP_PATH_MIG_STATE),
1008                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1009                                                  IB_QP_ALT_PATH                 |
1010                                                  IB_QP_ACCESS_FLAGS             |
1011                                                  IB_QP_MIN_RNR_TIMER            |
1012                                                  IB_QP_PATH_MIG_STATE),
1013                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1014                                                  IB_QP_QKEY),
1015                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1016                                                  IB_QP_QKEY),
1017                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1018                          }
1019                 }
1020         },
1021         [IB_QPS_RTS]   = {
1022                 [IB_QPS_RESET] = { .valid = 1 },
1023                 [IB_QPS_ERR] =   { .valid = 1 },
1024                 [IB_QPS_RTS]   = {
1025                         .valid = 1,
1026                         .opt_param = {
1027                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1028                                                 IB_QP_QKEY),
1029                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1030                                                 IB_QP_ACCESS_FLAGS              |
1031                                                 IB_QP_ALT_PATH                  |
1032                                                 IB_QP_PATH_MIG_STATE),
1033                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1034                                                 IB_QP_ACCESS_FLAGS              |
1035                                                 IB_QP_ALT_PATH                  |
1036                                                 IB_QP_PATH_MIG_STATE            |
1037                                                 IB_QP_MIN_RNR_TIMER),
1038                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1039                                                 IB_QP_ACCESS_FLAGS              |
1040                                                 IB_QP_ALT_PATH                  |
1041                                                 IB_QP_PATH_MIG_STATE),
1042                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1043                                                 IB_QP_ACCESS_FLAGS              |
1044                                                 IB_QP_ALT_PATH                  |
1045                                                 IB_QP_PATH_MIG_STATE            |
1046                                                 IB_QP_MIN_RNR_TIMER),
1047                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1048                                                 IB_QP_QKEY),
1049                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1050                                                 IB_QP_QKEY),
1051                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1052                         }
1053                 },
1054                 [IB_QPS_SQD]   = {
1055                         .valid = 1,
1056                         .opt_param = {
1057                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1058                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1059                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1060                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1061                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1062                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1063                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1064                         }
1065                 },
1066         },
1067         [IB_QPS_SQD]   = {
1068                 [IB_QPS_RESET] = { .valid = 1 },
1069                 [IB_QPS_ERR] =   { .valid = 1 },
1070                 [IB_QPS_RTS]   = {
1071                         .valid = 1,
1072                         .opt_param = {
1073                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1074                                                 IB_QP_QKEY),
1075                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1076                                                 IB_QP_ALT_PATH                  |
1077                                                 IB_QP_ACCESS_FLAGS              |
1078                                                 IB_QP_PATH_MIG_STATE),
1079                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1080                                                 IB_QP_ALT_PATH                  |
1081                                                 IB_QP_ACCESS_FLAGS              |
1082                                                 IB_QP_MIN_RNR_TIMER             |
1083                                                 IB_QP_PATH_MIG_STATE),
1084                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1085                                                 IB_QP_ALT_PATH                  |
1086                                                 IB_QP_ACCESS_FLAGS              |
1087                                                 IB_QP_PATH_MIG_STATE),
1088                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1089                                                 IB_QP_ALT_PATH                  |
1090                                                 IB_QP_ACCESS_FLAGS              |
1091                                                 IB_QP_MIN_RNR_TIMER             |
1092                                                 IB_QP_PATH_MIG_STATE),
1093                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1094                                                 IB_QP_QKEY),
1095                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1096                                                 IB_QP_QKEY),
1097                         }
1098                 },
1099                 [IB_QPS_SQD]   = {
1100                         .valid = 1,
1101                         .opt_param = {
1102                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1103                                                 IB_QP_QKEY),
1104                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1105                                                 IB_QP_ALT_PATH                  |
1106                                                 IB_QP_ACCESS_FLAGS              |
1107                                                 IB_QP_PKEY_INDEX                |
1108                                                 IB_QP_PATH_MIG_STATE),
1109                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1110                                                 IB_QP_AV                        |
1111                                                 IB_QP_TIMEOUT                   |
1112                                                 IB_QP_RETRY_CNT                 |
1113                                                 IB_QP_RNR_RETRY                 |
1114                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1115                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1116                                                 IB_QP_ALT_PATH                  |
1117                                                 IB_QP_ACCESS_FLAGS              |
1118                                                 IB_QP_PKEY_INDEX                |
1119                                                 IB_QP_MIN_RNR_TIMER             |
1120                                                 IB_QP_PATH_MIG_STATE),
1121                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1122                                                 IB_QP_AV                        |
1123                                                 IB_QP_TIMEOUT                   |
1124                                                 IB_QP_RETRY_CNT                 |
1125                                                 IB_QP_RNR_RETRY                 |
1126                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1127                                                 IB_QP_ALT_PATH                  |
1128                                                 IB_QP_ACCESS_FLAGS              |
1129                                                 IB_QP_PKEY_INDEX                |
1130                                                 IB_QP_PATH_MIG_STATE),
1131                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1132                                                 IB_QP_AV                        |
1133                                                 IB_QP_TIMEOUT                   |
1134                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1135                                                 IB_QP_ALT_PATH                  |
1136                                                 IB_QP_ACCESS_FLAGS              |
1137                                                 IB_QP_PKEY_INDEX                |
1138                                                 IB_QP_MIN_RNR_TIMER             |
1139                                                 IB_QP_PATH_MIG_STATE),
1140                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1141                                                 IB_QP_QKEY),
1142                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1143                                                 IB_QP_QKEY),
1144                         }
1145                 }
1146         },
1147         [IB_QPS_SQE]   = {
1148                 [IB_QPS_RESET] = { .valid = 1 },
1149                 [IB_QPS_ERR] =   { .valid = 1 },
1150                 [IB_QPS_RTS]   = {
1151                         .valid = 1,
1152                         .opt_param = {
1153                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1154                                                 IB_QP_QKEY),
1155                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1156                                                 IB_QP_ACCESS_FLAGS),
1157                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1158                                                 IB_QP_QKEY),
1159                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1160                                                 IB_QP_QKEY),
1161                         }
1162                 }
1163         },
1164         [IB_QPS_ERR] = {
1165                 [IB_QPS_RESET] = { .valid = 1 },
1166                 [IB_QPS_ERR] =   { .valid = 1 }
1167         }
1168 };
1169
1170 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1171                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1172                        enum rdma_link_layer ll)
1173 {
1174         enum ib_qp_attr_mask req_param, opt_param;
1175
1176         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1177             next_state < 0 || next_state > IB_QPS_ERR)
1178                 return 0;
1179
1180         if (mask & IB_QP_CUR_STATE  &&
1181             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1182             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1183                 return 0;
1184
1185         if (!qp_state_table[cur_state][next_state].valid)
1186                 return 0;
1187
1188         req_param = qp_state_table[cur_state][next_state].req_param[type];
1189         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1190
1191         if ((mask & req_param) != req_param)
1192                 return 0;
1193
1194         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1195                 return 0;
1196
1197         return 1;
1198 }
1199 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1200
1201 int ib_resolve_eth_dmac(struct ib_device *device,
1202                         struct rdma_ah_attr *ah_attr)
1203 {
1204         int           ret = 0;
1205         struct ib_global_route *grh;
1206
1207         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1208                 return -EINVAL;
1209
1210         if (!rdma_cap_eth_ah(device, rdma_ah_get_port_num(ah_attr)))
1211                 return 0;
1212
1213         grh = rdma_ah_retrieve_grh(ah_attr);
1214
1215         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1216                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1217                                 ah_attr->dmac);
1218         } else {
1219                 union ib_gid            sgid;
1220                 struct ib_gid_attr      sgid_attr;
1221                 int                     ifindex;
1222                 int                     hop_limit;
1223
1224                 ret = ib_query_gid(device,
1225                                    rdma_ah_get_port_num(ah_attr),
1226                                    grh->sgid_index,
1227                                    &sgid, &sgid_attr);
1228
1229                 if (ret || !sgid_attr.ndev) {
1230                         if (!ret)
1231                                 ret = -ENXIO;
1232                         goto out;
1233                 }
1234
1235                 ifindex = sgid_attr.ndev->ifindex;
1236
1237                 ret =
1238                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1239                                              ah_attr->dmac,
1240                                              NULL, &ifindex, &hop_limit);
1241
1242                 dev_put(sgid_attr.ndev);
1243
1244                 grh->hop_limit = hop_limit;
1245         }
1246 out:
1247         return ret;
1248 }
1249 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1250
1251 int ib_modify_qp(struct ib_qp *qp,
1252                  struct ib_qp_attr *qp_attr,
1253                  int qp_attr_mask)
1254 {
1255
1256         if (qp_attr_mask & IB_QP_AV) {
1257                 int ret;
1258
1259                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1260                 if (ret)
1261                         return ret;
1262         }
1263
1264         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1265 }
1266 EXPORT_SYMBOL(ib_modify_qp);
1267
1268 int ib_query_qp(struct ib_qp *qp,
1269                 struct ib_qp_attr *qp_attr,
1270                 int qp_attr_mask,
1271                 struct ib_qp_init_attr *qp_init_attr)
1272 {
1273         return qp->device->query_qp ?
1274                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1275                 -ENOSYS;
1276 }
1277 EXPORT_SYMBOL(ib_query_qp);
1278
1279 int ib_close_qp(struct ib_qp *qp)
1280 {
1281         struct ib_qp *real_qp;
1282         unsigned long flags;
1283
1284         real_qp = qp->real_qp;
1285         if (real_qp == qp)
1286                 return -EINVAL;
1287
1288         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1289         list_del(&qp->open_list);
1290         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1291
1292         atomic_dec(&real_qp->usecnt);
1293         kfree(qp);
1294
1295         return 0;
1296 }
1297 EXPORT_SYMBOL(ib_close_qp);
1298
1299 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1300 {
1301         struct ib_xrcd *xrcd;
1302         struct ib_qp *real_qp;
1303         int ret;
1304
1305         real_qp = qp->real_qp;
1306         xrcd = real_qp->xrcd;
1307
1308         mutex_lock(&xrcd->tgt_qp_mutex);
1309         ib_close_qp(qp);
1310         if (atomic_read(&real_qp->usecnt) == 0)
1311                 list_del(&real_qp->xrcd_list);
1312         else
1313                 real_qp = NULL;
1314         mutex_unlock(&xrcd->tgt_qp_mutex);
1315
1316         if (real_qp) {
1317                 ret = ib_destroy_qp(real_qp);
1318                 if (!ret)
1319                         atomic_dec(&xrcd->usecnt);
1320                 else
1321                         __ib_insert_xrcd_qp(xrcd, real_qp);
1322         }
1323
1324         return 0;
1325 }
1326
1327 int ib_destroy_qp(struct ib_qp *qp)
1328 {
1329         struct ib_pd *pd;
1330         struct ib_cq *scq, *rcq;
1331         struct ib_srq *srq;
1332         struct ib_rwq_ind_table *ind_tbl;
1333         int ret;
1334
1335         WARN_ON_ONCE(qp->mrs_used > 0);
1336
1337         if (atomic_read(&qp->usecnt))
1338                 return -EBUSY;
1339
1340         if (qp->real_qp != qp)
1341                 return __ib_destroy_shared_qp(qp);
1342
1343         pd   = qp->pd;
1344         scq  = qp->send_cq;
1345         rcq  = qp->recv_cq;
1346         srq  = qp->srq;
1347         ind_tbl = qp->rwq_ind_tbl;
1348
1349         if (!qp->uobject)
1350                 rdma_rw_cleanup_mrs(qp);
1351
1352         ret = qp->device->destroy_qp(qp);
1353         if (!ret) {
1354                 if (pd)
1355                         atomic_dec(&pd->usecnt);
1356                 if (scq)
1357                         atomic_dec(&scq->usecnt);
1358                 if (rcq)
1359                         atomic_dec(&rcq->usecnt);
1360                 if (srq)
1361                         atomic_dec(&srq->usecnt);
1362                 if (ind_tbl)
1363                         atomic_dec(&ind_tbl->usecnt);
1364         }
1365
1366         return ret;
1367 }
1368 EXPORT_SYMBOL(ib_destroy_qp);
1369
1370 /* Completion queues */
1371
1372 struct ib_cq *ib_create_cq(struct ib_device *device,
1373                            ib_comp_handler comp_handler,
1374                            void (*event_handler)(struct ib_event *, void *),
1375                            void *cq_context,
1376                            const struct ib_cq_init_attr *cq_attr)
1377 {
1378         struct ib_cq *cq;
1379
1380         cq = device->create_cq(device, cq_attr, NULL, NULL);
1381
1382         if (!IS_ERR(cq)) {
1383                 cq->device        = device;
1384                 cq->uobject       = NULL;
1385                 cq->comp_handler  = comp_handler;
1386                 cq->event_handler = event_handler;
1387                 cq->cq_context    = cq_context;
1388                 atomic_set(&cq->usecnt, 0);
1389         }
1390
1391         return cq;
1392 }
1393 EXPORT_SYMBOL(ib_create_cq);
1394
1395 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1396 {
1397         return cq->device->modify_cq ?
1398                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1399 }
1400 EXPORT_SYMBOL(ib_modify_cq);
1401
1402 int ib_destroy_cq(struct ib_cq *cq)
1403 {
1404         if (atomic_read(&cq->usecnt))
1405                 return -EBUSY;
1406
1407         return cq->device->destroy_cq(cq);
1408 }
1409 EXPORT_SYMBOL(ib_destroy_cq);
1410
1411 int ib_resize_cq(struct ib_cq *cq, int cqe)
1412 {
1413         return cq->device->resize_cq ?
1414                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1415 }
1416 EXPORT_SYMBOL(ib_resize_cq);
1417
1418 /* Memory regions */
1419
1420 int ib_dereg_mr(struct ib_mr *mr)
1421 {
1422         struct ib_pd *pd = mr->pd;
1423         int ret;
1424
1425         ret = mr->device->dereg_mr(mr);
1426         if (!ret)
1427                 atomic_dec(&pd->usecnt);
1428
1429         return ret;
1430 }
1431 EXPORT_SYMBOL(ib_dereg_mr);
1432
1433 /**
1434  * ib_alloc_mr() - Allocates a memory region
1435  * @pd:            protection domain associated with the region
1436  * @mr_type:       memory region type
1437  * @max_num_sg:    maximum sg entries available for registration.
1438  *
1439  * Notes:
1440  * Memory registeration page/sg lists must not exceed max_num_sg.
1441  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1442  * max_num_sg * used_page_size.
1443  *
1444  */
1445 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1446                           enum ib_mr_type mr_type,
1447                           u32 max_num_sg)
1448 {
1449         struct ib_mr *mr;
1450
1451         if (!pd->device->alloc_mr)
1452                 return ERR_PTR(-ENOSYS);
1453
1454         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1455         if (!IS_ERR(mr)) {
1456                 mr->device  = pd->device;
1457                 mr->pd      = pd;
1458                 mr->uobject = NULL;
1459                 atomic_inc(&pd->usecnt);
1460                 mr->need_inval = false;
1461         }
1462
1463         return mr;
1464 }
1465 EXPORT_SYMBOL(ib_alloc_mr);
1466
1467 /* "Fast" memory regions */
1468
1469 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1470                             int mr_access_flags,
1471                             struct ib_fmr_attr *fmr_attr)
1472 {
1473         struct ib_fmr *fmr;
1474
1475         if (!pd->device->alloc_fmr)
1476                 return ERR_PTR(-ENOSYS);
1477
1478         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1479         if (!IS_ERR(fmr)) {
1480                 fmr->device = pd->device;
1481                 fmr->pd     = pd;
1482                 atomic_inc(&pd->usecnt);
1483         }
1484
1485         return fmr;
1486 }
1487 EXPORT_SYMBOL(ib_alloc_fmr);
1488
1489 int ib_unmap_fmr(struct list_head *fmr_list)
1490 {
1491         struct ib_fmr *fmr;
1492
1493         if (list_empty(fmr_list))
1494                 return 0;
1495
1496         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1497         return fmr->device->unmap_fmr(fmr_list);
1498 }
1499 EXPORT_SYMBOL(ib_unmap_fmr);
1500
1501 int ib_dealloc_fmr(struct ib_fmr *fmr)
1502 {
1503         struct ib_pd *pd;
1504         int ret;
1505
1506         pd = fmr->pd;
1507         ret = fmr->device->dealloc_fmr(fmr);
1508         if (!ret)
1509                 atomic_dec(&pd->usecnt);
1510
1511         return ret;
1512 }
1513 EXPORT_SYMBOL(ib_dealloc_fmr);
1514
1515 /* Multicast groups */
1516
1517 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1518 {
1519         int ret;
1520
1521         if (!qp->device->attach_mcast)
1522                 return -ENOSYS;
1523         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1524             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1525             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1526                 return -EINVAL;
1527
1528         ret = qp->device->attach_mcast(qp, gid, lid);
1529         if (!ret)
1530                 atomic_inc(&qp->usecnt);
1531         return ret;
1532 }
1533 EXPORT_SYMBOL(ib_attach_mcast);
1534
1535 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1536 {
1537         int ret;
1538
1539         if (!qp->device->detach_mcast)
1540                 return -ENOSYS;
1541         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1542             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1543             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1544                 return -EINVAL;
1545
1546         ret = qp->device->detach_mcast(qp, gid, lid);
1547         if (!ret)
1548                 atomic_dec(&qp->usecnt);
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(ib_detach_mcast);
1552
1553 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1554 {
1555         struct ib_xrcd *xrcd;
1556
1557         if (!device->alloc_xrcd)
1558                 return ERR_PTR(-ENOSYS);
1559
1560         xrcd = device->alloc_xrcd(device, NULL, NULL);
1561         if (!IS_ERR(xrcd)) {
1562                 xrcd->device = device;
1563                 xrcd->inode = NULL;
1564                 atomic_set(&xrcd->usecnt, 0);
1565                 mutex_init(&xrcd->tgt_qp_mutex);
1566                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1567         }
1568
1569         return xrcd;
1570 }
1571 EXPORT_SYMBOL(ib_alloc_xrcd);
1572
1573 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1574 {
1575         struct ib_qp *qp;
1576         int ret;
1577
1578         if (atomic_read(&xrcd->usecnt))
1579                 return -EBUSY;
1580
1581         while (!list_empty(&xrcd->tgt_qp_list)) {
1582                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1583                 ret = ib_destroy_qp(qp);
1584                 if (ret)
1585                         return ret;
1586         }
1587
1588         return xrcd->device->dealloc_xrcd(xrcd);
1589 }
1590 EXPORT_SYMBOL(ib_dealloc_xrcd);
1591
1592 /**
1593  * ib_create_wq - Creates a WQ associated with the specified protection
1594  * domain.
1595  * @pd: The protection domain associated with the WQ.
1596  * @wq_init_attr: A list of initial attributes required to create the
1597  * WQ. If WQ creation succeeds, then the attributes are updated to
1598  * the actual capabilities of the created WQ.
1599  *
1600  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1601  * the requested size of the WQ, and set to the actual values allocated
1602  * on return.
1603  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1604  * at least as large as the requested values.
1605  */
1606 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1607                            struct ib_wq_init_attr *wq_attr)
1608 {
1609         struct ib_wq *wq;
1610
1611         if (!pd->device->create_wq)
1612                 return ERR_PTR(-ENOSYS);
1613
1614         wq = pd->device->create_wq(pd, wq_attr, NULL);
1615         if (!IS_ERR(wq)) {
1616                 wq->event_handler = wq_attr->event_handler;
1617                 wq->wq_context = wq_attr->wq_context;
1618                 wq->wq_type = wq_attr->wq_type;
1619                 wq->cq = wq_attr->cq;
1620                 wq->device = pd->device;
1621                 wq->pd = pd;
1622                 wq->uobject = NULL;
1623                 atomic_inc(&pd->usecnt);
1624                 atomic_inc(&wq_attr->cq->usecnt);
1625                 atomic_set(&wq->usecnt, 0);
1626         }
1627         return wq;
1628 }
1629 EXPORT_SYMBOL(ib_create_wq);
1630
1631 /**
1632  * ib_destroy_wq - Destroys the specified WQ.
1633  * @wq: The WQ to destroy.
1634  */
1635 int ib_destroy_wq(struct ib_wq *wq)
1636 {
1637         int err;
1638         struct ib_cq *cq = wq->cq;
1639         struct ib_pd *pd = wq->pd;
1640
1641         if (atomic_read(&wq->usecnt))
1642                 return -EBUSY;
1643
1644         err = wq->device->destroy_wq(wq);
1645         if (!err) {
1646                 atomic_dec(&pd->usecnt);
1647                 atomic_dec(&cq->usecnt);
1648         }
1649         return err;
1650 }
1651 EXPORT_SYMBOL(ib_destroy_wq);
1652
1653 /**
1654  * ib_modify_wq - Modifies the specified WQ.
1655  * @wq: The WQ to modify.
1656  * @wq_attr: On input, specifies the WQ attributes to modify.
1657  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1658  *   are being modified.
1659  * On output, the current values of selected WQ attributes are returned.
1660  */
1661 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1662                  u32 wq_attr_mask)
1663 {
1664         int err;
1665
1666         if (!wq->device->modify_wq)
1667                 return -ENOSYS;
1668
1669         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1670         return err;
1671 }
1672 EXPORT_SYMBOL(ib_modify_wq);
1673
1674 /*
1675  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1676  * @device: The device on which to create the rwq indirection table.
1677  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1678  * create the Indirection Table.
1679  *
1680  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1681  *      than the created ib_rwq_ind_table object and the caller is responsible
1682  *      for its memory allocation/free.
1683  */
1684 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1685                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1686 {
1687         struct ib_rwq_ind_table *rwq_ind_table;
1688         int i;
1689         u32 table_size;
1690
1691         if (!device->create_rwq_ind_table)
1692                 return ERR_PTR(-ENOSYS);
1693
1694         table_size = (1 << init_attr->log_ind_tbl_size);
1695         rwq_ind_table = device->create_rwq_ind_table(device,
1696                                 init_attr, NULL);
1697         if (IS_ERR(rwq_ind_table))
1698                 return rwq_ind_table;
1699
1700         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1701         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1702         rwq_ind_table->device = device;
1703         rwq_ind_table->uobject = NULL;
1704         atomic_set(&rwq_ind_table->usecnt, 0);
1705
1706         for (i = 0; i < table_size; i++)
1707                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1708
1709         return rwq_ind_table;
1710 }
1711 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1712
1713 /*
1714  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1715  * @wq_ind_table: The Indirection Table to destroy.
1716 */
1717 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1718 {
1719         int err, i;
1720         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1721         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1722
1723         if (atomic_read(&rwq_ind_table->usecnt))
1724                 return -EBUSY;
1725
1726         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1727         if (!err) {
1728                 for (i = 0; i < table_size; i++)
1729                         atomic_dec(&ind_tbl[i]->usecnt);
1730         }
1731
1732         return err;
1733 }
1734 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1735
1736 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1737                                struct ib_flow_attr *flow_attr,
1738                                int domain)
1739 {
1740         struct ib_flow *flow_id;
1741         if (!qp->device->create_flow)
1742                 return ERR_PTR(-ENOSYS);
1743
1744         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1745         if (!IS_ERR(flow_id)) {
1746                 atomic_inc(&qp->usecnt);
1747                 flow_id->qp = qp;
1748         }
1749         return flow_id;
1750 }
1751 EXPORT_SYMBOL(ib_create_flow);
1752
1753 int ib_destroy_flow(struct ib_flow *flow_id)
1754 {
1755         int err;
1756         struct ib_qp *qp = flow_id->qp;
1757
1758         err = qp->device->destroy_flow(flow_id);
1759         if (!err)
1760                 atomic_dec(&qp->usecnt);
1761         return err;
1762 }
1763 EXPORT_SYMBOL(ib_destroy_flow);
1764
1765 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1766                        struct ib_mr_status *mr_status)
1767 {
1768         return mr->device->check_mr_status ?
1769                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1770 }
1771 EXPORT_SYMBOL(ib_check_mr_status);
1772
1773 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1774                          int state)
1775 {
1776         if (!device->set_vf_link_state)
1777                 return -ENOSYS;
1778
1779         return device->set_vf_link_state(device, vf, port, state);
1780 }
1781 EXPORT_SYMBOL(ib_set_vf_link_state);
1782
1783 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1784                      struct ifla_vf_info *info)
1785 {
1786         if (!device->get_vf_config)
1787                 return -ENOSYS;
1788
1789         return device->get_vf_config(device, vf, port, info);
1790 }
1791 EXPORT_SYMBOL(ib_get_vf_config);
1792
1793 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1794                     struct ifla_vf_stats *stats)
1795 {
1796         if (!device->get_vf_stats)
1797                 return -ENOSYS;
1798
1799         return device->get_vf_stats(device, vf, port, stats);
1800 }
1801 EXPORT_SYMBOL(ib_get_vf_stats);
1802
1803 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1804                    int type)
1805 {
1806         if (!device->set_vf_guid)
1807                 return -ENOSYS;
1808
1809         return device->set_vf_guid(device, vf, port, guid, type);
1810 }
1811 EXPORT_SYMBOL(ib_set_vf_guid);
1812
1813 /**
1814  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1815  *     and set it the memory region.
1816  * @mr:            memory region
1817  * @sg:            dma mapped scatterlist
1818  * @sg_nents:      number of entries in sg
1819  * @sg_offset:     offset in bytes into sg
1820  * @page_size:     page vector desired page size
1821  *
1822  * Constraints:
1823  * - The first sg element is allowed to have an offset.
1824  * - Each sg element must either be aligned to page_size or virtually
1825  *   contiguous to the previous element. In case an sg element has a
1826  *   non-contiguous offset, the mapping prefix will not include it.
1827  * - The last sg element is allowed to have length less than page_size.
1828  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1829  *   then only max_num_sg entries will be mapped.
1830  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1831  *   constraints holds and the page_size argument is ignored.
1832  *
1833  * Returns the number of sg elements that were mapped to the memory region.
1834  *
1835  * After this completes successfully, the  memory region
1836  * is ready for registration.
1837  */
1838 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1839                  unsigned int *sg_offset, unsigned int page_size)
1840 {
1841         if (unlikely(!mr->device->map_mr_sg))
1842                 return -ENOSYS;
1843
1844         mr->page_size = page_size;
1845
1846         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1847 }
1848 EXPORT_SYMBOL(ib_map_mr_sg);
1849
1850 /**
1851  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1852  *     to a page vector
1853  * @mr:            memory region
1854  * @sgl:           dma mapped scatterlist
1855  * @sg_nents:      number of entries in sg
1856  * @sg_offset_p:   IN:  start offset in bytes into sg
1857  *                 OUT: offset in bytes for element n of the sg of the first
1858  *                      byte that has not been processed where n is the return
1859  *                      value of this function.
1860  * @set_page:      driver page assignment function pointer
1861  *
1862  * Core service helper for drivers to convert the largest
1863  * prefix of given sg list to a page vector. The sg list
1864  * prefix converted is the prefix that meet the requirements
1865  * of ib_map_mr_sg.
1866  *
1867  * Returns the number of sg elements that were assigned to
1868  * a page vector.
1869  */
1870 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1871                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1872 {
1873         struct scatterlist *sg;
1874         u64 last_end_dma_addr = 0;
1875         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1876         unsigned int last_page_off = 0;
1877         u64 page_mask = ~((u64)mr->page_size - 1);
1878         int i, ret;
1879
1880         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1881                 return -EINVAL;
1882
1883         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1884         mr->length = 0;
1885
1886         for_each_sg(sgl, sg, sg_nents, i) {
1887                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1888                 u64 prev_addr = dma_addr;
1889                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1890                 u64 end_dma_addr = dma_addr + dma_len;
1891                 u64 page_addr = dma_addr & page_mask;
1892
1893                 /*
1894                  * For the second and later elements, check whether either the
1895                  * end of element i-1 or the start of element i is not aligned
1896                  * on a page boundary.
1897                  */
1898                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1899                         /* Stop mapping if there is a gap. */
1900                         if (last_end_dma_addr != dma_addr)
1901                                 break;
1902
1903                         /*
1904                          * Coalesce this element with the last. If it is small
1905                          * enough just update mr->length. Otherwise start
1906                          * mapping from the next page.
1907                          */
1908                         goto next_page;
1909                 }
1910
1911                 do {
1912                         ret = set_page(mr, page_addr);
1913                         if (unlikely(ret < 0)) {
1914                                 sg_offset = prev_addr - sg_dma_address(sg);
1915                                 mr->length += prev_addr - dma_addr;
1916                                 if (sg_offset_p)
1917                                         *sg_offset_p = sg_offset;
1918                                 return i || sg_offset ? i : ret;
1919                         }
1920                         prev_addr = page_addr;
1921 next_page:
1922                         page_addr += mr->page_size;
1923                 } while (page_addr < end_dma_addr);
1924
1925                 mr->length += dma_len;
1926                 last_end_dma_addr = end_dma_addr;
1927                 last_page_off = end_dma_addr & ~page_mask;
1928
1929                 sg_offset = 0;
1930         }
1931
1932         if (sg_offset_p)
1933                 *sg_offset_p = 0;
1934         return i;
1935 }
1936 EXPORT_SYMBOL(ib_sg_to_pages);
1937
1938 struct ib_drain_cqe {
1939         struct ib_cqe cqe;
1940         struct completion done;
1941 };
1942
1943 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1944 {
1945         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1946                                                 cqe);
1947
1948         complete(&cqe->done);
1949 }
1950
1951 /*
1952  * Post a WR and block until its completion is reaped for the SQ.
1953  */
1954 static void __ib_drain_sq(struct ib_qp *qp)
1955 {
1956         struct ib_cq *cq = qp->send_cq;
1957         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1958         struct ib_drain_cqe sdrain;
1959         struct ib_send_wr swr = {}, *bad_swr;
1960         int ret;
1961
1962         swr.wr_cqe = &sdrain.cqe;
1963         sdrain.cqe.done = ib_drain_qp_done;
1964         init_completion(&sdrain.done);
1965
1966         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1967         if (ret) {
1968                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1969                 return;
1970         }
1971
1972         ret = ib_post_send(qp, &swr, &bad_swr);
1973         if (ret) {
1974                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1975                 return;
1976         }
1977
1978         if (cq->poll_ctx == IB_POLL_DIRECT)
1979                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
1980                         ib_process_cq_direct(cq, -1);
1981         else
1982                 wait_for_completion(&sdrain.done);
1983 }
1984
1985 /*
1986  * Post a WR and block until its completion is reaped for the RQ.
1987  */
1988 static void __ib_drain_rq(struct ib_qp *qp)
1989 {
1990         struct ib_cq *cq = qp->recv_cq;
1991         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1992         struct ib_drain_cqe rdrain;
1993         struct ib_recv_wr rwr = {}, *bad_rwr;
1994         int ret;
1995
1996         rwr.wr_cqe = &rdrain.cqe;
1997         rdrain.cqe.done = ib_drain_qp_done;
1998         init_completion(&rdrain.done);
1999
2000         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2001         if (ret) {
2002                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2003                 return;
2004         }
2005
2006         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2007         if (ret) {
2008                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2009                 return;
2010         }
2011
2012         if (cq->poll_ctx == IB_POLL_DIRECT)
2013                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2014                         ib_process_cq_direct(cq, -1);
2015         else
2016                 wait_for_completion(&rdrain.done);
2017 }
2018
2019 /**
2020  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2021  *                 application.
2022  * @qp:            queue pair to drain
2023  *
2024  * If the device has a provider-specific drain function, then
2025  * call that.  Otherwise call the generic drain function
2026  * __ib_drain_sq().
2027  *
2028  * The caller must:
2029  *
2030  * ensure there is room in the CQ and SQ for the drain work request and
2031  * completion.
2032  *
2033  * allocate the CQ using ib_alloc_cq().
2034  *
2035  * ensure that there are no other contexts that are posting WRs concurrently.
2036  * Otherwise the drain is not guaranteed.
2037  */
2038 void ib_drain_sq(struct ib_qp *qp)
2039 {
2040         if (qp->device->drain_sq)
2041                 qp->device->drain_sq(qp);
2042         else
2043                 __ib_drain_sq(qp);
2044 }
2045 EXPORT_SYMBOL(ib_drain_sq);
2046
2047 /**
2048  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2049  *                 application.
2050  * @qp:            queue pair to drain
2051  *
2052  * If the device has a provider-specific drain function, then
2053  * call that.  Otherwise call the generic drain function
2054  * __ib_drain_rq().
2055  *
2056  * The caller must:
2057  *
2058  * ensure there is room in the CQ and RQ for the drain work request and
2059  * completion.
2060  *
2061  * allocate the CQ using ib_alloc_cq().
2062  *
2063  * ensure that there are no other contexts that are posting WRs concurrently.
2064  * Otherwise the drain is not guaranteed.
2065  */
2066 void ib_drain_rq(struct ib_qp *qp)
2067 {
2068         if (qp->device->drain_rq)
2069                 qp->device->drain_rq(qp);
2070         else
2071                 __ib_drain_rq(qp);
2072 }
2073 EXPORT_SYMBOL(ib_drain_rq);
2074
2075 /**
2076  * ib_drain_qp() - Block until all CQEs have been consumed by the
2077  *                 application on both the RQ and SQ.
2078  * @qp:            queue pair to drain
2079  *
2080  * The caller must:
2081  *
2082  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2083  * and completions.
2084  *
2085  * allocate the CQs using ib_alloc_cq().
2086  *
2087  * ensure that there are no other contexts that are posting WRs concurrently.
2088  * Otherwise the drain is not guaranteed.
2089  */
2090 void ib_drain_qp(struct ib_qp *qp)
2091 {
2092         ib_drain_sq(qp);
2093         if (!qp->srq)
2094                 ib_drain_rq(qp);
2095 }
2096 EXPORT_SYMBOL(ib_drain_qp);