]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/infiniband/hw/hfi1/chip.c
IB/hfi1: Use pcie_flr() instead of duplicating it
[karo-tx-linux.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67
68 #define NUM_IB_PORTS 1
69
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106
107 struct flag_table {
108         u64 flag;       /* the flag */
109         char *str;      /* description string */
110         u16 extra;      /* extra information */
111         u16 unused0;
112         u32 unused1;
113 };
114
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED       0x1
121 #define SEC_PACKET_DROPPED      0x2
122 #define SEC_SC_HALTED           0x4     /* per-context only */
123 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
124
125 #define DEFAULT_KRCVQS            2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES         256
130 #define NUM_MAP_REGS             32
131
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT     39
134
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140
141 /* RSM fields */
142
143 /* packet type */
144 #define IB_PACKET_TYPE         2ull
145 #define QW_SHIFT               6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH              7ull
148
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW             0ull
151 #define LRH_BTH_BIT_OFFSET     48ull
152 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK           3ull
156 #define LRH_BTH_VALUE          2ull
157
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW              0ull
160 #define LRH_SC_BIT_OFFSET      56ull
161 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK            128ull
164 #define LRH_SC_VALUE           0ull
165
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
168
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
171
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174         num, \
175         sc0, sc0val, \
176         sc1, sc1val, \
177         sc2, sc2val, \
178         sc3, sc3val, \
179         sc4, sc4val, \
180         sc5, sc5val, \
181         sc6, sc6val, \
182         sc7, sc7val) \
183 ( \
184         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
192 )
193
194 #define DC_SC_VL_VAL( \
195         range, \
196         e0, e0val, \
197         e1, e1val, \
198         e2, e2val, \
199         e3, e3val, \
200         e4, e4val, \
201         e5, e5val, \
202         e6, e6val, \
203         e7, e7val, \
204         e8, e8val, \
205         e9, e9val, \
206         e10, e10val, \
207         e11, e11val, \
208         e12, e12val, \
209         e13, e13val, \
210         e14, e14val, \
211         e15, e15val) \
212 ( \
213         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233                         | CCE_STATUS_RXE_FROZE_SMASK \
234                         | CCE_STATUS_TXE_FROZE_SMASK \
235                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238                         | CCE_STATUS_TXE_PAUSED_SMASK \
239                         | CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245
246 /*
247  * CCE Error flags.
248  */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
251                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
253                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
259                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
261                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
265                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
277                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
279                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
281                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
283                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
285                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
287                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
289                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
291                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
293                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
295                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
297                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
299                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
301                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
303                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
305                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
307                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
309                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/  FLAG_ENTRY0("LATriggered",
313                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
315                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
317                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
323                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
325                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
327                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
329                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
331                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334
335 /*
336  * Misc Error flags
337  */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354
355 /*
356  * TXE PIO Error flags and consequences
357  */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
360         SEC_WRITE_DROPPED,
361         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
363         SEC_SPC_FREEZE,
364         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/  FLAG_ENTRY("PioCsrParity",
366         SEC_SPC_FREEZE,
367         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
369         SEC_SPC_FREEZE,
370         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
372         SEC_SPC_FREEZE,
373         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
375         SEC_SPC_FREEZE,
376         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
378         SEC_SPC_FREEZE,
379         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
381         SEC_SPC_FREEZE,
382         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384         SEC_SPC_FREEZE,
385         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
387         SEC_SPC_FREEZE,
388         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
390         SEC_SPC_FREEZE,
391         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
393         SEC_SPC_FREEZE,
394         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
396         SEC_SPC_FREEZE,
397         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
399         0,
400         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
402         0,
403         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
405         SEC_SPC_FREEZE,
406         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
408         SEC_SPC_FREEZE,
409         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/  FLAG_ENTRY("PioInitSmIn",
411         0,
412         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
414         SEC_SPC_FREEZE,
415         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
417         SEC_SPC_FREEZE,
418         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
420         0,
421         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/  FLAG_ENTRY("PioWriteDataParity",
423         SEC_SPC_FREEZE,
424         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/  FLAG_ENTRY("PioStateMachine",
426         SEC_SPC_FREEZE,
427         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
429         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
432         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
435         SEC_SPC_FREEZE,
436         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/  FLAG_ENTRY("PioVlfSopParity",
438         SEC_SPC_FREEZE,
439         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/  FLAG_ENTRY("PioVlFifoParity",
441         SEC_SPC_FREEZE,
442         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
444         SEC_SPC_FREEZE,
445         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
447         SEC_SPC_FREEZE,
448         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
451         SEC_SPC_FREEZE,
452         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
454         SEC_SPC_FREEZE,
455         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
457         SEC_SPC_FREEZE,
458         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
460         SEC_SPC_FREEZE,
461         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496
497 /*
498  * TXE SDMA Error flags
499  */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
502                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
504                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR  \
514                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523
524 /*
525  * TXE Egress Error flags
526  */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624
625 /*
626  * TXE Egress Error Info flags
627  */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660         | SEES(TX_LAUNCH_CSR_PARITY) \
661         | SEES(TX_SBRD_CTL_CSR_PARITY) \
662         | SEES(TX_CONFIG_PARITY) \
663         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672         | SEES(TX_CREDIT_RETURN_PARITY))
673
674 /*
675  * TXE Send error flags
676  */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683
684 /*
685  * TXE Send Context Error flags and consequences
686  */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/  FLAG_ENTRY("InconsistentSop",
689                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
690                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/  FLAG_ENTRY("DisallowedPacket",
692                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
693                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
695                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
696                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/  FLAG_ENTRY("WriteOverflow",
698                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
699                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
701                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
702                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705
706 /*
707  * RXE Receive Error flags
708  */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734                 RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755                 RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762                 RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764                 RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR  \
791         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835
836 #define RXE_FREEZE_ABORT_MASK \
837         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840
841 /*
842  * DCC Error Flags
843  */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893
894 /*
895  * LCB error flags
896  */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936
937 /*
938  * DC8051 Error Flags
939  */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954
955 /*
956  * DC8051 Information Error flags
957  *
958  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959  */
960 static struct flag_table dc8051_info_err_flags[] = {
961         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
962         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
963         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
964         FLAG_ENTRY0("Serdes internal loopback failure",
965                     FAILED_SERDES_INTERNAL_LOOPBACK),
966         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
967         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
968         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
969         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
970         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
971         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
974         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
975         FLAG_ENTRY0("External Device Request Timeout",
976                     EXTERNAL_DEVICE_REQ_TIMEOUT),
977 };
978
979 /*
980  * DC8051 Information Host Information flags
981  *
982  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
983  */
984 static struct flag_table dc8051_info_host_msg_flags[] = {
985         FLAG_ENTRY0("Host request done", 0x0001),
986         FLAG_ENTRY0("BC SMA message", 0x0002),
987         FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
988         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
989         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
990         FLAG_ENTRY0("External device config request", 0x0020),
991         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
992         FLAG_ENTRY0("LinkUp achieved", 0x0080),
993         FLAG_ENTRY0("Link going down", 0x0100),
994 };
995
996 static u32 encoded_size(u32 size);
997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1000                                u8 *continuous);
1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1002                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1004                                       u8 *remote_tx_rate, u16 *link_widths);
1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1006                                      u8 *flag_bits, u16 *link_widths);
1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1008                                   u8 *device_rev);
1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1012                             u8 *tx_polarity_inversion,
1013                             u8 *rx_polarity_inversion, u8 *max_rate);
1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1015                                 unsigned int context, u64 err_status);
1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1017 static void handle_dcc_err(struct hfi1_devdata *dd,
1018                            unsigned int context, u64 err_status);
1019 static void handle_lcb_err(struct hfi1_devdata *dd,
1020                            unsigned int context, u64 err_status);
1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void set_partition_keys(struct hfi1_pportdata *);
1030 static const char *link_state_name(u32 state);
1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1032                                           u32 state);
1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1034                            u64 *out_data);
1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1036 static int thermal_init(struct hfi1_devdata *dd);
1037
1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1039                                   int msecs);
1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1042 static void handle_temp_err(struct hfi1_devdata *);
1043 static void dc_shutdown(struct hfi1_devdata *);
1044 static void dc_start(struct hfi1_devdata *);
1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1046                            unsigned int *np);
1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1048
1049 /*
1050  * Error interrupt table entry.  This is used as input to the interrupt
1051  * "clear down" routine used for all second tier error interrupt register.
1052  * Second tier interrupt registers have a single bit representing them
1053  * in the top-level CceIntStatus.
1054  */
1055 struct err_reg_info {
1056         u32 status;             /* status CSR offset */
1057         u32 clear;              /* clear CSR offset */
1058         u32 mask;               /* mask CSR offset */
1059         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1060         const char *desc;
1061 };
1062
1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1066
1067 /*
1068  * Helpers for building HFI and DC error interrupt table entries.  Different
1069  * helpers are needed because of inconsistent register names.
1070  */
1071 #define EE(reg, handler, desc) \
1072         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1073                 handler, desc }
1074 #define DC_EE1(reg, handler, desc) \
1075         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1076 #define DC_EE2(reg, handler, desc) \
1077         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1078
1079 /*
1080  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1081  * another register containing more information.
1082  */
1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1084 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1085 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1086 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1087 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1088 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1089 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1090 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1091 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1092         /* the rest are reserved */
1093 };
1094
1095 /*
1096  * Index into the Various section of the interrupt sources
1097  * corresponding to the Critical Temperature interrupt.
1098  */
1099 #define TCRIT_INT_SOURCE 4
1100
1101 /*
1102  * SDMA error interrupt entry - refers to another register containing more
1103  * information.
1104  */
1105 static const struct err_reg_info sdma_eng_err =
1106         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1107
1108 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1109 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1110 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1111 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1112 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1113 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1114         /* rest are reserved */
1115 };
1116
1117 /*
1118  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1119  * register can not be derived from the MTU value because 10K is not
1120  * a power of 2. Therefore, we need a constant. Everything else can
1121  * be calculated.
1122  */
1123 #define DCC_CFG_PORT_MTU_CAP_10240 7
1124
1125 /*
1126  * Table of the DC grouping of error interrupts.  Each entry refers to
1127  * another register containing more information.
1128  */
1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1130 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1131 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1132 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1133 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1134         /* the rest are reserved */
1135 };
1136
1137 struct cntr_entry {
1138         /*
1139          * counter name
1140          */
1141         char *name;
1142
1143         /*
1144          * csr to read for name (if applicable)
1145          */
1146         u64 csr;
1147
1148         /*
1149          * offset into dd or ppd to store the counter's value
1150          */
1151         int offset;
1152
1153         /*
1154          * flags
1155          */
1156         u8 flags;
1157
1158         /*
1159          * accessor for stat element, context either dd or ppd
1160          */
1161         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1162                        int mode, u64 data);
1163 };
1164
1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1167
1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1169 { \
1170         name, \
1171         csr, \
1172         offset, \
1173         flags, \
1174         accessor \
1175 }
1176
1177 /* 32bit RXE */
1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1179 CNTR_ELEM(#name, \
1180           (counter * 8 + RCV_COUNTER_ARRAY32), \
1181           0, flags | CNTR_32BIT, \
1182           port_access_u32_csr)
1183
1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1185 CNTR_ELEM(#name, \
1186           (counter * 8 + RCV_COUNTER_ARRAY32), \
1187           0, flags | CNTR_32BIT, \
1188           dev_access_u32_csr)
1189
1190 /* 64bit RXE */
1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1192 CNTR_ELEM(#name, \
1193           (counter * 8 + RCV_COUNTER_ARRAY64), \
1194           0, flags, \
1195           port_access_u64_csr)
1196
1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1198 CNTR_ELEM(#name, \
1199           (counter * 8 + RCV_COUNTER_ARRAY64), \
1200           0, flags, \
1201           dev_access_u64_csr)
1202
1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1204 #define OVR_ELM(ctx) \
1205 CNTR_ELEM("RcvHdrOvr" #ctx, \
1206           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1207           0, CNTR_NORMAL, port_access_u64_csr)
1208
1209 /* 32bit TXE */
1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1211 CNTR_ELEM(#name, \
1212           (counter * 8 + SEND_COUNTER_ARRAY32), \
1213           0, flags | CNTR_32BIT, \
1214           port_access_u32_csr)
1215
1216 /* 64bit TXE */
1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219           (counter * 8 + SEND_COUNTER_ARRAY64), \
1220           0, flags, \
1221           port_access_u64_csr)
1222
1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name,\
1225           counter * 8 + SEND_COUNTER_ARRAY64, \
1226           0, \
1227           flags, \
1228           dev_access_u64_csr)
1229
1230 /* CCE */
1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233           (counter * 8 + CCE_COUNTER_ARRAY32), \
1234           0, flags | CNTR_32BIT, \
1235           dev_access_u32_csr)
1236
1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1240           0, flags | CNTR_32BIT, \
1241           dev_access_u32_csr)
1242
1243 /* DC */
1244 #define DC_PERF_CNTR(name, counter, flags) \
1245 CNTR_ELEM(#name, \
1246           counter, \
1247           0, \
1248           flags, \
1249           dev_access_u64_csr)
1250
1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253           counter, \
1254           0, \
1255           flags, \
1256           dc_access_lcb_cntr)
1257
1258 /* ibp counters */
1259 #define SW_IBP_CNTR(name, cntr) \
1260 CNTR_ELEM(#name, \
1261           0, \
1262           0, \
1263           CNTR_SYNTH, \
1264           access_ibp_##cntr)
1265
1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1267 {
1268         if (dd->flags & HFI1_PRESENT) {
1269                 return readq((void __iomem *)dd->kregbase + offset);
1270         }
1271         return -1;
1272 }
1273
1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1275 {
1276         if (dd->flags & HFI1_PRESENT)
1277                 writeq(value, (void __iomem *)dd->kregbase + offset);
1278 }
1279
1280 void __iomem *get_csr_addr(
1281         struct hfi1_devdata *dd,
1282         u32 offset)
1283 {
1284         return (void __iomem *)dd->kregbase + offset;
1285 }
1286
1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1288                                  int mode, u64 value)
1289 {
1290         u64 ret;
1291
1292         if (mode == CNTR_MODE_R) {
1293                 ret = read_csr(dd, csr);
1294         } else if (mode == CNTR_MODE_W) {
1295                 write_csr(dd, csr, value);
1296                 ret = value;
1297         } else {
1298                 dd_dev_err(dd, "Invalid cntr register access mode");
1299                 return 0;
1300         }
1301
1302         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1303         return ret;
1304 }
1305
1306 /* Dev Access */
1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1308                               void *context, int vl, int mode, u64 data)
1309 {
1310         struct hfi1_devdata *dd = context;
1311         u64 csr = entry->csr;
1312
1313         if (entry->flags & CNTR_SDMA) {
1314                 if (vl == CNTR_INVALID_VL)
1315                         return 0;
1316                 csr += 0x100 * vl;
1317         } else {
1318                 if (vl != CNTR_INVALID_VL)
1319                         return 0;
1320         }
1321         return read_write_csr(dd, csr, mode, data);
1322 }
1323
1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1325                               void *context, int idx, int mode, u64 data)
1326 {
1327         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1328
1329         if (dd->per_sdma && idx < dd->num_sdma)
1330                 return dd->per_sdma[idx].err_cnt;
1331         return 0;
1332 }
1333
1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1335                               void *context, int idx, int mode, u64 data)
1336 {
1337         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1338
1339         if (dd->per_sdma && idx < dd->num_sdma)
1340                 return dd->per_sdma[idx].sdma_int_cnt;
1341         return 0;
1342 }
1343
1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1345                                    void *context, int idx, int mode, u64 data)
1346 {
1347         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1348
1349         if (dd->per_sdma && idx < dd->num_sdma)
1350                 return dd->per_sdma[idx].idle_int_cnt;
1351         return 0;
1352 }
1353
1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1355                                        void *context, int idx, int mode,
1356                                        u64 data)
1357 {
1358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359
1360         if (dd->per_sdma && idx < dd->num_sdma)
1361                 return dd->per_sdma[idx].progress_int_cnt;
1362         return 0;
1363 }
1364
1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1366                               int vl, int mode, u64 data)
1367 {
1368         struct hfi1_devdata *dd = context;
1369
1370         u64 val = 0;
1371         u64 csr = entry->csr;
1372
1373         if (entry->flags & CNTR_VL) {
1374                 if (vl == CNTR_INVALID_VL)
1375                         return 0;
1376                 csr += 8 * vl;
1377         } else {
1378                 if (vl != CNTR_INVALID_VL)
1379                         return 0;
1380         }
1381
1382         val = read_write_csr(dd, csr, mode, data);
1383         return val;
1384 }
1385
1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1387                               int vl, int mode, u64 data)
1388 {
1389         struct hfi1_devdata *dd = context;
1390         u32 csr = entry->csr;
1391         int ret = 0;
1392
1393         if (vl != CNTR_INVALID_VL)
1394                 return 0;
1395         if (mode == CNTR_MODE_R)
1396                 ret = read_lcb_csr(dd, csr, &data);
1397         else if (mode == CNTR_MODE_W)
1398                 ret = write_lcb_csr(dd, csr, data);
1399
1400         if (ret) {
1401                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1402                 return 0;
1403         }
1404
1405         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1406         return data;
1407 }
1408
1409 /* Port Access */
1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1411                                int vl, int mode, u64 data)
1412 {
1413         struct hfi1_pportdata *ppd = context;
1414
1415         if (vl != CNTR_INVALID_VL)
1416                 return 0;
1417         return read_write_csr(ppd->dd, entry->csr, mode, data);
1418 }
1419
1420 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1421                                void *context, int vl, int mode, u64 data)
1422 {
1423         struct hfi1_pportdata *ppd = context;
1424         u64 val;
1425         u64 csr = entry->csr;
1426
1427         if (entry->flags & CNTR_VL) {
1428                 if (vl == CNTR_INVALID_VL)
1429                         return 0;
1430                 csr += 8 * vl;
1431         } else {
1432                 if (vl != CNTR_INVALID_VL)
1433                         return 0;
1434         }
1435         val = read_write_csr(ppd->dd, csr, mode, data);
1436         return val;
1437 }
1438
1439 /* Software defined */
1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1441                                 u64 data)
1442 {
1443         u64 ret;
1444
1445         if (mode == CNTR_MODE_R) {
1446                 ret = *cntr;
1447         } else if (mode == CNTR_MODE_W) {
1448                 *cntr = data;
1449                 ret = data;
1450         } else {
1451                 dd_dev_err(dd, "Invalid cntr sw access mode");
1452                 return 0;
1453         }
1454
1455         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1456
1457         return ret;
1458 }
1459
1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1461                                  int vl, int mode, u64 data)
1462 {
1463         struct hfi1_pportdata *ppd = context;
1464
1465         if (vl != CNTR_INVALID_VL)
1466                 return 0;
1467         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1468 }
1469
1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1471                                  int vl, int mode, u64 data)
1472 {
1473         struct hfi1_pportdata *ppd = context;
1474
1475         if (vl != CNTR_INVALID_VL)
1476                 return 0;
1477         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1478 }
1479
1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1481                                        void *context, int vl, int mode,
1482                                        u64 data)
1483 {
1484         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1485
1486         if (vl != CNTR_INVALID_VL)
1487                 return 0;
1488         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1489 }
1490
1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1492                                    void *context, int vl, int mode, u64 data)
1493 {
1494         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1495         u64 zero = 0;
1496         u64 *counter;
1497
1498         if (vl == CNTR_INVALID_VL)
1499                 counter = &ppd->port_xmit_discards;
1500         else if (vl >= 0 && vl < C_VL_COUNT)
1501                 counter = &ppd->port_xmit_discards_vl[vl];
1502         else
1503                 counter = &zero;
1504
1505         return read_write_sw(ppd->dd, counter, mode, data);
1506 }
1507
1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1509                                        void *context, int vl, int mode,
1510                                        u64 data)
1511 {
1512         struct hfi1_pportdata *ppd = context;
1513
1514         if (vl != CNTR_INVALID_VL)
1515                 return 0;
1516
1517         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1518                              mode, data);
1519 }
1520
1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1522                                       void *context, int vl, int mode, u64 data)
1523 {
1524         struct hfi1_pportdata *ppd = context;
1525
1526         if (vl != CNTR_INVALID_VL)
1527                 return 0;
1528
1529         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1530                              mode, data);
1531 }
1532
1533 u64 get_all_cpu_total(u64 __percpu *cntr)
1534 {
1535         int cpu;
1536         u64 counter = 0;
1537
1538         for_each_possible_cpu(cpu)
1539                 counter += *per_cpu_ptr(cntr, cpu);
1540         return counter;
1541 }
1542
1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1544                           u64 __percpu *cntr,
1545                           int vl, int mode, u64 data)
1546 {
1547         u64 ret = 0;
1548
1549         if (vl != CNTR_INVALID_VL)
1550                 return 0;
1551
1552         if (mode == CNTR_MODE_R) {
1553                 ret = get_all_cpu_total(cntr) - *z_val;
1554         } else if (mode == CNTR_MODE_W) {
1555                 /* A write can only zero the counter */
1556                 if (data == 0)
1557                         *z_val = get_all_cpu_total(cntr);
1558                 else
1559                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1560         } else {
1561                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1562                 return 0;
1563         }
1564
1565         return ret;
1566 }
1567
1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1569                               void *context, int vl, int mode, u64 data)
1570 {
1571         struct hfi1_devdata *dd = context;
1572
1573         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1574                               mode, data);
1575 }
1576
1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1578                                    void *context, int vl, int mode, u64 data)
1579 {
1580         struct hfi1_devdata *dd = context;
1581
1582         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1583                               mode, data);
1584 }
1585
1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1587                               void *context, int vl, int mode, u64 data)
1588 {
1589         struct hfi1_devdata *dd = context;
1590
1591         return dd->verbs_dev.n_piowait;
1592 }
1593
1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1595                                void *context, int vl, int mode, u64 data)
1596 {
1597         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1598
1599         return dd->verbs_dev.n_piodrain;
1600 }
1601
1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1603                               void *context, int vl, int mode, u64 data)
1604 {
1605         struct hfi1_devdata *dd = context;
1606
1607         return dd->verbs_dev.n_txwait;
1608 }
1609
1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1611                                void *context, int vl, int mode, u64 data)
1612 {
1613         struct hfi1_devdata *dd = context;
1614
1615         return dd->verbs_dev.n_kmem_wait;
1616 }
1617
1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1619                                    void *context, int vl, int mode, u64 data)
1620 {
1621         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1624                               mode, data);
1625 }
1626
1627 /* Software counters for the error status bits within MISC_ERR_STATUS */
1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1629                                              void *context, int vl, int mode,
1630                                              u64 data)
1631 {
1632         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1633
1634         return dd->misc_err_status_cnt[12];
1635 }
1636
1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1638                                           void *context, int vl, int mode,
1639                                           u64 data)
1640 {
1641         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1642
1643         return dd->misc_err_status_cnt[11];
1644 }
1645
1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1647                                                void *context, int vl, int mode,
1648                                                u64 data)
1649 {
1650         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1651
1652         return dd->misc_err_status_cnt[10];
1653 }
1654
1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1656                                                  void *context, int vl,
1657                                                  int mode, u64 data)
1658 {
1659         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1660
1661         return dd->misc_err_status_cnt[9];
1662 }
1663
1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1665                                            void *context, int vl, int mode,
1666                                            u64 data)
1667 {
1668         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1669
1670         return dd->misc_err_status_cnt[8];
1671 }
1672
1673 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1674                                 const struct cntr_entry *entry,
1675                                 void *context, int vl, int mode, u64 data)
1676 {
1677         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1678
1679         return dd->misc_err_status_cnt[7];
1680 }
1681
1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1683                                                 void *context, int vl,
1684                                                 int mode, u64 data)
1685 {
1686         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1687
1688         return dd->misc_err_status_cnt[6];
1689 }
1690
1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1692                                               void *context, int vl, int mode,
1693                                               u64 data)
1694 {
1695         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1696
1697         return dd->misc_err_status_cnt[5];
1698 }
1699
1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1701                                             void *context, int vl, int mode,
1702                                             u64 data)
1703 {
1704         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705
1706         return dd->misc_err_status_cnt[4];
1707 }
1708
1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1710                                                  void *context, int vl,
1711                                                  int mode, u64 data)
1712 {
1713         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714
1715         return dd->misc_err_status_cnt[3];
1716 }
1717
1718 static u64 access_misc_csr_write_bad_addr_err_cnt(
1719                                 const struct cntr_entry *entry,
1720                                 void *context, int vl, int mode, u64 data)
1721 {
1722         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723
1724         return dd->misc_err_status_cnt[2];
1725 }
1726
1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1728                                                  void *context, int vl,
1729                                                  int mode, u64 data)
1730 {
1731         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732
1733         return dd->misc_err_status_cnt[1];
1734 }
1735
1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1737                                           void *context, int vl, int mode,
1738                                           u64 data)
1739 {
1740         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741
1742         return dd->misc_err_status_cnt[0];
1743 }
1744
1745 /*
1746  * Software counter for the aggregate of
1747  * individual CceErrStatus counters
1748  */
1749 static u64 access_sw_cce_err_status_aggregated_cnt(
1750                                 const struct cntr_entry *entry,
1751                                 void *context, int vl, int mode, u64 data)
1752 {
1753         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755         return dd->sw_cce_err_status_aggregate;
1756 }
1757
1758 /*
1759  * Software counters corresponding to each of the
1760  * error status bits within CceErrStatus
1761  */
1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1763                                               void *context, int vl, int mode,
1764                                               u64 data)
1765 {
1766         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1767
1768         return dd->cce_err_status_cnt[40];
1769 }
1770
1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1772                                           void *context, int vl, int mode,
1773                                           u64 data)
1774 {
1775         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1776
1777         return dd->cce_err_status_cnt[39];
1778 }
1779
1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1781                                           void *context, int vl, int mode,
1782                                           u64 data)
1783 {
1784         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785
1786         return dd->cce_err_status_cnt[38];
1787 }
1788
1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1790                                              void *context, int vl, int mode,
1791                                              u64 data)
1792 {
1793         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1794
1795         return dd->cce_err_status_cnt[37];
1796 }
1797
1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1799                                              void *context, int vl, int mode,
1800                                              u64 data)
1801 {
1802         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1803
1804         return dd->cce_err_status_cnt[36];
1805 }
1806
1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1808                                 const struct cntr_entry *entry,
1809                                 void *context, int vl, int mode, u64 data)
1810 {
1811         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1812
1813         return dd->cce_err_status_cnt[35];
1814 }
1815
1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1817                                 const struct cntr_entry *entry,
1818                                 void *context, int vl, int mode, u64 data)
1819 {
1820         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1821
1822         return dd->cce_err_status_cnt[34];
1823 }
1824
1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1826                                                  void *context, int vl,
1827                                                  int mode, u64 data)
1828 {
1829         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1830
1831         return dd->cce_err_status_cnt[33];
1832 }
1833
1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1835                                                 void *context, int vl, int mode,
1836                                                 u64 data)
1837 {
1838         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839
1840         return dd->cce_err_status_cnt[32];
1841 }
1842
1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1844                                    void *context, int vl, int mode, u64 data)
1845 {
1846         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1847
1848         return dd->cce_err_status_cnt[31];
1849 }
1850
1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1852                                                void *context, int vl, int mode,
1853                                                u64 data)
1854 {
1855         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1856
1857         return dd->cce_err_status_cnt[30];
1858 }
1859
1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1861                                               void *context, int vl, int mode,
1862                                               u64 data)
1863 {
1864         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1865
1866         return dd->cce_err_status_cnt[29];
1867 }
1868
1869 static u64 access_pcic_transmit_back_parity_err_cnt(
1870                                 const struct cntr_entry *entry,
1871                                 void *context, int vl, int mode, u64 data)
1872 {
1873         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1874
1875         return dd->cce_err_status_cnt[28];
1876 }
1877
1878 static u64 access_pcic_transmit_front_parity_err_cnt(
1879                                 const struct cntr_entry *entry,
1880                                 void *context, int vl, int mode, u64 data)
1881 {
1882         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1883
1884         return dd->cce_err_status_cnt[27];
1885 }
1886
1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1888                                              void *context, int vl, int mode,
1889                                              u64 data)
1890 {
1891         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1892
1893         return dd->cce_err_status_cnt[26];
1894 }
1895
1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1897                                             void *context, int vl, int mode,
1898                                             u64 data)
1899 {
1900         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1901
1902         return dd->cce_err_status_cnt[25];
1903 }
1904
1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1906                                               void *context, int vl, int mode,
1907                                               u64 data)
1908 {
1909         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1910
1911         return dd->cce_err_status_cnt[24];
1912 }
1913
1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1915                                              void *context, int vl, int mode,
1916                                              u64 data)
1917 {
1918         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919
1920         return dd->cce_err_status_cnt[23];
1921 }
1922
1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1924                                                  void *context, int vl,
1925                                                  int mode, u64 data)
1926 {
1927         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928
1929         return dd->cce_err_status_cnt[22];
1930 }
1931
1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1933                                          void *context, int vl, int mode,
1934                                          u64 data)
1935 {
1936         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937
1938         return dd->cce_err_status_cnt[21];
1939 }
1940
1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1942                                 const struct cntr_entry *entry,
1943                                 void *context, int vl, int mode, u64 data)
1944 {
1945         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946
1947         return dd->cce_err_status_cnt[20];
1948 }
1949
1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1951                                                  void *context, int vl,
1952                                                  int mode, u64 data)
1953 {
1954         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955
1956         return dd->cce_err_status_cnt[19];
1957 }
1958
1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1960                                              void *context, int vl, int mode,
1961                                              u64 data)
1962 {
1963         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964
1965         return dd->cce_err_status_cnt[18];
1966 }
1967
1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1969                                             void *context, int vl, int mode,
1970                                             u64 data)
1971 {
1972         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973
1974         return dd->cce_err_status_cnt[17];
1975 }
1976
1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1978                                               void *context, int vl, int mode,
1979                                               u64 data)
1980 {
1981         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982
1983         return dd->cce_err_status_cnt[16];
1984 }
1985
1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1987                                              void *context, int vl, int mode,
1988                                              u64 data)
1989 {
1990         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991
1992         return dd->cce_err_status_cnt[15];
1993 }
1994
1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1996                                                  void *context, int vl,
1997                                                  int mode, u64 data)
1998 {
1999         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000
2001         return dd->cce_err_status_cnt[14];
2002 }
2003
2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2005                                              void *context, int vl, int mode,
2006                                              u64 data)
2007 {
2008         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009
2010         return dd->cce_err_status_cnt[13];
2011 }
2012
2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2014                                 const struct cntr_entry *entry,
2015                                 void *context, int vl, int mode, u64 data)
2016 {
2017         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018
2019         return dd->cce_err_status_cnt[12];
2020 }
2021
2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2023                                 const struct cntr_entry *entry,
2024                                 void *context, int vl, int mode, u64 data)
2025 {
2026         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027
2028         return dd->cce_err_status_cnt[11];
2029 }
2030
2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2032                                 const struct cntr_entry *entry,
2033                                 void *context, int vl, int mode, u64 data)
2034 {
2035         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036
2037         return dd->cce_err_status_cnt[10];
2038 }
2039
2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2041                                 const struct cntr_entry *entry,
2042                                 void *context, int vl, int mode, u64 data)
2043 {
2044         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045
2046         return dd->cce_err_status_cnt[9];
2047 }
2048
2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2050                                 const struct cntr_entry *entry,
2051                                 void *context, int vl, int mode, u64 data)
2052 {
2053         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054
2055         return dd->cce_err_status_cnt[8];
2056 }
2057
2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2059                                                  void *context, int vl,
2060                                                  int mode, u64 data)
2061 {
2062         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063
2064         return dd->cce_err_status_cnt[7];
2065 }
2066
2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2068                                 const struct cntr_entry *entry,
2069                                 void *context, int vl, int mode, u64 data)
2070 {
2071         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072
2073         return dd->cce_err_status_cnt[6];
2074 }
2075
2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2077                                                void *context, int vl, int mode,
2078                                                u64 data)
2079 {
2080         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081
2082         return dd->cce_err_status_cnt[5];
2083 }
2084
2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2086                                           void *context, int vl, int mode,
2087                                           u64 data)
2088 {
2089         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090
2091         return dd->cce_err_status_cnt[4];
2092 }
2093
2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2095                                 const struct cntr_entry *entry,
2096                                 void *context, int vl, int mode, u64 data)
2097 {
2098         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099
2100         return dd->cce_err_status_cnt[3];
2101 }
2102
2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2104                                                  void *context, int vl,
2105                                                  int mode, u64 data)
2106 {
2107         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108
2109         return dd->cce_err_status_cnt[2];
2110 }
2111
2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2113                                                 void *context, int vl,
2114                                                 int mode, u64 data)
2115 {
2116         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117
2118         return dd->cce_err_status_cnt[1];
2119 }
2120
2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2122                                          void *context, int vl, int mode,
2123                                          u64 data)
2124 {
2125         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126
2127         return dd->cce_err_status_cnt[0];
2128 }
2129
2130 /*
2131  * Software counters corresponding to each of the
2132  * error status bits within RcvErrStatus
2133  */
2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2135                                         void *context, int vl, int mode,
2136                                         u64 data)
2137 {
2138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140         return dd->rcv_err_status_cnt[63];
2141 }
2142
2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2144                                                 void *context, int vl,
2145                                                 int mode, u64 data)
2146 {
2147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149         return dd->rcv_err_status_cnt[62];
2150 }
2151
2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2153                                                void *context, int vl, int mode,
2154                                                u64 data)
2155 {
2156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158         return dd->rcv_err_status_cnt[61];
2159 }
2160
2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2162                                          void *context, int vl, int mode,
2163                                          u64 data)
2164 {
2165         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167         return dd->rcv_err_status_cnt[60];
2168 }
2169
2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2171                                                  void *context, int vl,
2172                                                  int mode, u64 data)
2173 {
2174         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176         return dd->rcv_err_status_cnt[59];
2177 }
2178
2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2180                                                  void *context, int vl,
2181                                                  int mode, u64 data)
2182 {
2183         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185         return dd->rcv_err_status_cnt[58];
2186 }
2187
2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2189                                             void *context, int vl, int mode,
2190                                             u64 data)
2191 {
2192         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194         return dd->rcv_err_status_cnt[57];
2195 }
2196
2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2198                                            void *context, int vl, int mode,
2199                                            u64 data)
2200 {
2201         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203         return dd->rcv_err_status_cnt[56];
2204 }
2205
2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2207                                            void *context, int vl, int mode,
2208                                            u64 data)
2209 {
2210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212         return dd->rcv_err_status_cnt[55];
2213 }
2214
2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2216                                 const struct cntr_entry *entry,
2217                                 void *context, int vl, int mode, u64 data)
2218 {
2219         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221         return dd->rcv_err_status_cnt[54];
2222 }
2223
2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2225                                 const struct cntr_entry *entry,
2226                                 void *context, int vl, int mode, u64 data)
2227 {
2228         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230         return dd->rcv_err_status_cnt[53];
2231 }
2232
2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2234                                                  void *context, int vl,
2235                                                  int mode, u64 data)
2236 {
2237         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239         return dd->rcv_err_status_cnt[52];
2240 }
2241
2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2243                                                  void *context, int vl,
2244                                                  int mode, u64 data)
2245 {
2246         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247
2248         return dd->rcv_err_status_cnt[51];
2249 }
2250
2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2252                                                  void *context, int vl,
2253                                                  int mode, u64 data)
2254 {
2255         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256
2257         return dd->rcv_err_status_cnt[50];
2258 }
2259
2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2261                                                  void *context, int vl,
2262                                                  int mode, u64 data)
2263 {
2264         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265
2266         return dd->rcv_err_status_cnt[49];
2267 }
2268
2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2270                                                  void *context, int vl,
2271                                                  int mode, u64 data)
2272 {
2273         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274
2275         return dd->rcv_err_status_cnt[48];
2276 }
2277
2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2279                                                  void *context, int vl,
2280                                                  int mode, u64 data)
2281 {
2282         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283
2284         return dd->rcv_err_status_cnt[47];
2285 }
2286
2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2288                                          void *context, int vl, int mode,
2289                                          u64 data)
2290 {
2291         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292
2293         return dd->rcv_err_status_cnt[46];
2294 }
2295
2296 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2297                                 const struct cntr_entry *entry,
2298                                 void *context, int vl, int mode, u64 data)
2299 {
2300         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301
2302         return dd->rcv_err_status_cnt[45];
2303 }
2304
2305 static u64 access_rx_lookup_csr_parity_err_cnt(
2306                                 const struct cntr_entry *entry,
2307                                 void *context, int vl, int mode, u64 data)
2308 {
2309         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310
2311         return dd->rcv_err_status_cnt[44];
2312 }
2313
2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2315                                 const struct cntr_entry *entry,
2316                                 void *context, int vl, int mode, u64 data)
2317 {
2318         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319
2320         return dd->rcv_err_status_cnt[43];
2321 }
2322
2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2324                                 const struct cntr_entry *entry,
2325                                 void *context, int vl, int mode, u64 data)
2326 {
2327         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328
2329         return dd->rcv_err_status_cnt[42];
2330 }
2331
2332 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2333                                 const struct cntr_entry *entry,
2334                                 void *context, int vl, int mode, u64 data)
2335 {
2336         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337
2338         return dd->rcv_err_status_cnt[41];
2339 }
2340
2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2342                                 const struct cntr_entry *entry,
2343                                 void *context, int vl, int mode, u64 data)
2344 {
2345         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346
2347         return dd->rcv_err_status_cnt[40];
2348 }
2349
2350 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2351                                 const struct cntr_entry *entry,
2352                                 void *context, int vl, int mode, u64 data)
2353 {
2354         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355
2356         return dd->rcv_err_status_cnt[39];
2357 }
2358
2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2360                                 const struct cntr_entry *entry,
2361                                 void *context, int vl, int mode, u64 data)
2362 {
2363         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364
2365         return dd->rcv_err_status_cnt[38];
2366 }
2367
2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2369                                 const struct cntr_entry *entry,
2370                                 void *context, int vl, int mode, u64 data)
2371 {
2372         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373
2374         return dd->rcv_err_status_cnt[37];
2375 }
2376
2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2378                                 const struct cntr_entry *entry,
2379                                 void *context, int vl, int mode, u64 data)
2380 {
2381         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382
2383         return dd->rcv_err_status_cnt[36];
2384 }
2385
2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2387                                 const struct cntr_entry *entry,
2388                                 void *context, int vl, int mode, u64 data)
2389 {
2390         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391
2392         return dd->rcv_err_status_cnt[35];
2393 }
2394
2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2396                                 const struct cntr_entry *entry,
2397                                 void *context, int vl, int mode, u64 data)
2398 {
2399         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400
2401         return dd->rcv_err_status_cnt[34];
2402 }
2403
2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2405                                 const struct cntr_entry *entry,
2406                                 void *context, int vl, int mode, u64 data)
2407 {
2408         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409
2410         return dd->rcv_err_status_cnt[33];
2411 }
2412
2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2414                                         void *context, int vl, int mode,
2415                                         u64 data)
2416 {
2417         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418
2419         return dd->rcv_err_status_cnt[32];
2420 }
2421
2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2423                                        void *context, int vl, int mode,
2424                                        u64 data)
2425 {
2426         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427
2428         return dd->rcv_err_status_cnt[31];
2429 }
2430
2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2432                                           void *context, int vl, int mode,
2433                                           u64 data)
2434 {
2435         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436
2437         return dd->rcv_err_status_cnt[30];
2438 }
2439
2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2441                                              void *context, int vl, int mode,
2442                                              u64 data)
2443 {
2444         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445
2446         return dd->rcv_err_status_cnt[29];
2447 }
2448
2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2450                                                  void *context, int vl,
2451                                                  int mode, u64 data)
2452 {
2453         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454
2455         return dd->rcv_err_status_cnt[28];
2456 }
2457
2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2459                                 const struct cntr_entry *entry,
2460                                 void *context, int vl, int mode, u64 data)
2461 {
2462         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463
2464         return dd->rcv_err_status_cnt[27];
2465 }
2466
2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2468                                 const struct cntr_entry *entry,
2469                                 void *context, int vl, int mode, u64 data)
2470 {
2471         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472
2473         return dd->rcv_err_status_cnt[26];
2474 }
2475
2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2477                                 const struct cntr_entry *entry,
2478                                 void *context, int vl, int mode, u64 data)
2479 {
2480         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481
2482         return dd->rcv_err_status_cnt[25];
2483 }
2484
2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2486                                 const struct cntr_entry *entry,
2487                                 void *context, int vl, int mode, u64 data)
2488 {
2489         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490
2491         return dd->rcv_err_status_cnt[24];
2492 }
2493
2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2495                                 const struct cntr_entry *entry,
2496                                 void *context, int vl, int mode, u64 data)
2497 {
2498         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499
2500         return dd->rcv_err_status_cnt[23];
2501 }
2502
2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2504                                 const struct cntr_entry *entry,
2505                                 void *context, int vl, int mode, u64 data)
2506 {
2507         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508
2509         return dd->rcv_err_status_cnt[22];
2510 }
2511
2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2513                                 const struct cntr_entry *entry,
2514                                 void *context, int vl, int mode, u64 data)
2515 {
2516         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517
2518         return dd->rcv_err_status_cnt[21];
2519 }
2520
2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2522                                 const struct cntr_entry *entry,
2523                                 void *context, int vl, int mode, u64 data)
2524 {
2525         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526
2527         return dd->rcv_err_status_cnt[20];
2528 }
2529
2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2531                                 const struct cntr_entry *entry,
2532                                 void *context, int vl, int mode, u64 data)
2533 {
2534         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535
2536         return dd->rcv_err_status_cnt[19];
2537 }
2538
2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2540                                                  void *context, int vl,
2541                                                  int mode, u64 data)
2542 {
2543         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544
2545         return dd->rcv_err_status_cnt[18];
2546 }
2547
2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2549                                                  void *context, int vl,
2550                                                  int mode, u64 data)
2551 {
2552         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553
2554         return dd->rcv_err_status_cnt[17];
2555 }
2556
2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2558                                 const struct cntr_entry *entry,
2559                                 void *context, int vl, int mode, u64 data)
2560 {
2561         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562
2563         return dd->rcv_err_status_cnt[16];
2564 }
2565
2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2567                                 const struct cntr_entry *entry,
2568                                 void *context, int vl, int mode, u64 data)
2569 {
2570         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571
2572         return dd->rcv_err_status_cnt[15];
2573 }
2574
2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2576                                                 void *context, int vl,
2577                                                 int mode, u64 data)
2578 {
2579         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580
2581         return dd->rcv_err_status_cnt[14];
2582 }
2583
2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2585                                                 void *context, int vl,
2586                                                 int mode, u64 data)
2587 {
2588         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589
2590         return dd->rcv_err_status_cnt[13];
2591 }
2592
2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2594                                               void *context, int vl, int mode,
2595                                               u64 data)
2596 {
2597         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598
2599         return dd->rcv_err_status_cnt[12];
2600 }
2601
2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2603                                           void *context, int vl, int mode,
2604                                           u64 data)
2605 {
2606         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607
2608         return dd->rcv_err_status_cnt[11];
2609 }
2610
2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2612                                           void *context, int vl, int mode,
2613                                           u64 data)
2614 {
2615         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616
2617         return dd->rcv_err_status_cnt[10];
2618 }
2619
2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2621                                                void *context, int vl, int mode,
2622                                                u64 data)
2623 {
2624         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625
2626         return dd->rcv_err_status_cnt[9];
2627 }
2628
2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2630                                             void *context, int vl, int mode,
2631                                             u64 data)
2632 {
2633         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634
2635         return dd->rcv_err_status_cnt[8];
2636 }
2637
2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2639                                 const struct cntr_entry *entry,
2640                                 void *context, int vl, int mode, u64 data)
2641 {
2642         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643
2644         return dd->rcv_err_status_cnt[7];
2645 }
2646
2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2648                                 const struct cntr_entry *entry,
2649                                 void *context, int vl, int mode, u64 data)
2650 {
2651         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652
2653         return dd->rcv_err_status_cnt[6];
2654 }
2655
2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2657                                           void *context, int vl, int mode,
2658                                           u64 data)
2659 {
2660         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661
2662         return dd->rcv_err_status_cnt[5];
2663 }
2664
2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2666                                           void *context, int vl, int mode,
2667                                           u64 data)
2668 {
2669         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670
2671         return dd->rcv_err_status_cnt[4];
2672 }
2673
2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2675                                          void *context, int vl, int mode,
2676                                          u64 data)
2677 {
2678         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679
2680         return dd->rcv_err_status_cnt[3];
2681 }
2682
2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2684                                          void *context, int vl, int mode,
2685                                          u64 data)
2686 {
2687         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688
2689         return dd->rcv_err_status_cnt[2];
2690 }
2691
2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2693                                             void *context, int vl, int mode,
2694                                             u64 data)
2695 {
2696         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697
2698         return dd->rcv_err_status_cnt[1];
2699 }
2700
2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2702                                          void *context, int vl, int mode,
2703                                          u64 data)
2704 {
2705         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706
2707         return dd->rcv_err_status_cnt[0];
2708 }
2709
2710 /*
2711  * Software counters corresponding to each of the
2712  * error status bits within SendPioErrStatus
2713  */
2714 static u64 access_pio_pec_sop_head_parity_err_cnt(
2715                                 const struct cntr_entry *entry,
2716                                 void *context, int vl, int mode, u64 data)
2717 {
2718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720         return dd->send_pio_err_status_cnt[35];
2721 }
2722
2723 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2724                                 const struct cntr_entry *entry,
2725                                 void *context, int vl, int mode, u64 data)
2726 {
2727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729         return dd->send_pio_err_status_cnt[34];
2730 }
2731
2732 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2733                                 const struct cntr_entry *entry,
2734                                 void *context, int vl, int mode, u64 data)
2735 {
2736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738         return dd->send_pio_err_status_cnt[33];
2739 }
2740
2741 static u64 access_pio_current_free_cnt_parity_err_cnt(
2742                                 const struct cntr_entry *entry,
2743                                 void *context, int vl, int mode, u64 data)
2744 {
2745         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747         return dd->send_pio_err_status_cnt[32];
2748 }
2749
2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2751                                           void *context, int vl, int mode,
2752                                           u64 data)
2753 {
2754         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756         return dd->send_pio_err_status_cnt[31];
2757 }
2758
2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2760                                           void *context, int vl, int mode,
2761                                           u64 data)
2762 {
2763         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765         return dd->send_pio_err_status_cnt[30];
2766 }
2767
2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2769                                            void *context, int vl, int mode,
2770                                            u64 data)
2771 {
2772         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774         return dd->send_pio_err_status_cnt[29];
2775 }
2776
2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2778                                 const struct cntr_entry *entry,
2779                                 void *context, int vl, int mode, u64 data)
2780 {
2781         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783         return dd->send_pio_err_status_cnt[28];
2784 }
2785
2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2787                                              void *context, int vl, int mode,
2788                                              u64 data)
2789 {
2790         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792         return dd->send_pio_err_status_cnt[27];
2793 }
2794
2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2796                                              void *context, int vl, int mode,
2797                                              u64 data)
2798 {
2799         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801         return dd->send_pio_err_status_cnt[26];
2802 }
2803
2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2805                                                 void *context, int vl,
2806                                                 int mode, u64 data)
2807 {
2808         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810         return dd->send_pio_err_status_cnt[25];
2811 }
2812
2813 static u64 access_pio_block_qw_count_parity_err_cnt(
2814                                 const struct cntr_entry *entry,
2815                                 void *context, int vl, int mode, u64 data)
2816 {
2817         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819         return dd->send_pio_err_status_cnt[24];
2820 }
2821
2822 static u64 access_pio_write_qw_valid_parity_err_cnt(
2823                                 const struct cntr_entry *entry,
2824                                 void *context, int vl, int mode, u64 data)
2825 {
2826         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827
2828         return dd->send_pio_err_status_cnt[23];
2829 }
2830
2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2832                                             void *context, int vl, int mode,
2833                                             u64 data)
2834 {
2835         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836
2837         return dd->send_pio_err_status_cnt[22];
2838 }
2839
2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2841                                                 void *context, int vl,
2842                                                 int mode, u64 data)
2843 {
2844         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845
2846         return dd->send_pio_err_status_cnt[21];
2847 }
2848
2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2850                                                 void *context, int vl,
2851                                                 int mode, u64 data)
2852 {
2853         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854
2855         return dd->send_pio_err_status_cnt[20];
2856 }
2857
2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2859                                                 void *context, int vl,
2860                                                 int mode, u64 data)
2861 {
2862         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863
2864         return dd->send_pio_err_status_cnt[19];
2865 }
2866
2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2868                                 const struct cntr_entry *entry,
2869                                 void *context, int vl, int mode, u64 data)
2870 {
2871         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872
2873         return dd->send_pio_err_status_cnt[18];
2874 }
2875
2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2877                                          void *context, int vl, int mode,
2878                                          u64 data)
2879 {
2880         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881
2882         return dd->send_pio_err_status_cnt[17];
2883 }
2884
2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2886                                             void *context, int vl, int mode,
2887                                             u64 data)
2888 {
2889         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890
2891         return dd->send_pio_err_status_cnt[16];
2892 }
2893
2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2895                                 const struct cntr_entry *entry,
2896                                 void *context, int vl, int mode, u64 data)
2897 {
2898         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899
2900         return dd->send_pio_err_status_cnt[15];
2901 }
2902
2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2904                                 const struct cntr_entry *entry,
2905                                 void *context, int vl, int mode, u64 data)
2906 {
2907         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908
2909         return dd->send_pio_err_status_cnt[14];
2910 }
2911
2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2913                                 const struct cntr_entry *entry,
2914                                 void *context, int vl, int mode, u64 data)
2915 {
2916         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917
2918         return dd->send_pio_err_status_cnt[13];
2919 }
2920
2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2922                                 const struct cntr_entry *entry,
2923                                 void *context, int vl, int mode, u64 data)
2924 {
2925         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926
2927         return dd->send_pio_err_status_cnt[12];
2928 }
2929
2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2931                                 const struct cntr_entry *entry,
2932                                 void *context, int vl, int mode, u64 data)
2933 {
2934         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935
2936         return dd->send_pio_err_status_cnt[11];
2937 }
2938
2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2940                                 const struct cntr_entry *entry,
2941                                 void *context, int vl, int mode, u64 data)
2942 {
2943         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944
2945         return dd->send_pio_err_status_cnt[10];
2946 }
2947
2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2949                                 const struct cntr_entry *entry,
2950                                 void *context, int vl, int mode, u64 data)
2951 {
2952         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953
2954         return dd->send_pio_err_status_cnt[9];
2955 }
2956
2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2958                                 const struct cntr_entry *entry,
2959                                 void *context, int vl, int mode, u64 data)
2960 {
2961         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962
2963         return dd->send_pio_err_status_cnt[8];
2964 }
2965
2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2967                                 const struct cntr_entry *entry,
2968                                 void *context, int vl, int mode, u64 data)
2969 {
2970         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971
2972         return dd->send_pio_err_status_cnt[7];
2973 }
2974
2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2976                                               void *context, int vl, int mode,
2977                                               u64 data)
2978 {
2979         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980
2981         return dd->send_pio_err_status_cnt[6];
2982 }
2983
2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2985                                               void *context, int vl, int mode,
2986                                               u64 data)
2987 {
2988         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989
2990         return dd->send_pio_err_status_cnt[5];
2991 }
2992
2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2994                                            void *context, int vl, int mode,
2995                                            u64 data)
2996 {
2997         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998
2999         return dd->send_pio_err_status_cnt[4];
3000 }
3001
3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3003                                            void *context, int vl, int mode,
3004                                            u64 data)
3005 {
3006         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007
3008         return dd->send_pio_err_status_cnt[3];
3009 }
3010
3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3012                                          void *context, int vl, int mode,
3013                                          u64 data)
3014 {
3015         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016
3017         return dd->send_pio_err_status_cnt[2];
3018 }
3019
3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3021                                                 void *context, int vl,
3022                                                 int mode, u64 data)
3023 {
3024         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025
3026         return dd->send_pio_err_status_cnt[1];
3027 }
3028
3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3030                                              void *context, int vl, int mode,
3031                                              u64 data)
3032 {
3033         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034
3035         return dd->send_pio_err_status_cnt[0];
3036 }
3037
3038 /*
3039  * Software counters corresponding to each of the
3040  * error status bits within SendDmaErrStatus
3041  */
3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3043                                 const struct cntr_entry *entry,
3044                                 void *context, int vl, int mode, u64 data)
3045 {
3046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048         return dd->send_dma_err_status_cnt[3];
3049 }
3050
3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3052                                 const struct cntr_entry *entry,
3053                                 void *context, int vl, int mode, u64 data)
3054 {
3055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057         return dd->send_dma_err_status_cnt[2];
3058 }
3059
3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3061                                           void *context, int vl, int mode,
3062                                           u64 data)
3063 {
3064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066         return dd->send_dma_err_status_cnt[1];
3067 }
3068
3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3070                                        void *context, int vl, int mode,
3071                                        u64 data)
3072 {
3073         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075         return dd->send_dma_err_status_cnt[0];
3076 }
3077
3078 /*
3079  * Software counters corresponding to each of the
3080  * error status bits within SendEgressErrStatus
3081  */
3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3083                                 const struct cntr_entry *entry,
3084                                 void *context, int vl, int mode, u64 data)
3085 {
3086         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087
3088         return dd->send_egress_err_status_cnt[63];
3089 }
3090
3091 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3092                                 const struct cntr_entry *entry,
3093                                 void *context, int vl, int mode, u64 data)
3094 {
3095         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096
3097         return dd->send_egress_err_status_cnt[62];
3098 }
3099
3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3101                                              void *context, int vl, int mode,
3102                                              u64 data)
3103 {
3104         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105
3106         return dd->send_egress_err_status_cnt[61];
3107 }
3108
3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3110                                                  void *context, int vl,
3111                                                  int mode, u64 data)
3112 {
3113         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3114
3115         return dd->send_egress_err_status_cnt[60];
3116 }
3117
3118 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3119                                 const struct cntr_entry *entry,
3120                                 void *context, int vl, int mode, u64 data)
3121 {
3122         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3123
3124         return dd->send_egress_err_status_cnt[59];
3125 }
3126
3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3128                                         void *context, int vl, int mode,
3129                                         u64 data)
3130 {
3131         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132
3133         return dd->send_egress_err_status_cnt[58];
3134 }
3135
3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3137                                             void *context, int vl, int mode,
3138                                             u64 data)
3139 {
3140         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141
3142         return dd->send_egress_err_status_cnt[57];
3143 }
3144
3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3146                                               void *context, int vl, int mode,
3147                                               u64 data)
3148 {
3149         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150
3151         return dd->send_egress_err_status_cnt[56];
3152 }
3153
3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3155                                               void *context, int vl, int mode,
3156                                               u64 data)
3157 {
3158         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160         return dd->send_egress_err_status_cnt[55];
3161 }
3162
3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3164                                               void *context, int vl, int mode,
3165                                               u64 data)
3166 {
3167         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169         return dd->send_egress_err_status_cnt[54];
3170 }
3171
3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3173                                               void *context, int vl, int mode,
3174                                               u64 data)
3175 {
3176         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178         return dd->send_egress_err_status_cnt[53];
3179 }
3180
3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3182                                               void *context, int vl, int mode,
3183                                               u64 data)
3184 {
3185         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187         return dd->send_egress_err_status_cnt[52];
3188 }
3189
3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3191                                               void *context, int vl, int mode,
3192                                               u64 data)
3193 {
3194         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195
3196         return dd->send_egress_err_status_cnt[51];
3197 }
3198
3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3200                                               void *context, int vl, int mode,
3201                                               u64 data)
3202 {
3203         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204
3205         return dd->send_egress_err_status_cnt[50];
3206 }
3207
3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3209                                               void *context, int vl, int mode,
3210                                               u64 data)
3211 {
3212         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213
3214         return dd->send_egress_err_status_cnt[49];
3215 }
3216
3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3218                                               void *context, int vl, int mode,
3219                                               u64 data)
3220 {
3221         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222
3223         return dd->send_egress_err_status_cnt[48];
3224 }
3225
3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3227                                               void *context, int vl, int mode,
3228                                               u64 data)
3229 {
3230         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231
3232         return dd->send_egress_err_status_cnt[47];
3233 }
3234
3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3236                                             void *context, int vl, int mode,
3237                                             u64 data)
3238 {
3239         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240
3241         return dd->send_egress_err_status_cnt[46];
3242 }
3243
3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3245                                              void *context, int vl, int mode,
3246                                              u64 data)
3247 {
3248         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249
3250         return dd->send_egress_err_status_cnt[45];
3251 }
3252
3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3254                                                  void *context, int vl,
3255                                                  int mode, u64 data)
3256 {
3257         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258
3259         return dd->send_egress_err_status_cnt[44];
3260 }
3261
3262 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3263                                 const struct cntr_entry *entry,
3264                                 void *context, int vl, int mode, u64 data)
3265 {
3266         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267
3268         return dd->send_egress_err_status_cnt[43];
3269 }
3270
3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3272                                         void *context, int vl, int mode,
3273                                         u64 data)
3274 {
3275         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276
3277         return dd->send_egress_err_status_cnt[42];
3278 }
3279
3280 static u64 access_tx_credit_return_partiy_err_cnt(
3281                                 const struct cntr_entry *entry,
3282                                 void *context, int vl, int mode, u64 data)
3283 {
3284         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285
3286         return dd->send_egress_err_status_cnt[41];
3287 }
3288
3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3290                                 const struct cntr_entry *entry,
3291                                 void *context, int vl, int mode, u64 data)
3292 {
3293         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294
3295         return dd->send_egress_err_status_cnt[40];
3296 }
3297
3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3299                                 const struct cntr_entry *entry,
3300                                 void *context, int vl, int mode, u64 data)
3301 {
3302         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303
3304         return dd->send_egress_err_status_cnt[39];
3305 }
3306
3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3308                                 const struct cntr_entry *entry,
3309                                 void *context, int vl, int mode, u64 data)
3310 {
3311         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312
3313         return dd->send_egress_err_status_cnt[38];
3314 }
3315
3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3317                                 const struct cntr_entry *entry,
3318                                 void *context, int vl, int mode, u64 data)
3319 {
3320         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321
3322         return dd->send_egress_err_status_cnt[37];
3323 }
3324
3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3326                                 const struct cntr_entry *entry,
3327                                 void *context, int vl, int mode, u64 data)
3328 {
3329         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330
3331         return dd->send_egress_err_status_cnt[36];
3332 }
3333
3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3335                                 const struct cntr_entry *entry,
3336                                 void *context, int vl, int mode, u64 data)
3337 {
3338         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339
3340         return dd->send_egress_err_status_cnt[35];
3341 }
3342
3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3344                                 const struct cntr_entry *entry,
3345                                 void *context, int vl, int mode, u64 data)
3346 {
3347         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348
3349         return dd->send_egress_err_status_cnt[34];
3350 }
3351
3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3353                                 const struct cntr_entry *entry,
3354                                 void *context, int vl, int mode, u64 data)
3355 {
3356         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357
3358         return dd->send_egress_err_status_cnt[33];
3359 }
3360
3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3362                                 const struct cntr_entry *entry,
3363                                 void *context, int vl, int mode, u64 data)
3364 {
3365         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366
3367         return dd->send_egress_err_status_cnt[32];
3368 }
3369
3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3371                                 const struct cntr_entry *entry,
3372                                 void *context, int vl, int mode, u64 data)
3373 {
3374         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375
3376         return dd->send_egress_err_status_cnt[31];
3377 }
3378
3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3380                                 const struct cntr_entry *entry,
3381                                 void *context, int vl, int mode, u64 data)
3382 {
3383         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384
3385         return dd->send_egress_err_status_cnt[30];
3386 }
3387
3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3389                                 const struct cntr_entry *entry,
3390                                 void *context, int vl, int mode, u64 data)
3391 {
3392         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393
3394         return dd->send_egress_err_status_cnt[29];
3395 }
3396
3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3398                                 const struct cntr_entry *entry,
3399                                 void *context, int vl, int mode, u64 data)
3400 {
3401         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402
3403         return dd->send_egress_err_status_cnt[28];
3404 }
3405
3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3407                                 const struct cntr_entry *entry,
3408                                 void *context, int vl, int mode, u64 data)
3409 {
3410         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411
3412         return dd->send_egress_err_status_cnt[27];
3413 }
3414
3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3416                                 const struct cntr_entry *entry,
3417                                 void *context, int vl, int mode, u64 data)
3418 {
3419         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420
3421         return dd->send_egress_err_status_cnt[26];
3422 }
3423
3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3425                                 const struct cntr_entry *entry,
3426                                 void *context, int vl, int mode, u64 data)
3427 {
3428         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429
3430         return dd->send_egress_err_status_cnt[25];
3431 }
3432
3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3434                                 const struct cntr_entry *entry,
3435                                 void *context, int vl, int mode, u64 data)
3436 {
3437         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438
3439         return dd->send_egress_err_status_cnt[24];
3440 }
3441
3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3443                                 const struct cntr_entry *entry,
3444                                 void *context, int vl, int mode, u64 data)
3445 {
3446         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447
3448         return dd->send_egress_err_status_cnt[23];
3449 }
3450
3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3452                                 const struct cntr_entry *entry,
3453                                 void *context, int vl, int mode, u64 data)
3454 {
3455         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456
3457         return dd->send_egress_err_status_cnt[22];
3458 }
3459
3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3461                                 const struct cntr_entry *entry,
3462                                 void *context, int vl, int mode, u64 data)
3463 {
3464         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465
3466         return dd->send_egress_err_status_cnt[21];
3467 }
3468
3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3470                                 const struct cntr_entry *entry,
3471                                 void *context, int vl, int mode, u64 data)
3472 {
3473         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474
3475         return dd->send_egress_err_status_cnt[20];
3476 }
3477
3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3479                                 const struct cntr_entry *entry,
3480                                 void *context, int vl, int mode, u64 data)
3481 {
3482         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483
3484         return dd->send_egress_err_status_cnt[19];
3485 }
3486
3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3488                                 const struct cntr_entry *entry,
3489                                 void *context, int vl, int mode, u64 data)
3490 {
3491         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492
3493         return dd->send_egress_err_status_cnt[18];
3494 }
3495
3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3497                                 const struct cntr_entry *entry,
3498                                 void *context, int vl, int mode, u64 data)
3499 {
3500         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501
3502         return dd->send_egress_err_status_cnt[17];
3503 }
3504
3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3506                                 const struct cntr_entry *entry,
3507                                 void *context, int vl, int mode, u64 data)
3508 {
3509         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510
3511         return dd->send_egress_err_status_cnt[16];
3512 }
3513
3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3515                                            void *context, int vl, int mode,
3516                                            u64 data)
3517 {
3518         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519
3520         return dd->send_egress_err_status_cnt[15];
3521 }
3522
3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3524                                                  void *context, int vl,
3525                                                  int mode, u64 data)
3526 {
3527         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528
3529         return dd->send_egress_err_status_cnt[14];
3530 }
3531
3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3533                                                void *context, int vl, int mode,
3534                                                u64 data)
3535 {
3536         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537
3538         return dd->send_egress_err_status_cnt[13];
3539 }
3540
3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3542                                         void *context, int vl, int mode,
3543                                         u64 data)
3544 {
3545         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546
3547         return dd->send_egress_err_status_cnt[12];
3548 }
3549
3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3551                                 const struct cntr_entry *entry,
3552                                 void *context, int vl, int mode, u64 data)
3553 {
3554         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555
3556         return dd->send_egress_err_status_cnt[11];
3557 }
3558
3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3560                                              void *context, int vl, int mode,
3561                                              u64 data)
3562 {
3563         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564
3565         return dd->send_egress_err_status_cnt[10];
3566 }
3567
3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3569                                             void *context, int vl, int mode,
3570                                             u64 data)
3571 {
3572         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573
3574         return dd->send_egress_err_status_cnt[9];
3575 }
3576
3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3578                                 const struct cntr_entry *entry,
3579                                 void *context, int vl, int mode, u64 data)
3580 {
3581         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582
3583         return dd->send_egress_err_status_cnt[8];
3584 }
3585
3586 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3587                                 const struct cntr_entry *entry,
3588                                 void *context, int vl, int mode, u64 data)
3589 {
3590         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591
3592         return dd->send_egress_err_status_cnt[7];
3593 }
3594
3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3596                                             void *context, int vl, int mode,
3597                                             u64 data)
3598 {
3599         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600
3601         return dd->send_egress_err_status_cnt[6];
3602 }
3603
3604 static u64 access_tx_incorrect_link_state_err_cnt(
3605                                 const struct cntr_entry *entry,
3606                                 void *context, int vl, int mode, u64 data)
3607 {
3608         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609
3610         return dd->send_egress_err_status_cnt[5];
3611 }
3612
3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3614                                       void *context, int vl, int mode,
3615                                       u64 data)
3616 {
3617         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618
3619         return dd->send_egress_err_status_cnt[4];
3620 }
3621
3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3623                                 const struct cntr_entry *entry,
3624                                 void *context, int vl, int mode, u64 data)
3625 {
3626         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627
3628         return dd->send_egress_err_status_cnt[3];
3629 }
3630
3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3632                                             void *context, int vl, int mode,
3633                                             u64 data)
3634 {
3635         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636
3637         return dd->send_egress_err_status_cnt[2];
3638 }
3639
3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3641                                 const struct cntr_entry *entry,
3642                                 void *context, int vl, int mode, u64 data)
3643 {
3644         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645
3646         return dd->send_egress_err_status_cnt[1];
3647 }
3648
3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3650                                 const struct cntr_entry *entry,
3651                                 void *context, int vl, int mode, u64 data)
3652 {
3653         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654
3655         return dd->send_egress_err_status_cnt[0];
3656 }
3657
3658 /*
3659  * Software counters corresponding to each of the
3660  * error status bits within SendErrStatus
3661  */
3662 static u64 access_send_csr_write_bad_addr_err_cnt(
3663                                 const struct cntr_entry *entry,
3664                                 void *context, int vl, int mode, u64 data)
3665 {
3666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668         return dd->send_err_status_cnt[2];
3669 }
3670
3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3672                                                  void *context, int vl,
3673                                                  int mode, u64 data)
3674 {
3675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677         return dd->send_err_status_cnt[1];
3678 }
3679
3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3681                                       void *context, int vl, int mode,
3682                                       u64 data)
3683 {
3684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686         return dd->send_err_status_cnt[0];
3687 }
3688
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendCtxtErrStatus
3692  */
3693 static u64 access_pio_write_out_of_bounds_err_cnt(
3694                                 const struct cntr_entry *entry,
3695                                 void *context, int vl, int mode, u64 data)
3696 {
3697         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698
3699         return dd->sw_ctxt_err_status_cnt[4];
3700 }
3701
3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3703                                              void *context, int vl, int mode,
3704                                              u64 data)
3705 {
3706         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707
3708         return dd->sw_ctxt_err_status_cnt[3];
3709 }
3710
3711 static u64 access_pio_write_crosses_boundary_err_cnt(
3712                                 const struct cntr_entry *entry,
3713                                 void *context, int vl, int mode, u64 data)
3714 {
3715         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716
3717         return dd->sw_ctxt_err_status_cnt[2];
3718 }
3719
3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3721                                                 void *context, int vl,
3722                                                 int mode, u64 data)
3723 {
3724         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3725
3726         return dd->sw_ctxt_err_status_cnt[1];
3727 }
3728
3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3730                                                void *context, int vl, int mode,
3731                                                u64 data)
3732 {
3733         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3734
3735         return dd->sw_ctxt_err_status_cnt[0];
3736 }
3737
3738 /*
3739  * Software counters corresponding to each of the
3740  * error status bits within SendDmaEngErrStatus
3741  */
3742 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3743                                 const struct cntr_entry *entry,
3744                                 void *context, int vl, int mode, u64 data)
3745 {
3746         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747
3748         return dd->sw_send_dma_eng_err_status_cnt[23];
3749 }
3750
3751 static u64 access_sdma_header_storage_cor_err_cnt(
3752                                 const struct cntr_entry *entry,
3753                                 void *context, int vl, int mode, u64 data)
3754 {
3755         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756
3757         return dd->sw_send_dma_eng_err_status_cnt[22];
3758 }
3759
3760 static u64 access_sdma_packet_tracking_cor_err_cnt(
3761                                 const struct cntr_entry *entry,
3762                                 void *context, int vl, int mode, u64 data)
3763 {
3764         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765
3766         return dd->sw_send_dma_eng_err_status_cnt[21];
3767 }
3768
3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3770                                             void *context, int vl, int mode,
3771                                             u64 data)
3772 {
3773         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3774
3775         return dd->sw_send_dma_eng_err_status_cnt[20];
3776 }
3777
3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3779                                               void *context, int vl, int mode,
3780                                               u64 data)
3781 {
3782         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783
3784         return dd->sw_send_dma_eng_err_status_cnt[19];
3785 }
3786
3787 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3788                                 const struct cntr_entry *entry,
3789                                 void *context, int vl, int mode, u64 data)
3790 {
3791         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792
3793         return dd->sw_send_dma_eng_err_status_cnt[18];
3794 }
3795
3796 static u64 access_sdma_header_storage_unc_err_cnt(
3797                                 const struct cntr_entry *entry,
3798                                 void *context, int vl, int mode, u64 data)
3799 {
3800         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801
3802         return dd->sw_send_dma_eng_err_status_cnt[17];
3803 }
3804
3805 static u64 access_sdma_packet_tracking_unc_err_cnt(
3806                                 const struct cntr_entry *entry,
3807                                 void *context, int vl, int mode, u64 data)
3808 {
3809         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811         return dd->sw_send_dma_eng_err_status_cnt[16];
3812 }
3813
3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3815                                             void *context, int vl, int mode,
3816                                             u64 data)
3817 {
3818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820         return dd->sw_send_dma_eng_err_status_cnt[15];
3821 }
3822
3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3824                                               void *context, int vl, int mode,
3825                                               u64 data)
3826 {
3827         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829         return dd->sw_send_dma_eng_err_status_cnt[14];
3830 }
3831
3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3833                                        void *context, int vl, int mode,
3834                                        u64 data)
3835 {
3836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838         return dd->sw_send_dma_eng_err_status_cnt[13];
3839 }
3840
3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3842                                              void *context, int vl, int mode,
3843                                              u64 data)
3844 {
3845         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847         return dd->sw_send_dma_eng_err_status_cnt[12];
3848 }
3849
3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3851                                               void *context, int vl, int mode,
3852                                               u64 data)
3853 {
3854         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855
3856         return dd->sw_send_dma_eng_err_status_cnt[11];
3857 }
3858
3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3860                                              void *context, int vl, int mode,
3861                                              u64 data)
3862 {
3863         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864
3865         return dd->sw_send_dma_eng_err_status_cnt[10];
3866 }
3867
3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3869                                           void *context, int vl, int mode,
3870                                           u64 data)
3871 {
3872         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873
3874         return dd->sw_send_dma_eng_err_status_cnt[9];
3875 }
3876
3877 static u64 access_sdma_packet_desc_overflow_err_cnt(
3878                                 const struct cntr_entry *entry,
3879                                 void *context, int vl, int mode, u64 data)
3880 {
3881         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882
3883         return dd->sw_send_dma_eng_err_status_cnt[8];
3884 }
3885
3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3887                                                void *context, int vl,
3888                                                int mode, u64 data)
3889 {
3890         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891
3892         return dd->sw_send_dma_eng_err_status_cnt[7];
3893 }
3894
3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3896                                     void *context, int vl, int mode, u64 data)
3897 {
3898         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3899
3900         return dd->sw_send_dma_eng_err_status_cnt[6];
3901 }
3902
3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3904                                         void *context, int vl, int mode,
3905                                         u64 data)
3906 {
3907         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3908
3909         return dd->sw_send_dma_eng_err_status_cnt[5];
3910 }
3911
3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3913                                           void *context, int vl, int mode,
3914                                           u64 data)
3915 {
3916         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3917
3918         return dd->sw_send_dma_eng_err_status_cnt[4];
3919 }
3920
3921 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3922                                 const struct cntr_entry *entry,
3923                                 void *context, int vl, int mode, u64 data)
3924 {
3925         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3926
3927         return dd->sw_send_dma_eng_err_status_cnt[3];
3928 }
3929
3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3931                                         void *context, int vl, int mode,
3932                                         u64 data)
3933 {
3934         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3935
3936         return dd->sw_send_dma_eng_err_status_cnt[2];
3937 }
3938
3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3940                                             void *context, int vl, int mode,
3941                                             u64 data)
3942 {
3943         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3944
3945         return dd->sw_send_dma_eng_err_status_cnt[1];
3946 }
3947
3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3949                                         void *context, int vl, int mode,
3950                                         u64 data)
3951 {
3952         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3953
3954         return dd->sw_send_dma_eng_err_status_cnt[0];
3955 }
3956
3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3958                                  void *context, int vl, int mode,
3959                                  u64 data)
3960 {
3961         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3962
3963         u64 val = 0;
3964         u64 csr = entry->csr;
3965
3966         val = read_write_csr(dd, csr, mode, data);
3967         if (mode == CNTR_MODE_R) {
3968                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3969                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3970         } else if (mode == CNTR_MODE_W) {
3971                 dd->sw_rcv_bypass_packet_errors = 0;
3972         } else {
3973                 dd_dev_err(dd, "Invalid cntr register access mode");
3974                 return 0;
3975         }
3976         return val;
3977 }
3978
3979 #define def_access_sw_cpu(cntr) \
3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
3981                               void *context, int vl, int mode, u64 data)      \
3982 {                                                                             \
3983         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
3984         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
3985                               ppd->ibport_data.rvp.cntr, vl,                  \
3986                               mode, data);                                    \
3987 }
3988
3989 def_access_sw_cpu(rc_acks);
3990 def_access_sw_cpu(rc_qacks);
3991 def_access_sw_cpu(rc_delayed_comp);
3992
3993 #define def_access_ibp_counter(cntr) \
3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
3995                                 void *context, int vl, int mode, u64 data)    \
3996 {                                                                             \
3997         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
3998                                                                               \
3999         if (vl != CNTR_INVALID_VL)                                            \
4000                 return 0;                                                     \
4001                                                                               \
4002         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4003                              mode, data);                                     \
4004 }
4005
4006 def_access_ibp_counter(loop_pkts);
4007 def_access_ibp_counter(rc_resends);
4008 def_access_ibp_counter(rnr_naks);
4009 def_access_ibp_counter(other_naks);
4010 def_access_ibp_counter(rc_timeouts);
4011 def_access_ibp_counter(pkt_drops);
4012 def_access_ibp_counter(dmawait);
4013 def_access_ibp_counter(rc_seqnak);
4014 def_access_ibp_counter(rc_dupreq);
4015 def_access_ibp_counter(rdma_seq);
4016 def_access_ibp_counter(unaligned);
4017 def_access_ibp_counter(seq_naks);
4018
4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4022                         CNTR_NORMAL),
4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4024                         CNTR_NORMAL),
4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4026                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4027                         CNTR_NORMAL),
4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4029                         CNTR_NORMAL),
4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4031                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4033                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4035                         CNTR_NORMAL),
4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4037                         CNTR_NORMAL),
4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4039                         CNTR_NORMAL),
4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4041                         CNTR_NORMAL),
4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4043                         CNTR_NORMAL),
4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4045                         CNTR_NORMAL),
4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4047                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4049                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4051                               CNTR_SYNTH),
4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4053                             access_dc_rcv_err_cnt),
4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4055                                  CNTR_SYNTH),
4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4057                                   CNTR_SYNTH),
4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4059                                   CNTR_SYNTH),
4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4061                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4063                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4064                                   CNTR_SYNTH),
4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4066                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4068                                CNTR_SYNTH),
4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4070                               CNTR_SYNTH),
4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4072                                CNTR_SYNTH),
4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4074                                  CNTR_SYNTH),
4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4076                                 CNTR_SYNTH),
4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4078                                 CNTR_SYNTH),
4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4080                                CNTR_SYNTH),
4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4082                                  CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4084                                 CNTR_SYNTH | CNTR_VL),
4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4087                                  CNTR_SYNTH | CNTR_VL),
4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4090                                  CNTR_SYNTH | CNTR_VL),
4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4092                               CNTR_SYNTH),
4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4094                                  CNTR_SYNTH | CNTR_VL),
4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4096                                 CNTR_SYNTH),
4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4098                                    CNTR_SYNTH | CNTR_VL),
4099 [C_DC_TOTAL_CRC] =
4100         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4101                          CNTR_SYNTH),
4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4103                                   CNTR_SYNTH),
4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4105                                   CNTR_SYNTH),
4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4107                                   CNTR_SYNTH),
4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4109                                   CNTR_SYNTH),
4110 [C_DC_CRC_MULT_LN] =
4111         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4112                          CNTR_SYNTH),
4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4114                                     CNTR_SYNTH),
4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4116                                     CNTR_SYNTH),
4117 [C_DC_SEQ_CRC_CNT] =
4118         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4119                          CNTR_SYNTH),
4120 [C_DC_ESC0_ONLY_CNT] =
4121         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4122                          CNTR_SYNTH),
4123 [C_DC_ESC0_PLUS1_CNT] =
4124         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4125                          CNTR_SYNTH),
4126 [C_DC_ESC0_PLUS2_CNT] =
4127         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4128                          CNTR_SYNTH),
4129 [C_DC_REINIT_FROM_PEER_CNT] =
4130         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4131                          CNTR_SYNTH),
4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4133                                   CNTR_SYNTH),
4134 [C_DC_MISC_FLG_CNT] =
4135         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4136                          CNTR_SYNTH),
4137 [C_DC_PRF_GOOD_LTP_CNT] =
4138         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4139 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4140         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4141                          CNTR_SYNTH),
4142 [C_DC_PRF_RX_FLIT_CNT] =
4143         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_TX_FLIT_CNT] =
4145         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4146 [C_DC_PRF_CLK_CNTR] =
4147         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4149         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4151         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4152                          CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_SBE_CNT] =
4154         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4155 [C_DC_PG_STS_TX_MBE_CNT] =
4156         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4157                          CNTR_SYNTH),
4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4159                             access_sw_cpu_intr),
4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4161                             access_sw_cpu_rcv_limit),
4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4163                             access_sw_vtx_wait),
4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4165                             access_sw_pio_wait),
4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4167                             access_sw_pio_drain),
4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4169                             access_sw_kmem_wait),
4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4171                             access_sw_send_schedule),
4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4173                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4174                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4175                                       dev_access_u32_csr),
4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4177                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4178                              access_sde_int_cnt),
4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4180                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4181                              access_sde_err_cnt),
4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4183                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4184                                   access_sde_idle_int_cnt),
4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4186                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4187                                       access_sde_progress_int_cnt),
4188 /* MISC_ERR_STATUS */
4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4190                                 CNTR_NORMAL,
4191                                 access_misc_pll_lock_fail_err_cnt),
4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4193                                 CNTR_NORMAL,
4194                                 access_misc_mbist_fail_err_cnt),
4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4196                                 CNTR_NORMAL,
4197                                 access_misc_invalid_eep_cmd_err_cnt),
4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4199                                 CNTR_NORMAL,
4200                                 access_misc_efuse_done_parity_err_cnt),
4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4202                                 CNTR_NORMAL,
4203                                 access_misc_efuse_write_err_cnt),
4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4205                                 0, CNTR_NORMAL,
4206                                 access_misc_efuse_read_bad_addr_err_cnt),
4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4208                                 CNTR_NORMAL,
4209                                 access_misc_efuse_csr_parity_err_cnt),
4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4211                                 CNTR_NORMAL,
4212                                 access_misc_fw_auth_failed_err_cnt),
4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4214                                 CNTR_NORMAL,
4215                                 access_misc_key_mismatch_err_cnt),
4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4217                                 CNTR_NORMAL,
4218                                 access_misc_sbus_write_failed_err_cnt),
4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4220                                 CNTR_NORMAL,
4221                                 access_misc_csr_write_bad_addr_err_cnt),
4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4223                                 CNTR_NORMAL,
4224                                 access_misc_csr_read_bad_addr_err_cnt),
4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4226                                 CNTR_NORMAL,
4227                                 access_misc_csr_parity_err_cnt),
4228 /* CceErrStatus */
4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4230                                 CNTR_NORMAL,
4231                                 access_sw_cce_err_status_aggregated_cnt),
4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4233                                 CNTR_NORMAL,
4234                                 access_cce_msix_csr_parity_err_cnt),
4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4236                                 CNTR_NORMAL,
4237                                 access_cce_int_map_unc_err_cnt),
4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4239                                 CNTR_NORMAL,
4240                                 access_cce_int_map_cor_err_cnt),
4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4242                                 CNTR_NORMAL,
4243                                 access_cce_msix_table_unc_err_cnt),
4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4245                                 CNTR_NORMAL,
4246                                 access_cce_msix_table_cor_err_cnt),
4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4248                                 0, CNTR_NORMAL,
4249                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4251                                 0, CNTR_NORMAL,
4252                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4254                                 CNTR_NORMAL,
4255                                 access_cce_seg_write_bad_addr_err_cnt),
4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4257                                 CNTR_NORMAL,
4258                                 access_cce_seg_read_bad_addr_err_cnt),
4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4260                                 CNTR_NORMAL,
4261                                 access_la_triggered_cnt),
4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4263                                 CNTR_NORMAL,
4264                                 access_cce_trgt_cpl_timeout_err_cnt),
4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4266                                 CNTR_NORMAL,
4267                                 access_pcic_receive_parity_err_cnt),
4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4269                                 CNTR_NORMAL,
4270                                 access_pcic_transmit_back_parity_err_cnt),
4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4272                                 0, CNTR_NORMAL,
4273                                 access_pcic_transmit_front_parity_err_cnt),
4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4275                                 CNTR_NORMAL,
4276                                 access_pcic_cpl_dat_q_unc_err_cnt),
4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4278                                 CNTR_NORMAL,
4279                                 access_pcic_cpl_hd_q_unc_err_cnt),
4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4281                                 CNTR_NORMAL,
4282                                 access_pcic_post_dat_q_unc_err_cnt),
4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4284                                 CNTR_NORMAL,
4285                                 access_pcic_post_hd_q_unc_err_cnt),
4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4287                                 CNTR_NORMAL,
4288                                 access_pcic_retry_sot_mem_unc_err_cnt),
4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4290                                 CNTR_NORMAL,
4291                                 access_pcic_retry_mem_unc_err),
4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4293                                 CNTR_NORMAL,
4294                                 access_pcic_n_post_dat_q_parity_err_cnt),
4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4296                                 CNTR_NORMAL,
4297                                 access_pcic_n_post_h_q_parity_err_cnt),
4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4299                                 CNTR_NORMAL,
4300                                 access_pcic_cpl_dat_q_cor_err_cnt),
4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4302                                 CNTR_NORMAL,
4303                                 access_pcic_cpl_hd_q_cor_err_cnt),
4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4305                                 CNTR_NORMAL,
4306                                 access_pcic_post_dat_q_cor_err_cnt),
4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4308                                 CNTR_NORMAL,
4309                                 access_pcic_post_hd_q_cor_err_cnt),
4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4311                                 CNTR_NORMAL,
4312                                 access_pcic_retry_sot_mem_cor_err_cnt),
4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4314                                 CNTR_NORMAL,
4315                                 access_pcic_retry_mem_cor_err_cnt),
4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4317                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4318                                 CNTR_NORMAL,
4319                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4321                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4322                                 CNTR_NORMAL,
4323                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4324                                 ),
4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4326                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4327                         CNTR_NORMAL,
4328                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4330                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4331                         CNTR_NORMAL,
4332                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4334                         0, CNTR_NORMAL,
4335                         access_cce_cli2_async_fifo_parity_err_cnt),
4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4337                         CNTR_NORMAL,
4338                         access_cce_csr_cfg_bus_parity_err_cnt),
4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4340                         0, CNTR_NORMAL,
4341                         access_cce_cli0_async_fifo_parity_err_cnt),
4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4343                         CNTR_NORMAL,
4344                         access_cce_rspd_data_parity_err_cnt),
4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4346                         CNTR_NORMAL,
4347                         access_cce_trgt_access_err_cnt),
4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4349                         0, CNTR_NORMAL,
4350                         access_cce_trgt_async_fifo_parity_err_cnt),
4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4352                         CNTR_NORMAL,
4353                         access_cce_csr_write_bad_addr_err_cnt),
4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4355                         CNTR_NORMAL,
4356                         access_cce_csr_read_bad_addr_err_cnt),
4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4358                         CNTR_NORMAL,
4359                         access_ccs_csr_parity_err_cnt),
4360
4361 /* RcvErrStatus */
4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4363                         CNTR_NORMAL,
4364                         access_rx_csr_parity_err_cnt),
4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4366                         CNTR_NORMAL,
4367                         access_rx_csr_write_bad_addr_err_cnt),
4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4369                         CNTR_NORMAL,
4370                         access_rx_csr_read_bad_addr_err_cnt),
4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4372                         CNTR_NORMAL,
4373                         access_rx_dma_csr_unc_err_cnt),
4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4375                         CNTR_NORMAL,
4376                         access_rx_dma_dq_fsm_encoding_err_cnt),
4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4378                         CNTR_NORMAL,
4379                         access_rx_dma_eq_fsm_encoding_err_cnt),
4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4381                         CNTR_NORMAL,
4382                         access_rx_dma_csr_parity_err_cnt),
4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4384                         CNTR_NORMAL,
4385                         access_rx_rbuf_data_cor_err_cnt),
4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4387                         CNTR_NORMAL,
4388                         access_rx_rbuf_data_unc_err_cnt),
4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4390                         CNTR_NORMAL,
4391                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4393                         CNTR_NORMAL,
4394                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4396                         CNTR_NORMAL,
4397                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4399                         CNTR_NORMAL,
4400                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4402                         CNTR_NORMAL,
4403                         access_rx_rbuf_desc_part2_cor_err_cnt),
4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4405                         CNTR_NORMAL,
4406                         access_rx_rbuf_desc_part2_unc_err_cnt),
4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4408                         CNTR_NORMAL,
4409                         access_rx_rbuf_desc_part1_cor_err_cnt),
4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4411                         CNTR_NORMAL,
4412                         access_rx_rbuf_desc_part1_unc_err_cnt),
4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4414                         CNTR_NORMAL,
4415                         access_rx_hq_intr_fsm_err_cnt),
4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4417                         CNTR_NORMAL,
4418                         access_rx_hq_intr_csr_parity_err_cnt),
4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4420                         CNTR_NORMAL,
4421                         access_rx_lookup_csr_parity_err_cnt),
4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4423                         CNTR_NORMAL,
4424                         access_rx_lookup_rcv_array_cor_err_cnt),
4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4426                         CNTR_NORMAL,
4427                         access_rx_lookup_rcv_array_unc_err_cnt),
4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4429                         0, CNTR_NORMAL,
4430                         access_rx_lookup_des_part2_parity_err_cnt),
4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4432                         0, CNTR_NORMAL,
4433                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4435                         CNTR_NORMAL,
4436                         access_rx_lookup_des_part1_unc_err_cnt),
4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4438                         CNTR_NORMAL,
4439                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4441                         CNTR_NORMAL,
4442                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4444                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4445                         CNTR_NORMAL,
4446                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4448                         0, CNTR_NORMAL,
4449                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4451                         0, CNTR_NORMAL,
4452                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4454                         CNTR_NORMAL,
4455                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4457                         CNTR_NORMAL,
4458                         access_rx_rbuf_empty_err_cnt),
4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4460                         CNTR_NORMAL,
4461                         access_rx_rbuf_full_err_cnt),
4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4463                         CNTR_NORMAL,
4464                         access_rbuf_bad_lookup_err_cnt),
4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4466                         CNTR_NORMAL,
4467                         access_rbuf_ctx_id_parity_err_cnt),
4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4469                         CNTR_NORMAL,
4470                         access_rbuf_csr_qeopdw_parity_err_cnt),
4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4472                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4473                         CNTR_NORMAL,
4474                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4476                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4477                         CNTR_NORMAL,
4478                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4480                         0, CNTR_NORMAL,
4481                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4483                         0, CNTR_NORMAL,
4484                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4486                         0, 0, CNTR_NORMAL,
4487                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4489                         0, CNTR_NORMAL,
4490                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4492                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4493                         CNTR_NORMAL,
4494                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4496                         0, CNTR_NORMAL,
4497                         access_rx_rbuf_block_list_read_cor_err_cnt),
4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4499                         0, CNTR_NORMAL,
4500                         access_rx_rbuf_block_list_read_unc_err_cnt),
4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4502                         CNTR_NORMAL,
4503                         access_rx_rbuf_lookup_des_cor_err_cnt),
4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4505                         CNTR_NORMAL,
4506                         access_rx_rbuf_lookup_des_unc_err_cnt),
4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4508                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4509                         CNTR_NORMAL,
4510                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4512                         CNTR_NORMAL,
4513                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4515                         CNTR_NORMAL,
4516                         access_rx_rbuf_free_list_cor_err_cnt),
4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4518                         CNTR_NORMAL,
4519                         access_rx_rbuf_free_list_unc_err_cnt),
4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4521                         CNTR_NORMAL,
4522                         access_rx_rcv_fsm_encoding_err_cnt),
4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4524                         CNTR_NORMAL,
4525                         access_rx_dma_flag_cor_err_cnt),
4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4527                         CNTR_NORMAL,
4528                         access_rx_dma_flag_unc_err_cnt),
4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4530                         CNTR_NORMAL,
4531                         access_rx_dc_sop_eop_parity_err_cnt),
4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4533                         CNTR_NORMAL,
4534                         access_rx_rcv_csr_parity_err_cnt),
4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4536                         CNTR_NORMAL,
4537                         access_rx_rcv_qp_map_table_cor_err_cnt),
4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4539                         CNTR_NORMAL,
4540                         access_rx_rcv_qp_map_table_unc_err_cnt),
4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4542                         CNTR_NORMAL,
4543                         access_rx_rcv_data_cor_err_cnt),
4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4545                         CNTR_NORMAL,
4546                         access_rx_rcv_data_unc_err_cnt),
4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4548                         CNTR_NORMAL,
4549                         access_rx_rcv_hdr_cor_err_cnt),
4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4551                         CNTR_NORMAL,
4552                         access_rx_rcv_hdr_unc_err_cnt),
4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4554                         CNTR_NORMAL,
4555                         access_rx_dc_intf_parity_err_cnt),
4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4557                         CNTR_NORMAL,
4558                         access_rx_dma_csr_cor_err_cnt),
4559 /* SendPioErrStatus */
4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4561                         CNTR_NORMAL,
4562                         access_pio_pec_sop_head_parity_err_cnt),
4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4564                         CNTR_NORMAL,
4565                         access_pio_pcc_sop_head_parity_err_cnt),
4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4567                         0, 0, CNTR_NORMAL,
4568                         access_pio_last_returned_cnt_parity_err_cnt),
4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4570                         0, CNTR_NORMAL,
4571                         access_pio_current_free_cnt_parity_err_cnt),
4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4573                         CNTR_NORMAL,
4574                         access_pio_reserved_31_err_cnt),
4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4576                         CNTR_NORMAL,
4577                         access_pio_reserved_30_err_cnt),
4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4579                         CNTR_NORMAL,
4580                         access_pio_ppmc_sop_len_err_cnt),
4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4582                         CNTR_NORMAL,
4583                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4585                         CNTR_NORMAL,
4586                         access_pio_vl_fifo_parity_err_cnt),
4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4588                         CNTR_NORMAL,
4589                         access_pio_vlf_sop_parity_err_cnt),
4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4591                         CNTR_NORMAL,
4592                         access_pio_vlf_v1_len_parity_err_cnt),
4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4594                         CNTR_NORMAL,
4595                         access_pio_block_qw_count_parity_err_cnt),
4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4597                         CNTR_NORMAL,
4598                         access_pio_write_qw_valid_parity_err_cnt),
4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4600                         CNTR_NORMAL,
4601                         access_pio_state_machine_err_cnt),
4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4603                         CNTR_NORMAL,
4604                         access_pio_write_data_parity_err_cnt),
4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4606                         CNTR_NORMAL,
4607                         access_pio_host_addr_mem_cor_err_cnt),
4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4609                         CNTR_NORMAL,
4610                         access_pio_host_addr_mem_unc_err_cnt),
4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4612                         CNTR_NORMAL,
4613                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4615                         CNTR_NORMAL,
4616                         access_pio_init_sm_in_err_cnt),
4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4618                         CNTR_NORMAL,
4619                         access_pio_ppmc_pbl_fifo_err_cnt),
4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4621                         0, CNTR_NORMAL,
4622                         access_pio_credit_ret_fifo_parity_err_cnt),
4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4624                         CNTR_NORMAL,
4625                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4627                         CNTR_NORMAL,
4628                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4630                         CNTR_NORMAL,
4631                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4633                         CNTR_NORMAL,
4634                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4636                         CNTR_NORMAL,
4637                         access_pio_sm_pkt_reset_parity_err_cnt),
4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4639                         CNTR_NORMAL,
4640                         access_pio_pkt_evict_fifo_parity_err_cnt),
4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4642                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4643                         CNTR_NORMAL,
4644                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4646                         CNTR_NORMAL,
4647                         access_pio_sbrdctl_crrel_parity_err_cnt),
4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4649                         CNTR_NORMAL,
4650                         access_pio_pec_fifo_parity_err_cnt),
4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4652                         CNTR_NORMAL,
4653                         access_pio_pcc_fifo_parity_err_cnt),
4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4655                         CNTR_NORMAL,
4656                         access_pio_sb_mem_fifo1_err_cnt),
4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4658                         CNTR_NORMAL,
4659                         access_pio_sb_mem_fifo0_err_cnt),
4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4661                         CNTR_NORMAL,
4662                         access_pio_csr_parity_err_cnt),
4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4664                         CNTR_NORMAL,
4665                         access_pio_write_addr_parity_err_cnt),
4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4667                         CNTR_NORMAL,
4668                         access_pio_write_bad_ctxt_err_cnt),
4669 /* SendDmaErrStatus */
4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4671                         0, CNTR_NORMAL,
4672                         access_sdma_pcie_req_tracking_cor_err_cnt),
4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4674                         0, CNTR_NORMAL,
4675                         access_sdma_pcie_req_tracking_unc_err_cnt),
4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4677                         CNTR_NORMAL,
4678                         access_sdma_csr_parity_err_cnt),
4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4680                         CNTR_NORMAL,
4681                         access_sdma_rpy_tag_err_cnt),
4682 /* SendEgressErrStatus */
4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4684                         CNTR_NORMAL,
4685                         access_tx_read_pio_memory_csr_unc_err_cnt),
4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4687                         0, CNTR_NORMAL,
4688                         access_tx_read_sdma_memory_csr_err_cnt),
4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4690                         CNTR_NORMAL,
4691                         access_tx_egress_fifo_cor_err_cnt),
4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4693                         CNTR_NORMAL,
4694                         access_tx_read_pio_memory_cor_err_cnt),
4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4696                         CNTR_NORMAL,
4697                         access_tx_read_sdma_memory_cor_err_cnt),
4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4699                         CNTR_NORMAL,
4700                         access_tx_sb_hdr_cor_err_cnt),
4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4702                         CNTR_NORMAL,
4703                         access_tx_credit_overrun_err_cnt),
4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4705                         CNTR_NORMAL,
4706                         access_tx_launch_fifo8_cor_err_cnt),
4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4708                         CNTR_NORMAL,
4709                         access_tx_launch_fifo7_cor_err_cnt),
4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4711                         CNTR_NORMAL,
4712                         access_tx_launch_fifo6_cor_err_cnt),
4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4714                         CNTR_NORMAL,
4715                         access_tx_launch_fifo5_cor_err_cnt),
4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4717                         CNTR_NORMAL,
4718                         access_tx_launch_fifo4_cor_err_cnt),
4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4720                         CNTR_NORMAL,
4721                         access_tx_launch_fifo3_cor_err_cnt),
4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4723                         CNTR_NORMAL,
4724                         access_tx_launch_fifo2_cor_err_cnt),
4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4726                         CNTR_NORMAL,
4727                         access_tx_launch_fifo1_cor_err_cnt),
4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4729                         CNTR_NORMAL,
4730                         access_tx_launch_fifo0_cor_err_cnt),
4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4732                         CNTR_NORMAL,
4733                         access_tx_credit_return_vl_err_cnt),
4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4735                         CNTR_NORMAL,
4736                         access_tx_hcrc_insertion_err_cnt),
4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4738                         CNTR_NORMAL,
4739                         access_tx_egress_fifo_unc_err_cnt),
4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4741                         CNTR_NORMAL,
4742                         access_tx_read_pio_memory_unc_err_cnt),
4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4744                         CNTR_NORMAL,
4745                         access_tx_read_sdma_memory_unc_err_cnt),
4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4747                         CNTR_NORMAL,
4748                         access_tx_sb_hdr_unc_err_cnt),
4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4750                         CNTR_NORMAL,
4751                         access_tx_credit_return_partiy_err_cnt),
4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4753                         0, 0, CNTR_NORMAL,
4754                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4756                         0, 0, CNTR_NORMAL,
4757                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4759                         0, 0, CNTR_NORMAL,
4760                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4762                         0, 0, CNTR_NORMAL,
4763                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4765                         0, 0, CNTR_NORMAL,
4766                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4768                         0, 0, CNTR_NORMAL,
4769                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4771                         0, 0, CNTR_NORMAL,
4772                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4774                         0, 0, CNTR_NORMAL,
4775                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4777                         0, 0, CNTR_NORMAL,
4778                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4780                         0, 0, CNTR_NORMAL,
4781                         access_tx_sdma15_disallowed_packet_err_cnt),
4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4783                         0, 0, CNTR_NORMAL,
4784                         access_tx_sdma14_disallowed_packet_err_cnt),
4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4786                         0, 0, CNTR_NORMAL,
4787                         access_tx_sdma13_disallowed_packet_err_cnt),
4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4789                         0, 0, CNTR_NORMAL,
4790                         access_tx_sdma12_disallowed_packet_err_cnt),
4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4792                         0, 0, CNTR_NORMAL,
4793                         access_tx_sdma11_disallowed_packet_err_cnt),
4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4795                         0, 0, CNTR_NORMAL,
4796                         access_tx_sdma10_disallowed_packet_err_cnt),
4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4798                         0, 0, CNTR_NORMAL,
4799                         access_tx_sdma9_disallowed_packet_err_cnt),
4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4801                         0, 0, CNTR_NORMAL,
4802                         access_tx_sdma8_disallowed_packet_err_cnt),
4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4804                         0, 0, CNTR_NORMAL,
4805                         access_tx_sdma7_disallowed_packet_err_cnt),
4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4807                         0, 0, CNTR_NORMAL,
4808                         access_tx_sdma6_disallowed_packet_err_cnt),
4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4810                         0, 0, CNTR_NORMAL,
4811                         access_tx_sdma5_disallowed_packet_err_cnt),
4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4813                         0, 0, CNTR_NORMAL,
4814                         access_tx_sdma4_disallowed_packet_err_cnt),
4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4816                         0, 0, CNTR_NORMAL,
4817                         access_tx_sdma3_disallowed_packet_err_cnt),
4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4819                         0, 0, CNTR_NORMAL,
4820                         access_tx_sdma2_disallowed_packet_err_cnt),
4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4822                         0, 0, CNTR_NORMAL,
4823                         access_tx_sdma1_disallowed_packet_err_cnt),
4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4825                         0, 0, CNTR_NORMAL,
4826                         access_tx_sdma0_disallowed_packet_err_cnt),
4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4828                         CNTR_NORMAL,
4829                         access_tx_config_parity_err_cnt),
4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4831                         CNTR_NORMAL,
4832                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4834                         CNTR_NORMAL,
4835                         access_tx_launch_csr_parity_err_cnt),
4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4837                         CNTR_NORMAL,
4838                         access_tx_illegal_vl_err_cnt),
4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4840                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4841                         CNTR_NORMAL,
4842                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4844                         CNTR_NORMAL,
4845                         access_egress_reserved_10_err_cnt),
4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4847                         CNTR_NORMAL,
4848                         access_egress_reserved_9_err_cnt),
4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4850                         0, 0, CNTR_NORMAL,
4851                         access_tx_sdma_launch_intf_parity_err_cnt),
4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4853                         CNTR_NORMAL,
4854                         access_tx_pio_launch_intf_parity_err_cnt),
4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4856                         CNTR_NORMAL,
4857                         access_egress_reserved_6_err_cnt),
4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4859                         CNTR_NORMAL,
4860                         access_tx_incorrect_link_state_err_cnt),
4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4862                         CNTR_NORMAL,
4863                         access_tx_linkdown_err_cnt),
4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4865                         "EgressFifoUnderrunOrParityErr", 0, 0,
4866                         CNTR_NORMAL,
4867                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4869                         CNTR_NORMAL,
4870                         access_egress_reserved_2_err_cnt),
4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4872                         CNTR_NORMAL,
4873                         access_tx_pkt_integrity_mem_unc_err_cnt),
4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4875                         CNTR_NORMAL,
4876                         access_tx_pkt_integrity_mem_cor_err_cnt),
4877 /* SendErrStatus */
4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4879                         CNTR_NORMAL,
4880                         access_send_csr_write_bad_addr_err_cnt),
4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4882                         CNTR_NORMAL,
4883                         access_send_csr_read_bad_addr_err_cnt),
4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4885                         CNTR_NORMAL,
4886                         access_send_csr_parity_cnt),
4887 /* SendCtxtErrStatus */
4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4889                         CNTR_NORMAL,
4890                         access_pio_write_out_of_bounds_err_cnt),
4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4892                         CNTR_NORMAL,
4893                         access_pio_write_overflow_err_cnt),
4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4895                         0, 0, CNTR_NORMAL,
4896                         access_pio_write_crosses_boundary_err_cnt),
4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4898                         CNTR_NORMAL,
4899                         access_pio_disallowed_packet_err_cnt),
4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4901                         CNTR_NORMAL,
4902                         access_pio_inconsistent_sop_err_cnt),
4903 /* SendDmaEngErrStatus */
4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4905                         0, 0, CNTR_NORMAL,
4906                         access_sdma_header_request_fifo_cor_err_cnt),
4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4908                         CNTR_NORMAL,
4909                         access_sdma_header_storage_cor_err_cnt),
4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4911                         CNTR_NORMAL,
4912                         access_sdma_packet_tracking_cor_err_cnt),
4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4914                         CNTR_NORMAL,
4915                         access_sdma_assembly_cor_err_cnt),
4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4917                         CNTR_NORMAL,
4918                         access_sdma_desc_table_cor_err_cnt),
4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4920                         0, 0, CNTR_NORMAL,
4921                         access_sdma_header_request_fifo_unc_err_cnt),
4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4923                         CNTR_NORMAL,
4924                         access_sdma_header_storage_unc_err_cnt),
4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4926                         CNTR_NORMAL,
4927                         access_sdma_packet_tracking_unc_err_cnt),
4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4929                         CNTR_NORMAL,
4930                         access_sdma_assembly_unc_err_cnt),
4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4932                         CNTR_NORMAL,
4933                         access_sdma_desc_table_unc_err_cnt),
4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4935                         CNTR_NORMAL,
4936                         access_sdma_timeout_err_cnt),
4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4938                         CNTR_NORMAL,
4939                         access_sdma_header_length_err_cnt),
4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4941                         CNTR_NORMAL,
4942                         access_sdma_header_address_err_cnt),
4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4944                         CNTR_NORMAL,
4945                         access_sdma_header_select_err_cnt),
4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4947                         CNTR_NORMAL,
4948                         access_sdma_reserved_9_err_cnt),
4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4950                         CNTR_NORMAL,
4951                         access_sdma_packet_desc_overflow_err_cnt),
4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4953                         CNTR_NORMAL,
4954                         access_sdma_length_mismatch_err_cnt),
4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4956                         CNTR_NORMAL,
4957                         access_sdma_halt_err_cnt),
4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4959                         CNTR_NORMAL,
4960                         access_sdma_mem_read_err_cnt),
4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4962                         CNTR_NORMAL,
4963                         access_sdma_first_desc_err_cnt),
4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4965                         CNTR_NORMAL,
4966                         access_sdma_tail_out_of_bounds_err_cnt),
4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4968                         CNTR_NORMAL,
4969                         access_sdma_too_long_err_cnt),
4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4971                         CNTR_NORMAL,
4972                         access_sdma_gen_mismatch_err_cnt),
4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4974                         CNTR_NORMAL,
4975                         access_sdma_wrong_dw_err_cnt),
4976 };
4977
4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4980                         CNTR_NORMAL),
4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4982                         CNTR_NORMAL),
4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4984                         CNTR_NORMAL),
4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4986                         CNTR_NORMAL),
4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4988                         CNTR_NORMAL),
4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4990                         CNTR_NORMAL),
4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4992                         CNTR_NORMAL),
4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4997                                       CNTR_SYNTH | CNTR_VL),
4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4999                                      CNTR_SYNTH | CNTR_VL),
5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5001                                       CNTR_SYNTH | CNTR_VL),
5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005                              access_sw_link_dn_cnt),
5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5007                            access_sw_link_up_cnt),
5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5009                                  access_sw_unknown_frame_cnt),
5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5011                              access_sw_xmit_discards),
5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5013                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5014                                 access_sw_xmit_discards),
5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5016                                  access_xmit_constraint_errs),
5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5018                                 access_rcv_constraint_errs),
5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5032                                access_sw_cpu_rc_acks),
5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5034                                 access_sw_cpu_rc_qacks),
5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5036                                        access_sw_cpu_rc_delayed_comp),
5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5117 };
5118
5119 /* ======================================================================== */
5120
5121 /* return true if this is chip revision revision a */
5122 int is_ax(struct hfi1_devdata *dd)
5123 {
5124         u8 chip_rev_minor =
5125                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5126                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5127         return (chip_rev_minor & 0xf0) == 0;
5128 }
5129
5130 /* return true if this is chip revision revision b */
5131 int is_bx(struct hfi1_devdata *dd)
5132 {
5133         u8 chip_rev_minor =
5134                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5135                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5136         return (chip_rev_minor & 0xF0) == 0x10;
5137 }
5138
5139 /*
5140  * Append string s to buffer buf.  Arguments curp and len are the current
5141  * position and remaining length, respectively.
5142  *
5143  * return 0 on success, 1 on out of room
5144  */
5145 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5146 {
5147         char *p = *curp;
5148         int len = *lenp;
5149         int result = 0; /* success */
5150         char c;
5151
5152         /* add a comma, if first in the buffer */
5153         if (p != buf) {
5154                 if (len == 0) {
5155                         result = 1; /* out of room */
5156                         goto done;
5157                 }
5158                 *p++ = ',';
5159                 len--;
5160         }
5161
5162         /* copy the string */
5163         while ((c = *s++) != 0) {
5164                 if (len == 0) {
5165                         result = 1; /* out of room */
5166                         goto done;
5167                 }
5168                 *p++ = c;
5169                 len--;
5170         }
5171
5172 done:
5173         /* write return values */
5174         *curp = p;
5175         *lenp = len;
5176
5177         return result;
5178 }
5179
5180 /*
5181  * Using the given flag table, print a comma separated string into
5182  * the buffer.  End in '*' if the buffer is too short.
5183  */
5184 static char *flag_string(char *buf, int buf_len, u64 flags,
5185                          struct flag_table *table, int table_size)
5186 {
5187         char extra[32];
5188         char *p = buf;
5189         int len = buf_len;
5190         int no_room = 0;
5191         int i;
5192
5193         /* make sure there is at least 2 so we can form "*" */
5194         if (len < 2)
5195                 return "";
5196
5197         len--;  /* leave room for a nul */
5198         for (i = 0; i < table_size; i++) {
5199                 if (flags & table[i].flag) {
5200                         no_room = append_str(buf, &p, &len, table[i].str);
5201                         if (no_room)
5202                                 break;
5203                         flags &= ~table[i].flag;
5204                 }
5205         }
5206
5207         /* any undocumented bits left? */
5208         if (!no_room && flags) {
5209                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5210                 no_room = append_str(buf, &p, &len, extra);
5211         }
5212
5213         /* add * if ran out of room */
5214         if (no_room) {
5215                 /* may need to back up to add space for a '*' */
5216                 if (len == 0)
5217                         --p;
5218                 *p++ = '*';
5219         }
5220
5221         /* add final nul - space already allocated above */
5222         *p = 0;
5223         return buf;
5224 }
5225
5226 /* first 8 CCE error interrupt source names */
5227 static const char * const cce_misc_names[] = {
5228         "CceErrInt",            /* 0 */
5229         "RxeErrInt",            /* 1 */
5230         "MiscErrInt",           /* 2 */
5231         "Reserved3",            /* 3 */
5232         "PioErrInt",            /* 4 */
5233         "SDmaErrInt",           /* 5 */
5234         "EgressErrInt",         /* 6 */
5235         "TxeErrInt"             /* 7 */
5236 };
5237
5238 /*
5239  * Return the miscellaneous error interrupt name.
5240  */
5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5242 {
5243         if (source < ARRAY_SIZE(cce_misc_names))
5244                 strncpy(buf, cce_misc_names[source], bsize);
5245         else
5246                 snprintf(buf, bsize, "Reserved%u",
5247                          source + IS_GENERAL_ERR_START);
5248
5249         return buf;
5250 }
5251
5252 /*
5253  * Return the SDMA engine error interrupt name.
5254  */
5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5256 {
5257         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5258         return buf;
5259 }
5260
5261 /*
5262  * Return the send context error interrupt name.
5263  */
5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5265 {
5266         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5267         return buf;
5268 }
5269
5270 static const char * const various_names[] = {
5271         "PbcInt",
5272         "GpioAssertInt",
5273         "Qsfp1Int",
5274         "Qsfp2Int",
5275         "TCritInt"
5276 };
5277
5278 /*
5279  * Return the various interrupt name.
5280  */
5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5282 {
5283         if (source < ARRAY_SIZE(various_names))
5284                 strncpy(buf, various_names[source], bsize);
5285         else
5286                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5287         return buf;
5288 }
5289
5290 /*
5291  * Return the DC interrupt name.
5292  */
5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5294 {
5295         static const char * const dc_int_names[] = {
5296                 "common",
5297                 "lcb",
5298                 "8051",
5299                 "lbm"   /* local block merge */
5300         };
5301
5302         if (source < ARRAY_SIZE(dc_int_names))
5303                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5304         else
5305                 snprintf(buf, bsize, "DCInt%u", source);
5306         return buf;
5307 }
5308
5309 static const char * const sdma_int_names[] = {
5310         "SDmaInt",
5311         "SdmaIdleInt",
5312         "SdmaProgressInt",
5313 };
5314
5315 /*
5316  * Return the SDMA engine interrupt name.
5317  */
5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5319 {
5320         /* what interrupt */
5321         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5322         /* which engine */
5323         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5324
5325         if (likely(what < 3))
5326                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5327         else
5328                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5329         return buf;
5330 }
5331
5332 /*
5333  * Return the receive available interrupt name.
5334  */
5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5336 {
5337         snprintf(buf, bsize, "RcvAvailInt%u", source);
5338         return buf;
5339 }
5340
5341 /*
5342  * Return the receive urgent interrupt name.
5343  */
5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5345 {
5346         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5347         return buf;
5348 }
5349
5350 /*
5351  * Return the send credit interrupt name.
5352  */
5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5354 {
5355         snprintf(buf, bsize, "SendCreditInt%u", source);
5356         return buf;
5357 }
5358
5359 /*
5360  * Return the reserved interrupt name.
5361  */
5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5363 {
5364         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5365         return buf;
5366 }
5367
5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5369 {
5370         return flag_string(buf, buf_len, flags,
5371                            cce_err_status_flags,
5372                            ARRAY_SIZE(cce_err_status_flags));
5373 }
5374
5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5376 {
5377         return flag_string(buf, buf_len, flags,
5378                            rxe_err_status_flags,
5379                            ARRAY_SIZE(rxe_err_status_flags));
5380 }
5381
5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5383 {
5384         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5385                            ARRAY_SIZE(misc_err_status_flags));
5386 }
5387
5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5389 {
5390         return flag_string(buf, buf_len, flags,
5391                            pio_err_status_flags,
5392                            ARRAY_SIZE(pio_err_status_flags));
5393 }
5394
5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5396 {
5397         return flag_string(buf, buf_len, flags,
5398                            sdma_err_status_flags,
5399                            ARRAY_SIZE(sdma_err_status_flags));
5400 }
5401
5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5403 {
5404         return flag_string(buf, buf_len, flags,
5405                            egress_err_status_flags,
5406                            ARRAY_SIZE(egress_err_status_flags));
5407 }
5408
5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5410 {
5411         return flag_string(buf, buf_len, flags,
5412                            egress_err_info_flags,
5413                            ARRAY_SIZE(egress_err_info_flags));
5414 }
5415
5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5417 {
5418         return flag_string(buf, buf_len, flags,
5419                            send_err_status_flags,
5420                            ARRAY_SIZE(send_err_status_flags));
5421 }
5422
5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5424 {
5425         char buf[96];
5426         int i = 0;
5427
5428         /*
5429          * For most these errors, there is nothing that can be done except
5430          * report or record it.
5431          */
5432         dd_dev_info(dd, "CCE Error: %s\n",
5433                     cce_err_status_string(buf, sizeof(buf), reg));
5434
5435         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5436             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5437                 /* this error requires a manual drop into SPC freeze mode */
5438                 /* then a fix up */
5439                 start_freeze_handling(dd->pport, FREEZE_SELF);
5440         }
5441
5442         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5443                 if (reg & (1ull << i)) {
5444                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5445                         /* maintain a counter over all cce_err_status errors */
5446                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5447                 }
5448         }
5449 }
5450
5451 /*
5452  * Check counters for receive errors that do not have an interrupt
5453  * associated with them.
5454  */
5455 #define RCVERR_CHECK_TIME 10
5456 static void update_rcverr_timer(unsigned long opaque)
5457 {
5458         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5459         struct hfi1_pportdata *ppd = dd->pport;
5460         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5461
5462         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5463             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5464                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5465                 set_link_down_reason(
5466                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5467                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5468                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5469         }
5470         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5471
5472         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5473 }
5474
5475 static int init_rcverr(struct hfi1_devdata *dd)
5476 {
5477         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5478         /* Assume the hardware counter has been reset */
5479         dd->rcv_ovfl_cnt = 0;
5480         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5481 }
5482
5483 static void free_rcverr(struct hfi1_devdata *dd)
5484 {
5485         if (dd->rcverr_timer.data)
5486                 del_timer_sync(&dd->rcverr_timer);
5487         dd->rcverr_timer.data = 0;
5488 }
5489
5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5491 {
5492         char buf[96];
5493         int i = 0;
5494
5495         dd_dev_info(dd, "Receive Error: %s\n",
5496                     rxe_err_status_string(buf, sizeof(buf), reg));
5497
5498         if (reg & ALL_RXE_FREEZE_ERR) {
5499                 int flags = 0;
5500
5501                 /*
5502                  * Freeze mode recovery is disabled for the errors
5503                  * in RXE_FREEZE_ABORT_MASK
5504                  */
5505                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5506                         flags = FREEZE_ABORT;
5507
5508                 start_freeze_handling(dd->pport, flags);
5509         }
5510
5511         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5512                 if (reg & (1ull << i))
5513                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5514         }
5515 }
5516
5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5518 {
5519         char buf[96];
5520         int i = 0;
5521
5522         dd_dev_info(dd, "Misc Error: %s",
5523                     misc_err_status_string(buf, sizeof(buf), reg));
5524         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5525                 if (reg & (1ull << i))
5526                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5527         }
5528 }
5529
5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5531 {
5532         char buf[96];
5533         int i = 0;
5534
5535         dd_dev_info(dd, "PIO Error: %s\n",
5536                     pio_err_status_string(buf, sizeof(buf), reg));
5537
5538         if (reg & ALL_PIO_FREEZE_ERR)
5539                 start_freeze_handling(dd->pport, 0);
5540
5541         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5542                 if (reg & (1ull << i))
5543                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5544         }
5545 }
5546
5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5548 {
5549         char buf[96];
5550         int i = 0;
5551
5552         dd_dev_info(dd, "SDMA Error: %s\n",
5553                     sdma_err_status_string(buf, sizeof(buf), reg));
5554
5555         if (reg & ALL_SDMA_FREEZE_ERR)
5556                 start_freeze_handling(dd->pport, 0);
5557
5558         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5559                 if (reg & (1ull << i))
5560                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5561         }
5562 }
5563
5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5565 {
5566         incr_cntr64(&ppd->port_xmit_discards);
5567 }
5568
5569 static void count_port_inactive(struct hfi1_devdata *dd)
5570 {
5571         __count_port_discards(dd->pport);
5572 }
5573
5574 /*
5575  * We have had a "disallowed packet" error during egress. Determine the
5576  * integrity check which failed, and update relevant error counter, etc.
5577  *
5578  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5579  * bit of state per integrity check, and so we can miss the reason for an
5580  * egress error if more than one packet fails the same integrity check
5581  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5582  */
5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5584                                         int vl)
5585 {
5586         struct hfi1_pportdata *ppd = dd->pport;
5587         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5588         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5589         char buf[96];
5590
5591         /* clear down all observed info as quickly as possible after read */
5592         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5593
5594         dd_dev_info(dd,
5595                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5596                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5597
5598         /* Eventually add other counters for each bit */
5599         if (info & PORT_DISCARD_EGRESS_ERRS) {
5600                 int weight, i;
5601
5602                 /*
5603                  * Count all applicable bits as individual errors and
5604                  * attribute them to the packet that triggered this handler.
5605                  * This may not be completely accurate due to limitations
5606                  * on the available hardware error information.  There is
5607                  * a single information register and any number of error
5608                  * packets may have occurred and contributed to it before
5609                  * this routine is called.  This means that:
5610                  * a) If multiple packets with the same error occur before
5611                  *    this routine is called, earlier packets are missed.
5612                  *    There is only a single bit for each error type.
5613                  * b) Errors may not be attributed to the correct VL.
5614                  *    The driver is attributing all bits in the info register
5615                  *    to the packet that triggered this call, but bits
5616                  *    could be an accumulation of different packets with
5617                  *    different VLs.
5618                  * c) A single error packet may have multiple counts attached
5619                  *    to it.  There is no way for the driver to know if
5620                  *    multiple bits set in the info register are due to a
5621                  *    single packet or multiple packets.  The driver assumes
5622                  *    multiple packets.
5623                  */
5624                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5625                 for (i = 0; i < weight; i++) {
5626                         __count_port_discards(ppd);
5627                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5628                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5629                         else if (vl == 15)
5630                                 incr_cntr64(&ppd->port_xmit_discards_vl
5631                                             [C_VL_15]);
5632                 }
5633         }
5634 }
5635
5636 /*
5637  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5638  * register. Does it represent a 'port inactive' error?
5639  */
5640 static inline int port_inactive_err(u64 posn)
5641 {
5642         return (posn >= SEES(TX_LINKDOWN) &&
5643                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5644 }
5645
5646 /*
5647  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5648  * register. Does it represent a 'disallowed packet' error?
5649  */
5650 static inline int disallowed_pkt_err(int posn)
5651 {
5652         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5653                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5654 }
5655
5656 /*
5657  * Input value is a bit position of one of the SDMA engine disallowed
5658  * packet errors.  Return which engine.  Use of this must be guarded by
5659  * disallowed_pkt_err().
5660  */
5661 static inline int disallowed_pkt_engine(int posn)
5662 {
5663         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5664 }
5665
5666 /*
5667  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5668  * be done.
5669  */
5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5671 {
5672         struct sdma_vl_map *m;
5673         int vl;
5674
5675         /* range check */
5676         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5677                 return -1;
5678
5679         rcu_read_lock();
5680         m = rcu_dereference(dd->sdma_map);
5681         vl = m->engine_to_vl[engine];
5682         rcu_read_unlock();
5683
5684         return vl;
5685 }
5686
5687 /*
5688  * Translate the send context (sofware index) into a VL.  Return -1 if the
5689  * translation cannot be done.
5690  */
5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5692 {
5693         struct send_context_info *sci;
5694         struct send_context *sc;
5695         int i;
5696
5697         sci = &dd->send_contexts[sw_index];
5698
5699         /* there is no information for user (PSM) and ack contexts */
5700         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5701                 return -1;
5702
5703         sc = sci->sc;
5704         if (!sc)
5705                 return -1;
5706         if (dd->vld[15].sc == sc)
5707                 return 15;
5708         for (i = 0; i < num_vls; i++)
5709                 if (dd->vld[i].sc == sc)
5710                         return i;
5711
5712         return -1;
5713 }
5714
5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5716 {
5717         u64 reg_copy = reg, handled = 0;
5718         char buf[96];
5719         int i = 0;
5720
5721         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5722                 start_freeze_handling(dd->pport, 0);
5723         else if (is_ax(dd) &&
5724                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5725                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5726                 start_freeze_handling(dd->pport, 0);
5727
5728         while (reg_copy) {
5729                 int posn = fls64(reg_copy);
5730                 /* fls64() returns a 1-based offset, we want it zero based */
5731                 int shift = posn - 1;
5732                 u64 mask = 1ULL << shift;
5733
5734                 if (port_inactive_err(shift)) {
5735                         count_port_inactive(dd);
5736                         handled |= mask;
5737                 } else if (disallowed_pkt_err(shift)) {
5738                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5739
5740                         handle_send_egress_err_info(dd, vl);
5741                         handled |= mask;
5742                 }
5743                 reg_copy &= ~mask;
5744         }
5745
5746         reg &= ~handled;
5747
5748         if (reg)
5749                 dd_dev_info(dd, "Egress Error: %s\n",
5750                             egress_err_status_string(buf, sizeof(buf), reg));
5751
5752         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5753                 if (reg & (1ull << i))
5754                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5755         }
5756 }
5757
5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5759 {
5760         char buf[96];
5761         int i = 0;
5762
5763         dd_dev_info(dd, "Send Error: %s\n",
5764                     send_err_status_string(buf, sizeof(buf), reg));
5765
5766         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5767                 if (reg & (1ull << i))
5768                         incr_cntr64(&dd->send_err_status_cnt[i]);
5769         }
5770 }
5771
5772 /*
5773  * The maximum number of times the error clear down will loop before
5774  * blocking a repeating error.  This value is arbitrary.
5775  */
5776 #define MAX_CLEAR_COUNT 20
5777
5778 /*
5779  * Clear and handle an error register.  All error interrupts are funneled
5780  * through here to have a central location to correctly handle single-
5781  * or multi-shot errors.
5782  *
5783  * For non per-context registers, call this routine with a context value
5784  * of 0 so the per-context offset is zero.
5785  *
5786  * If the handler loops too many times, assume that something is wrong
5787  * and can't be fixed, so mask the error bits.
5788  */
5789 static void interrupt_clear_down(struct hfi1_devdata *dd,
5790                                  u32 context,
5791                                  const struct err_reg_info *eri)
5792 {
5793         u64 reg;
5794         u32 count;
5795
5796         /* read in a loop until no more errors are seen */
5797         count = 0;
5798         while (1) {
5799                 reg = read_kctxt_csr(dd, context, eri->status);
5800                 if (reg == 0)
5801                         break;
5802                 write_kctxt_csr(dd, context, eri->clear, reg);
5803                 if (likely(eri->handler))
5804                         eri->handler(dd, context, reg);
5805                 count++;
5806                 if (count > MAX_CLEAR_COUNT) {
5807                         u64 mask;
5808
5809                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5810                                    eri->desc, reg);
5811                         /*
5812                          * Read-modify-write so any other masked bits
5813                          * remain masked.
5814                          */
5815                         mask = read_kctxt_csr(dd, context, eri->mask);
5816                         mask &= ~reg;
5817                         write_kctxt_csr(dd, context, eri->mask, mask);
5818                         break;
5819                 }
5820         }
5821 }
5822
5823 /*
5824  * CCE block "misc" interrupt.  Source is < 16.
5825  */
5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5827 {
5828         const struct err_reg_info *eri = &misc_errs[source];
5829
5830         if (eri->handler) {
5831                 interrupt_clear_down(dd, 0, eri);
5832         } else {
5833                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5834                            source);
5835         }
5836 }
5837
5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5839 {
5840         return flag_string(buf, buf_len, flags,
5841                            sc_err_status_flags,
5842                            ARRAY_SIZE(sc_err_status_flags));
5843 }
5844
5845 /*
5846  * Send context error interrupt.  Source (hw_context) is < 160.
5847  *
5848  * All send context errors cause the send context to halt.  The normal
5849  * clear-down mechanism cannot be used because we cannot clear the
5850  * error bits until several other long-running items are done first.
5851  * This is OK because with the context halted, nothing else is going
5852  * to happen on it anyway.
5853  */
5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5855                                 unsigned int hw_context)
5856 {
5857         struct send_context_info *sci;
5858         struct send_context *sc;
5859         char flags[96];
5860         u64 status;
5861         u32 sw_index;
5862         int i = 0;
5863
5864         sw_index = dd->hw_to_sw[hw_context];
5865         if (sw_index >= dd->num_send_contexts) {
5866                 dd_dev_err(dd,
5867                            "out of range sw index %u for send context %u\n",
5868                            sw_index, hw_context);
5869                 return;
5870         }
5871         sci = &dd->send_contexts[sw_index];
5872         sc = sci->sc;
5873         if (!sc) {
5874                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5875                            sw_index, hw_context);
5876                 return;
5877         }
5878
5879         /* tell the software that a halt has begun */
5880         sc_stop(sc, SCF_HALTED);
5881
5882         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5883
5884         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5885                     send_context_err_status_string(flags, sizeof(flags),
5886                                                    status));
5887
5888         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5889                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5890
5891         /*
5892          * Automatically restart halted kernel contexts out of interrupt
5893          * context.  User contexts must ask the driver to restart the context.
5894          */
5895         if (sc->type != SC_USER)
5896                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5897
5898         /*
5899          * Update the counters for the corresponding status bits.
5900          * Note that these particular counters are aggregated over all
5901          * 160 contexts.
5902          */
5903         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5904                 if (status & (1ull << i))
5905                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5906         }
5907 }
5908
5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5910                                 unsigned int source, u64 status)
5911 {
5912         struct sdma_engine *sde;
5913         int i = 0;
5914
5915         sde = &dd->per_sdma[source];
5916 #ifdef CONFIG_SDMA_VERBOSITY
5917         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5918                    slashstrip(__FILE__), __LINE__, __func__);
5919         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5920                    sde->this_idx, source, (unsigned long long)status);
5921 #endif
5922         sde->err_cnt++;
5923         sdma_engine_error(sde, status);
5924
5925         /*
5926         * Update the counters for the corresponding status bits.
5927         * Note that these particular counters are aggregated over
5928         * all 16 DMA engines.
5929         */
5930         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5931                 if (status & (1ull << i))
5932                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5933         }
5934 }
5935
5936 /*
5937  * CCE block SDMA error interrupt.  Source is < 16.
5938  */
5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5940 {
5941 #ifdef CONFIG_SDMA_VERBOSITY
5942         struct sdma_engine *sde = &dd->per_sdma[source];
5943
5944         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5945                    slashstrip(__FILE__), __LINE__, __func__);
5946         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5947                    source);
5948         sdma_dumpstate(sde);
5949 #endif
5950         interrupt_clear_down(dd, source, &sdma_eng_err);
5951 }
5952
5953 /*
5954  * CCE block "various" interrupt.  Source is < 8.
5955  */
5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5957 {
5958         const struct err_reg_info *eri = &various_err[source];
5959
5960         /*
5961          * TCritInt cannot go through interrupt_clear_down()
5962          * because it is not a second tier interrupt. The handler
5963          * should be called directly.
5964          */
5965         if (source == TCRIT_INT_SOURCE)
5966                 handle_temp_err(dd);
5967         else if (eri->handler)
5968                 interrupt_clear_down(dd, 0, eri);
5969         else
5970                 dd_dev_info(dd,
5971                             "%s: Unimplemented/reserved interrupt %d\n",
5972                             __func__, source);
5973 }
5974
5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5976 {
5977         /* src_ctx is always zero */
5978         struct hfi1_pportdata *ppd = dd->pport;
5979         unsigned long flags;
5980         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5981
5982         if (reg & QSFP_HFI0_MODPRST_N) {
5983                 if (!qsfp_mod_present(ppd)) {
5984                         dd_dev_info(dd, "%s: QSFP module removed\n",
5985                                     __func__);
5986
5987                         ppd->driver_link_ready = 0;
5988                         /*
5989                          * Cable removed, reset all our information about the
5990                          * cache and cable capabilities
5991                          */
5992
5993                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994                         /*
5995                          * We don't set cache_refresh_required here as we expect
5996                          * an interrupt when a cable is inserted
5997                          */
5998                         ppd->qsfp_info.cache_valid = 0;
5999                         ppd->qsfp_info.reset_needed = 0;
6000                         ppd->qsfp_info.limiting_active = 0;
6001                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6002                                                flags);
6003                         /* Invert the ModPresent pin now to detect plug-in */
6004                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6005                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6006
6007                         if ((ppd->offline_disabled_reason >
6008                           HFI1_ODR_MASK(
6009                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6010                           (ppd->offline_disabled_reason ==
6011                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6012                                 ppd->offline_disabled_reason =
6013                                 HFI1_ODR_MASK(
6014                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6015
6016                         if (ppd->host_link_state == HLS_DN_POLL) {
6017                                 /*
6018                                  * The link is still in POLL. This means
6019                                  * that the normal link down processing
6020                                  * will not happen. We have to do it here
6021                                  * before turning the DC off.
6022                                  */
6023                                 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6024                         }
6025                 } else {
6026                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6027                                     __func__);
6028
6029                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6030                         ppd->qsfp_info.cache_valid = 0;
6031                         ppd->qsfp_info.cache_refresh_required = 1;
6032                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033                                                flags);
6034
6035                         /*
6036                          * Stop inversion of ModPresent pin to detect
6037                          * removal of the cable
6038                          */
6039                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6040                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6041                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6042
6043                         ppd->offline_disabled_reason =
6044                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6045                 }
6046         }
6047
6048         if (reg & QSFP_HFI0_INT_N) {
6049                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6050                             __func__);
6051                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6052                 ppd->qsfp_info.check_interrupt_flags = 1;
6053                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6054         }
6055
6056         /* Schedule the QSFP work only if there is a cable attached. */
6057         if (qsfp_mod_present(ppd))
6058                 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6059 }
6060
6061 static int request_host_lcb_access(struct hfi1_devdata *dd)
6062 {
6063         int ret;
6064
6065         ret = do_8051_command(dd, HCMD_MISC,
6066                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6067                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6068         if (ret != HCMD_SUCCESS) {
6069                 dd_dev_err(dd, "%s: command failed with error %d\n",
6070                            __func__, ret);
6071         }
6072         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6073 }
6074
6075 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6076 {
6077         int ret;
6078
6079         ret = do_8051_command(dd, HCMD_MISC,
6080                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6081                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6082         if (ret != HCMD_SUCCESS) {
6083                 dd_dev_err(dd, "%s: command failed with error %d\n",
6084                            __func__, ret);
6085         }
6086         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6087 }
6088
6089 /*
6090  * Set the LCB selector - allow host access.  The DCC selector always
6091  * points to the host.
6092  */
6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6094 {
6095         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6096                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6097                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6098 }
6099
6100 /*
6101  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6102  * points to the host.
6103  */
6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6105 {
6106         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6107                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6108 }
6109
6110 /*
6111  * Acquire LCB access from the 8051.  If the host already has access,
6112  * just increment a counter.  Otherwise, inform the 8051 that the
6113  * host is taking access.
6114  *
6115  * Returns:
6116  *      0 on success
6117  *      -EBUSY if the 8051 has control and cannot be disturbed
6118  *      -errno if unable to acquire access from the 8051
6119  */
6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6121 {
6122         struct hfi1_pportdata *ppd = dd->pport;
6123         int ret = 0;
6124
6125         /*
6126          * Use the host link state lock so the operation of this routine
6127          * { link state check, selector change, count increment } can occur
6128          * as a unit against a link state change.  Otherwise there is a
6129          * race between the state change and the count increment.
6130          */
6131         if (sleep_ok) {
6132                 mutex_lock(&ppd->hls_lock);
6133         } else {
6134                 while (!mutex_trylock(&ppd->hls_lock))
6135                         udelay(1);
6136         }
6137
6138         /* this access is valid only when the link is up */
6139         if (ppd->host_link_state & HLS_DOWN) {
6140                 dd_dev_info(dd, "%s: link state %s not up\n",
6141                             __func__, link_state_name(ppd->host_link_state));
6142                 ret = -EBUSY;
6143                 goto done;
6144         }
6145
6146         if (dd->lcb_access_count == 0) {
6147                 ret = request_host_lcb_access(dd);
6148                 if (ret) {
6149                         dd_dev_err(dd,
6150                                    "%s: unable to acquire LCB access, err %d\n",
6151                                    __func__, ret);
6152                         goto done;
6153                 }
6154                 set_host_lcb_access(dd);
6155         }
6156         dd->lcb_access_count++;
6157 done:
6158         mutex_unlock(&ppd->hls_lock);
6159         return ret;
6160 }
6161
6162 /*
6163  * Release LCB access by decrementing the use count.  If the count is moving
6164  * from 1 to 0, inform 8051 that it has control back.
6165  *
6166  * Returns:
6167  *      0 on success
6168  *      -errno if unable to release access to the 8051
6169  */
6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6171 {
6172         int ret = 0;
6173
6174         /*
6175          * Use the host link state lock because the acquire needed it.
6176          * Here, we only need to keep { selector change, count decrement }
6177          * as a unit.
6178          */
6179         if (sleep_ok) {
6180                 mutex_lock(&dd->pport->hls_lock);
6181         } else {
6182                 while (!mutex_trylock(&dd->pport->hls_lock))
6183                         udelay(1);
6184         }
6185
6186         if (dd->lcb_access_count == 0) {
6187                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6188                            __func__);
6189                 goto done;
6190         }
6191
6192         if (dd->lcb_access_count == 1) {
6193                 set_8051_lcb_access(dd);
6194                 ret = request_8051_lcb_access(dd);
6195                 if (ret) {
6196                         dd_dev_err(dd,
6197                                    "%s: unable to release LCB access, err %d\n",
6198                                    __func__, ret);
6199                         /* restore host access if the grant didn't work */
6200                         set_host_lcb_access(dd);
6201                         goto done;
6202                 }
6203         }
6204         dd->lcb_access_count--;
6205 done:
6206         mutex_unlock(&dd->pport->hls_lock);
6207         return ret;
6208 }
6209
6210 /*
6211  * Initialize LCB access variables and state.  Called during driver load,
6212  * after most of the initialization is finished.
6213  *
6214  * The DC default is LCB access on for the host.  The driver defaults to
6215  * leaving access to the 8051.  Assign access now - this constrains the call
6216  * to this routine to be after all LCB set-up is done.  In particular, after
6217  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6218  */
6219 static void init_lcb_access(struct hfi1_devdata *dd)
6220 {
6221         dd->lcb_access_count = 0;
6222 }
6223
6224 /*
6225  * Write a response back to a 8051 request.
6226  */
6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6228 {
6229         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6230                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6231                   (u64)return_code <<
6232                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6233                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6234 }
6235
6236 /*
6237  * Handle host requests from the 8051.
6238  */
6239 static void handle_8051_request(struct hfi1_pportdata *ppd)
6240 {
6241         struct hfi1_devdata *dd = ppd->dd;
6242         u64 reg;
6243         u16 data = 0;
6244         u8 type;
6245
6246         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6247         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6248                 return; /* no request */
6249
6250         /* zero out COMPLETED so the response is seen */
6251         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6252
6253         /* extract request details */
6254         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6255                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6256         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6257                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6258
6259         switch (type) {
6260         case HREQ_LOAD_CONFIG:
6261         case HREQ_SAVE_CONFIG:
6262         case HREQ_READ_CONFIG:
6263         case HREQ_SET_TX_EQ_ABS:
6264         case HREQ_SET_TX_EQ_REL:
6265         case HREQ_ENABLE:
6266                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6267                             type);
6268                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6269                 break;
6270         case HREQ_CONFIG_DONE:
6271                 hreq_response(dd, HREQ_SUCCESS, 0);
6272                 break;
6273
6274         case HREQ_INTERFACE_TEST:
6275                 hreq_response(dd, HREQ_SUCCESS, data);
6276                 break;
6277         default:
6278                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6279                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6280                 break;
6281         }
6282 }
6283
6284 static void write_global_credit(struct hfi1_devdata *dd,
6285                                 u8 vau, u16 total, u16 shared)
6286 {
6287         write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6288                   ((u64)total <<
6289                    SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6290                   ((u64)shared <<
6291                    SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6292                   ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6293 }
6294
6295 /*
6296  * Set up initial VL15 credits of the remote.  Assumes the rest of
6297  * the CM credit registers are zero from a previous global or credit reset .
6298  */
6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6300 {
6301         /* leave shared count at zero for both global and VL15 */
6302         write_global_credit(dd, vau, vl15buf, 0);
6303
6304         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6305                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6306 }
6307
6308 /*
6309  * Zero all credit details from the previous connection and
6310  * reset the CM manager's internal counters.
6311  */
6312 void reset_link_credits(struct hfi1_devdata *dd)
6313 {
6314         int i;
6315
6316         /* remove all previous VL credit limits */
6317         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6318                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6319         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6320         write_global_credit(dd, 0, 0, 0);
6321         /* reset the CM block */
6322         pio_send_control(dd, PSC_CM_RESET);
6323 }
6324
6325 /* convert a vCU to a CU */
6326 static u32 vcu_to_cu(u8 vcu)
6327 {
6328         return 1 << vcu;
6329 }
6330
6331 /* convert a CU to a vCU */
6332 static u8 cu_to_vcu(u32 cu)
6333 {
6334         return ilog2(cu);
6335 }
6336
6337 /* convert a vAU to an AU */
6338 static u32 vau_to_au(u8 vau)
6339 {
6340         return 8 * (1 << vau);
6341 }
6342
6343 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6344 {
6345         ppd->sm_trap_qp = 0x0;
6346         ppd->sa_qp = 0x1;
6347 }
6348
6349 /*
6350  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6351  */
6352 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6353 {
6354         u64 reg;
6355
6356         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6357         write_csr(dd, DC_LCB_CFG_RUN, 0);
6358         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6359         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6360                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6361         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6362         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6363         reg = read_csr(dd, DCC_CFG_RESET);
6364         write_csr(dd, DCC_CFG_RESET, reg |
6365                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6366                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6367         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6368         if (!abort) {
6369                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6370                 write_csr(dd, DCC_CFG_RESET, reg);
6371                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6372         }
6373 }
6374
6375 /*
6376  * This routine should be called after the link has been transitioned to
6377  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6378  * reset).
6379  *
6380  * The expectation is that the caller of this routine would have taken
6381  * care of properly transitioning the link into the correct state.
6382  */
6383 static void dc_shutdown(struct hfi1_devdata *dd)
6384 {
6385         unsigned long flags;
6386
6387         spin_lock_irqsave(&dd->dc8051_lock, flags);
6388         if (dd->dc_shutdown) {
6389                 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6390                 return;
6391         }
6392         dd->dc_shutdown = 1;
6393         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6394         /* Shutdown the LCB */
6395         lcb_shutdown(dd, 1);
6396         /*
6397          * Going to OFFLINE would have causes the 8051 to put the
6398          * SerDes into reset already. Just need to shut down the 8051,
6399          * itself.
6400          */
6401         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6402 }
6403
6404 /*
6405  * Calling this after the DC has been brought out of reset should not
6406  * do any damage.
6407  */
6408 static void dc_start(struct hfi1_devdata *dd)
6409 {
6410         unsigned long flags;
6411         int ret;
6412
6413         spin_lock_irqsave(&dd->dc8051_lock, flags);
6414         if (!dd->dc_shutdown)
6415                 goto done;
6416         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6417         /* Take the 8051 out of reset */
6418         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6419         /* Wait until 8051 is ready */
6420         ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6421         if (ret) {
6422                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6423                            __func__);
6424         }
6425         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6426         write_csr(dd, DCC_CFG_RESET, 0x10);
6427         /* lcb_shutdown() with abort=1 does not restore these */
6428         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6429         spin_lock_irqsave(&dd->dc8051_lock, flags);
6430         dd->dc_shutdown = 0;
6431 done:
6432         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6433 }
6434
6435 /*
6436  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6437  */
6438 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6439 {
6440         u64 rx_radr, tx_radr;
6441         u32 version;
6442
6443         if (dd->icode != ICODE_FPGA_EMULATION)
6444                 return;
6445
6446         /*
6447          * These LCB defaults on emulator _s are good, nothing to do here:
6448          *      LCB_CFG_TX_FIFOS_RADR
6449          *      LCB_CFG_RX_FIFOS_RADR
6450          *      LCB_CFG_LN_DCLK
6451          *      LCB_CFG_IGNORE_LOST_RCLK
6452          */
6453         if (is_emulator_s(dd))
6454                 return;
6455         /* else this is _p */
6456
6457         version = emulator_rev(dd);
6458         if (!is_ax(dd))
6459                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6460
6461         if (version <= 0x12) {
6462                 /* release 0x12 and below */
6463
6464                 /*
6465                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6466                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6467                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6468                  */
6469                 rx_radr =
6470                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6471                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6472                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6473                 /*
6474                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6475                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6476                  */
6477                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6478         } else if (version <= 0x18) {
6479                 /* release 0x13 up to 0x18 */
6480                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6481                 rx_radr =
6482                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6483                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6484                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6485                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6486         } else if (version == 0x19) {
6487                 /* release 0x19 */
6488                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6489                 rx_radr =
6490                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6491                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6492                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6493                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6494         } else if (version == 0x1a) {
6495                 /* release 0x1a */
6496                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6497                 rx_radr =
6498                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6499                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6500                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6501                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6502                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6503         } else {
6504                 /* release 0x1b and higher */
6505                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6506                 rx_radr =
6507                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511         }
6512
6513         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6514         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6515         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6516                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6517         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6518 }
6519
6520 /*
6521  * Handle a SMA idle message
6522  *
6523  * This is a work-queue function outside of the interrupt.
6524  */
6525 void handle_sma_message(struct work_struct *work)
6526 {
6527         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6528                                                         sma_message_work);
6529         struct hfi1_devdata *dd = ppd->dd;
6530         u64 msg;
6531         int ret;
6532
6533         /*
6534          * msg is bytes 1-4 of the 40-bit idle message - the command code
6535          * is stripped off
6536          */
6537         ret = read_idle_sma(dd, &msg);
6538         if (ret)
6539                 return;
6540         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6541         /*
6542          * React to the SMA message.  Byte[1] (0 for us) is the command.
6543          */
6544         switch (msg & 0xff) {
6545         case SMA_IDLE_ARM:
6546                 /*
6547                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6548                  * State Transitions
6549                  *
6550                  * Only expected in INIT or ARMED, discard otherwise.
6551                  */
6552                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6553                         ppd->neighbor_normal = 1;
6554                 break;
6555         case SMA_IDLE_ACTIVE:
6556                 /*
6557                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6558                  * State Transitions
6559                  *
6560                  * Can activate the node.  Discard otherwise.
6561                  */
6562                 if (ppd->host_link_state == HLS_UP_ARMED &&
6563                     ppd->is_active_optimize_enabled) {
6564                         ppd->neighbor_normal = 1;
6565                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6566                         if (ret)
6567                                 dd_dev_err(
6568                                         dd,
6569                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6570                                         __func__);
6571                 }
6572                 break;
6573         default:
6574                 dd_dev_err(dd,
6575                            "%s: received unexpected SMA idle message 0x%llx\n",
6576                            __func__, msg);
6577                 break;
6578         }
6579 }
6580
6581 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6582 {
6583         u64 rcvctrl;
6584         unsigned long flags;
6585
6586         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6587         rcvctrl = read_csr(dd, RCV_CTRL);
6588         rcvctrl |= add;
6589         rcvctrl &= ~clear;
6590         write_csr(dd, RCV_CTRL, rcvctrl);
6591         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6592 }
6593
6594 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6595 {
6596         adjust_rcvctrl(dd, add, 0);
6597 }
6598
6599 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6600 {
6601         adjust_rcvctrl(dd, 0, clear);
6602 }
6603
6604 /*
6605  * Called from all interrupt handlers to start handling an SPC freeze.
6606  */
6607 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6608 {
6609         struct hfi1_devdata *dd = ppd->dd;
6610         struct send_context *sc;
6611         int i;
6612
6613         if (flags & FREEZE_SELF)
6614                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6615
6616         /* enter frozen mode */
6617         dd->flags |= HFI1_FROZEN;
6618
6619         /* notify all SDMA engines that they are going into a freeze */
6620         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6621
6622         /* do halt pre-handling on all enabled send contexts */
6623         for (i = 0; i < dd->num_send_contexts; i++) {
6624                 sc = dd->send_contexts[i].sc;
6625                 if (sc && (sc->flags & SCF_ENABLED))
6626                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6627         }
6628
6629         /* Send context are frozen. Notify user space */
6630         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6631
6632         if (flags & FREEZE_ABORT) {
6633                 dd_dev_err(dd,
6634                            "Aborted freeze recovery. Please REBOOT system\n");
6635                 return;
6636         }
6637         /* queue non-interrupt handler */
6638         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6639 }
6640
6641 /*
6642  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6643  * depending on the "freeze" parameter.
6644  *
6645  * No need to return an error if it times out, our only option
6646  * is to proceed anyway.
6647  */
6648 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6649 {
6650         unsigned long timeout;
6651         u64 reg;
6652
6653         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6654         while (1) {
6655                 reg = read_csr(dd, CCE_STATUS);
6656                 if (freeze) {
6657                         /* waiting until all indicators are set */
6658                         if ((reg & ALL_FROZE) == ALL_FROZE)
6659                                 return; /* all done */
6660                 } else {
6661                         /* waiting until all indicators are clear */
6662                         if ((reg & ALL_FROZE) == 0)
6663                                 return; /* all done */
6664                 }
6665
6666                 if (time_after(jiffies, timeout)) {
6667                         dd_dev_err(dd,
6668                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6669                                    freeze ? "" : "un", reg & ALL_FROZE,
6670                                    freeze ? ALL_FROZE : 0ull);
6671                         return;
6672                 }
6673                 usleep_range(80, 120);
6674         }
6675 }
6676
6677 /*
6678  * Do all freeze handling for the RXE block.
6679  */
6680 static void rxe_freeze(struct hfi1_devdata *dd)
6681 {
6682         int i;
6683
6684         /* disable port */
6685         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6686
6687         /* disable all receive contexts */
6688         for (i = 0; i < dd->num_rcv_contexts; i++)
6689                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6690 }
6691
6692 /*
6693  * Unfreeze handling for the RXE block - kernel contexts only.
6694  * This will also enable the port.  User contexts will do unfreeze
6695  * handling on a per-context basis as they call into the driver.
6696  *
6697  */
6698 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6699 {
6700         u32 rcvmask;
6701         int i;
6702
6703         /* enable all kernel contexts */
6704         for (i = 0; i < dd->n_krcv_queues; i++) {
6705                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6706                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6707                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6708                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6709                 hfi1_rcvctrl(dd, rcvmask, i);
6710         }
6711
6712         /* enable port */
6713         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6714 }
6715
6716 /*
6717  * Non-interrupt SPC freeze handling.
6718  *
6719  * This is a work-queue function outside of the triggering interrupt.
6720  */
6721 void handle_freeze(struct work_struct *work)
6722 {
6723         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6724                                                                 freeze_work);
6725         struct hfi1_devdata *dd = ppd->dd;
6726
6727         /* wait for freeze indicators on all affected blocks */
6728         wait_for_freeze_status(dd, 1);
6729
6730         /* SPC is now frozen */
6731
6732         /* do send PIO freeze steps */
6733         pio_freeze(dd);
6734
6735         /* do send DMA freeze steps */
6736         sdma_freeze(dd);
6737
6738         /* do send egress freeze steps - nothing to do */
6739
6740         /* do receive freeze steps */
6741         rxe_freeze(dd);
6742
6743         /*
6744          * Unfreeze the hardware - clear the freeze, wait for each
6745          * block's frozen bit to clear, then clear the frozen flag.
6746          */
6747         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6748         wait_for_freeze_status(dd, 0);
6749
6750         if (is_ax(dd)) {
6751                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6752                 wait_for_freeze_status(dd, 1);
6753                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6754                 wait_for_freeze_status(dd, 0);
6755         }
6756
6757         /* do send PIO unfreeze steps for kernel contexts */
6758         pio_kernel_unfreeze(dd);
6759
6760         /* do send DMA unfreeze steps */
6761         sdma_unfreeze(dd);
6762
6763         /* do send egress unfreeze steps - nothing to do */
6764
6765         /* do receive unfreeze steps for kernel contexts */
6766         rxe_kernel_unfreeze(dd);
6767
6768         /*
6769          * The unfreeze procedure touches global device registers when
6770          * it disables and re-enables RXE. Mark the device unfrozen
6771          * after all that is done so other parts of the driver waiting
6772          * for the device to unfreeze don't do things out of order.
6773          *
6774          * The above implies that the meaning of HFI1_FROZEN flag is
6775          * "Device has gone into freeze mode and freeze mode handling
6776          * is still in progress."
6777          *
6778          * The flag will be removed when freeze mode processing has
6779          * completed.
6780          */
6781         dd->flags &= ~HFI1_FROZEN;
6782         wake_up(&dd->event_queue);
6783
6784         /* no longer frozen */
6785 }
6786
6787 /*
6788  * Handle a link up interrupt from the 8051.
6789  *
6790  * This is a work-queue function outside of the interrupt.
6791  */
6792 void handle_link_up(struct work_struct *work)
6793 {
6794         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6795                                                   link_up_work);
6796         set_link_state(ppd, HLS_UP_INIT);
6797
6798         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6799         read_ltp_rtt(ppd->dd);
6800         /*
6801          * OPA specifies that certain counters are cleared on a transition
6802          * to link up, so do that.
6803          */
6804         clear_linkup_counters(ppd->dd);
6805         /*
6806          * And (re)set link up default values.
6807          */
6808         set_linkup_defaults(ppd);
6809
6810         /* enforce link speed enabled */
6811         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6812                 /* oops - current speed is not enabled, bounce */
6813                 dd_dev_err(ppd->dd,
6814                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6815                            ppd->link_speed_active, ppd->link_speed_enabled);
6816                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6817                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6818                 set_link_state(ppd, HLS_DN_OFFLINE);
6819                 start_link(ppd);
6820         }
6821 }
6822
6823 /*
6824  * Several pieces of LNI information were cached for SMA in ppd.
6825  * Reset these on link down
6826  */
6827 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6828 {
6829         ppd->neighbor_guid = 0;
6830         ppd->neighbor_port_number = 0;
6831         ppd->neighbor_type = 0;
6832         ppd->neighbor_fm_security = 0;
6833 }
6834
6835 static const char * const link_down_reason_strs[] = {
6836         [OPA_LINKDOWN_REASON_NONE] = "None",
6837         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6838         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6839         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6840         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6841         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6842         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6843         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6844         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6845         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6846         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6847         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6848         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6849         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6850         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6851         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6852         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6853         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6854         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6855         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6856         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6857         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6858         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6859         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6860         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6861         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6862         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6863         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6864         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6865         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6866         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6867         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6868         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6869                                         "Excessive buffer overrun",
6870         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6871         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6872         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6873         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6874         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6875         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6876         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6877         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6878                                         "Local media not installed",
6879         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6880         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6881         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6882                                         "End to end not installed",
6883         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6884         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6885         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6886         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6887         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6888         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6889 };
6890
6891 /* return the neighbor link down reason string */
6892 static const char *link_down_reason_str(u8 reason)
6893 {
6894         const char *str = NULL;
6895
6896         if (reason < ARRAY_SIZE(link_down_reason_strs))
6897                 str = link_down_reason_strs[reason];
6898         if (!str)
6899                 str = "(invalid)";
6900
6901         return str;
6902 }
6903
6904 /*
6905  * Handle a link down interrupt from the 8051.
6906  *
6907  * This is a work-queue function outside of the interrupt.
6908  */
6909 void handle_link_down(struct work_struct *work)
6910 {
6911         u8 lcl_reason, neigh_reason = 0;
6912         u8 link_down_reason;
6913         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6914                                                   link_down_work);
6915         int was_up;
6916         static const char ldr_str[] = "Link down reason: ";
6917
6918         if ((ppd->host_link_state &
6919              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6920              ppd->port_type == PORT_TYPE_FIXED)
6921                 ppd->offline_disabled_reason =
6922                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6923
6924         /* Go offline first, then deal with reading/writing through 8051 */
6925         was_up = !!(ppd->host_link_state & HLS_UP);
6926         set_link_state(ppd, HLS_DN_OFFLINE);
6927
6928         if (was_up) {
6929                 lcl_reason = 0;
6930                 /* link down reason is only valid if the link was up */
6931                 read_link_down_reason(ppd->dd, &link_down_reason);
6932                 switch (link_down_reason) {
6933                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
6934                         /* the link went down, no idle message reason */
6935                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6936                                     ldr_str);
6937                         break;
6938                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6939                         /*
6940                          * The neighbor reason is only valid if an idle message
6941                          * was received for it.
6942                          */
6943                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
6944                         dd_dev_info(ppd->dd,
6945                                     "%sNeighbor link down message %d, %s\n",
6946                                     ldr_str, neigh_reason,
6947                                     link_down_reason_str(neigh_reason));
6948                         break;
6949                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
6950                         dd_dev_info(ppd->dd,
6951                                     "%sHost requested link to go offline\n",
6952                                     ldr_str);
6953                         break;
6954                 default:
6955                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6956                                     ldr_str, link_down_reason);
6957                         break;
6958                 }
6959
6960                 /*
6961                  * If no reason, assume peer-initiated but missed
6962                  * LinkGoingDown idle flits.
6963                  */
6964                 if (neigh_reason == 0)
6965                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6966         } else {
6967                 /* went down while polling or going up */
6968                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6969         }
6970
6971         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6972
6973         /* inform the SMA when the link transitions from up to down */
6974         if (was_up && ppd->local_link_down_reason.sma == 0 &&
6975             ppd->neigh_link_down_reason.sma == 0) {
6976                 ppd->local_link_down_reason.sma =
6977                                         ppd->local_link_down_reason.latest;
6978                 ppd->neigh_link_down_reason.sma =
6979                                         ppd->neigh_link_down_reason.latest;
6980         }
6981
6982         reset_neighbor_info(ppd);
6983
6984         /* disable the port */
6985         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6986
6987         /*
6988          * If there is no cable attached, turn the DC off. Otherwise,
6989          * start the link bring up.
6990          */
6991         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
6992                 dc_shutdown(ppd->dd);
6993         else
6994                 start_link(ppd);
6995 }
6996
6997 void handle_link_bounce(struct work_struct *work)
6998 {
6999         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7000                                                         link_bounce_work);
7001
7002         /*
7003          * Only do something if the link is currently up.
7004          */
7005         if (ppd->host_link_state & HLS_UP) {
7006                 set_link_state(ppd, HLS_DN_OFFLINE);
7007                 start_link(ppd);
7008         } else {
7009                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7010                             __func__, link_state_name(ppd->host_link_state));
7011         }
7012 }
7013
7014 /*
7015  * Mask conversion: Capability exchange to Port LTP.  The capability
7016  * exchange has an implicit 16b CRC that is mandatory.
7017  */
7018 static int cap_to_port_ltp(int cap)
7019 {
7020         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7021
7022         if (cap & CAP_CRC_14B)
7023                 port_ltp |= PORT_LTP_CRC_MODE_14;
7024         if (cap & CAP_CRC_48B)
7025                 port_ltp |= PORT_LTP_CRC_MODE_48;
7026         if (cap & CAP_CRC_12B_16B_PER_LANE)
7027                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7028
7029         return port_ltp;
7030 }
7031
7032 /*
7033  * Convert an OPA Port LTP mask to capability mask
7034  */
7035 int port_ltp_to_cap(int port_ltp)
7036 {
7037         int cap_mask = 0;
7038
7039         if (port_ltp & PORT_LTP_CRC_MODE_14)
7040                 cap_mask |= CAP_CRC_14B;
7041         if (port_ltp & PORT_LTP_CRC_MODE_48)
7042                 cap_mask |= CAP_CRC_48B;
7043         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7044                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7045
7046         return cap_mask;
7047 }
7048
7049 /*
7050  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7051  */
7052 static int lcb_to_port_ltp(int lcb_crc)
7053 {
7054         int port_ltp = 0;
7055
7056         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7057                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7058         else if (lcb_crc == LCB_CRC_48B)
7059                 port_ltp = PORT_LTP_CRC_MODE_48;
7060         else if (lcb_crc == LCB_CRC_14B)
7061                 port_ltp = PORT_LTP_CRC_MODE_14;
7062         else
7063                 port_ltp = PORT_LTP_CRC_MODE_16;
7064
7065         return port_ltp;
7066 }
7067
7068 /*
7069  * Our neighbor has indicated that we are allowed to act as a fabric
7070  * manager, so place the full management partition key in the second
7071  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7072  * that we should already have the limited management partition key in
7073  * array element 1, and also that the port is not yet up when
7074  * add_full_mgmt_pkey() is invoked.
7075  */
7076 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7077 {
7078         struct hfi1_devdata *dd = ppd->dd;
7079
7080         /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7081         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7082                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7083                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7084         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7085         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7086         hfi1_event_pkey_change(ppd->dd, ppd->port);
7087 }
7088
7089 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091         if (ppd->pkeys[2] != 0) {
7092                 ppd->pkeys[2] = 0;
7093                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7094                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7095         }
7096 }
7097
7098 /*
7099  * Convert the given link width to the OPA link width bitmask.
7100  */
7101 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7102 {
7103         switch (width) {
7104         case 0:
7105                 /*
7106                  * Simulator and quick linkup do not set the width.
7107                  * Just set it to 4x without complaint.
7108                  */
7109                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7110                         return OPA_LINK_WIDTH_4X;
7111                 return 0; /* no lanes up */
7112         case 1: return OPA_LINK_WIDTH_1X;
7113         case 2: return OPA_LINK_WIDTH_2X;
7114         case 3: return OPA_LINK_WIDTH_3X;
7115         default:
7116                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7117                             __func__, width);
7118                 /* fall through */
7119         case 4: return OPA_LINK_WIDTH_4X;
7120         }
7121 }
7122
7123 /*
7124  * Do a population count on the bottom nibble.
7125  */
7126 static const u8 bit_counts[16] = {
7127         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7128 };
7129
7130 static inline u8 nibble_to_count(u8 nibble)
7131 {
7132         return bit_counts[nibble & 0xf];
7133 }
7134
7135 /*
7136  * Read the active lane information from the 8051 registers and return
7137  * their widths.
7138  *
7139  * Active lane information is found in these 8051 registers:
7140  *      enable_lane_tx
7141  *      enable_lane_rx
7142  */
7143 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7144                             u16 *rx_width)
7145 {
7146         u16 tx, rx;
7147         u8 enable_lane_rx;
7148         u8 enable_lane_tx;
7149         u8 tx_polarity_inversion;
7150         u8 rx_polarity_inversion;
7151         u8 max_rate;
7152
7153         /* read the active lanes */
7154         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7155                          &rx_polarity_inversion, &max_rate);
7156         read_local_lni(dd, &enable_lane_rx);
7157
7158         /* convert to counts */
7159         tx = nibble_to_count(enable_lane_tx);
7160         rx = nibble_to_count(enable_lane_rx);
7161
7162         /*
7163          * Set link_speed_active here, overriding what was set in
7164          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7165          * set the max_rate field in handle_verify_cap until v0.19.
7166          */
7167         if ((dd->icode == ICODE_RTL_SILICON) &&
7168             (dd->dc8051_ver < dc8051_ver(0, 19))) {
7169                 /* max_rate: 0 = 12.5G, 1 = 25G */
7170                 switch (max_rate) {
7171                 case 0:
7172                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7173                         break;
7174                 default:
7175                         dd_dev_err(dd,
7176                                    "%s: unexpected max rate %d, using 25Gb\n",
7177                                    __func__, (int)max_rate);
7178                         /* fall through */
7179                 case 1:
7180                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7181                         break;
7182                 }
7183         }
7184
7185         dd_dev_info(dd,
7186                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7187                     enable_lane_tx, tx, enable_lane_rx, rx);
7188         *tx_width = link_width_to_bits(dd, tx);
7189         *rx_width = link_width_to_bits(dd, rx);
7190 }
7191
7192 /*
7193  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7194  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7195  * after link up.  I.e. look elsewhere for downgrade information.
7196  *
7197  * Bits are:
7198  *      + bits [7:4] contain the number of active transmitters
7199  *      + bits [3:0] contain the number of active receivers
7200  * These are numbers 1 through 4 and can be different values if the
7201  * link is asymmetric.
7202  *
7203  * verify_cap_local_fm_link_width[0] retains its original value.
7204  */
7205 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7206                               u16 *rx_width)
7207 {
7208         u16 widths, tx, rx;
7209         u8 misc_bits, local_flags;
7210         u16 active_tx, active_rx;
7211
7212         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7213         tx = widths >> 12;
7214         rx = (widths >> 8) & 0xf;
7215
7216         *tx_width = link_width_to_bits(dd, tx);
7217         *rx_width = link_width_to_bits(dd, rx);
7218
7219         /* print the active widths */
7220         get_link_widths(dd, &active_tx, &active_rx);
7221 }
7222
7223 /*
7224  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7225  * hardware information when the link first comes up.
7226  *
7227  * The link width is not available until after VerifyCap.AllFramesReceived
7228  * (the trigger for handle_verify_cap), so this is outside that routine
7229  * and should be called when the 8051 signals linkup.
7230  */
7231 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7232 {
7233         u16 tx_width, rx_width;
7234
7235         /* get end-of-LNI link widths */
7236         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7237
7238         /* use tx_width as the link is supposed to be symmetric on link up */
7239         ppd->link_width_active = tx_width;
7240         /* link width downgrade active (LWD.A) starts out matching LW.A */
7241         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7242         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7243         /* per OPA spec, on link up LWD.E resets to LWD.S */
7244         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7245         /* cache the active egress rate (units {10^6 bits/sec]) */
7246         ppd->current_egress_rate = active_egress_rate(ppd);
7247 }
7248
7249 /*
7250  * Handle a verify capabilities interrupt from the 8051.
7251  *
7252  * This is a work-queue function outside of the interrupt.
7253  */
7254 void handle_verify_cap(struct work_struct *work)
7255 {
7256         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7257                                                                 link_vc_work);
7258         struct hfi1_devdata *dd = ppd->dd;
7259         u64 reg;
7260         u8 power_management;
7261         u8 continious;
7262         u8 vcu;
7263         u8 vau;
7264         u8 z;
7265         u16 vl15buf;
7266         u16 link_widths;
7267         u16 crc_mask;
7268         u16 crc_val;
7269         u16 device_id;
7270         u16 active_tx, active_rx;
7271         u8 partner_supported_crc;
7272         u8 remote_tx_rate;
7273         u8 device_rev;
7274
7275         set_link_state(ppd, HLS_VERIFY_CAP);
7276
7277         lcb_shutdown(dd, 0);
7278         adjust_lcb_for_fpga_serdes(dd);
7279
7280         /*
7281          * These are now valid:
7282          *      remote VerifyCap fields in the general LNI config
7283          *      CSR DC8051_STS_REMOTE_GUID
7284          *      CSR DC8051_STS_REMOTE_NODE_TYPE
7285          *      CSR DC8051_STS_REMOTE_FM_SECURITY
7286          *      CSR DC8051_STS_REMOTE_PORT_NO
7287          */
7288
7289         read_vc_remote_phy(dd, &power_management, &continious);
7290         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7291                               &partner_supported_crc);
7292         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7293         read_remote_device_id(dd, &device_id, &device_rev);
7294         /*
7295          * And the 'MgmtAllowed' information, which is exchanged during
7296          * LNI, is also be available at this point.
7297          */
7298         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7299         /* print the active widths */
7300         get_link_widths(dd, &active_tx, &active_rx);
7301         dd_dev_info(dd,
7302                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7303                     (int)power_management, (int)continious);
7304         dd_dev_info(dd,
7305                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7306                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7307                     (int)partner_supported_crc);
7308         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7309                     (u32)remote_tx_rate, (u32)link_widths);
7310         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7311                     (u32)device_id, (u32)device_rev);
7312         /*
7313          * The peer vAU value just read is the peer receiver value.  HFI does
7314          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7315          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7316          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7317          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7318          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7319          * subject to the Z value exception.
7320          */
7321         if (vau == 0)
7322                 vau = 1;
7323         set_up_vl15(dd, vau, vl15buf);
7324
7325         /* set up the LCB CRC mode */
7326         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7327
7328         /* order is important: use the lowest bit in common */
7329         if (crc_mask & CAP_CRC_14B)
7330                 crc_val = LCB_CRC_14B;
7331         else if (crc_mask & CAP_CRC_48B)
7332                 crc_val = LCB_CRC_48B;
7333         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7334                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7335         else
7336                 crc_val = LCB_CRC_16B;
7337
7338         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7339         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7340                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7341
7342         /* set (14b only) or clear sideband credit */
7343         reg = read_csr(dd, SEND_CM_CTRL);
7344         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7345                 write_csr(dd, SEND_CM_CTRL,
7346                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7347         } else {
7348                 write_csr(dd, SEND_CM_CTRL,
7349                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7350         }
7351
7352         ppd->link_speed_active = 0;     /* invalid value */
7353         if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7354                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7355                 switch (remote_tx_rate) {
7356                 case 0:
7357                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7358                         break;
7359                 case 1:
7360                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7361                         break;
7362                 }
7363         } else {
7364                 /* actual rate is highest bit of the ANDed rates */
7365                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7366
7367                 if (rate & 2)
7368                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7369                 else if (rate & 1)
7370                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371         }
7372         if (ppd->link_speed_active == 0) {
7373                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7374                            __func__, (int)remote_tx_rate);
7375                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7376         }
7377
7378         /*
7379          * Cache the values of the supported, enabled, and active
7380          * LTP CRC modes to return in 'portinfo' queries. But the bit
7381          * flags that are returned in the portinfo query differ from
7382          * what's in the link_crc_mask, crc_sizes, and crc_val
7383          * variables. Convert these here.
7384          */
7385         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7386                 /* supported crc modes */
7387         ppd->port_ltp_crc_mode |=
7388                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7389                 /* enabled crc modes */
7390         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7391                 /* active crc mode */
7392
7393         /* set up the remote credit return table */
7394         assign_remote_cm_au_table(dd, vcu);
7395
7396         /*
7397          * The LCB is reset on entry to handle_verify_cap(), so this must
7398          * be applied on every link up.
7399          *
7400          * Adjust LCB error kill enable to kill the link if
7401          * these RBUF errors are seen:
7402          *      REPLAY_BUF_MBE_SMASK
7403          *      FLIT_INPUT_BUF_MBE_SMASK
7404          */
7405         if (is_ax(dd)) {                        /* fixed in B0 */
7406                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7407                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7408                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7409                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7410         }
7411
7412         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7413         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7414
7415         /* give 8051 access to the LCB CSRs */
7416         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7417         set_8051_lcb_access(dd);
7418
7419         ppd->neighbor_guid =
7420                 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7421         ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7422                                         DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7423         ppd->neighbor_type =
7424                 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7425                 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7426         ppd->neighbor_fm_security =
7427                 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7428                 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7429         dd_dev_info(dd,
7430                     "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7431                     ppd->neighbor_guid, ppd->neighbor_type,
7432                     ppd->mgmt_allowed, ppd->neighbor_fm_security);
7433         if (ppd->mgmt_allowed)
7434                 add_full_mgmt_pkey(ppd);
7435
7436         /* tell the 8051 to go to LinkUp */
7437         set_link_state(ppd, HLS_GOING_UP);
7438 }
7439
7440 /*
7441  * Apply the link width downgrade enabled policy against the current active
7442  * link widths.
7443  *
7444  * Called when the enabled policy changes or the active link widths change.
7445  */
7446 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7447 {
7448         int do_bounce = 0;
7449         int tries;
7450         u16 lwde;
7451         u16 tx, rx;
7452
7453         /* use the hls lock to avoid a race with actual link up */
7454         tries = 0;
7455 retry:
7456         mutex_lock(&ppd->hls_lock);
7457         /* only apply if the link is up */
7458         if (ppd->host_link_state & HLS_DOWN) {
7459                 /* still going up..wait and retry */
7460                 if (ppd->host_link_state & HLS_GOING_UP) {
7461                         if (++tries < 1000) {
7462                                 mutex_unlock(&ppd->hls_lock);
7463                                 usleep_range(100, 120); /* arbitrary */
7464                                 goto retry;
7465                         }
7466                         dd_dev_err(ppd->dd,
7467                                    "%s: giving up waiting for link state change\n",
7468                                    __func__);
7469                 }
7470                 goto done;
7471         }
7472
7473         lwde = ppd->link_width_downgrade_enabled;
7474
7475         if (refresh_widths) {
7476                 get_link_widths(ppd->dd, &tx, &rx);
7477                 ppd->link_width_downgrade_tx_active = tx;
7478                 ppd->link_width_downgrade_rx_active = rx;
7479         }
7480
7481         if (ppd->link_width_downgrade_tx_active == 0 ||
7482             ppd->link_width_downgrade_rx_active == 0) {
7483                 /* the 8051 reported a dead link as a downgrade */
7484                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7485         } else if (lwde == 0) {
7486                 /* downgrade is disabled */
7487
7488                 /* bounce if not at starting active width */
7489                 if ((ppd->link_width_active !=
7490                      ppd->link_width_downgrade_tx_active) ||
7491                     (ppd->link_width_active !=
7492                      ppd->link_width_downgrade_rx_active)) {
7493                         dd_dev_err(ppd->dd,
7494                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7495                         dd_dev_err(ppd->dd,
7496                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7497                                    ppd->link_width_active,
7498                                    ppd->link_width_downgrade_tx_active,
7499                                    ppd->link_width_downgrade_rx_active);
7500                         do_bounce = 1;
7501                 }
7502         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7503                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7504                 /* Tx or Rx is outside the enabled policy */
7505                 dd_dev_err(ppd->dd,
7506                            "Link is outside of downgrade allowed, downing link\n");
7507                 dd_dev_err(ppd->dd,
7508                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7509                            lwde, ppd->link_width_downgrade_tx_active,
7510                            ppd->link_width_downgrade_rx_active);
7511                 do_bounce = 1;
7512         }
7513
7514 done:
7515         mutex_unlock(&ppd->hls_lock);
7516
7517         if (do_bounce) {
7518                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7519                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7520                 set_link_state(ppd, HLS_DN_OFFLINE);
7521                 start_link(ppd);
7522         }
7523 }
7524
7525 /*
7526  * Handle a link downgrade interrupt from the 8051.
7527  *
7528  * This is a work-queue function outside of the interrupt.
7529  */
7530 void handle_link_downgrade(struct work_struct *work)
7531 {
7532         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7533                                                         link_downgrade_work);
7534
7535         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7536         apply_link_downgrade_policy(ppd, 1);
7537 }
7538
7539 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7540 {
7541         return flag_string(buf, buf_len, flags, dcc_err_flags,
7542                 ARRAY_SIZE(dcc_err_flags));
7543 }
7544
7545 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7546 {
7547         return flag_string(buf, buf_len, flags, lcb_err_flags,
7548                 ARRAY_SIZE(lcb_err_flags));
7549 }
7550
7551 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7552 {
7553         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7554                 ARRAY_SIZE(dc8051_err_flags));
7555 }
7556
7557 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7558 {
7559         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7560                 ARRAY_SIZE(dc8051_info_err_flags));
7561 }
7562
7563 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7564 {
7565         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7566                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7567 }
7568
7569 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7570 {
7571         struct hfi1_pportdata *ppd = dd->pport;
7572         u64 info, err, host_msg;
7573         int queue_link_down = 0;
7574         char buf[96];
7575
7576         /* look at the flags */
7577         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7578                 /* 8051 information set by firmware */
7579                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7580                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7581                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7582                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7583                 host_msg = (info >>
7584                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7585                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7586
7587                 /*
7588                  * Handle error flags.
7589                  */
7590                 if (err & FAILED_LNI) {
7591                         /*
7592                          * LNI error indications are cleared by the 8051
7593                          * only when starting polling.  Only pay attention
7594                          * to them when in the states that occur during
7595                          * LNI.
7596                          */
7597                         if (ppd->host_link_state
7598                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7599                                 queue_link_down = 1;
7600                                 dd_dev_info(dd, "Link error: %s\n",
7601                                             dc8051_info_err_string(buf,
7602                                                                    sizeof(buf),
7603                                                                    err &
7604                                                                    FAILED_LNI));
7605                         }
7606                         err &= ~(u64)FAILED_LNI;
7607                 }
7608                 /* unknown frames can happen durning LNI, just count */
7609                 if (err & UNKNOWN_FRAME) {
7610                         ppd->unknown_frame_count++;
7611                         err &= ~(u64)UNKNOWN_FRAME;
7612                 }
7613                 if (err) {
7614                         /* report remaining errors, but do not do anything */
7615                         dd_dev_err(dd, "8051 info error: %s\n",
7616                                    dc8051_info_err_string(buf, sizeof(buf),
7617                                                           err));
7618                 }
7619
7620                 /*
7621                  * Handle host message flags.
7622                  */
7623                 if (host_msg & HOST_REQ_DONE) {
7624                         /*
7625                          * Presently, the driver does a busy wait for
7626                          * host requests to complete.  This is only an
7627                          * informational message.
7628                          * NOTE: The 8051 clears the host message
7629                          * information *on the next 8051 command*.
7630                          * Therefore, when linkup is achieved,
7631                          * this flag will still be set.
7632                          */
7633                         host_msg &= ~(u64)HOST_REQ_DONE;
7634                 }
7635                 if (host_msg & BC_SMA_MSG) {
7636                         queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7637                         host_msg &= ~(u64)BC_SMA_MSG;
7638                 }
7639                 if (host_msg & LINKUP_ACHIEVED) {
7640                         dd_dev_info(dd, "8051: Link up\n");
7641                         queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7642                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7643                 }
7644                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7645                         handle_8051_request(ppd);
7646                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7647                 }
7648                 if (host_msg & VERIFY_CAP_FRAME) {
7649                         queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7650                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7651                 }
7652                 if (host_msg & LINK_GOING_DOWN) {
7653                         const char *extra = "";
7654                         /* no downgrade action needed if going down */
7655                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7656                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7657                                 extra = " (ignoring downgrade)";
7658                         }
7659                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7660                         queue_link_down = 1;
7661                         host_msg &= ~(u64)LINK_GOING_DOWN;
7662                 }
7663                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7664                         queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7665                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7666                 }
7667                 if (host_msg) {
7668                         /* report remaining messages, but do not do anything */
7669                         dd_dev_info(dd, "8051 info host message: %s\n",
7670                                     dc8051_info_host_msg_string(buf,
7671                                                                 sizeof(buf),
7672                                                                 host_msg));
7673                 }
7674
7675                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7676         }
7677         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7678                 /*
7679                  * Lost the 8051 heartbeat.  If this happens, we
7680                  * receive constant interrupts about it.  Disable
7681                  * the interrupt after the first.
7682                  */
7683                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7684                 write_csr(dd, DC_DC8051_ERR_EN,
7685                           read_csr(dd, DC_DC8051_ERR_EN) &
7686                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7687
7688                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7689         }
7690         if (reg) {
7691                 /* report the error, but do not do anything */
7692                 dd_dev_err(dd, "8051 error: %s\n",
7693                            dc8051_err_string(buf, sizeof(buf), reg));
7694         }
7695
7696         if (queue_link_down) {
7697                 /*
7698                  * if the link is already going down or disabled, do not
7699                  * queue another
7700                  */
7701                 if ((ppd->host_link_state &
7702                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7703                     ppd->link_enabled == 0) {
7704                         dd_dev_info(dd, "%s: not queuing link down\n",
7705                                     __func__);
7706                 } else {
7707                         queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7708                 }
7709         }
7710 }
7711
7712 static const char * const fm_config_txt[] = {
7713 [0] =
7714         "BadHeadDist: Distance violation between two head flits",
7715 [1] =
7716         "BadTailDist: Distance violation between two tail flits",
7717 [2] =
7718         "BadCtrlDist: Distance violation between two credit control flits",
7719 [3] =
7720         "BadCrdAck: Credits return for unsupported VL",
7721 [4] =
7722         "UnsupportedVLMarker: Received VL Marker",
7723 [5] =
7724         "BadPreempt: Exceeded the preemption nesting level",
7725 [6] =
7726         "BadControlFlit: Received unsupported control flit",
7727 /* no 7 */
7728 [8] =
7729         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7730 };
7731
7732 static const char * const port_rcv_txt[] = {
7733 [1] =
7734         "BadPktLen: Illegal PktLen",
7735 [2] =
7736         "PktLenTooLong: Packet longer than PktLen",
7737 [3] =
7738         "PktLenTooShort: Packet shorter than PktLen",
7739 [4] =
7740         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7741 [5] =
7742         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7743 [6] =
7744         "BadL2: Illegal L2 opcode",
7745 [7] =
7746         "BadSC: Unsupported SC",
7747 [9] =
7748         "BadRC: Illegal RC",
7749 [11] =
7750         "PreemptError: Preempting with same VL",
7751 [12] =
7752         "PreemptVL15: Preempting a VL15 packet",
7753 };
7754
7755 #define OPA_LDR_FMCONFIG_OFFSET 16
7756 #define OPA_LDR_PORTRCV_OFFSET 0
7757 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7758 {
7759         u64 info, hdr0, hdr1;
7760         const char *extra;
7761         char buf[96];
7762         struct hfi1_pportdata *ppd = dd->pport;
7763         u8 lcl_reason = 0;
7764         int do_bounce = 0;
7765
7766         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7767                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7768                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7769                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7770                         /* set status bit */
7771                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7772                 }
7773                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7774         }
7775
7776         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7777                 struct hfi1_pportdata *ppd = dd->pport;
7778                 /* this counter saturates at (2^32) - 1 */
7779                 if (ppd->link_downed < (u32)UINT_MAX)
7780                         ppd->link_downed++;
7781                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7782         }
7783
7784         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7785                 u8 reason_valid = 1;
7786
7787                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7788                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7789                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7790                         /* set status bit */
7791                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7792                 }
7793                 switch (info) {
7794                 case 0:
7795                 case 1:
7796                 case 2:
7797                 case 3:
7798                 case 4:
7799                 case 5:
7800                 case 6:
7801                         extra = fm_config_txt[info];
7802                         break;
7803                 case 8:
7804                         extra = fm_config_txt[info];
7805                         if (ppd->port_error_action &
7806                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7807                                 do_bounce = 1;
7808                                 /*
7809                                  * lcl_reason cannot be derived from info
7810                                  * for this error
7811                                  */
7812                                 lcl_reason =
7813                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7814                         }
7815                         break;
7816                 default:
7817                         reason_valid = 0;
7818                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7819                         extra = buf;
7820                         break;
7821                 }
7822
7823                 if (reason_valid && !do_bounce) {
7824                         do_bounce = ppd->port_error_action &
7825                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7826                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7827                 }
7828
7829                 /* just report this */
7830                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7831                                         extra);
7832                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7833         }
7834
7835         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7836                 u8 reason_valid = 1;
7837
7838                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7839                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7840                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7841                 if (!(dd->err_info_rcvport.status_and_code &
7842                       OPA_EI_STATUS_SMASK)) {
7843                         dd->err_info_rcvport.status_and_code =
7844                                 info & OPA_EI_CODE_SMASK;
7845                         /* set status bit */
7846                         dd->err_info_rcvport.status_and_code |=
7847                                 OPA_EI_STATUS_SMASK;
7848                         /*
7849                          * save first 2 flits in the packet that caused
7850                          * the error
7851                          */
7852                         dd->err_info_rcvport.packet_flit1 = hdr0;
7853                         dd->err_info_rcvport.packet_flit2 = hdr1;
7854                 }
7855                 switch (info) {
7856                 case 1:
7857                 case 2:
7858                 case 3:
7859                 case 4:
7860                 case 5:
7861                 case 6:
7862                 case 7:
7863                 case 9:
7864                 case 11:
7865                 case 12:
7866                         extra = port_rcv_txt[info];
7867                         break;
7868                 default:
7869                         reason_valid = 0;
7870                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7871                         extra = buf;
7872                         break;
7873                 }
7874
7875                 if (reason_valid && !do_bounce) {
7876                         do_bounce = ppd->port_error_action &
7877                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7878                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7879                 }
7880
7881                 /* just report this */
7882                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7883                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
7884                                         extra, hdr0, hdr1);
7885
7886                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7887         }
7888
7889         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7890                 /* informative only */
7891                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7892                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7893         }
7894         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7895                 /* informative only */
7896                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7897                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7898         }
7899
7900         /* report any remaining errors */
7901         if (reg)
7902                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7903                                         dcc_err_string(buf, sizeof(buf), reg));
7904
7905         if (lcl_reason == 0)
7906                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7907
7908         if (do_bounce) {
7909                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7910                                         __func__);
7911                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7912                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7913         }
7914 }
7915
7916 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7917 {
7918         char buf[96];
7919
7920         dd_dev_info(dd, "LCB Error: %s\n",
7921                     lcb_err_string(buf, sizeof(buf), reg));
7922 }
7923
7924 /*
7925  * CCE block DC interrupt.  Source is < 8.
7926  */
7927 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7928 {
7929         const struct err_reg_info *eri = &dc_errs[source];
7930
7931         if (eri->handler) {
7932                 interrupt_clear_down(dd, 0, eri);
7933         } else if (source == 3 /* dc_lbm_int */) {
7934                 /*
7935                  * This indicates that a parity error has occurred on the
7936                  * address/control lines presented to the LBM.  The error
7937                  * is a single pulse, there is no associated error flag,
7938                  * and it is non-maskable.  This is because if a parity
7939                  * error occurs on the request the request is dropped.
7940                  * This should never occur, but it is nice to know if it
7941                  * ever does.
7942                  */
7943                 dd_dev_err(dd, "Parity error in DC LBM block\n");
7944         } else {
7945                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7946         }
7947 }
7948
7949 /*
7950  * TX block send credit interrupt.  Source is < 160.
7951  */
7952 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7953 {
7954         sc_group_release_update(dd, source);
7955 }
7956
7957 /*
7958  * TX block SDMA interrupt.  Source is < 48.
7959  *
7960  * SDMA interrupts are grouped by type:
7961  *
7962  *       0 -  N-1 = SDma
7963  *       N - 2N-1 = SDmaProgress
7964  *      2N - 3N-1 = SDmaIdle
7965  */
7966 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7967 {
7968         /* what interrupt */
7969         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7970         /* which engine */
7971         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7972
7973 #ifdef CONFIG_SDMA_VERBOSITY
7974         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7975                    slashstrip(__FILE__), __LINE__, __func__);
7976         sdma_dumpstate(&dd->per_sdma[which]);
7977 #endif
7978
7979         if (likely(what < 3 && which < dd->num_sdma)) {
7980                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7981         } else {
7982                 /* should not happen */
7983                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7984         }
7985 }
7986
7987 /*
7988  * RX block receive available interrupt.  Source is < 160.
7989  */
7990 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7991 {
7992         struct hfi1_ctxtdata *rcd;
7993         char *err_detail;
7994
7995         if (likely(source < dd->num_rcv_contexts)) {
7996                 rcd = dd->rcd[source];
7997                 if (rcd) {
7998                         if (source < dd->first_user_ctxt)
7999                                 rcd->do_interrupt(rcd, 0);
8000                         else
8001                                 handle_user_interrupt(rcd);
8002                         return; /* OK */
8003                 }
8004                 /* received an interrupt, but no rcd */
8005                 err_detail = "dataless";
8006         } else {
8007                 /* received an interrupt, but are not using that context */
8008                 err_detail = "out of range";
8009         }
8010         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8011                    err_detail, source);
8012 }
8013
8014 /*
8015  * RX block receive urgent interrupt.  Source is < 160.
8016  */
8017 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8018 {
8019         struct hfi1_ctxtdata *rcd;
8020         char *err_detail;
8021
8022         if (likely(source < dd->num_rcv_contexts)) {
8023                 rcd = dd->rcd[source];
8024                 if (rcd) {
8025                         /* only pay attention to user urgent interrupts */
8026                         if (source >= dd->first_user_ctxt)
8027                                 handle_user_interrupt(rcd);
8028                         return; /* OK */
8029                 }
8030                 /* received an interrupt, but no rcd */
8031                 err_detail = "dataless";
8032         } else {
8033                 /* received an interrupt, but are not using that context */
8034                 err_detail = "out of range";
8035         }
8036         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8037                    err_detail, source);
8038 }
8039
8040 /*
8041  * Reserved range interrupt.  Should not be called in normal operation.
8042  */
8043 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8044 {
8045         char name[64];
8046
8047         dd_dev_err(dd, "unexpected %s interrupt\n",
8048                    is_reserved_name(name, sizeof(name), source));
8049 }
8050
8051 static const struct is_table is_table[] = {
8052 /*
8053  * start                 end
8054  *                              name func               interrupt func
8055  */
8056 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8057                                 is_misc_err_name,       is_misc_err_int },
8058 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8059                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8060 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8061                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8062 { IS_SDMA_START,             IS_SDMA_END,
8063                                 is_sdma_eng_name,       is_sdma_eng_int },
8064 { IS_VARIOUS_START,          IS_VARIOUS_END,
8065                                 is_various_name,        is_various_int },
8066 { IS_DC_START,       IS_DC_END,
8067                                 is_dc_name,             is_dc_int },
8068 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8069                                 is_rcv_avail_name,      is_rcv_avail_int },
8070 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8071                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8072 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8073                                 is_send_credit_name,    is_send_credit_int},
8074 { IS_RESERVED_START,     IS_RESERVED_END,
8075                                 is_reserved_name,       is_reserved_int},
8076 };
8077
8078 /*
8079  * Interrupt source interrupt - called when the given source has an interrupt.
8080  * Source is a bit index into an array of 64-bit integers.
8081  */
8082 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8083 {
8084         const struct is_table *entry;
8085
8086         /* avoids a double compare by walking the table in-order */
8087         for (entry = &is_table[0]; entry->is_name; entry++) {
8088                 if (source < entry->end) {
8089                         trace_hfi1_interrupt(dd, entry, source);
8090                         entry->is_int(dd, source - entry->start);
8091                         return;
8092                 }
8093         }
8094         /* fell off the end */
8095         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8096 }
8097
8098 /*
8099  * General interrupt handler.  This is able to correctly handle
8100  * all interrupts in case INTx is used.
8101  */
8102 static irqreturn_t general_interrupt(int irq, void *data)
8103 {
8104         struct hfi1_devdata *dd = data;
8105         u64 regs[CCE_NUM_INT_CSRS];
8106         u32 bit;
8107         int i;
8108
8109         this_cpu_inc(*dd->int_counter);
8110
8111         /* phase 1: scan and clear all handled interrupts */
8112         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8113                 if (dd->gi_mask[i] == 0) {
8114                         regs[i] = 0;    /* used later */
8115                         continue;
8116                 }
8117                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8118                                 dd->gi_mask[i];
8119                 /* only clear if anything is set */
8120                 if (regs[i])
8121                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8122         }
8123
8124         /* phase 2: call the appropriate handler */
8125         for_each_set_bit(bit, (unsigned long *)&regs[0],
8126                          CCE_NUM_INT_CSRS * 64) {
8127                 is_interrupt(dd, bit);
8128         }
8129
8130         return IRQ_HANDLED;
8131 }
8132
8133 static irqreturn_t sdma_interrupt(int irq, void *data)
8134 {
8135         struct sdma_engine *sde = data;
8136         struct hfi1_devdata *dd = sde->dd;
8137         u64 status;
8138
8139 #ifdef CONFIG_SDMA_VERBOSITY
8140         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8141                    slashstrip(__FILE__), __LINE__, __func__);
8142         sdma_dumpstate(sde);
8143 #endif
8144
8145         this_cpu_inc(*dd->int_counter);
8146
8147         /* This read_csr is really bad in the hot path */
8148         status = read_csr(dd,
8149                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8150                           & sde->imask;
8151         if (likely(status)) {
8152                 /* clear the interrupt(s) */
8153                 write_csr(dd,
8154                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8155                           status);
8156
8157                 /* handle the interrupt(s) */
8158                 sdma_engine_interrupt(sde, status);
8159         } else
8160                 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8161                            sde->this_idx);
8162
8163         return IRQ_HANDLED;
8164 }
8165
8166 /*
8167  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8168  * to insure that the write completed.  This does NOT guarantee that
8169  * queued DMA writes to memory from the chip are pushed.
8170  */
8171 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8172 {
8173         struct hfi1_devdata *dd = rcd->dd;
8174         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8175
8176         mmiowb();       /* make sure everything before is written */
8177         write_csr(dd, addr, rcd->imask);
8178         /* force the above write on the chip and get a value back */
8179         (void)read_csr(dd, addr);
8180 }
8181
8182 /* force the receive interrupt */
8183 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8184 {
8185         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8186 }
8187
8188 /*
8189  * Return non-zero if a packet is present.
8190  *
8191  * This routine is called when rechecking for packets after the RcvAvail
8192  * interrupt has been cleared down.  First, do a quick check of memory for
8193  * a packet present.  If not found, use an expensive CSR read of the context
8194  * tail to determine the actual tail.  The CSR read is necessary because there
8195  * is no method to push pending DMAs to memory other than an interrupt and we
8196  * are trying to determine if we need to force an interrupt.
8197  */
8198 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8199 {
8200         u32 tail;
8201         int present;
8202
8203         if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8204                 present = (rcd->seq_cnt ==
8205                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8206         else /* is RDMA rtail */
8207                 present = (rcd->head != get_rcvhdrtail(rcd));
8208
8209         if (present)
8210                 return 1;
8211
8212         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8213         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8214         return rcd->head != tail;
8215 }
8216
8217 /*
8218  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8219  * This routine will try to handle packets immediately (latency), but if
8220  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8221  * chip receive interrupt is *not* cleared down until this or the thread (if
8222  * invoked) is finished.  The intent is to avoid extra interrupts while we
8223  * are processing packets anyway.
8224  */
8225 static irqreturn_t receive_context_interrupt(int irq, void *data)
8226 {
8227         struct hfi1_ctxtdata *rcd = data;
8228         struct hfi1_devdata *dd = rcd->dd;
8229         int disposition;
8230         int present;
8231
8232         trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8233         this_cpu_inc(*dd->int_counter);
8234         aspm_ctx_disable(rcd);
8235
8236         /* receive interrupt remains blocked while processing packets */
8237         disposition = rcd->do_interrupt(rcd, 0);
8238
8239         /*
8240          * Too many packets were seen while processing packets in this
8241          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8242          * remains blocked.
8243          */
8244         if (disposition == RCV_PKT_LIMIT)
8245                 return IRQ_WAKE_THREAD;
8246
8247         /*
8248          * The packet processor detected no more packets.  Clear the receive
8249          * interrupt and recheck for a packet packet that may have arrived
8250          * after the previous check and interrupt clear.  If a packet arrived,
8251          * force another interrupt.
8252          */
8253         clear_recv_intr(rcd);
8254         present = check_packet_present(rcd);
8255         if (present)
8256                 force_recv_intr(rcd);
8257
8258         return IRQ_HANDLED;
8259 }
8260
8261 /*
8262  * Receive packet thread handler.  This expects to be invoked with the
8263  * receive interrupt still blocked.
8264  */
8265 static irqreturn_t receive_context_thread(int irq, void *data)
8266 {
8267         struct hfi1_ctxtdata *rcd = data;
8268         int present;
8269
8270         /* receive interrupt is still blocked from the IRQ handler */
8271         (void)rcd->do_interrupt(rcd, 1);
8272
8273         /*
8274          * The packet processor will only return if it detected no more
8275          * packets.  Hold IRQs here so we can safely clear the interrupt and
8276          * recheck for a packet that may have arrived after the previous
8277          * check and the interrupt clear.  If a packet arrived, force another
8278          * interrupt.
8279          */
8280         local_irq_disable();
8281         clear_recv_intr(rcd);
8282         present = check_packet_present(rcd);
8283         if (present)
8284                 force_recv_intr(rcd);
8285         local_irq_enable();
8286
8287         return IRQ_HANDLED;
8288 }
8289
8290 /* ========================================================================= */
8291
8292 u32 read_physical_state(struct hfi1_devdata *dd)
8293 {
8294         u64 reg;
8295
8296         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8297         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8298                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8299 }
8300
8301 u32 read_logical_state(struct hfi1_devdata *dd)
8302 {
8303         u64 reg;
8304
8305         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8306         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8307                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8308 }
8309
8310 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8311 {
8312         u64 reg;
8313
8314         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8315         /* clear current state, set new state */
8316         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8317         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8318         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8319 }
8320
8321 /*
8322  * Use the 8051 to read a LCB CSR.
8323  */
8324 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8325 {
8326         u32 regno;
8327         int ret;
8328
8329         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8330                 if (acquire_lcb_access(dd, 0) == 0) {
8331                         *data = read_csr(dd, addr);
8332                         release_lcb_access(dd, 0);
8333                         return 0;
8334                 }
8335                 return -EBUSY;
8336         }
8337
8338         /* register is an index of LCB registers: (offset - base) / 8 */
8339         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8340         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8341         if (ret != HCMD_SUCCESS)
8342                 return -EBUSY;
8343         return 0;
8344 }
8345
8346 /*
8347  * Read an LCB CSR.  Access may not be in host control, so check.
8348  * Return 0 on success, -EBUSY on failure.
8349  */
8350 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8351 {
8352         struct hfi1_pportdata *ppd = dd->pport;
8353
8354         /* if up, go through the 8051 for the value */
8355         if (ppd->host_link_state & HLS_UP)
8356                 return read_lcb_via_8051(dd, addr, data);
8357         /* if going up or down, no access */
8358         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8359                 return -EBUSY;
8360         /* otherwise, host has access */
8361         *data = read_csr(dd, addr);
8362         return 0;
8363 }
8364
8365 /*
8366  * Use the 8051 to write a LCB CSR.
8367  */
8368 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8369 {
8370         u32 regno;
8371         int ret;
8372
8373         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8374             (dd->dc8051_ver < dc8051_ver(0, 20))) {
8375                 if (acquire_lcb_access(dd, 0) == 0) {
8376                         write_csr(dd, addr, data);
8377                         release_lcb_access(dd, 0);
8378                         return 0;
8379                 }
8380                 return -EBUSY;
8381         }
8382
8383         /* register is an index of LCB registers: (offset - base) / 8 */
8384         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8385         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8386         if (ret != HCMD_SUCCESS)
8387                 return -EBUSY;
8388         return 0;
8389 }
8390
8391 /*
8392  * Write an LCB CSR.  Access may not be in host control, so check.
8393  * Return 0 on success, -EBUSY on failure.
8394  */
8395 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8396 {
8397         struct hfi1_pportdata *ppd = dd->pport;
8398
8399         /* if up, go through the 8051 for the value */
8400         if (ppd->host_link_state & HLS_UP)
8401                 return write_lcb_via_8051(dd, addr, data);
8402         /* if going up or down, no access */
8403         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8404                 return -EBUSY;
8405         /* otherwise, host has access */
8406         write_csr(dd, addr, data);
8407         return 0;
8408 }
8409
8410 /*
8411  * Returns:
8412  *      < 0 = Linux error, not able to get access
8413  *      > 0 = 8051 command RETURN_CODE
8414  */
8415 static int do_8051_command(
8416         struct hfi1_devdata *dd,
8417         u32 type,
8418         u64 in_data,
8419         u64 *out_data)
8420 {
8421         u64 reg, completed;
8422         int return_code;
8423         unsigned long flags;
8424         unsigned long timeout;
8425
8426         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8427
8428         /*
8429          * Alternative to holding the lock for a long time:
8430          * - keep busy wait - have other users bounce off
8431          */
8432         spin_lock_irqsave(&dd->dc8051_lock, flags);
8433
8434         /* We can't send any commands to the 8051 if it's in reset */
8435         if (dd->dc_shutdown) {
8436                 return_code = -ENODEV;
8437                 goto fail;
8438         }
8439
8440         /*
8441          * If an 8051 host command timed out previously, then the 8051 is
8442          * stuck.
8443          *
8444          * On first timeout, attempt to reset and restart the entire DC
8445          * block (including 8051). (Is this too big of a hammer?)
8446          *
8447          * If the 8051 times out a second time, the reset did not bring it
8448          * back to healthy life. In that case, fail any subsequent commands.
8449          */
8450         if (dd->dc8051_timed_out) {
8451                 if (dd->dc8051_timed_out > 1) {
8452                         dd_dev_err(dd,
8453                                    "Previous 8051 host command timed out, skipping command %u\n",
8454                                    type);
8455                         return_code = -ENXIO;
8456                         goto fail;
8457                 }
8458                 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8459                 dc_shutdown(dd);
8460                 dc_start(dd);
8461                 spin_lock_irqsave(&dd->dc8051_lock, flags);
8462         }
8463
8464         /*
8465          * If there is no timeout, then the 8051 command interface is
8466          * waiting for a command.
8467          */
8468
8469         /*
8470          * When writing a LCB CSR, out_data contains the full value to
8471          * to be written, while in_data contains the relative LCB
8472          * address in 7:0.  Do the work here, rather than the caller,
8473          * of distrubting the write data to where it needs to go:
8474          *
8475          * Write data
8476          *   39:00 -> in_data[47:8]
8477          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8478          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8479          */
8480         if (type == HCMD_WRITE_LCB_CSR) {
8481                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8482                 /* must preserve COMPLETED - it is tied to hardware */
8483                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8484                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8485                 reg |= ((((*out_data) >> 40) & 0xff) <<
8486                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8487                       | ((((*out_data) >> 48) & 0xffff) <<
8488                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8489                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8490         }
8491
8492         /*
8493          * Do two writes: the first to stabilize the type and req_data, the
8494          * second to activate.
8495          */
8496         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8497                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8498                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8499                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8500         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8501         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8502         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8503
8504         /* wait for completion, alternate: interrupt */
8505         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8506         while (1) {
8507                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8508                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8509                 if (completed)
8510                         break;
8511                 if (time_after(jiffies, timeout)) {
8512                         dd->dc8051_timed_out++;
8513                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8514                         if (out_data)
8515                                 *out_data = 0;
8516                         return_code = -ETIMEDOUT;
8517                         goto fail;
8518                 }
8519                 udelay(2);
8520         }
8521
8522         if (out_data) {
8523                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8524                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8525                 if (type == HCMD_READ_LCB_CSR) {
8526                         /* top 16 bits are in a different register */
8527                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8528                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8529                                 << (48
8530                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8531                 }
8532         }
8533         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8534                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8535         dd->dc8051_timed_out = 0;
8536         /*
8537          * Clear command for next user.
8538          */
8539         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8540
8541 fail:
8542         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8543
8544         return return_code;
8545 }
8546
8547 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8548 {
8549         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8550 }
8551
8552 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8553                      u8 lane_id, u32 config_data)
8554 {
8555         u64 data;
8556         int ret;
8557
8558         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8559                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8560                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8561         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8562         if (ret != HCMD_SUCCESS) {
8563                 dd_dev_err(dd,
8564                            "load 8051 config: field id %d, lane %d, err %d\n",
8565                            (int)field_id, (int)lane_id, ret);
8566         }
8567         return ret;
8568 }
8569
8570 /*
8571  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8572  * set the result, even on error.
8573  * Return 0 on success, -errno on failure
8574  */
8575 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8576                      u32 *result)
8577 {
8578         u64 big_data;
8579         u32 addr;
8580         int ret;
8581
8582         /* address start depends on the lane_id */
8583         if (lane_id < 4)
8584                 addr = (4 * NUM_GENERAL_FIELDS)
8585                         + (lane_id * 4 * NUM_LANE_FIELDS);
8586         else
8587                 addr = 0;
8588         addr += field_id * 4;
8589
8590         /* read is in 8-byte chunks, hardware will truncate the address down */
8591         ret = read_8051_data(dd, addr, 8, &big_data);
8592
8593         if (ret == 0) {
8594                 /* extract the 4 bytes we want */
8595                 if (addr & 0x4)
8596                         *result = (u32)(big_data >> 32);
8597                 else
8598                         *result = (u32)big_data;
8599         } else {
8600                 *result = 0;
8601                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8602                            __func__, lane_id, field_id);
8603         }
8604
8605         return ret;
8606 }
8607
8608 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8609                               u8 continuous)
8610 {
8611         u32 frame;
8612
8613         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8614                 | power_management << POWER_MANAGEMENT_SHIFT;
8615         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8616                                 GENERAL_CONFIG, frame);
8617 }
8618
8619 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8620                                  u16 vl15buf, u8 crc_sizes)
8621 {
8622         u32 frame;
8623
8624         frame = (u32)vau << VAU_SHIFT
8625                 | (u32)z << Z_SHIFT
8626                 | (u32)vcu << VCU_SHIFT
8627                 | (u32)vl15buf << VL15BUF_SHIFT
8628                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8629         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8630                                 GENERAL_CONFIG, frame);
8631 }
8632
8633 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8634                                      u8 *flag_bits, u16 *link_widths)
8635 {
8636         u32 frame;
8637
8638         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8639                          &frame);
8640         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8641         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8642         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8643 }
8644
8645 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8646                                      u8 misc_bits,
8647                                      u8 flag_bits,
8648                                      u16 link_widths)
8649 {
8650         u32 frame;
8651
8652         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8653                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8654                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8655         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8656                      frame);
8657 }
8658
8659 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8660                                  u8 device_rev)
8661 {
8662         u32 frame;
8663
8664         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8665                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8666         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8667 }
8668
8669 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8670                                   u8 *device_rev)
8671 {
8672         u32 frame;
8673
8674         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8675         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8676         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8677                         & REMOTE_DEVICE_REV_MASK;
8678 }
8679
8680 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8681 {
8682         u32 frame;
8683
8684         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8685         *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8686         *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8687 }
8688
8689 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8690                                u8 *continuous)
8691 {
8692         u32 frame;
8693
8694         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8695         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8696                                         & POWER_MANAGEMENT_MASK;
8697         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8698                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8699 }
8700
8701 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8702                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8703 {
8704         u32 frame;
8705
8706         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8707         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8708         *z = (frame >> Z_SHIFT) & Z_MASK;
8709         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8710         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8711         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8712 }
8713
8714 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8715                                       u8 *remote_tx_rate,
8716                                       u16 *link_widths)
8717 {
8718         u32 frame;
8719
8720         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8721                          &frame);
8722         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8723                                 & REMOTE_TX_RATE_MASK;
8724         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8725 }
8726
8727 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8728 {
8729         u32 frame;
8730
8731         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8732         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8733 }
8734
8735 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8736 {
8737         u32 frame;
8738
8739         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8740         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8741 }
8742
8743 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8744 {
8745         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8746 }
8747
8748 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8749 {
8750         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8751 }
8752
8753 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8754 {
8755         u32 frame;
8756         int ret;
8757
8758         *link_quality = 0;
8759         if (dd->pport->host_link_state & HLS_UP) {
8760                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8761                                        &frame);
8762                 if (ret == 0)
8763                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8764                                                 & LINK_QUALITY_MASK;
8765         }
8766 }
8767
8768 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8769 {
8770         u32 frame;
8771
8772         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8773         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8774 }
8775
8776 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8777 {
8778         u32 frame;
8779
8780         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8781         *ldr = (frame & 0xff);
8782 }
8783
8784 static int read_tx_settings(struct hfi1_devdata *dd,
8785                             u8 *enable_lane_tx,
8786                             u8 *tx_polarity_inversion,
8787                             u8 *rx_polarity_inversion,
8788                             u8 *max_rate)
8789 {
8790         u32 frame;
8791         int ret;
8792
8793         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8794         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8795                                 & ENABLE_LANE_TX_MASK;
8796         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8797                                 & TX_POLARITY_INVERSION_MASK;
8798         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8799                                 & RX_POLARITY_INVERSION_MASK;
8800         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8801         return ret;
8802 }
8803
8804 static int write_tx_settings(struct hfi1_devdata *dd,
8805                              u8 enable_lane_tx,
8806                              u8 tx_polarity_inversion,
8807                              u8 rx_polarity_inversion,
8808                              u8 max_rate)
8809 {
8810         u32 frame;
8811
8812         /* no need to mask, all variable sizes match field widths */
8813         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8814                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8815                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8816                 | max_rate << MAX_RATE_SHIFT;
8817         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8818 }
8819
8820 /*
8821  * Read an idle LCB message.
8822  *
8823  * Returns 0 on success, -EINVAL on error
8824  */
8825 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8826 {
8827         int ret;
8828
8829         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8830         if (ret != HCMD_SUCCESS) {
8831                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8832                            (u32)type, ret);
8833                 return -EINVAL;
8834         }
8835         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8836         /* return only the payload as we already know the type */
8837         *data_out >>= IDLE_PAYLOAD_SHIFT;
8838         return 0;
8839 }
8840
8841 /*
8842  * Read an idle SMA message.  To be done in response to a notification from
8843  * the 8051.
8844  *
8845  * Returns 0 on success, -EINVAL on error
8846  */
8847 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8848 {
8849         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8850                                  data);
8851 }
8852
8853 /*
8854  * Send an idle LCB message.
8855  *
8856  * Returns 0 on success, -EINVAL on error
8857  */
8858 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8859 {
8860         int ret;
8861
8862         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8863         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8864         if (ret != HCMD_SUCCESS) {
8865                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8866                            data, ret);
8867                 return -EINVAL;
8868         }
8869         return 0;
8870 }
8871
8872 /*
8873  * Send an idle SMA message.
8874  *
8875  * Returns 0 on success, -EINVAL on error
8876  */
8877 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8878 {
8879         u64 data;
8880
8881         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8882                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8883         return send_idle_message(dd, data);
8884 }
8885
8886 /*
8887  * Initialize the LCB then do a quick link up.  This may or may not be
8888  * in loopback.
8889  *
8890  * return 0 on success, -errno on error
8891  */
8892 static int do_quick_linkup(struct hfi1_devdata *dd)
8893 {
8894         u64 reg;
8895         unsigned long timeout;
8896         int ret;
8897
8898         lcb_shutdown(dd, 0);
8899
8900         if (loopback) {
8901                 /* LCB_CFG_LOOPBACK.VAL = 2 */
8902                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8903                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8904                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8905                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8906         }
8907
8908         /* start the LCBs */
8909         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8910         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8911
8912         /* simulator only loopback steps */
8913         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8914                 /* LCB_CFG_RUN.EN = 1 */
8915                 write_csr(dd, DC_LCB_CFG_RUN,
8916                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8917
8918                 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8919                 timeout = jiffies + msecs_to_jiffies(10);
8920                 while (1) {
8921                         reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8922                         if (reg)
8923                                 break;
8924                         if (time_after(jiffies, timeout)) {
8925                                 dd_dev_err(dd,
8926                                            "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8927                                 return -ETIMEDOUT;
8928                         }
8929                         udelay(2);
8930                 }
8931
8932                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8933                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8934         }
8935
8936         if (!loopback) {
8937                 /*
8938                  * When doing quick linkup and not in loopback, both
8939                  * sides must be done with LCB set-up before either
8940                  * starts the quick linkup.  Put a delay here so that
8941                  * both sides can be started and have a chance to be
8942                  * done with LCB set up before resuming.
8943                  */
8944                 dd_dev_err(dd,
8945                            "Pausing for peer to be finished with LCB set up\n");
8946                 msleep(5000);
8947                 dd_dev_err(dd, "Continuing with quick linkup\n");
8948         }
8949
8950         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8951         set_8051_lcb_access(dd);
8952
8953         /*
8954          * State "quick" LinkUp request sets the physical link state to
8955          * LinkUp without a verify capability sequence.
8956          * This state is in simulator v37 and later.
8957          */
8958         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8959         if (ret != HCMD_SUCCESS) {
8960                 dd_dev_err(dd,
8961                            "%s: set physical link state to quick LinkUp failed with return %d\n",
8962                            __func__, ret);
8963
8964                 set_host_lcb_access(dd);
8965                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8966
8967                 if (ret >= 0)
8968                         ret = -EINVAL;
8969                 return ret;
8970         }
8971
8972         return 0; /* success */
8973 }
8974
8975 /*
8976  * Set the SerDes to internal loopback mode.
8977  * Returns 0 on success, -errno on error.
8978  */
8979 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8980 {
8981         int ret;
8982
8983         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8984         if (ret == HCMD_SUCCESS)
8985                 return 0;
8986         dd_dev_err(dd,
8987                    "Set physical link state to SerDes Loopback failed with return %d\n",
8988                    ret);
8989         if (ret >= 0)
8990                 ret = -EINVAL;
8991         return ret;
8992 }
8993
8994 /*
8995  * Do all special steps to set up loopback.
8996  */
8997 static int init_loopback(struct hfi1_devdata *dd)
8998 {
8999         dd_dev_info(dd, "Entering loopback mode\n");
9000
9001         /* all loopbacks should disable self GUID check */
9002         write_csr(dd, DC_DC8051_CFG_MODE,
9003                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9004
9005         /*
9006          * The simulator has only one loopback option - LCB.  Switch
9007          * to that option, which includes quick link up.
9008          *
9009          * Accept all valid loopback values.
9010          */
9011         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9012             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9013              loopback == LOOPBACK_CABLE)) {
9014                 loopback = LOOPBACK_LCB;
9015                 quick_linkup = 1;
9016                 return 0;
9017         }
9018
9019         /* handle serdes loopback */
9020         if (loopback == LOOPBACK_SERDES) {
9021                 /* internal serdes loopack needs quick linkup on RTL */
9022                 if (dd->icode == ICODE_RTL_SILICON)
9023                         quick_linkup = 1;
9024                 return set_serdes_loopback_mode(dd);
9025         }
9026
9027         /* LCB loopback - handled at poll time */
9028         if (loopback == LOOPBACK_LCB) {
9029                 quick_linkup = 1; /* LCB is always quick linkup */
9030
9031                 /* not supported in emulation due to emulation RTL changes */
9032                 if (dd->icode == ICODE_FPGA_EMULATION) {
9033                         dd_dev_err(dd,
9034                                    "LCB loopback not supported in emulation\n");
9035                         return -EINVAL;
9036                 }
9037                 return 0;
9038         }
9039
9040         /* external cable loopback requires no extra steps */
9041         if (loopback == LOOPBACK_CABLE)
9042                 return 0;
9043
9044         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9045         return -EINVAL;
9046 }
9047
9048 /*
9049  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9050  * used in the Verify Capability link width attribute.
9051  */
9052 static u16 opa_to_vc_link_widths(u16 opa_widths)
9053 {
9054         int i;
9055         u16 result = 0;
9056
9057         static const struct link_bits {
9058                 u16 from;
9059                 u16 to;
9060         } opa_link_xlate[] = {
9061                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9062                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9063                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9064                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9065         };
9066
9067         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9068                 if (opa_widths & opa_link_xlate[i].from)
9069                         result |= opa_link_xlate[i].to;
9070         }
9071         return result;
9072 }
9073
9074 /*
9075  * Set link attributes before moving to polling.
9076  */
9077 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9078 {
9079         struct hfi1_devdata *dd = ppd->dd;
9080         u8 enable_lane_tx;
9081         u8 tx_polarity_inversion;
9082         u8 rx_polarity_inversion;
9083         int ret;
9084
9085         /* reset our fabric serdes to clear any lingering problems */
9086         fabric_serdes_reset(dd);
9087
9088         /* set the local tx rate - need to read-modify-write */
9089         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9090                                &rx_polarity_inversion, &ppd->local_tx_rate);
9091         if (ret)
9092                 goto set_local_link_attributes_fail;
9093
9094         if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9095                 /* set the tx rate to the fastest enabled */
9096                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9097                         ppd->local_tx_rate = 1;
9098                 else
9099                         ppd->local_tx_rate = 0;
9100         } else {
9101                 /* set the tx rate to all enabled */
9102                 ppd->local_tx_rate = 0;
9103                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9104                         ppd->local_tx_rate |= 2;
9105                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9106                         ppd->local_tx_rate |= 1;
9107         }
9108
9109         enable_lane_tx = 0xF; /* enable all four lanes */
9110         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9111                                 rx_polarity_inversion, ppd->local_tx_rate);
9112         if (ret != HCMD_SUCCESS)
9113                 goto set_local_link_attributes_fail;
9114
9115         /*
9116          * DC supports continuous updates.
9117          */
9118         ret = write_vc_local_phy(dd,
9119                                  0 /* no power management */,
9120                                  1 /* continuous updates */);
9121         if (ret != HCMD_SUCCESS)
9122                 goto set_local_link_attributes_fail;
9123
9124         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9125         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9126                                     ppd->port_crc_mode_enabled);
9127         if (ret != HCMD_SUCCESS)
9128                 goto set_local_link_attributes_fail;
9129
9130         ret = write_vc_local_link_width(dd, 0, 0,
9131                                         opa_to_vc_link_widths(
9132                                                 ppd->link_width_enabled));
9133         if (ret != HCMD_SUCCESS)
9134                 goto set_local_link_attributes_fail;
9135
9136         /* let peer know who we are */
9137         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9138         if (ret == HCMD_SUCCESS)
9139                 return 0;
9140
9141 set_local_link_attributes_fail:
9142         dd_dev_err(dd,
9143                    "Failed to set local link attributes, return 0x%x\n",
9144                    ret);
9145         return ret;
9146 }
9147
9148 /*
9149  * Call this to start the link.
9150  * Do not do anything if the link is disabled.
9151  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9152  */
9153 int start_link(struct hfi1_pportdata *ppd)
9154 {
9155         /*
9156          * Tune the SerDes to a ballpark setting for optimal signal and bit
9157          * error rate.  Needs to be done before starting the link.
9158          */
9159         tune_serdes(ppd);
9160
9161         if (!ppd->link_enabled) {
9162                 dd_dev_info(ppd->dd,
9163                             "%s: stopping link start because link is disabled\n",
9164                             __func__);
9165                 return 0;
9166         }
9167         if (!ppd->driver_link_ready) {
9168                 dd_dev_info(ppd->dd,
9169                             "%s: stopping link start because driver is not ready\n",
9170                             __func__);
9171                 return 0;
9172         }
9173
9174         /*
9175          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9176          * pkey table can be configured properly if the HFI unit is connected
9177          * to switch port with MgmtAllowed=NO
9178          */
9179         clear_full_mgmt_pkey(ppd);
9180
9181         return set_link_state(ppd, HLS_DN_POLL);
9182 }
9183
9184 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9185 {
9186         struct hfi1_devdata *dd = ppd->dd;
9187         u64 mask;
9188         unsigned long timeout;
9189
9190         /*
9191          * Some QSFP cables have a quirk that asserts the IntN line as a side
9192          * effect of power up on plug-in. We ignore this false positive
9193          * interrupt until the module has finished powering up by waiting for
9194          * a minimum timeout of the module inrush initialization time of
9195          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9196          * module have stabilized.
9197          */
9198         msleep(500);
9199
9200         /*
9201          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9202          */
9203         timeout = jiffies + msecs_to_jiffies(2000);
9204         while (1) {
9205                 mask = read_csr(dd, dd->hfi1_id ?
9206                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9207                 if (!(mask & QSFP_HFI0_INT_N))
9208                         break;
9209                 if (time_after(jiffies, timeout)) {
9210                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9211                                     __func__);
9212                         break;
9213                 }
9214                 udelay(2);
9215         }
9216 }
9217
9218 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9219 {
9220         struct hfi1_devdata *dd = ppd->dd;
9221         u64 mask;
9222
9223         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9224         if (enable) {
9225                 /*
9226                  * Clear the status register to avoid an immediate interrupt
9227                  * when we re-enable the IntN pin
9228                  */
9229                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9230                           QSFP_HFI0_INT_N);
9231                 mask |= (u64)QSFP_HFI0_INT_N;
9232         } else {
9233                 mask &= ~(u64)QSFP_HFI0_INT_N;
9234         }
9235         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9236 }
9237
9238 void reset_qsfp(struct hfi1_pportdata *ppd)
9239 {
9240         struct hfi1_devdata *dd = ppd->dd;
9241         u64 mask, qsfp_mask;
9242
9243         /* Disable INT_N from triggering QSFP interrupts */
9244         set_qsfp_int_n(ppd, 0);
9245
9246         /* Reset the QSFP */
9247         mask = (u64)QSFP_HFI0_RESET_N;
9248
9249         qsfp_mask = read_csr(dd,
9250                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9251         qsfp_mask &= ~mask;
9252         write_csr(dd,
9253                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9254
9255         udelay(10);
9256
9257         qsfp_mask |= mask;
9258         write_csr(dd,
9259                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9260
9261         wait_for_qsfp_init(ppd);
9262
9263         /*
9264          * Allow INT_N to trigger the QSFP interrupt to watch
9265          * for alarms and warnings
9266          */
9267         set_qsfp_int_n(ppd, 1);
9268 }
9269
9270 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9271                                         u8 *qsfp_interrupt_status)
9272 {
9273         struct hfi1_devdata *dd = ppd->dd;
9274
9275         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9276             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9277                 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9278                             __func__);
9279
9280         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9281             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9282                 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9283                             __func__);
9284
9285         /*
9286          * The remaining alarms/warnings don't matter if the link is down.
9287          */
9288         if (ppd->host_link_state & HLS_DOWN)
9289                 return 0;
9290
9291         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9292             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9293                 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9294                             __func__);
9295
9296         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9297             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9298                 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9299                             __func__);
9300
9301         /* Byte 2 is vendor specific */
9302
9303         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9304             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9305                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9306                             __func__);
9307
9308         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9309             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9310                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9311                             __func__);
9312
9313         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9314             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9315                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9316                             __func__);
9317
9318         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9319             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9320                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9321                             __func__);
9322
9323         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9324             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9325                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9326                             __func__);
9327
9328         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9329             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9330                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9331                             __func__);
9332
9333         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9334             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9335                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9336                             __func__);
9337
9338         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9339             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9340                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9341                             __func__);
9342
9343         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9344             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9345                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9346                             __func__);
9347
9348         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9349             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9350                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9351                             __func__);
9352
9353         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9354             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9355                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9356                             __func__);
9357
9358         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9359             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9360                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9361                             __func__);
9362
9363         /* Bytes 9-10 and 11-12 are reserved */
9364         /* Bytes 13-15 are vendor specific */
9365
9366         return 0;
9367 }
9368
9369 /* This routine will only be scheduled if the QSFP module present is asserted */
9370 void qsfp_event(struct work_struct *work)
9371 {
9372         struct qsfp_data *qd;
9373         struct hfi1_pportdata *ppd;
9374         struct hfi1_devdata *dd;
9375
9376         qd = container_of(work, struct qsfp_data, qsfp_work);
9377         ppd = qd->ppd;
9378         dd = ppd->dd;
9379
9380         /* Sanity check */
9381         if (!qsfp_mod_present(ppd))
9382                 return;
9383
9384         /*
9385          * Turn DC back on after cable has been re-inserted. Up until
9386          * now, the DC has been in reset to save power.
9387          */
9388         dc_start(dd);
9389
9390         if (qd->cache_refresh_required) {
9391                 set_qsfp_int_n(ppd, 0);
9392
9393                 wait_for_qsfp_init(ppd);
9394
9395                 /*
9396                  * Allow INT_N to trigger the QSFP interrupt to watch
9397                  * for alarms and warnings
9398                  */
9399                 set_qsfp_int_n(ppd, 1);
9400
9401                 start_link(ppd);
9402         }
9403
9404         if (qd->check_interrupt_flags) {
9405                 u8 qsfp_interrupt_status[16] = {0,};
9406
9407                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9408                                   &qsfp_interrupt_status[0], 16) != 16) {
9409                         dd_dev_info(dd,
9410                                     "%s: Failed to read status of QSFP module\n",
9411                                     __func__);
9412                 } else {
9413                         unsigned long flags;
9414
9415                         handle_qsfp_error_conditions(
9416                                         ppd, qsfp_interrupt_status);
9417                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9418                         ppd->qsfp_info.check_interrupt_flags = 0;
9419                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9420                                                flags);
9421                 }
9422         }
9423 }
9424
9425 static void init_qsfp_int(struct hfi1_devdata *dd)
9426 {
9427         struct hfi1_pportdata *ppd = dd->pport;
9428         u64 qsfp_mask, cce_int_mask;
9429         const int qsfp1_int_smask = QSFP1_INT % 64;
9430         const int qsfp2_int_smask = QSFP2_INT % 64;
9431
9432         /*
9433          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9434          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9435          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9436          * the index of the appropriate CSR in the CCEIntMask CSR array
9437          */
9438         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9439                                 (8 * (QSFP1_INT / 64)));
9440         if (dd->hfi1_id) {
9441                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9442                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9443                           cce_int_mask);
9444         } else {
9445                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9446                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9447                           cce_int_mask);
9448         }
9449
9450         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9451         /* Clear current status to avoid spurious interrupts */
9452         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9453                   qsfp_mask);
9454         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9455                   qsfp_mask);
9456
9457         set_qsfp_int_n(ppd, 0);
9458
9459         /* Handle active low nature of INT_N and MODPRST_N pins */
9460         if (qsfp_mod_present(ppd))
9461                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9462         write_csr(dd,
9463                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9464                   qsfp_mask);
9465 }
9466
9467 /*
9468  * Do a one-time initialize of the LCB block.
9469  */
9470 static void init_lcb(struct hfi1_devdata *dd)
9471 {
9472         /* simulator does not correctly handle LCB cclk loopback, skip */
9473         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9474                 return;
9475
9476         /* the DC has been reset earlier in the driver load */
9477
9478         /* set LCB for cclk loopback on the port */
9479         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9480         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9481         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9482         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9483         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9484         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9485         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9486 }
9487
9488 /*
9489  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9490  * on error.
9491  */
9492 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9493 {
9494         int ret;
9495         u8 status;
9496
9497         /* report success if not a QSFP */
9498         if (ppd->port_type != PORT_TYPE_QSFP)
9499                 return 0;
9500
9501         /* read byte 2, the status byte */
9502         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9503         if (ret < 0)
9504                 return ret;
9505         if (ret != 1)
9506                 return -EIO;
9507
9508         return 0; /* success */
9509 }
9510
9511 /*
9512  * Values for QSFP retry.
9513  *
9514  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9515  * arrived at from experience on a large cluster.
9516  */
9517 #define MAX_QSFP_RETRIES 20
9518 #define QSFP_RETRY_WAIT 500 /* msec */
9519
9520 /*
9521  * Try a QSFP read.  If it fails, schedule a retry for later.
9522  * Called on first link activation after driver load.
9523  */
9524 static void try_start_link(struct hfi1_pportdata *ppd)
9525 {
9526         if (test_qsfp_read(ppd)) {
9527                 /* read failed */
9528                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9529                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9530                         return;
9531                 }
9532                 dd_dev_info(ppd->dd,
9533                             "QSFP not responding, waiting and retrying %d\n",
9534                             (int)ppd->qsfp_retry_count);
9535                 ppd->qsfp_retry_count++;
9536                 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9537                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9538                 return;
9539         }
9540         ppd->qsfp_retry_count = 0;
9541
9542         start_link(ppd);
9543 }
9544
9545 /*
9546  * Workqueue function to start the link after a delay.
9547  */
9548 void handle_start_link(struct work_struct *work)
9549 {
9550         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9551                                                   start_link_work.work);
9552         try_start_link(ppd);
9553 }
9554
9555 int bringup_serdes(struct hfi1_pportdata *ppd)
9556 {
9557         struct hfi1_devdata *dd = ppd->dd;
9558         u64 guid;
9559         int ret;
9560
9561         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9562                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9563
9564         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9565         if (!guid) {
9566                 if (dd->base_guid)
9567                         guid = dd->base_guid + ppd->port - 1;
9568                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9569         }
9570
9571         /* Set linkinit_reason on power up per OPA spec */
9572         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9573
9574         /* one-time init of the LCB */
9575         init_lcb(dd);
9576
9577         if (loopback) {
9578                 ret = init_loopback(dd);
9579                 if (ret < 0)
9580                         return ret;
9581         }
9582
9583         get_port_type(ppd);
9584         if (ppd->port_type == PORT_TYPE_QSFP) {
9585                 set_qsfp_int_n(ppd, 0);
9586                 wait_for_qsfp_init(ppd);
9587                 set_qsfp_int_n(ppd, 1);
9588         }
9589
9590         try_start_link(ppd);
9591         return 0;
9592 }
9593
9594 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9595 {
9596         struct hfi1_devdata *dd = ppd->dd;
9597
9598         /*
9599          * Shut down the link and keep it down.   First turn off that the
9600          * driver wants to allow the link to be up (driver_link_ready).
9601          * Then make sure the link is not automatically restarted
9602          * (link_enabled).  Cancel any pending restart.  And finally
9603          * go offline.
9604          */
9605         ppd->driver_link_ready = 0;
9606         ppd->link_enabled = 0;
9607
9608         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9609         flush_delayed_work(&ppd->start_link_work);
9610         cancel_delayed_work_sync(&ppd->start_link_work);
9611
9612         ppd->offline_disabled_reason =
9613                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9614         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9615                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9616         set_link_state(ppd, HLS_DN_OFFLINE);
9617
9618         /* disable the port */
9619         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9620 }
9621
9622 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9623 {
9624         struct hfi1_pportdata *ppd;
9625         int i;
9626
9627         ppd = (struct hfi1_pportdata *)(dd + 1);
9628         for (i = 0; i < dd->num_pports; i++, ppd++) {
9629                 ppd->ibport_data.rvp.rc_acks = NULL;
9630                 ppd->ibport_data.rvp.rc_qacks = NULL;
9631                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9632                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9633                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9634                 if (!ppd->ibport_data.rvp.rc_acks ||
9635                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9636                     !ppd->ibport_data.rvp.rc_qacks)
9637                         return -ENOMEM;
9638         }
9639
9640         return 0;
9641 }
9642
9643 static const char * const pt_names[] = {
9644         "expected",
9645         "eager",
9646         "invalid"
9647 };
9648
9649 static const char *pt_name(u32 type)
9650 {
9651         return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9652 }
9653
9654 /*
9655  * index is the index into the receive array
9656  */
9657 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9658                   u32 type, unsigned long pa, u16 order)
9659 {
9660         u64 reg;
9661         void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9662                               (dd->kregbase + RCV_ARRAY));
9663
9664         if (!(dd->flags & HFI1_PRESENT))
9665                 goto done;
9666
9667         if (type == PT_INVALID) {
9668                 pa = 0;
9669         } else if (type > PT_INVALID) {
9670                 dd_dev_err(dd,
9671                            "unexpected receive array type %u for index %u, not handled\n",
9672                            type, index);
9673                 goto done;
9674         }
9675
9676         hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9677                   pt_name(type), index, pa, (unsigned long)order);
9678
9679 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9680         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9681                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9682                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9683                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9684         writeq(reg, base + (index * 8));
9685
9686         if (type == PT_EAGER)
9687                 /*
9688                  * Eager entries are written one-by-one so we have to push them
9689                  * after we write the entry.
9690                  */
9691                 flush_wc();
9692 done:
9693         return;
9694 }
9695
9696 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9697 {
9698         struct hfi1_devdata *dd = rcd->dd;
9699         u32 i;
9700
9701         /* this could be optimized */
9702         for (i = rcd->eager_base; i < rcd->eager_base +
9703                      rcd->egrbufs.alloced; i++)
9704                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9705
9706         for (i = rcd->expected_base;
9707                         i < rcd->expected_base + rcd->expected_count; i++)
9708                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9709 }
9710
9711 struct ib_header *hfi1_get_msgheader(
9712         struct hfi1_devdata *dd, __le32 *rhf_addr)
9713 {
9714         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9715
9716         return (struct ib_header *)
9717                 (rhf_addr - dd->rhf_offset + offset);
9718 }
9719
9720 static const char * const ib_cfg_name_strings[] = {
9721         "HFI1_IB_CFG_LIDLMC",
9722         "HFI1_IB_CFG_LWID_DG_ENB",
9723         "HFI1_IB_CFG_LWID_ENB",
9724         "HFI1_IB_CFG_LWID",
9725         "HFI1_IB_CFG_SPD_ENB",
9726         "HFI1_IB_CFG_SPD",
9727         "HFI1_IB_CFG_RXPOL_ENB",
9728         "HFI1_IB_CFG_LREV_ENB",
9729         "HFI1_IB_CFG_LINKLATENCY",
9730         "HFI1_IB_CFG_HRTBT",
9731         "HFI1_IB_CFG_OP_VLS",
9732         "HFI1_IB_CFG_VL_HIGH_CAP",
9733         "HFI1_IB_CFG_VL_LOW_CAP",
9734         "HFI1_IB_CFG_OVERRUN_THRESH",
9735         "HFI1_IB_CFG_PHYERR_THRESH",
9736         "HFI1_IB_CFG_LINKDEFAULT",
9737         "HFI1_IB_CFG_PKEYS",
9738         "HFI1_IB_CFG_MTU",
9739         "HFI1_IB_CFG_LSTATE",
9740         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9741         "HFI1_IB_CFG_PMA_TICKS",
9742         "HFI1_IB_CFG_PORT"
9743 };
9744
9745 static const char *ib_cfg_name(int which)
9746 {
9747         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9748                 return "invalid";
9749         return ib_cfg_name_strings[which];
9750 }
9751
9752 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9753 {
9754         struct hfi1_devdata *dd = ppd->dd;
9755         int val = 0;
9756
9757         switch (which) {
9758         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9759                 val = ppd->link_width_enabled;
9760                 break;
9761         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9762                 val = ppd->link_width_active;
9763                 break;
9764         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9765                 val = ppd->link_speed_enabled;
9766                 break;
9767         case HFI1_IB_CFG_SPD: /* current Link speed */
9768                 val = ppd->link_speed_active;
9769                 break;
9770
9771         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9772         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9773         case HFI1_IB_CFG_LINKLATENCY:
9774                 goto unimplemented;
9775
9776         case HFI1_IB_CFG_OP_VLS:
9777                 val = ppd->vls_operational;
9778                 break;
9779         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9780                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9781                 break;
9782         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9783                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9784                 break;
9785         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9786                 val = ppd->overrun_threshold;
9787                 break;
9788         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9789                 val = ppd->phy_error_threshold;
9790                 break;
9791         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9792                 val = dd->link_default;
9793                 break;
9794
9795         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9796         case HFI1_IB_CFG_PMA_TICKS:
9797         default:
9798 unimplemented:
9799                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9800                         dd_dev_info(
9801                                 dd,
9802                                 "%s: which %s: not implemented\n",
9803                                 __func__,
9804                                 ib_cfg_name(which));
9805                 break;
9806         }
9807
9808         return val;
9809 }
9810
9811 /*
9812  * The largest MAD packet size.
9813  */
9814 #define MAX_MAD_PACKET 2048
9815
9816 /*
9817  * Return the maximum header bytes that can go on the _wire_
9818  * for this device. This count includes the ICRC which is
9819  * not part of the packet held in memory but it is appended
9820  * by the HW.
9821  * This is dependent on the device's receive header entry size.
9822  * HFI allows this to be set per-receive context, but the
9823  * driver presently enforces a global value.
9824  */
9825 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9826 {
9827         /*
9828          * The maximum non-payload (MTU) bytes in LRH.PktLen are
9829          * the Receive Header Entry Size minus the PBC (or RHF) size
9830          * plus one DW for the ICRC appended by HW.
9831          *
9832          * dd->rcd[0].rcvhdrqentsize is in DW.
9833          * We use rcd[0] as all context will have the same value. Also,
9834          * the first kernel context would have been allocated by now so
9835          * we are guaranteed a valid value.
9836          */
9837         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9838 }
9839
9840 /*
9841  * Set Send Length
9842  * @ppd - per port data
9843  *
9844  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9845  * registers compare against LRH.PktLen, so use the max bytes included
9846  * in the LRH.
9847  *
9848  * This routine changes all VL values except VL15, which it maintains at
9849  * the same value.
9850  */
9851 static void set_send_length(struct hfi1_pportdata *ppd)
9852 {
9853         struct hfi1_devdata *dd = ppd->dd;
9854         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9855         u32 maxvlmtu = dd->vld[15].mtu;
9856         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9857                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9858                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9859         int i, j;
9860         u32 thres;
9861
9862         for (i = 0; i < ppd->vls_supported; i++) {
9863                 if (dd->vld[i].mtu > maxvlmtu)
9864                         maxvlmtu = dd->vld[i].mtu;
9865                 if (i <= 3)
9866                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9867                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9868                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9869                 else
9870                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9871                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9872                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9873         }
9874         write_csr(dd, SEND_LEN_CHECK0, len1);
9875         write_csr(dd, SEND_LEN_CHECK1, len2);
9876         /* adjust kernel credit return thresholds based on new MTUs */
9877         /* all kernel receive contexts have the same hdrqentsize */
9878         for (i = 0; i < ppd->vls_supported; i++) {
9879                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9880                             sc_mtu_to_threshold(dd->vld[i].sc,
9881                                                 dd->vld[i].mtu,
9882                                                 dd->rcd[0]->rcvhdrqentsize));
9883                 for (j = 0; j < INIT_SC_PER_VL; j++)
9884                         sc_set_cr_threshold(
9885                                         pio_select_send_context_vl(dd, j, i),
9886                                             thres);
9887         }
9888         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9889                     sc_mtu_to_threshold(dd->vld[15].sc,
9890                                         dd->vld[15].mtu,
9891                                         dd->rcd[0]->rcvhdrqentsize));
9892         sc_set_cr_threshold(dd->vld[15].sc, thres);
9893
9894         /* Adjust maximum MTU for the port in DC */
9895         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9896                 (ilog2(maxvlmtu >> 8) + 1);
9897         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9898         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9899         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9900                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9901         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9902 }
9903
9904 static void set_lidlmc(struct hfi1_pportdata *ppd)
9905 {
9906         int i;
9907         u64 sreg = 0;
9908         struct hfi1_devdata *dd = ppd->dd;
9909         u32 mask = ~((1U << ppd->lmc) - 1);
9910         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9911
9912         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9913                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9914         c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9915                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9916               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9917                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9918         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9919
9920         /*
9921          * Iterate over all the send contexts and set their SLID check
9922          */
9923         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9924                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9925                (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9926                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9927
9928         for (i = 0; i < dd->chip_send_contexts; i++) {
9929                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9930                           i, (u32)sreg);
9931                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9932         }
9933
9934         /* Now we have to do the same thing for the sdma engines */
9935         sdma_update_lmc(dd, mask, ppd->lid);
9936 }
9937
9938 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9939 {
9940         unsigned long timeout;
9941         u32 curr_state;
9942
9943         timeout = jiffies + msecs_to_jiffies(msecs);
9944         while (1) {
9945                 curr_state = read_physical_state(dd);
9946                 if (curr_state == state)
9947                         break;
9948                 if (time_after(jiffies, timeout)) {
9949                         dd_dev_err(dd,
9950                                    "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9951                                    state, curr_state);
9952                         return -ETIMEDOUT;
9953                 }
9954                 usleep_range(1950, 2050); /* sleep 2ms-ish */
9955         }
9956
9957         return 0;
9958 }
9959
9960 static const char *state_completed_string(u32 completed)
9961 {
9962         static const char * const state_completed[] = {
9963                 "EstablishComm",
9964                 "OptimizeEQ",
9965                 "VerifyCap"
9966         };
9967
9968         if (completed < ARRAY_SIZE(state_completed))
9969                 return state_completed[completed];
9970
9971         return "unknown";
9972 }
9973
9974 static const char all_lanes_dead_timeout_expired[] =
9975         "All lanes were inactive â€“ was the interconnect media removed?";
9976 static const char tx_out_of_policy[] =
9977         "Passing lanes on local port do not meet the local link width policy";
9978 static const char no_state_complete[] =
9979         "State timeout occurred before link partner completed the state";
9980 static const char * const state_complete_reasons[] = {
9981         [0x00] = "Reason unknown",
9982         [0x01] = "Link was halted by driver, refer to LinkDownReason",
9983         [0x02] = "Link partner reported failure",
9984         [0x10] = "Unable to achieve frame sync on any lane",
9985         [0x11] =
9986           "Unable to find a common bit rate with the link partner",
9987         [0x12] =
9988           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
9989         [0x13] =
9990           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
9991         [0x14] = no_state_complete,
9992         [0x15] =
9993           "State timeout occurred before link partner identified equalization presets",
9994         [0x16] =
9995           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
9996         [0x17] = tx_out_of_policy,
9997         [0x20] = all_lanes_dead_timeout_expired,
9998         [0x21] =
9999           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10000         [0x22] = no_state_complete,
10001         [0x23] =
10002           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10003         [0x24] = tx_out_of_policy,
10004         [0x30] = all_lanes_dead_timeout_expired,
10005         [0x31] =
10006           "State timeout occurred waiting for host to process received frames",
10007         [0x32] = no_state_complete,
10008         [0x33] =
10009           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10010         [0x34] = tx_out_of_policy,
10011 };
10012
10013 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10014                                                      u32 code)
10015 {
10016         const char *str = NULL;
10017
10018         if (code < ARRAY_SIZE(state_complete_reasons))
10019                 str = state_complete_reasons[code];
10020
10021         if (str)
10022                 return str;
10023         return "Reserved";
10024 }
10025
10026 /* describe the given last state complete frame */
10027 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10028                                   const char *prefix)
10029 {
10030         struct hfi1_devdata *dd = ppd->dd;
10031         u32 success;
10032         u32 state;
10033         u32 reason;
10034         u32 lanes;
10035
10036         /*
10037          * Decode frame:
10038          *  [ 0: 0] - success
10039          *  [ 3: 1] - state
10040          *  [ 7: 4] - next state timeout
10041          *  [15: 8] - reason code
10042          *  [31:16] - lanes
10043          */
10044         success = frame & 0x1;
10045         state = (frame >> 1) & 0x7;
10046         reason = (frame >> 8) & 0xff;
10047         lanes = (frame >> 16) & 0xffff;
10048
10049         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10050                    prefix, frame);
10051         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10052                    state_completed_string(state), state);
10053         dd_dev_err(dd, "    state successfully completed: %s\n",
10054                    success ? "yes" : "no");
10055         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10056                    reason, state_complete_reason_code_string(ppd, reason));
10057         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10058 }
10059
10060 /*
10061  * Read the last state complete frames and explain them.  This routine
10062  * expects to be called if the link went down during link negotiation
10063  * and initialization (LNI).  That is, anywhere between polling and link up.
10064  */
10065 static void check_lni_states(struct hfi1_pportdata *ppd)
10066 {
10067         u32 last_local_state;
10068         u32 last_remote_state;
10069
10070         read_last_local_state(ppd->dd, &last_local_state);
10071         read_last_remote_state(ppd->dd, &last_remote_state);
10072
10073         /*
10074          * Don't report anything if there is nothing to report.  A value of
10075          * 0 means the link was taken down while polling and there was no
10076          * training in-process.
10077          */
10078         if (last_local_state == 0 && last_remote_state == 0)
10079                 return;
10080
10081         decode_state_complete(ppd, last_local_state, "transmitted");
10082         decode_state_complete(ppd, last_remote_state, "received");
10083 }
10084
10085 /*
10086  * Helper for set_link_state().  Do not call except from that routine.
10087  * Expects ppd->hls_mutex to be held.
10088  *
10089  * @rem_reason value to be sent to the neighbor
10090  *
10091  * LinkDownReasons only set if transition succeeds.
10092  */
10093 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10094 {
10095         struct hfi1_devdata *dd = ppd->dd;
10096         u32 pstate, previous_state;
10097         int ret;
10098         int do_transition;
10099         int do_wait;
10100
10101         previous_state = ppd->host_link_state;
10102         ppd->host_link_state = HLS_GOING_OFFLINE;
10103         pstate = read_physical_state(dd);
10104         if (pstate == PLS_OFFLINE) {
10105                 do_transition = 0;      /* in right state */
10106                 do_wait = 0;            /* ...no need to wait */
10107         } else if ((pstate & 0xff) == PLS_OFFLINE) {
10108                 do_transition = 0;      /* in an offline transient state */
10109                 do_wait = 1;            /* ...wait for it to settle */
10110         } else {
10111                 do_transition = 1;      /* need to move to offline */
10112                 do_wait = 1;            /* ...will need to wait */
10113         }
10114
10115         if (do_transition) {
10116                 ret = set_physical_link_state(dd,
10117                                               (rem_reason << 8) | PLS_OFFLINE);
10118
10119                 if (ret != HCMD_SUCCESS) {
10120                         dd_dev_err(dd,
10121                                    "Failed to transition to Offline link state, return %d\n",
10122                                    ret);
10123                         return -EINVAL;
10124                 }
10125                 if (ppd->offline_disabled_reason ==
10126                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10127                         ppd->offline_disabled_reason =
10128                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10129         }
10130
10131         if (do_wait) {
10132                 /* it can take a while for the link to go down */
10133                 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10134                 if (ret < 0)
10135                         return ret;
10136         }
10137
10138         /* make sure the logical state is also down */
10139         wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10140
10141         /*
10142          * Now in charge of LCB - must be after the physical state is
10143          * offline.quiet and before host_link_state is changed.
10144          */
10145         set_host_lcb_access(dd);
10146         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10147         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10148
10149         if (ppd->port_type == PORT_TYPE_QSFP &&
10150             ppd->qsfp_info.limiting_active &&
10151             qsfp_mod_present(ppd)) {
10152                 int ret;
10153
10154                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10155                 if (ret == 0) {
10156                         set_qsfp_tx(ppd, 0);
10157                         release_chip_resource(dd, qsfp_resource(dd));
10158                 } else {
10159                         /* not fatal, but should warn */
10160                         dd_dev_err(dd,
10161                                    "Unable to acquire lock to turn off QSFP TX\n");
10162                 }
10163         }
10164
10165         /*
10166          * The LNI has a mandatory wait time after the physical state
10167          * moves to Offline.Quiet.  The wait time may be different
10168          * depending on how the link went down.  The 8051 firmware
10169          * will observe the needed wait time and only move to ready
10170          * when that is completed.  The largest of the quiet timeouts
10171          * is 6s, so wait that long and then at least 0.5s more for
10172          * other transitions, and another 0.5s for a buffer.
10173          */
10174         ret = wait_fm_ready(dd, 7000);
10175         if (ret) {
10176                 dd_dev_err(dd,
10177                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10178                 /* state is really offline, so make it so */
10179                 ppd->host_link_state = HLS_DN_OFFLINE;
10180                 return ret;
10181         }
10182
10183         /*
10184          * The state is now offline and the 8051 is ready to accept host
10185          * requests.
10186          *      - change our state
10187          *      - notify others if we were previously in a linkup state
10188          */
10189         ppd->host_link_state = HLS_DN_OFFLINE;
10190         if (previous_state & HLS_UP) {
10191                 /* went down while link was up */
10192                 handle_linkup_change(dd, 0);
10193         } else if (previous_state
10194                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10195                 /* went down while attempting link up */
10196                 check_lni_states(ppd);
10197         }
10198
10199         /* the active link width (downgrade) is 0 on link down */
10200         ppd->link_width_active = 0;
10201         ppd->link_width_downgrade_tx_active = 0;
10202         ppd->link_width_downgrade_rx_active = 0;
10203         ppd->current_egress_rate = 0;
10204         return 0;
10205 }
10206
10207 /* return the link state name */
10208 static const char *link_state_name(u32 state)
10209 {
10210         const char *name;
10211         int n = ilog2(state);
10212         static const char * const names[] = {
10213                 [__HLS_UP_INIT_BP]       = "INIT",
10214                 [__HLS_UP_ARMED_BP]      = "ARMED",
10215                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10216                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10217                 [__HLS_DN_POLL_BP]       = "POLL",
10218                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10219                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10220                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10221                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10222                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10223                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10224         };
10225
10226         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10227         return name ? name : "unknown";
10228 }
10229
10230 /* return the link state reason name */
10231 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10232 {
10233         if (state == HLS_UP_INIT) {
10234                 switch (ppd->linkinit_reason) {
10235                 case OPA_LINKINIT_REASON_LINKUP:
10236                         return "(LINKUP)";
10237                 case OPA_LINKINIT_REASON_FLAPPING:
10238                         return "(FLAPPING)";
10239                 case OPA_LINKINIT_OUTSIDE_POLICY:
10240                         return "(OUTSIDE_POLICY)";
10241                 case OPA_LINKINIT_QUARANTINED:
10242                         return "(QUARANTINED)";
10243                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10244                         return "(INSUFIC_CAPABILITY)";
10245                 default:
10246                         break;
10247                 }
10248         }
10249         return "";
10250 }
10251
10252 /*
10253  * driver_physical_state - convert the driver's notion of a port's
10254  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10255  * Return -1 (converted to a u32) to indicate error.
10256  */
10257 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10258 {
10259         switch (ppd->host_link_state) {
10260         case HLS_UP_INIT:
10261         case HLS_UP_ARMED:
10262         case HLS_UP_ACTIVE:
10263                 return IB_PORTPHYSSTATE_LINKUP;
10264         case HLS_DN_POLL:
10265                 return IB_PORTPHYSSTATE_POLLING;
10266         case HLS_DN_DISABLE:
10267                 return IB_PORTPHYSSTATE_DISABLED;
10268         case HLS_DN_OFFLINE:
10269                 return OPA_PORTPHYSSTATE_OFFLINE;
10270         case HLS_VERIFY_CAP:
10271                 return IB_PORTPHYSSTATE_POLLING;
10272         case HLS_GOING_UP:
10273                 return IB_PORTPHYSSTATE_POLLING;
10274         case HLS_GOING_OFFLINE:
10275                 return OPA_PORTPHYSSTATE_OFFLINE;
10276         case HLS_LINK_COOLDOWN:
10277                 return OPA_PORTPHYSSTATE_OFFLINE;
10278         case HLS_DN_DOWNDEF:
10279         default:
10280                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10281                            ppd->host_link_state);
10282                 return  -1;
10283         }
10284 }
10285
10286 /*
10287  * driver_logical_state - convert the driver's notion of a port's
10288  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10289  * (converted to a u32) to indicate error.
10290  */
10291 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10292 {
10293         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10294                 return IB_PORT_DOWN;
10295
10296         switch (ppd->host_link_state & HLS_UP) {
10297         case HLS_UP_INIT:
10298                 return IB_PORT_INIT;
10299         case HLS_UP_ARMED:
10300                 return IB_PORT_ARMED;
10301         case HLS_UP_ACTIVE:
10302                 return IB_PORT_ACTIVE;
10303         default:
10304                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10305                            ppd->host_link_state);
10306         return -1;
10307         }
10308 }
10309
10310 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10311                           u8 neigh_reason, u8 rem_reason)
10312 {
10313         if (ppd->local_link_down_reason.latest == 0 &&
10314             ppd->neigh_link_down_reason.latest == 0) {
10315                 ppd->local_link_down_reason.latest = lcl_reason;
10316                 ppd->neigh_link_down_reason.latest = neigh_reason;
10317                 ppd->remote_link_down_reason = rem_reason;
10318         }
10319 }
10320
10321 /*
10322  * Change the physical and/or logical link state.
10323  *
10324  * Do not call this routine while inside an interrupt.  It contains
10325  * calls to routines that can take multiple seconds to finish.
10326  *
10327  * Returns 0 on success, -errno on failure.
10328  */
10329 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10330 {
10331         struct hfi1_devdata *dd = ppd->dd;
10332         struct ib_event event = {.device = NULL};
10333         int ret1, ret = 0;
10334         int orig_new_state, poll_bounce;
10335
10336         mutex_lock(&ppd->hls_lock);
10337
10338         orig_new_state = state;
10339         if (state == HLS_DN_DOWNDEF)
10340                 state = dd->link_default;
10341
10342         /* interpret poll -> poll as a link bounce */
10343         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10344                       state == HLS_DN_POLL;
10345
10346         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10347                     link_state_name(ppd->host_link_state),
10348                     link_state_name(orig_new_state),
10349                     poll_bounce ? "(bounce) " : "",
10350                     link_state_reason_name(ppd, state));
10351
10352         /*
10353          * If we're going to a (HLS_*) link state that implies the logical
10354          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10355          * reset is_sm_config_started to 0.
10356          */
10357         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10358                 ppd->is_sm_config_started = 0;
10359
10360         /*
10361          * Do nothing if the states match.  Let a poll to poll link bounce
10362          * go through.
10363          */
10364         if (ppd->host_link_state == state && !poll_bounce)
10365                 goto done;
10366
10367         switch (state) {
10368         case HLS_UP_INIT:
10369                 if (ppd->host_link_state == HLS_DN_POLL &&
10370                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10371                         /*
10372                          * Quick link up jumps from polling to here.
10373                          *
10374                          * Whether in normal or loopback mode, the
10375                          * simulator jumps from polling to link up.
10376                          * Accept that here.
10377                          */
10378                         /* OK */
10379                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10380                         goto unexpected;
10381                 }
10382
10383                 ppd->host_link_state = HLS_UP_INIT;
10384                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10385                 if (ret) {
10386                         /* logical state didn't change, stay at going_up */
10387                         ppd->host_link_state = HLS_GOING_UP;
10388                         dd_dev_err(dd,
10389                                    "%s: logical state did not change to INIT\n",
10390                                    __func__);
10391                 } else {
10392                         /* clear old transient LINKINIT_REASON code */
10393                         if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10394                                 ppd->linkinit_reason =
10395                                         OPA_LINKINIT_REASON_LINKUP;
10396
10397                         /* enable the port */
10398                         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10399
10400                         handle_linkup_change(dd, 1);
10401                 }
10402                 break;
10403         case HLS_UP_ARMED:
10404                 if (ppd->host_link_state != HLS_UP_INIT)
10405                         goto unexpected;
10406
10407                 ppd->host_link_state = HLS_UP_ARMED;
10408                 set_logical_state(dd, LSTATE_ARMED);
10409                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10410                 if (ret) {
10411                         /* logical state didn't change, stay at init */
10412                         ppd->host_link_state = HLS_UP_INIT;
10413                         dd_dev_err(dd,
10414                                    "%s: logical state did not change to ARMED\n",
10415                                    __func__);
10416                 }
10417                 /*
10418                  * The simulator does not currently implement SMA messages,
10419                  * so neighbor_normal is not set.  Set it here when we first
10420                  * move to Armed.
10421                  */
10422                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10423                         ppd->neighbor_normal = 1;
10424                 break;
10425         case HLS_UP_ACTIVE:
10426                 if (ppd->host_link_state != HLS_UP_ARMED)
10427                         goto unexpected;
10428
10429                 ppd->host_link_state = HLS_UP_ACTIVE;
10430                 set_logical_state(dd, LSTATE_ACTIVE);
10431                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10432                 if (ret) {
10433                         /* logical state didn't change, stay at armed */
10434                         ppd->host_link_state = HLS_UP_ARMED;
10435                         dd_dev_err(dd,
10436                                    "%s: logical state did not change to ACTIVE\n",
10437                                    __func__);
10438                 } else {
10439                         /* tell all engines to go running */
10440                         sdma_all_running(dd);
10441
10442                         /* Signal the IB layer that the port has went active */
10443                         event.device = &dd->verbs_dev.rdi.ibdev;
10444                         event.element.port_num = ppd->port;
10445                         event.event = IB_EVENT_PORT_ACTIVE;
10446                 }
10447                 break;
10448         case HLS_DN_POLL:
10449                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10450                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10451                     dd->dc_shutdown)
10452                         dc_start(dd);
10453                 /* Hand LED control to the DC */
10454                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10455
10456                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10457                         u8 tmp = ppd->link_enabled;
10458
10459                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10460                         if (ret) {
10461                                 ppd->link_enabled = tmp;
10462                                 break;
10463                         }
10464                         ppd->remote_link_down_reason = 0;
10465
10466                         if (ppd->driver_link_ready)
10467                                 ppd->link_enabled = 1;
10468                 }
10469
10470                 set_all_slowpath(ppd->dd);
10471                 ret = set_local_link_attributes(ppd);
10472                 if (ret)
10473                         break;
10474
10475                 ppd->port_error_action = 0;
10476                 ppd->host_link_state = HLS_DN_POLL;
10477
10478                 if (quick_linkup) {
10479                         /* quick linkup does not go into polling */
10480                         ret = do_quick_linkup(dd);
10481                 } else {
10482                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10483                         if (ret1 != HCMD_SUCCESS) {
10484                                 dd_dev_err(dd,
10485                                            "Failed to transition to Polling link state, return 0x%x\n",
10486                                            ret1);
10487                                 ret = -EINVAL;
10488                         }
10489                 }
10490                 ppd->offline_disabled_reason =
10491                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10492                 /*
10493                  * If an error occurred above, go back to offline.  The
10494                  * caller may reschedule another attempt.
10495                  */
10496                 if (ret)
10497                         goto_offline(ppd, 0);
10498                 break;
10499         case HLS_DN_DISABLE:
10500                 /* link is disabled */
10501                 ppd->link_enabled = 0;
10502
10503                 /* allow any state to transition to disabled */
10504
10505                 /* must transition to offline first */
10506                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10507                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10508                         if (ret)
10509                                 break;
10510                         ppd->remote_link_down_reason = 0;
10511                 }
10512
10513                 if (!dd->dc_shutdown) {
10514                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10515                         if (ret1 != HCMD_SUCCESS) {
10516                                 dd_dev_err(dd,
10517                                            "Failed to transition to Disabled link state, return 0x%x\n",
10518                                            ret1);
10519                                 ret = -EINVAL;
10520                                 break;
10521                         }
10522                         dc_shutdown(dd);
10523                 }
10524                 ppd->host_link_state = HLS_DN_DISABLE;
10525                 break;
10526         case HLS_DN_OFFLINE:
10527                 if (ppd->host_link_state == HLS_DN_DISABLE)
10528                         dc_start(dd);
10529
10530                 /* allow any state to transition to offline */
10531                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10532                 if (!ret)
10533                         ppd->remote_link_down_reason = 0;
10534                 break;
10535         case HLS_VERIFY_CAP:
10536                 if (ppd->host_link_state != HLS_DN_POLL)
10537                         goto unexpected;
10538                 ppd->host_link_state = HLS_VERIFY_CAP;
10539                 break;
10540         case HLS_GOING_UP:
10541                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10542                         goto unexpected;
10543
10544                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10545                 if (ret1 != HCMD_SUCCESS) {
10546                         dd_dev_err(dd,
10547                                    "Failed to transition to link up state, return 0x%x\n",
10548                                    ret1);
10549                         ret = -EINVAL;
10550                         break;
10551                 }
10552                 ppd->host_link_state = HLS_GOING_UP;
10553                 break;
10554
10555         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10556         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10557         default:
10558                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10559                             __func__, state);
10560                 ret = -EINVAL;
10561                 break;
10562         }
10563
10564         goto done;
10565
10566 unexpected:
10567         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10568                    __func__, link_state_name(ppd->host_link_state),
10569                    link_state_name(state));
10570         ret = -EINVAL;
10571
10572 done:
10573         mutex_unlock(&ppd->hls_lock);
10574
10575         if (event.device)
10576                 ib_dispatch_event(&event);
10577
10578         return ret;
10579 }
10580
10581 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10582 {
10583         u64 reg;
10584         int ret = 0;
10585
10586         switch (which) {
10587         case HFI1_IB_CFG_LIDLMC:
10588                 set_lidlmc(ppd);
10589                 break;
10590         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10591                 /*
10592                  * The VL Arbitrator high limit is sent in units of 4k
10593                  * bytes, while HFI stores it in units of 64 bytes.
10594                  */
10595                 val *= 4096 / 64;
10596                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10597                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10598                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10599                 break;
10600         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10601                 /* HFI only supports POLL as the default link down state */
10602                 if (val != HLS_DN_POLL)
10603                         ret = -EINVAL;
10604                 break;
10605         case HFI1_IB_CFG_OP_VLS:
10606                 if (ppd->vls_operational != val) {
10607                         ppd->vls_operational = val;
10608                         if (!ppd->port)
10609                                 ret = -EINVAL;
10610                 }
10611                 break;
10612         /*
10613          * For link width, link width downgrade, and speed enable, always AND
10614          * the setting with what is actually supported.  This has two benefits.
10615          * First, enabled can't have unsupported values, no matter what the
10616          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10617          * "fill in with your supported value" have all the bits in the
10618          * field set, so simply ANDing with supported has the desired result.
10619          */
10620         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10621                 ppd->link_width_enabled = val & ppd->link_width_supported;
10622                 break;
10623         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10624                 ppd->link_width_downgrade_enabled =
10625                                 val & ppd->link_width_downgrade_supported;
10626                 break;
10627         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10628                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10629                 break;
10630         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10631                 /*
10632                  * HFI does not follow IB specs, save this value
10633                  * so we can report it, if asked.
10634                  */
10635                 ppd->overrun_threshold = val;
10636                 break;
10637         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10638                 /*
10639                  * HFI does not follow IB specs, save this value
10640                  * so we can report it, if asked.
10641                  */
10642                 ppd->phy_error_threshold = val;
10643                 break;
10644
10645         case HFI1_IB_CFG_MTU:
10646                 set_send_length(ppd);
10647                 break;
10648
10649         case HFI1_IB_CFG_PKEYS:
10650                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10651                         set_partition_keys(ppd);
10652                 break;
10653
10654         default:
10655                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10656                         dd_dev_info(ppd->dd,
10657                                     "%s: which %s, val 0x%x: not implemented\n",
10658                                     __func__, ib_cfg_name(which), val);
10659                 break;
10660         }
10661         return ret;
10662 }
10663
10664 /* begin functions related to vl arbitration table caching */
10665 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10666 {
10667         int i;
10668
10669         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10670                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10671         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10672                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10673
10674         /*
10675          * Note that we always return values directly from the
10676          * 'vl_arb_cache' (and do no CSR reads) in response to a
10677          * 'Get(VLArbTable)'. This is obviously correct after a
10678          * 'Set(VLArbTable)', since the cache will then be up to
10679          * date. But it's also correct prior to any 'Set(VLArbTable)'
10680          * since then both the cache, and the relevant h/w registers
10681          * will be zeroed.
10682          */
10683
10684         for (i = 0; i < MAX_PRIO_TABLE; i++)
10685                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10686 }
10687
10688 /*
10689  * vl_arb_lock_cache
10690  *
10691  * All other vl_arb_* functions should be called only after locking
10692  * the cache.
10693  */
10694 static inline struct vl_arb_cache *
10695 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10696 {
10697         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10698                 return NULL;
10699         spin_lock(&ppd->vl_arb_cache[idx].lock);
10700         return &ppd->vl_arb_cache[idx];
10701 }
10702
10703 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10704 {
10705         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10706 }
10707
10708 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10709                              struct ib_vl_weight_elem *vl)
10710 {
10711         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10712 }
10713
10714 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10715                              struct ib_vl_weight_elem *vl)
10716 {
10717         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10718 }
10719
10720 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10721                               struct ib_vl_weight_elem *vl)
10722 {
10723         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10724 }
10725
10726 /* end functions related to vl arbitration table caching */
10727
10728 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10729                           u32 size, struct ib_vl_weight_elem *vl)
10730 {
10731         struct hfi1_devdata *dd = ppd->dd;
10732         u64 reg;
10733         unsigned int i, is_up = 0;
10734         int drain, ret = 0;
10735
10736         mutex_lock(&ppd->hls_lock);
10737
10738         if (ppd->host_link_state & HLS_UP)
10739                 is_up = 1;
10740
10741         drain = !is_ax(dd) && is_up;
10742
10743         if (drain)
10744                 /*
10745                  * Before adjusting VL arbitration weights, empty per-VL
10746                  * FIFOs, otherwise a packet whose VL weight is being
10747                  * set to 0 could get stuck in a FIFO with no chance to
10748                  * egress.
10749                  */
10750                 ret = stop_drain_data_vls(dd);
10751
10752         if (ret) {
10753                 dd_dev_err(
10754                         dd,
10755                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10756                         __func__);
10757                 goto err;
10758         }
10759
10760         for (i = 0; i < size; i++, vl++) {
10761                 /*
10762                  * NOTE: The low priority shift and mask are used here, but
10763                  * they are the same for both the low and high registers.
10764                  */
10765                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10766                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10767                       | (((u64)vl->weight
10768                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10769                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10770                 write_csr(dd, target + (i * 8), reg);
10771         }
10772         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10773
10774         if (drain)
10775                 open_fill_data_vls(dd); /* reopen all VLs */
10776
10777 err:
10778         mutex_unlock(&ppd->hls_lock);
10779
10780         return ret;
10781 }
10782
10783 /*
10784  * Read one credit merge VL register.
10785  */
10786 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10787                            struct vl_limit *vll)
10788 {
10789         u64 reg = read_csr(dd, csr);
10790
10791         vll->dedicated = cpu_to_be16(
10792                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10793                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10794         vll->shared = cpu_to_be16(
10795                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10796                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10797 }
10798
10799 /*
10800  * Read the current credit merge limits.
10801  */
10802 static int get_buffer_control(struct hfi1_devdata *dd,
10803                               struct buffer_control *bc, u16 *overall_limit)
10804 {
10805         u64 reg;
10806         int i;
10807
10808         /* not all entries are filled in */
10809         memset(bc, 0, sizeof(*bc));
10810
10811         /* OPA and HFI have a 1-1 mapping */
10812         for (i = 0; i < TXE_NUM_DATA_VL; i++)
10813                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10814
10815         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10816         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10817
10818         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10819         bc->overall_shared_limit = cpu_to_be16(
10820                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10821                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10822         if (overall_limit)
10823                 *overall_limit = (reg
10824                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10825                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10826         return sizeof(struct buffer_control);
10827 }
10828
10829 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10830 {
10831         u64 reg;
10832         int i;
10833
10834         /* each register contains 16 SC->VLnt mappings, 4 bits each */
10835         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10836         for (i = 0; i < sizeof(u64); i++) {
10837                 u8 byte = *(((u8 *)&reg) + i);
10838
10839                 dp->vlnt[2 * i] = byte & 0xf;
10840                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10841         }
10842
10843         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10844         for (i = 0; i < sizeof(u64); i++) {
10845                 u8 byte = *(((u8 *)&reg) + i);
10846
10847                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10848                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10849         }
10850         return sizeof(struct sc2vlnt);
10851 }
10852
10853 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10854                               struct ib_vl_weight_elem *vl)
10855 {
10856         unsigned int i;
10857
10858         for (i = 0; i < nelems; i++, vl++) {
10859                 vl->vl = 0xf;
10860                 vl->weight = 0;
10861         }
10862 }
10863
10864 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10865 {
10866         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10867                   DC_SC_VL_VAL(15_0,
10868                                0, dp->vlnt[0] & 0xf,
10869                                1, dp->vlnt[1] & 0xf,
10870                                2, dp->vlnt[2] & 0xf,
10871                                3, dp->vlnt[3] & 0xf,
10872                                4, dp->vlnt[4] & 0xf,
10873                                5, dp->vlnt[5] & 0xf,
10874                                6, dp->vlnt[6] & 0xf,
10875                                7, dp->vlnt[7] & 0xf,
10876                                8, dp->vlnt[8] & 0xf,
10877                                9, dp->vlnt[9] & 0xf,
10878                                10, dp->vlnt[10] & 0xf,
10879                                11, dp->vlnt[11] & 0xf,
10880                                12, dp->vlnt[12] & 0xf,
10881                                13, dp->vlnt[13] & 0xf,
10882                                14, dp->vlnt[14] & 0xf,
10883                                15, dp->vlnt[15] & 0xf));
10884         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10885                   DC_SC_VL_VAL(31_16,
10886                                16, dp->vlnt[16] & 0xf,
10887                                17, dp->vlnt[17] & 0xf,
10888                                18, dp->vlnt[18] & 0xf,
10889                                19, dp->vlnt[19] & 0xf,
10890                                20, dp->vlnt[20] & 0xf,
10891                                21, dp->vlnt[21] & 0xf,
10892                                22, dp->vlnt[22] & 0xf,
10893                                23, dp->vlnt[23] & 0xf,
10894                                24, dp->vlnt[24] & 0xf,
10895                                25, dp->vlnt[25] & 0xf,
10896                                26, dp->vlnt[26] & 0xf,
10897                                27, dp->vlnt[27] & 0xf,
10898                                28, dp->vlnt[28] & 0xf,
10899                                29, dp->vlnt[29] & 0xf,
10900                                30, dp->vlnt[30] & 0xf,
10901                                31, dp->vlnt[31] & 0xf));
10902 }
10903
10904 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10905                         u16 limit)
10906 {
10907         if (limit != 0)
10908                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10909                             what, (int)limit, idx);
10910 }
10911
10912 /* change only the shared limit portion of SendCmGLobalCredit */
10913 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10914 {
10915         u64 reg;
10916
10917         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10918         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10919         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10920         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10921 }
10922
10923 /* change only the total credit limit portion of SendCmGLobalCredit */
10924 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10925 {
10926         u64 reg;
10927
10928         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10929         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10930         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10931         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10932 }
10933
10934 /* set the given per-VL shared limit */
10935 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10936 {
10937         u64 reg;
10938         u32 addr;
10939
10940         if (vl < TXE_NUM_DATA_VL)
10941                 addr = SEND_CM_CREDIT_VL + (8 * vl);
10942         else
10943                 addr = SEND_CM_CREDIT_VL15;
10944
10945         reg = read_csr(dd, addr);
10946         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10947         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10948         write_csr(dd, addr, reg);
10949 }
10950
10951 /* set the given per-VL dedicated limit */
10952 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10953 {
10954         u64 reg;
10955         u32 addr;
10956
10957         if (vl < TXE_NUM_DATA_VL)
10958                 addr = SEND_CM_CREDIT_VL + (8 * vl);
10959         else
10960                 addr = SEND_CM_CREDIT_VL15;
10961
10962         reg = read_csr(dd, addr);
10963         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10964         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10965         write_csr(dd, addr, reg);
10966 }
10967
10968 /* spin until the given per-VL status mask bits clear */
10969 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10970                                      const char *which)
10971 {
10972         unsigned long timeout;
10973         u64 reg;
10974
10975         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10976         while (1) {
10977                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10978
10979                 if (reg == 0)
10980                         return; /* success */
10981                 if (time_after(jiffies, timeout))
10982                         break;          /* timed out */
10983                 udelay(1);
10984         }
10985
10986         dd_dev_err(dd,
10987                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10988                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10989         /*
10990          * If this occurs, it is likely there was a credit loss on the link.
10991          * The only recovery from that is a link bounce.
10992          */
10993         dd_dev_err(dd,
10994                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
10995 }
10996
10997 /*
10998  * The number of credits on the VLs may be changed while everything
10999  * is "live", but the following algorithm must be followed due to
11000  * how the hardware is actually implemented.  In particular,
11001  * Return_Credit_Status[] is the only correct status check.
11002  *
11003  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11004  *     set Global_Shared_Credit_Limit = 0
11005  *     use_all_vl = 1
11006  * mask0 = all VLs that are changing either dedicated or shared limits
11007  * set Shared_Limit[mask0] = 0
11008  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11009  * if (changing any dedicated limit)
11010  *     mask1 = all VLs that are lowering dedicated limits
11011  *     lower Dedicated_Limit[mask1]
11012  *     spin until Return_Credit_Status[mask1] == 0
11013  *     raise Dedicated_Limits
11014  * raise Shared_Limits
11015  * raise Global_Shared_Credit_Limit
11016  *
11017  * lower = if the new limit is lower, set the limit to the new value
11018  * raise = if the new limit is higher than the current value (may be changed
11019  *      earlier in the algorithm), set the new limit to the new value
11020  */
11021 int set_buffer_control(struct hfi1_pportdata *ppd,
11022                        struct buffer_control *new_bc)
11023 {
11024         struct hfi1_devdata *dd = ppd->dd;
11025         u64 changing_mask, ld_mask, stat_mask;
11026         int change_count;
11027         int i, use_all_mask;
11028         int this_shared_changing;
11029         int vl_count = 0, ret;
11030         /*
11031          * A0: add the variable any_shared_limit_changing below and in the
11032          * algorithm above.  If removing A0 support, it can be removed.
11033          */
11034         int any_shared_limit_changing;
11035         struct buffer_control cur_bc;
11036         u8 changing[OPA_MAX_VLS];
11037         u8 lowering_dedicated[OPA_MAX_VLS];
11038         u16 cur_total;
11039         u32 new_total = 0;
11040         const u64 all_mask =
11041         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11042          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11043          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11044          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11045          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11046          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11047          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11048          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11049          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11050
11051 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11052 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11053
11054         /* find the new total credits, do sanity check on unused VLs */
11055         for (i = 0; i < OPA_MAX_VLS; i++) {
11056                 if (valid_vl(i)) {
11057                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11058                         continue;
11059                 }
11060                 nonzero_msg(dd, i, "dedicated",
11061                             be16_to_cpu(new_bc->vl[i].dedicated));
11062                 nonzero_msg(dd, i, "shared",
11063                             be16_to_cpu(new_bc->vl[i].shared));
11064                 new_bc->vl[i].dedicated = 0;
11065                 new_bc->vl[i].shared = 0;
11066         }
11067         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11068
11069         /* fetch the current values */
11070         get_buffer_control(dd, &cur_bc, &cur_total);
11071
11072         /*
11073          * Create the masks we will use.
11074          */
11075         memset(changing, 0, sizeof(changing));
11076         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11077         /*
11078          * NOTE: Assumes that the individual VL bits are adjacent and in
11079          * increasing order
11080          */
11081         stat_mask =
11082                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11083         changing_mask = 0;
11084         ld_mask = 0;
11085         change_count = 0;
11086         any_shared_limit_changing = 0;
11087         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11088                 if (!valid_vl(i))
11089                         continue;
11090                 this_shared_changing = new_bc->vl[i].shared
11091                                                 != cur_bc.vl[i].shared;
11092                 if (this_shared_changing)
11093                         any_shared_limit_changing = 1;
11094                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11095                     this_shared_changing) {
11096                         changing[i] = 1;
11097                         changing_mask |= stat_mask;
11098                         change_count++;
11099                 }
11100                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11101                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11102                         lowering_dedicated[i] = 1;
11103                         ld_mask |= stat_mask;
11104                 }
11105         }
11106
11107         /* bracket the credit change with a total adjustment */
11108         if (new_total > cur_total)
11109                 set_global_limit(dd, new_total);
11110
11111         /*
11112          * Start the credit change algorithm.
11113          */
11114         use_all_mask = 0;
11115         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11116              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11117             (is_ax(dd) && any_shared_limit_changing)) {
11118                 set_global_shared(dd, 0);
11119                 cur_bc.overall_shared_limit = 0;
11120                 use_all_mask = 1;
11121         }
11122
11123         for (i = 0; i < NUM_USABLE_VLS; i++) {
11124                 if (!valid_vl(i))
11125                         continue;
11126
11127                 if (changing[i]) {
11128                         set_vl_shared(dd, i, 0);
11129                         cur_bc.vl[i].shared = 0;
11130                 }
11131         }
11132
11133         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11134                                  "shared");
11135
11136         if (change_count > 0) {
11137                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11138                         if (!valid_vl(i))
11139                                 continue;
11140
11141                         if (lowering_dedicated[i]) {
11142                                 set_vl_dedicated(dd, i,
11143                                                  be16_to_cpu(new_bc->
11144                                                              vl[i].dedicated));
11145                                 cur_bc.vl[i].dedicated =
11146                                                 new_bc->vl[i].dedicated;
11147                         }
11148                 }
11149
11150                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11151
11152                 /* now raise all dedicated that are going up */
11153                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11154                         if (!valid_vl(i))
11155                                 continue;
11156
11157                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11158                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11159                                 set_vl_dedicated(dd, i,
11160                                                  be16_to_cpu(new_bc->
11161                                                              vl[i].dedicated));
11162                 }
11163         }
11164
11165         /* next raise all shared that are going up */
11166         for (i = 0; i < NUM_USABLE_VLS; i++) {
11167                 if (!valid_vl(i))
11168                         continue;
11169
11170                 if (be16_to_cpu(new_bc->vl[i].shared) >
11171                                 be16_to_cpu(cur_bc.vl[i].shared))
11172                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11173         }
11174
11175         /* finally raise the global shared */
11176         if (be16_to_cpu(new_bc->overall_shared_limit) >
11177             be16_to_cpu(cur_bc.overall_shared_limit))
11178                 set_global_shared(dd,
11179                                   be16_to_cpu(new_bc->overall_shared_limit));
11180
11181         /* bracket the credit change with a total adjustment */
11182         if (new_total < cur_total)
11183                 set_global_limit(dd, new_total);
11184
11185         /*
11186          * Determine the actual number of operational VLS using the number of
11187          * dedicated and shared credits for each VL.
11188          */
11189         if (change_count > 0) {
11190                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11191                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11192                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11193                                 vl_count++;
11194                 ppd->actual_vls_operational = vl_count;
11195                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11196                                     ppd->actual_vls_operational :
11197                                     ppd->vls_operational,
11198                                     NULL);
11199                 if (ret == 0)
11200                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11201                                            ppd->actual_vls_operational :
11202                                            ppd->vls_operational, NULL);
11203                 if (ret)
11204                         return ret;
11205         }
11206         return 0;
11207 }
11208
11209 /*
11210  * Read the given fabric manager table. Return the size of the
11211  * table (in bytes) on success, and a negative error code on
11212  * failure.
11213  */
11214 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11215
11216 {
11217         int size;
11218         struct vl_arb_cache *vlc;
11219
11220         switch (which) {
11221         case FM_TBL_VL_HIGH_ARB:
11222                 size = 256;
11223                 /*
11224                  * OPA specifies 128 elements (of 2 bytes each), though
11225                  * HFI supports only 16 elements in h/w.
11226                  */
11227                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11228                 vl_arb_get_cache(vlc, t);
11229                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11230                 break;
11231         case FM_TBL_VL_LOW_ARB:
11232                 size = 256;
11233                 /*
11234                  * OPA specifies 128 elements (of 2 bytes each), though
11235                  * HFI supports only 16 elements in h/w.
11236                  */
11237                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11238                 vl_arb_get_cache(vlc, t);
11239                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11240                 break;
11241         case FM_TBL_BUFFER_CONTROL:
11242                 size = get_buffer_control(ppd->dd, t, NULL);
11243                 break;
11244         case FM_TBL_SC2VLNT:
11245                 size = get_sc2vlnt(ppd->dd, t);
11246                 break;
11247         case FM_TBL_VL_PREEMPT_ELEMS:
11248                 size = 256;
11249                 /* OPA specifies 128 elements, of 2 bytes each */
11250                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11251                 break;
11252         case FM_TBL_VL_PREEMPT_MATRIX:
11253                 size = 256;
11254                 /*
11255                  * OPA specifies that this is the same size as the VL
11256                  * arbitration tables (i.e., 256 bytes).
11257                  */
11258                 break;
11259         default:
11260                 return -EINVAL;
11261         }
11262         return size;
11263 }
11264
11265 /*
11266  * Write the given fabric manager table.
11267  */
11268 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11269 {
11270         int ret = 0;
11271         struct vl_arb_cache *vlc;
11272
11273         switch (which) {
11274         case FM_TBL_VL_HIGH_ARB:
11275                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11276                 if (vl_arb_match_cache(vlc, t)) {
11277                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11278                         break;
11279                 }
11280                 vl_arb_set_cache(vlc, t);
11281                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11282                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11283                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11284                 break;
11285         case FM_TBL_VL_LOW_ARB:
11286                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11287                 if (vl_arb_match_cache(vlc, t)) {
11288                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11289                         break;
11290                 }
11291                 vl_arb_set_cache(vlc, t);
11292                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11293                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11294                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11295                 break;
11296         case FM_TBL_BUFFER_CONTROL:
11297                 ret = set_buffer_control(ppd, t);
11298                 break;
11299         case FM_TBL_SC2VLNT:
11300                 set_sc2vlnt(ppd->dd, t);
11301                 break;
11302         default:
11303                 ret = -EINVAL;
11304         }
11305         return ret;
11306 }
11307
11308 /*
11309  * Disable all data VLs.
11310  *
11311  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11312  */
11313 static int disable_data_vls(struct hfi1_devdata *dd)
11314 {
11315         if (is_ax(dd))
11316                 return 1;
11317
11318         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11319
11320         return 0;
11321 }
11322
11323 /*
11324  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11325  * Just re-enables all data VLs (the "fill" part happens
11326  * automatically - the name was chosen for symmetry with
11327  * stop_drain_data_vls()).
11328  *
11329  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11330  */
11331 int open_fill_data_vls(struct hfi1_devdata *dd)
11332 {
11333         if (is_ax(dd))
11334                 return 1;
11335
11336         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11337
11338         return 0;
11339 }
11340
11341 /*
11342  * drain_data_vls() - assumes that disable_data_vls() has been called,
11343  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11344  * engines to drop to 0.
11345  */
11346 static void drain_data_vls(struct hfi1_devdata *dd)
11347 {
11348         sc_wait(dd);
11349         sdma_wait(dd);
11350         pause_for_credit_return(dd);
11351 }
11352
11353 /*
11354  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11355  *
11356  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11357  * meant to be used like this:
11358  *
11359  * stop_drain_data_vls(dd);
11360  * // do things with per-VL resources
11361  * open_fill_data_vls(dd);
11362  */
11363 int stop_drain_data_vls(struct hfi1_devdata *dd)
11364 {
11365         int ret;
11366
11367         ret = disable_data_vls(dd);
11368         if (ret == 0)
11369                 drain_data_vls(dd);
11370
11371         return ret;
11372 }
11373
11374 /*
11375  * Convert a nanosecond time to a cclock count.  No matter how slow
11376  * the cclock, a non-zero ns will always have a non-zero result.
11377  */
11378 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11379 {
11380         u32 cclocks;
11381
11382         if (dd->icode == ICODE_FPGA_EMULATION)
11383                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11384         else  /* simulation pretends to be ASIC */
11385                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11386         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11387                 cclocks = 1;
11388         return cclocks;
11389 }
11390
11391 /*
11392  * Convert a cclock count to nanoseconds. Not matter how slow
11393  * the cclock, a non-zero cclocks will always have a non-zero result.
11394  */
11395 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11396 {
11397         u32 ns;
11398
11399         if (dd->icode == ICODE_FPGA_EMULATION)
11400                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11401         else  /* simulation pretends to be ASIC */
11402                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11403         if (cclocks && !ns)
11404                 ns = 1;
11405         return ns;
11406 }
11407
11408 /*
11409  * Dynamically adjust the receive interrupt timeout for a context based on
11410  * incoming packet rate.
11411  *
11412  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11413  */
11414 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11415 {
11416         struct hfi1_devdata *dd = rcd->dd;
11417         u32 timeout = rcd->rcvavail_timeout;
11418
11419         /*
11420          * This algorithm doubles or halves the timeout depending on whether
11421          * the number of packets received in this interrupt were less than or
11422          * greater equal the interrupt count.
11423          *
11424          * The calculations below do not allow a steady state to be achieved.
11425          * Only at the endpoints it is possible to have an unchanging
11426          * timeout.
11427          */
11428         if (npkts < rcv_intr_count) {
11429                 /*
11430                  * Not enough packets arrived before the timeout, adjust
11431                  * timeout downward.
11432                  */
11433                 if (timeout < 2) /* already at minimum? */
11434                         return;
11435                 timeout >>= 1;
11436         } else {
11437                 /*
11438                  * More than enough packets arrived before the timeout, adjust
11439                  * timeout upward.
11440                  */
11441                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11442                         return;
11443                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11444         }
11445
11446         rcd->rcvavail_timeout = timeout;
11447         /*
11448          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11449          * been verified to be in range
11450          */
11451         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11452                         (u64)timeout <<
11453                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11454 }
11455
11456 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11457                     u32 intr_adjust, u32 npkts)
11458 {
11459         struct hfi1_devdata *dd = rcd->dd;
11460         u64 reg;
11461         u32 ctxt = rcd->ctxt;
11462
11463         /*
11464          * Need to write timeout register before updating RcvHdrHead to ensure
11465          * that a new value is used when the HW decides to restart counting.
11466          */
11467         if (intr_adjust)
11468                 adjust_rcv_timeout(rcd, npkts);
11469         if (updegr) {
11470                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11471                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11472                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11473         }
11474         mmiowb();
11475         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11476                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11477                         << RCV_HDR_HEAD_HEAD_SHIFT);
11478         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11479         mmiowb();
11480 }
11481
11482 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11483 {
11484         u32 head, tail;
11485
11486         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11487                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11488
11489         if (rcd->rcvhdrtail_kvaddr)
11490                 tail = get_rcvhdrtail(rcd);
11491         else
11492                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11493
11494         return head == tail;
11495 }
11496
11497 /*
11498  * Context Control and Receive Array encoding for buffer size:
11499  *      0x0 invalid
11500  *      0x1   4 KB
11501  *      0x2   8 KB
11502  *      0x3  16 KB
11503  *      0x4  32 KB
11504  *      0x5  64 KB
11505  *      0x6 128 KB
11506  *      0x7 256 KB
11507  *      0x8 512 KB (Receive Array only)
11508  *      0x9   1 MB (Receive Array only)
11509  *      0xa   2 MB (Receive Array only)
11510  *
11511  *      0xB-0xF - reserved (Receive Array only)
11512  *
11513  *
11514  * This routine assumes that the value has already been sanity checked.
11515  */
11516 static u32 encoded_size(u32 size)
11517 {
11518         switch (size) {
11519         case   4 * 1024: return 0x1;
11520         case   8 * 1024: return 0x2;
11521         case  16 * 1024: return 0x3;
11522         case  32 * 1024: return 0x4;
11523         case  64 * 1024: return 0x5;
11524         case 128 * 1024: return 0x6;
11525         case 256 * 1024: return 0x7;
11526         case 512 * 1024: return 0x8;
11527         case   1 * 1024 * 1024: return 0x9;
11528         case   2 * 1024 * 1024: return 0xa;
11529         }
11530         return 0x1;     /* if invalid, go with the minimum size */
11531 }
11532
11533 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11534 {
11535         struct hfi1_ctxtdata *rcd;
11536         u64 rcvctrl, reg;
11537         int did_enable = 0;
11538
11539         rcd = dd->rcd[ctxt];
11540         if (!rcd)
11541                 return;
11542
11543         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11544
11545         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11546         /* if the context already enabled, don't do the extra steps */
11547         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11548             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11549                 /* reset the tail and hdr addresses, and sequence count */
11550                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11551                                 rcd->rcvhdrq_dma);
11552                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11553                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11554                                         rcd->rcvhdrqtailaddr_dma);
11555                 rcd->seq_cnt = 1;
11556
11557                 /* reset the cached receive header queue head value */
11558                 rcd->head = 0;
11559
11560                 /*
11561                  * Zero the receive header queue so we don't get false
11562                  * positives when checking the sequence number.  The
11563                  * sequence numbers could land exactly on the same spot.
11564                  * E.g. a rcd restart before the receive header wrapped.
11565                  */
11566                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11567
11568                 /* starting timeout */
11569                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11570
11571                 /* enable the context */
11572                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11573
11574                 /* clean the egr buffer size first */
11575                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11576                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11577                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11578                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11579
11580                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11581                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11582                 did_enable = 1;
11583
11584                 /* zero RcvEgrIndexHead */
11585                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11586
11587                 /* set eager count and base index */
11588                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11589                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11590                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11591                         (((rcd->eager_base >> RCV_SHIFT)
11592                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11593                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11594                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11595
11596                 /*
11597                  * Set TID (expected) count and base index.
11598                  * rcd->expected_count is set to individual RcvArray entries,
11599                  * not pairs, and the CSR takes a pair-count in groups of
11600                  * four, so divide by 8.
11601                  */
11602                 reg = (((rcd->expected_count >> RCV_SHIFT)
11603                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11604                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11605                       (((rcd->expected_base >> RCV_SHIFT)
11606                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11607                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11608                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11609                 if (ctxt == HFI1_CTRL_CTXT)
11610                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11611         }
11612         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11613                 write_csr(dd, RCV_VL15, 0);
11614                 /*
11615                  * When receive context is being disabled turn on tail
11616                  * update with a dummy tail address and then disable
11617                  * receive context.
11618                  */
11619                 if (dd->rcvhdrtail_dummy_dma) {
11620                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11621                                         dd->rcvhdrtail_dummy_dma);
11622                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11623                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11624                 }
11625
11626                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11627         }
11628         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11629                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11630         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11631                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11632         if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11633                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11634         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11635                 /* See comment on RcvCtxtCtrl.TailUpd above */
11636                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11637                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11638         }
11639         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11640                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11641         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11642                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11643         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11644                 /*
11645                  * In one-packet-per-eager mode, the size comes from
11646                  * the RcvArray entry.
11647                  */
11648                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11649                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11650         }
11651         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11652                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11653         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11654                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11655         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11656                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11657         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11658                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11659         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11660                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11661         rcd->rcvctrl = rcvctrl;
11662         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11663         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11664
11665         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11666         if (did_enable &&
11667             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11668                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11669                 if (reg != 0) {
11670                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11671                                     ctxt, reg);
11672                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11673                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11674                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11675                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11676                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11677                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11678                                     ctxt, reg, reg == 0 ? "not" : "still");
11679                 }
11680         }
11681
11682         if (did_enable) {
11683                 /*
11684                  * The interrupt timeout and count must be set after
11685                  * the context is enabled to take effect.
11686                  */
11687                 /* set interrupt timeout */
11688                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11689                                 (u64)rcd->rcvavail_timeout <<
11690                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11691
11692                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11693                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11694                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11695         }
11696
11697         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11698                 /*
11699                  * If the context has been disabled and the Tail Update has
11700                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11701                  * so it doesn't contain an address that is invalid.
11702                  */
11703                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11704                                 dd->rcvhdrtail_dummy_dma);
11705 }
11706
11707 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11708 {
11709         int ret;
11710         u64 val = 0;
11711
11712         if (namep) {
11713                 ret = dd->cntrnameslen;
11714                 *namep = dd->cntrnames;
11715         } else {
11716                 const struct cntr_entry *entry;
11717                 int i, j;
11718
11719                 ret = (dd->ndevcntrs) * sizeof(u64);
11720
11721                 /* Get the start of the block of counters */
11722                 *cntrp = dd->cntrs;
11723
11724                 /*
11725                  * Now go and fill in each counter in the block.
11726                  */
11727                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11728                         entry = &dev_cntrs[i];
11729                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11730                         if (entry->flags & CNTR_DISABLED) {
11731                                 /* Nothing */
11732                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11733                         } else {
11734                                 if (entry->flags & CNTR_VL) {
11735                                         hfi1_cdbg(CNTR, "\tPer VL\n");
11736                                         for (j = 0; j < C_VL_COUNT; j++) {
11737                                                 val = entry->rw_cntr(entry,
11738                                                                   dd, j,
11739                                                                   CNTR_MODE_R,
11740                                                                   0);
11741                                                 hfi1_cdbg(
11742                                                    CNTR,
11743                                                    "\t\tRead 0x%llx for %d\n",
11744                                                    val, j);
11745                                                 dd->cntrs[entry->offset + j] =
11746                                                                             val;
11747                                         }
11748                                 } else if (entry->flags & CNTR_SDMA) {
11749                                         hfi1_cdbg(CNTR,
11750                                                   "\t Per SDMA Engine\n");
11751                                         for (j = 0; j < dd->chip_sdma_engines;
11752                                              j++) {
11753                                                 val =
11754                                                 entry->rw_cntr(entry, dd, j,
11755                                                                CNTR_MODE_R, 0);
11756                                                 hfi1_cdbg(CNTR,
11757                                                           "\t\tRead 0x%llx for %d\n",
11758                                                           val, j);
11759                                                 dd->cntrs[entry->offset + j] =
11760                                                                         val;
11761                                         }
11762                                 } else {
11763                                         val = entry->rw_cntr(entry, dd,
11764                                                         CNTR_INVALID_VL,
11765                                                         CNTR_MODE_R, 0);
11766                                         dd->cntrs[entry->offset] = val;
11767                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11768                                 }
11769                         }
11770                 }
11771         }
11772         return ret;
11773 }
11774
11775 /*
11776  * Used by sysfs to create files for hfi stats to read
11777  */
11778 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11779 {
11780         int ret;
11781         u64 val = 0;
11782
11783         if (namep) {
11784                 ret = ppd->dd->portcntrnameslen;
11785                 *namep = ppd->dd->portcntrnames;
11786         } else {
11787                 const struct cntr_entry *entry;
11788                 int i, j;
11789
11790                 ret = ppd->dd->nportcntrs * sizeof(u64);
11791                 *cntrp = ppd->cntrs;
11792
11793                 for (i = 0; i < PORT_CNTR_LAST; i++) {
11794                         entry = &port_cntrs[i];
11795                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11796                         if (entry->flags & CNTR_DISABLED) {
11797                                 /* Nothing */
11798                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11799                                 continue;
11800                         }
11801
11802                         if (entry->flags & CNTR_VL) {
11803                                 hfi1_cdbg(CNTR, "\tPer VL");
11804                                 for (j = 0; j < C_VL_COUNT; j++) {
11805                                         val = entry->rw_cntr(entry, ppd, j,
11806                                                                CNTR_MODE_R,
11807                                                                0);
11808                                         hfi1_cdbg(
11809                                            CNTR,
11810                                            "\t\tRead 0x%llx for %d",
11811                                            val, j);
11812                                         ppd->cntrs[entry->offset + j] = val;
11813                                 }
11814                         } else {
11815                                 val = entry->rw_cntr(entry, ppd,
11816                                                        CNTR_INVALID_VL,
11817                                                        CNTR_MODE_R,
11818                                                        0);
11819                                 ppd->cntrs[entry->offset] = val;
11820                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11821                         }
11822                 }
11823         }
11824         return ret;
11825 }
11826
11827 static void free_cntrs(struct hfi1_devdata *dd)
11828 {
11829         struct hfi1_pportdata *ppd;
11830         int i;
11831
11832         if (dd->synth_stats_timer.data)
11833                 del_timer_sync(&dd->synth_stats_timer);
11834         dd->synth_stats_timer.data = 0;
11835         ppd = (struct hfi1_pportdata *)(dd + 1);
11836         for (i = 0; i < dd->num_pports; i++, ppd++) {
11837                 kfree(ppd->cntrs);
11838                 kfree(ppd->scntrs);
11839                 free_percpu(ppd->ibport_data.rvp.rc_acks);
11840                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11841                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11842                 ppd->cntrs = NULL;
11843                 ppd->scntrs = NULL;
11844                 ppd->ibport_data.rvp.rc_acks = NULL;
11845                 ppd->ibport_data.rvp.rc_qacks = NULL;
11846                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11847         }
11848         kfree(dd->portcntrnames);
11849         dd->portcntrnames = NULL;
11850         kfree(dd->cntrs);
11851         dd->cntrs = NULL;
11852         kfree(dd->scntrs);
11853         dd->scntrs = NULL;
11854         kfree(dd->cntrnames);
11855         dd->cntrnames = NULL;
11856 }
11857
11858 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11859                               u64 *psval, void *context, int vl)
11860 {
11861         u64 val;
11862         u64 sval = *psval;
11863
11864         if (entry->flags & CNTR_DISABLED) {
11865                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11866                 return 0;
11867         }
11868
11869         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11870
11871         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11872
11873         /* If its a synthetic counter there is more work we need to do */
11874         if (entry->flags & CNTR_SYNTH) {
11875                 if (sval == CNTR_MAX) {
11876                         /* No need to read already saturated */
11877                         return CNTR_MAX;
11878                 }
11879
11880                 if (entry->flags & CNTR_32BIT) {
11881                         /* 32bit counters can wrap multiple times */
11882                         u64 upper = sval >> 32;
11883                         u64 lower = (sval << 32) >> 32;
11884
11885                         if (lower > val) { /* hw wrapped */
11886                                 if (upper == CNTR_32BIT_MAX)
11887                                         val = CNTR_MAX;
11888                                 else
11889                                         upper++;
11890                         }
11891
11892                         if (val != CNTR_MAX)
11893                                 val = (upper << 32) | val;
11894
11895                 } else {
11896                         /* If we rolled we are saturated */
11897                         if ((val < sval) || (val > CNTR_MAX))
11898                                 val = CNTR_MAX;
11899                 }
11900         }
11901
11902         *psval = val;
11903
11904         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11905
11906         return val;
11907 }
11908
11909 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11910                                struct cntr_entry *entry,
11911                                u64 *psval, void *context, int vl, u64 data)
11912 {
11913         u64 val;
11914
11915         if (entry->flags & CNTR_DISABLED) {
11916                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11917                 return 0;
11918         }
11919
11920         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11921
11922         if (entry->flags & CNTR_SYNTH) {
11923                 *psval = data;
11924                 if (entry->flags & CNTR_32BIT) {
11925                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11926                                              (data << 32) >> 32);
11927                         val = data; /* return the full 64bit value */
11928                 } else {
11929                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11930                                              data);
11931                 }
11932         } else {
11933                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11934         }
11935
11936         *psval = val;
11937
11938         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11939
11940         return val;
11941 }
11942
11943 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11944 {
11945         struct cntr_entry *entry;
11946         u64 *sval;
11947
11948         entry = &dev_cntrs[index];
11949         sval = dd->scntrs + entry->offset;
11950
11951         if (vl != CNTR_INVALID_VL)
11952                 sval += vl;
11953
11954         return read_dev_port_cntr(dd, entry, sval, dd, vl);
11955 }
11956
11957 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11958 {
11959         struct cntr_entry *entry;
11960         u64 *sval;
11961
11962         entry = &dev_cntrs[index];
11963         sval = dd->scntrs + entry->offset;
11964
11965         if (vl != CNTR_INVALID_VL)
11966                 sval += vl;
11967
11968         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11969 }
11970
11971 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11972 {
11973         struct cntr_entry *entry;
11974         u64 *sval;
11975
11976         entry = &port_cntrs[index];
11977         sval = ppd->scntrs + entry->offset;
11978
11979         if (vl != CNTR_INVALID_VL)
11980                 sval += vl;
11981
11982         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11983             (index <= C_RCV_HDR_OVF_LAST)) {
11984                 /* We do not want to bother for disabled contexts */
11985                 return 0;
11986         }
11987
11988         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11989 }
11990
11991 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11992 {
11993         struct cntr_entry *entry;
11994         u64 *sval;
11995
11996         entry = &port_cntrs[index];
11997         sval = ppd->scntrs + entry->offset;
11998
11999         if (vl != CNTR_INVALID_VL)
12000                 sval += vl;
12001
12002         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12003             (index <= C_RCV_HDR_OVF_LAST)) {
12004                 /* We do not want to bother for disabled contexts */
12005                 return 0;
12006         }
12007
12008         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12009 }
12010
12011 static void update_synth_timer(unsigned long opaque)
12012 {
12013         u64 cur_tx;
12014         u64 cur_rx;
12015         u64 total_flits;
12016         u8 update = 0;
12017         int i, j, vl;
12018         struct hfi1_pportdata *ppd;
12019         struct cntr_entry *entry;
12020
12021         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12022
12023         /*
12024          * Rather than keep beating on the CSRs pick a minimal set that we can
12025          * check to watch for potential roll over. We can do this by looking at
12026          * the number of flits sent/recv. If the total flits exceeds 32bits then
12027          * we have to iterate all the counters and update.
12028          */
12029         entry = &dev_cntrs[C_DC_RCV_FLITS];
12030         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12031
12032         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12033         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12034
12035         hfi1_cdbg(
12036             CNTR,
12037             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12038             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12039
12040         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12041                 /*
12042                  * May not be strictly necessary to update but it won't hurt and
12043                  * simplifies the logic here.
12044                  */
12045                 update = 1;
12046                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12047                           dd->unit);
12048         } else {
12049                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12050                 hfi1_cdbg(CNTR,
12051                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12052                           total_flits, (u64)CNTR_32BIT_MAX);
12053                 if (total_flits >= CNTR_32BIT_MAX) {
12054                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12055                                   dd->unit);
12056                         update = 1;
12057                 }
12058         }
12059
12060         if (update) {
12061                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12062                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12063                         entry = &dev_cntrs[i];
12064                         if (entry->flags & CNTR_VL) {
12065                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12066                                         read_dev_cntr(dd, i, vl);
12067                         } else {
12068                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12069                         }
12070                 }
12071                 ppd = (struct hfi1_pportdata *)(dd + 1);
12072                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12073                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12074                                 entry = &port_cntrs[j];
12075                                 if (entry->flags & CNTR_VL) {
12076                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12077                                                 read_port_cntr(ppd, j, vl);
12078                                 } else {
12079                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12080                                 }
12081                         }
12082                 }
12083
12084                 /*
12085                  * We want the value in the register. The goal is to keep track
12086                  * of the number of "ticks" not the counter value. In other
12087                  * words if the register rolls we want to notice it and go ahead
12088                  * and force an update.
12089                  */
12090                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12091                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12092                                                 CNTR_MODE_R, 0);
12093
12094                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12095                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12096                                                 CNTR_MODE_R, 0);
12097
12098                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12099                           dd->unit, dd->last_tx, dd->last_rx);
12100
12101         } else {
12102                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12103         }
12104
12105         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12106 }
12107
12108 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12109 static int init_cntrs(struct hfi1_devdata *dd)
12110 {
12111         int i, rcv_ctxts, j;
12112         size_t sz;
12113         char *p;
12114         char name[C_MAX_NAME];
12115         struct hfi1_pportdata *ppd;
12116         const char *bit_type_32 = ",32";
12117         const int bit_type_32_sz = strlen(bit_type_32);
12118
12119         /* set up the stats timer; the add_timer is done at the end */
12120         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12121                     (unsigned long)dd);
12122
12123         /***********************/
12124         /* per device counters */
12125         /***********************/
12126
12127         /* size names and determine how many we have*/
12128         dd->ndevcntrs = 0;
12129         sz = 0;
12130
12131         for (i = 0; i < DEV_CNTR_LAST; i++) {
12132                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12133                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12134                         continue;
12135                 }
12136
12137                 if (dev_cntrs[i].flags & CNTR_VL) {
12138                         dev_cntrs[i].offset = dd->ndevcntrs;
12139                         for (j = 0; j < C_VL_COUNT; j++) {
12140                                 snprintf(name, C_MAX_NAME, "%s%d",
12141                                          dev_cntrs[i].name, vl_from_idx(j));
12142                                 sz += strlen(name);
12143                                 /* Add ",32" for 32-bit counters */
12144                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12145                                         sz += bit_type_32_sz;
12146                                 sz++;
12147                                 dd->ndevcntrs++;
12148                         }
12149                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12150                         dev_cntrs[i].offset = dd->ndevcntrs;
12151                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12152                                 snprintf(name, C_MAX_NAME, "%s%d",
12153                                          dev_cntrs[i].name, j);
12154                                 sz += strlen(name);
12155                                 /* Add ",32" for 32-bit counters */
12156                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12157                                         sz += bit_type_32_sz;
12158                                 sz++;
12159                                 dd->ndevcntrs++;
12160                         }
12161                 } else {
12162                         /* +1 for newline. */
12163                         sz += strlen(dev_cntrs[i].name) + 1;
12164                         /* Add ",32" for 32-bit counters */
12165                         if (dev_cntrs[i].flags & CNTR_32BIT)
12166                                 sz += bit_type_32_sz;
12167                         dev_cntrs[i].offset = dd->ndevcntrs;
12168                         dd->ndevcntrs++;
12169                 }
12170         }
12171
12172         /* allocate space for the counter values */
12173         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12174         if (!dd->cntrs)
12175                 goto bail;
12176
12177         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12178         if (!dd->scntrs)
12179                 goto bail;
12180
12181         /* allocate space for the counter names */
12182         dd->cntrnameslen = sz;
12183         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12184         if (!dd->cntrnames)
12185                 goto bail;
12186
12187         /* fill in the names */
12188         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12189                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12190                         /* Nothing */
12191                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12192                         for (j = 0; j < C_VL_COUNT; j++) {
12193                                 snprintf(name, C_MAX_NAME, "%s%d",
12194                                          dev_cntrs[i].name,
12195                                          vl_from_idx(j));
12196                                 memcpy(p, name, strlen(name));
12197                                 p += strlen(name);
12198
12199                                 /* Counter is 32 bits */
12200                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12201                                         memcpy(p, bit_type_32, bit_type_32_sz);
12202                                         p += bit_type_32_sz;
12203                                 }
12204
12205                                 *p++ = '\n';
12206                         }
12207                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12208                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12209                                 snprintf(name, C_MAX_NAME, "%s%d",
12210                                          dev_cntrs[i].name, j);
12211                                 memcpy(p, name, strlen(name));
12212                                 p += strlen(name);
12213
12214                                 /* Counter is 32 bits */
12215                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12216                                         memcpy(p, bit_type_32, bit_type_32_sz);
12217                                         p += bit_type_32_sz;
12218                                 }
12219
12220                                 *p++ = '\n';
12221                         }
12222                 } else {
12223                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12224                         p += strlen(dev_cntrs[i].name);
12225
12226                         /* Counter is 32 bits */
12227                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12228                                 memcpy(p, bit_type_32, bit_type_32_sz);
12229                                 p += bit_type_32_sz;
12230                         }
12231
12232                         *p++ = '\n';
12233                 }
12234         }
12235
12236         /*********************/
12237         /* per port counters */
12238         /*********************/
12239
12240         /*
12241          * Go through the counters for the overflows and disable the ones we
12242          * don't need. This varies based on platform so we need to do it
12243          * dynamically here.
12244          */
12245         rcv_ctxts = dd->num_rcv_contexts;
12246         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12247              i <= C_RCV_HDR_OVF_LAST; i++) {
12248                 port_cntrs[i].flags |= CNTR_DISABLED;
12249         }
12250
12251         /* size port counter names and determine how many we have*/
12252         sz = 0;
12253         dd->nportcntrs = 0;
12254         for (i = 0; i < PORT_CNTR_LAST; i++) {
12255                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12256                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12257                         continue;
12258                 }
12259
12260                 if (port_cntrs[i].flags & CNTR_VL) {
12261                         port_cntrs[i].offset = dd->nportcntrs;
12262                         for (j = 0; j < C_VL_COUNT; j++) {
12263                                 snprintf(name, C_MAX_NAME, "%s%d",
12264                                          port_cntrs[i].name, vl_from_idx(j));
12265                                 sz += strlen(name);
12266                                 /* Add ",32" for 32-bit counters */
12267                                 if (port_cntrs[i].flags & CNTR_32BIT)
12268                                         sz += bit_type_32_sz;
12269                                 sz++;
12270                                 dd->nportcntrs++;
12271                         }
12272                 } else {
12273                         /* +1 for newline */
12274                         sz += strlen(port_cntrs[i].name) + 1;
12275                         /* Add ",32" for 32-bit counters */
12276                         if (port_cntrs[i].flags & CNTR_32BIT)
12277                                 sz += bit_type_32_sz;
12278                         port_cntrs[i].offset = dd->nportcntrs;
12279                         dd->nportcntrs++;
12280                 }
12281         }
12282
12283         /* allocate space for the counter names */
12284         dd->portcntrnameslen = sz;
12285         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12286         if (!dd->portcntrnames)
12287                 goto bail;
12288
12289         /* fill in port cntr names */
12290         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12291                 if (port_cntrs[i].flags & CNTR_DISABLED)
12292                         continue;
12293
12294                 if (port_cntrs[i].flags & CNTR_VL) {
12295                         for (j = 0; j < C_VL_COUNT; j++) {
12296                                 snprintf(name, C_MAX_NAME, "%s%d",
12297                                          port_cntrs[i].name, vl_from_idx(j));
12298                                 memcpy(p, name, strlen(name));
12299                                 p += strlen(name);
12300
12301                                 /* Counter is 32 bits */
12302                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12303                                         memcpy(p, bit_type_32, bit_type_32_sz);
12304                                         p += bit_type_32_sz;
12305                                 }
12306
12307                                 *p++ = '\n';
12308                         }
12309                 } else {
12310                         memcpy(p, port_cntrs[i].name,
12311                                strlen(port_cntrs[i].name));
12312                         p += strlen(port_cntrs[i].name);
12313
12314                         /* Counter is 32 bits */
12315                         if (port_cntrs[i].flags & CNTR_32BIT) {
12316                                 memcpy(p, bit_type_32, bit_type_32_sz);
12317                                 p += bit_type_32_sz;
12318                         }
12319
12320                         *p++ = '\n';
12321                 }
12322         }
12323
12324         /* allocate per port storage for counter values */
12325         ppd = (struct hfi1_pportdata *)(dd + 1);
12326         for (i = 0; i < dd->num_pports; i++, ppd++) {
12327                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12328                 if (!ppd->cntrs)
12329                         goto bail;
12330
12331                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12332                 if (!ppd->scntrs)
12333                         goto bail;
12334         }
12335
12336         /* CPU counters need to be allocated and zeroed */
12337         if (init_cpu_counters(dd))
12338                 goto bail;
12339
12340         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12341         return 0;
12342 bail:
12343         free_cntrs(dd);
12344         return -ENOMEM;
12345 }
12346
12347 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12348 {
12349         switch (chip_lstate) {
12350         default:
12351                 dd_dev_err(dd,
12352                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12353                            chip_lstate);
12354                 /* fall through */
12355         case LSTATE_DOWN:
12356                 return IB_PORT_DOWN;
12357         case LSTATE_INIT:
12358                 return IB_PORT_INIT;
12359         case LSTATE_ARMED:
12360                 return IB_PORT_ARMED;
12361         case LSTATE_ACTIVE:
12362                 return IB_PORT_ACTIVE;
12363         }
12364 }
12365
12366 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12367 {
12368         /* look at the HFI meta-states only */
12369         switch (chip_pstate & 0xf0) {
12370         default:
12371                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12372                            chip_pstate);
12373                 /* fall through */
12374         case PLS_DISABLED:
12375                 return IB_PORTPHYSSTATE_DISABLED;
12376         case PLS_OFFLINE:
12377                 return OPA_PORTPHYSSTATE_OFFLINE;
12378         case PLS_POLLING:
12379                 return IB_PORTPHYSSTATE_POLLING;
12380         case PLS_CONFIGPHY:
12381                 return IB_PORTPHYSSTATE_TRAINING;
12382         case PLS_LINKUP:
12383                 return IB_PORTPHYSSTATE_LINKUP;
12384         case PLS_PHYTEST:
12385                 return IB_PORTPHYSSTATE_PHY_TEST;
12386         }
12387 }
12388
12389 /* return the OPA port logical state name */
12390 const char *opa_lstate_name(u32 lstate)
12391 {
12392         static const char * const port_logical_names[] = {
12393                 "PORT_NOP",
12394                 "PORT_DOWN",
12395                 "PORT_INIT",
12396                 "PORT_ARMED",
12397                 "PORT_ACTIVE",
12398                 "PORT_ACTIVE_DEFER",
12399         };
12400         if (lstate < ARRAY_SIZE(port_logical_names))
12401                 return port_logical_names[lstate];
12402         return "unknown";
12403 }
12404
12405 /* return the OPA port physical state name */
12406 const char *opa_pstate_name(u32 pstate)
12407 {
12408         static const char * const port_physical_names[] = {
12409                 "PHYS_NOP",
12410                 "reserved1",
12411                 "PHYS_POLL",
12412                 "PHYS_DISABLED",
12413                 "PHYS_TRAINING",
12414                 "PHYS_LINKUP",
12415                 "PHYS_LINK_ERR_RECOVER",
12416                 "PHYS_PHY_TEST",
12417                 "reserved8",
12418                 "PHYS_OFFLINE",
12419                 "PHYS_GANGED",
12420                 "PHYS_TEST",
12421         };
12422         if (pstate < ARRAY_SIZE(port_physical_names))
12423                 return port_physical_names[pstate];
12424         return "unknown";
12425 }
12426
12427 /*
12428  * Read the hardware link state and set the driver's cached value of it.
12429  * Return the (new) current value.
12430  */
12431 u32 get_logical_state(struct hfi1_pportdata *ppd)
12432 {
12433         u32 new_state;
12434
12435         new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12436         if (new_state != ppd->lstate) {
12437                 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12438                             opa_lstate_name(new_state), new_state);
12439                 ppd->lstate = new_state;
12440         }
12441         /*
12442          * Set port status flags in the page mapped into userspace
12443          * memory. Do it here to ensure a reliable state - this is
12444          * the only function called by all state handling code.
12445          * Always set the flags due to the fact that the cache value
12446          * might have been changed explicitly outside of this
12447          * function.
12448          */
12449         if (ppd->statusp) {
12450                 switch (ppd->lstate) {
12451                 case IB_PORT_DOWN:
12452                 case IB_PORT_INIT:
12453                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12454                                            HFI1_STATUS_IB_READY);
12455                         break;
12456                 case IB_PORT_ARMED:
12457                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12458                         break;
12459                 case IB_PORT_ACTIVE:
12460                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12461                         break;
12462                 }
12463         }
12464         return ppd->lstate;
12465 }
12466
12467 /**
12468  * wait_logical_linkstate - wait for an IB link state change to occur
12469  * @ppd: port device
12470  * @state: the state to wait for
12471  * @msecs: the number of milliseconds to wait
12472  *
12473  * Wait up to msecs milliseconds for IB link state change to occur.
12474  * For now, take the easy polling route.
12475  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12476  */
12477 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12478                                   int msecs)
12479 {
12480         unsigned long timeout;
12481
12482         timeout = jiffies + msecs_to_jiffies(msecs);
12483         while (1) {
12484                 if (get_logical_state(ppd) == state)
12485                         return 0;
12486                 if (time_after(jiffies, timeout))
12487                         break;
12488                 msleep(20);
12489         }
12490         dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12491
12492         return -ETIMEDOUT;
12493 }
12494
12495 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12496 {
12497         u32 pstate;
12498         u32 ib_pstate;
12499
12500         pstate = read_physical_state(ppd->dd);
12501         ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12502         if (ppd->last_pstate != ib_pstate) {
12503                 dd_dev_info(ppd->dd,
12504                             "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12505                             __func__, opa_pstate_name(ib_pstate), ib_pstate,
12506                             pstate);
12507                 ppd->last_pstate = ib_pstate;
12508         }
12509         return ib_pstate;
12510 }
12511
12512 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12513 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12514
12515 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12516 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12517
12518 int hfi1_init_ctxt(struct send_context *sc)
12519 {
12520         if (sc) {
12521                 struct hfi1_devdata *dd = sc->dd;
12522                 u64 reg;
12523                 u8 set = (sc->type == SC_USER ?
12524                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12525                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12526                 reg = read_kctxt_csr(dd, sc->hw_context,
12527                                      SEND_CTXT_CHECK_ENABLE);
12528                 if (set)
12529                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12530                 else
12531                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12532                 write_kctxt_csr(dd, sc->hw_context,
12533                                 SEND_CTXT_CHECK_ENABLE, reg);
12534         }
12535         return 0;
12536 }
12537
12538 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12539 {
12540         int ret = 0;
12541         u64 reg;
12542
12543         if (dd->icode != ICODE_RTL_SILICON) {
12544                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12545                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12546                                     __func__);
12547                 return -EINVAL;
12548         }
12549         reg = read_csr(dd, ASIC_STS_THERM);
12550         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12551                       ASIC_STS_THERM_CURR_TEMP_MASK);
12552         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12553                         ASIC_STS_THERM_LO_TEMP_MASK);
12554         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12555                         ASIC_STS_THERM_HI_TEMP_MASK);
12556         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12557                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12558         /* triggers is a 3-bit value - 1 bit per trigger. */
12559         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12560
12561         return ret;
12562 }
12563
12564 /* ========================================================================= */
12565
12566 /*
12567  * Enable/disable chip from delivering interrupts.
12568  */
12569 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12570 {
12571         int i;
12572
12573         /*
12574          * In HFI, the mask needs to be 1 to allow interrupts.
12575          */
12576         if (enable) {
12577                 /* enable all interrupts */
12578                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12579                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12580
12581                 init_qsfp_int(dd);
12582         } else {
12583                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12584                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12585         }
12586 }
12587
12588 /*
12589  * Clear all interrupt sources on the chip.
12590  */
12591 static void clear_all_interrupts(struct hfi1_devdata *dd)
12592 {
12593         int i;
12594
12595         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12596                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12597
12598         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12599         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12600         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12601         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12602         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12603         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12604         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12605         for (i = 0; i < dd->chip_send_contexts; i++)
12606                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12607         for (i = 0; i < dd->chip_sdma_engines; i++)
12608                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12609
12610         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12611         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12612         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12613 }
12614
12615 /* Move to pcie.c? */
12616 static void disable_intx(struct pci_dev *pdev)
12617 {
12618         pci_intx(pdev, 0);
12619 }
12620
12621 static void clean_up_interrupts(struct hfi1_devdata *dd)
12622 {
12623         int i;
12624
12625         /* remove irqs - must happen before disabling/turning off */
12626         if (dd->num_msix_entries) {
12627                 /* MSI-X */
12628                 struct hfi1_msix_entry *me = dd->msix_entries;
12629
12630                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12631                         if (!me->arg) /* => no irq, no affinity */
12632                                 continue;
12633                         hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12634                         free_irq(me->msix.vector, me->arg);
12635                 }
12636         } else {
12637                 /* INTx */
12638                 if (dd->requested_intx_irq) {
12639                         free_irq(dd->pcidev->irq, dd);
12640                         dd->requested_intx_irq = 0;
12641                 }
12642         }
12643
12644         /* turn off interrupts */
12645         if (dd->num_msix_entries) {
12646                 /* MSI-X */
12647                 pci_disable_msix(dd->pcidev);
12648         } else {
12649                 /* INTx */
12650                 disable_intx(dd->pcidev);
12651         }
12652
12653         /* clean structures */
12654         kfree(dd->msix_entries);
12655         dd->msix_entries = NULL;
12656         dd->num_msix_entries = 0;
12657 }
12658
12659 /*
12660  * Remap the interrupt source from the general handler to the given MSI-X
12661  * interrupt.
12662  */
12663 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12664 {
12665         u64 reg;
12666         int m, n;
12667
12668         /* clear from the handled mask of the general interrupt */
12669         m = isrc / 64;
12670         n = isrc % 64;
12671         dd->gi_mask[m] &= ~((u64)1 << n);
12672
12673         /* direct the chip source to the given MSI-X interrupt */
12674         m = isrc / 8;
12675         n = isrc % 8;
12676         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12677         reg &= ~((u64)0xff << (8 * n));
12678         reg |= ((u64)msix_intr & 0xff) << (8 * n);
12679         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12680 }
12681
12682 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12683                                   int engine, int msix_intr)
12684 {
12685         /*
12686          * SDMA engine interrupt sources grouped by type, rather than
12687          * engine.  Per-engine interrupts are as follows:
12688          *      SDMA
12689          *      SDMAProgress
12690          *      SDMAIdle
12691          */
12692         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12693                    msix_intr);
12694         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12695                    msix_intr);
12696         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12697                    msix_intr);
12698 }
12699
12700 static int request_intx_irq(struct hfi1_devdata *dd)
12701 {
12702         int ret;
12703
12704         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12705                  dd->unit);
12706         ret = request_irq(dd->pcidev->irq, general_interrupt,
12707                           IRQF_SHARED, dd->intx_name, dd);
12708         if (ret)
12709                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12710                            ret);
12711         else
12712                 dd->requested_intx_irq = 1;
12713         return ret;
12714 }
12715
12716 static int request_msix_irqs(struct hfi1_devdata *dd)
12717 {
12718         int first_general, last_general;
12719         int first_sdma, last_sdma;
12720         int first_rx, last_rx;
12721         int i, ret = 0;
12722
12723         /* calculate the ranges we are going to use */
12724         first_general = 0;
12725         last_general = first_general + 1;
12726         first_sdma = last_general;
12727         last_sdma = first_sdma + dd->num_sdma;
12728         first_rx = last_sdma;
12729         last_rx = first_rx + dd->n_krcv_queues;
12730
12731         /*
12732          * Sanity check - the code expects all SDMA chip source
12733          * interrupts to be in the same CSR, starting at bit 0.  Verify
12734          * that this is true by checking the bit location of the start.
12735          */
12736         BUILD_BUG_ON(IS_SDMA_START % 64);
12737
12738         for (i = 0; i < dd->num_msix_entries; i++) {
12739                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12740                 const char *err_info;
12741                 irq_handler_t handler;
12742                 irq_handler_t thread = NULL;
12743                 void *arg;
12744                 int idx;
12745                 struct hfi1_ctxtdata *rcd = NULL;
12746                 struct sdma_engine *sde = NULL;
12747
12748                 /* obtain the arguments to request_irq */
12749                 if (first_general <= i && i < last_general) {
12750                         idx = i - first_general;
12751                         handler = general_interrupt;
12752                         arg = dd;
12753                         snprintf(me->name, sizeof(me->name),
12754                                  DRIVER_NAME "_%d", dd->unit);
12755                         err_info = "general";
12756                         me->type = IRQ_GENERAL;
12757                 } else if (first_sdma <= i && i < last_sdma) {
12758                         idx = i - first_sdma;
12759                         sde = &dd->per_sdma[idx];
12760                         handler = sdma_interrupt;
12761                         arg = sde;
12762                         snprintf(me->name, sizeof(me->name),
12763                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12764                         err_info = "sdma";
12765                         remap_sdma_interrupts(dd, idx, i);
12766                         me->type = IRQ_SDMA;
12767                 } else if (first_rx <= i && i < last_rx) {
12768                         idx = i - first_rx;
12769                         rcd = dd->rcd[idx];
12770                         /* no interrupt if no rcd */
12771                         if (!rcd)
12772                                 continue;
12773                         /*
12774                          * Set the interrupt register and mask for this
12775                          * context's interrupt.
12776                          */
12777                         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12778                         rcd->imask = ((u64)1) <<
12779                                         ((IS_RCVAVAIL_START + idx) % 64);
12780                         handler = receive_context_interrupt;
12781                         thread = receive_context_thread;
12782                         arg = rcd;
12783                         snprintf(me->name, sizeof(me->name),
12784                                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12785                         err_info = "receive context";
12786                         remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12787                         me->type = IRQ_RCVCTXT;
12788                 } else {
12789                         /* not in our expected range - complain, then
12790                          * ignore it
12791                          */
12792                         dd_dev_err(dd,
12793                                    "Unexpected extra MSI-X interrupt %d\n", i);
12794                         continue;
12795                 }
12796                 /* no argument, no interrupt */
12797                 if (!arg)
12798                         continue;
12799                 /* make sure the name is terminated */
12800                 me->name[sizeof(me->name) - 1] = 0;
12801
12802                 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12803                                            me->name, arg);
12804                 if (ret) {
12805                         dd_dev_err(dd,
12806                                    "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12807                                    err_info, me->msix.vector, idx, ret);
12808                         return ret;
12809                 }
12810                 /*
12811                  * assign arg after request_irq call, so it will be
12812                  * cleaned up
12813                  */
12814                 me->arg = arg;
12815
12816                 ret = hfi1_get_irq_affinity(dd, me);
12817                 if (ret)
12818                         dd_dev_err(dd,
12819                                    "unable to pin IRQ %d\n", ret);
12820         }
12821
12822         return ret;
12823 }
12824
12825 /*
12826  * Set the general handler to accept all interrupts, remap all
12827  * chip interrupts back to MSI-X 0.
12828  */
12829 static void reset_interrupts(struct hfi1_devdata *dd)
12830 {
12831         int i;
12832
12833         /* all interrupts handled by the general handler */
12834         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12835                 dd->gi_mask[i] = ~(u64)0;
12836
12837         /* all chip interrupts map to MSI-X 0 */
12838         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12839                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12840 }
12841
12842 static int set_up_interrupts(struct hfi1_devdata *dd)
12843 {
12844         struct hfi1_msix_entry *entries;
12845         u32 total, request;
12846         int i, ret;
12847         int single_interrupt = 0; /* we expect to have all the interrupts */
12848
12849         /*
12850          * Interrupt count:
12851          *      1 general, "slow path" interrupt (includes the SDMA engines
12852          *              slow source, SDMACleanupDone)
12853          *      N interrupts - one per used SDMA engine
12854          *      M interrupt - one per kernel receive context
12855          */
12856         total = 1 + dd->num_sdma + dd->n_krcv_queues;
12857
12858         entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12859         if (!entries) {
12860                 ret = -ENOMEM;
12861                 goto fail;
12862         }
12863         /* 1-1 MSI-X entry assignment */
12864         for (i = 0; i < total; i++)
12865                 entries[i].msix.entry = i;
12866
12867         /* ask for MSI-X interrupts */
12868         request = total;
12869         request_msix(dd, &request, entries);
12870
12871         if (request == 0) {
12872                 /* using INTx */
12873                 /* dd->num_msix_entries already zero */
12874                 kfree(entries);
12875                 single_interrupt = 1;
12876                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12877         } else {
12878                 /* using MSI-X */
12879                 dd->num_msix_entries = request;
12880                 dd->msix_entries = entries;
12881
12882                 if (request != total) {
12883                         /* using MSI-X, with reduced interrupts */
12884                         dd_dev_err(
12885                                 dd,
12886                                 "cannot handle reduced interrupt case, want %u, got %u\n",
12887                                 total, request);
12888                         ret = -EINVAL;
12889                         goto fail;
12890                 }
12891                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12892         }
12893
12894         /* mask all interrupts */
12895         set_intr_state(dd, 0);
12896         /* clear all pending interrupts */
12897         clear_all_interrupts(dd);
12898
12899         /* reset general handler mask, chip MSI-X mappings */
12900         reset_interrupts(dd);
12901
12902         if (single_interrupt)
12903                 ret = request_intx_irq(dd);
12904         else
12905                 ret = request_msix_irqs(dd);
12906         if (ret)
12907                 goto fail;
12908
12909         return 0;
12910
12911 fail:
12912         clean_up_interrupts(dd);
12913         return ret;
12914 }
12915
12916 /*
12917  * Set up context values in dd.  Sets:
12918  *
12919  *      num_rcv_contexts - number of contexts being used
12920  *      n_krcv_queues - number of kernel contexts
12921  *      first_user_ctxt - first non-kernel context in array of contexts
12922  *      freectxts  - number of free user contexts
12923  *      num_send_contexts - number of PIO send contexts being used
12924  */
12925 static int set_up_context_variables(struct hfi1_devdata *dd)
12926 {
12927         unsigned long num_kernel_contexts;
12928         int total_contexts;
12929         int ret;
12930         unsigned ngroups;
12931         int qos_rmt_count;
12932         int user_rmt_reduced;
12933
12934         /*
12935          * Kernel receive contexts:
12936          * - Context 0 - control context (VL15/multicast/error)
12937          * - Context 1 - first kernel context
12938          * - Context 2 - second kernel context
12939          * ...
12940          */
12941         if (n_krcvqs)
12942                 /*
12943                  * n_krcvqs is the sum of module parameter kernel receive
12944                  * contexts, krcvqs[].  It does not include the control
12945                  * context, so add that.
12946                  */
12947                 num_kernel_contexts = n_krcvqs + 1;
12948         else
12949                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
12950         /*
12951          * Every kernel receive context needs an ACK send context.
12952          * one send context is allocated for each VL{0-7} and VL15
12953          */
12954         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12955                 dd_dev_err(dd,
12956                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
12957                            (int)(dd->chip_send_contexts - num_vls - 1),
12958                            num_kernel_contexts);
12959                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12960         }
12961         /*
12962          * User contexts:
12963          *      - default to 1 user context per real (non-HT) CPU core if
12964          *        num_user_contexts is negative
12965          */
12966         if (num_user_contexts < 0)
12967                 num_user_contexts =
12968                         cpumask_weight(&node_affinity.real_cpu_mask);
12969
12970         total_contexts = num_kernel_contexts + num_user_contexts;
12971
12972         /*
12973          * Adjust the counts given a global max.
12974          */
12975         if (total_contexts > dd->chip_rcv_contexts) {
12976                 dd_dev_err(dd,
12977                            "Reducing # user receive contexts to: %d, from %d\n",
12978                            (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12979                            (int)num_user_contexts);
12980                 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12981                 /* recalculate */
12982                 total_contexts = num_kernel_contexts + num_user_contexts;
12983         }
12984
12985         /* each user context requires an entry in the RMT */
12986         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12987         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12988                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
12989                 dd_dev_err(dd,
12990                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
12991                            (int)num_user_contexts,
12992                            user_rmt_reduced);
12993                 /* recalculate */
12994                 num_user_contexts = user_rmt_reduced;
12995                 total_contexts = num_kernel_contexts + num_user_contexts;
12996         }
12997
12998         /* the first N are kernel contexts, the rest are user contexts */
12999         dd->num_rcv_contexts = total_contexts;
13000         dd->n_krcv_queues = num_kernel_contexts;
13001         dd->first_user_ctxt = num_kernel_contexts;
13002         dd->num_user_contexts = num_user_contexts;
13003         dd->freectxts = num_user_contexts;
13004         dd_dev_info(dd,
13005                     "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13006                     (int)dd->chip_rcv_contexts,
13007                     (int)dd->num_rcv_contexts,
13008                     (int)dd->n_krcv_queues,
13009                     (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13010
13011         /*
13012          * Receive array allocation:
13013          *   All RcvArray entries are divided into groups of 8. This
13014          *   is required by the hardware and will speed up writes to
13015          *   consecutive entries by using write-combining of the entire
13016          *   cacheline.
13017          *
13018          *   The number of groups are evenly divided among all contexts.
13019          *   any left over groups will be given to the first N user
13020          *   contexts.
13021          */
13022         dd->rcv_entries.group_size = RCV_INCREMENT;
13023         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13024         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13025         dd->rcv_entries.nctxt_extra = ngroups -
13026                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13027         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13028                     dd->rcv_entries.ngroups,
13029                     dd->rcv_entries.nctxt_extra);
13030         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13031             MAX_EAGER_ENTRIES * 2) {
13032                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13033                         dd->rcv_entries.group_size;
13034                 dd_dev_info(dd,
13035                             "RcvArray group count too high, change to %u\n",
13036                             dd->rcv_entries.ngroups);
13037                 dd->rcv_entries.nctxt_extra = 0;
13038         }
13039         /*
13040          * PIO send contexts
13041          */
13042         ret = init_sc_pools_and_sizes(dd);
13043         if (ret >= 0) { /* success */
13044                 dd->num_send_contexts = ret;
13045                 dd_dev_info(
13046                         dd,
13047                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13048                         dd->chip_send_contexts,
13049                         dd->num_send_contexts,
13050                         dd->sc_sizes[SC_KERNEL].count,
13051                         dd->sc_sizes[SC_ACK].count,
13052                         dd->sc_sizes[SC_USER].count,
13053                         dd->sc_sizes[SC_VL15].count);
13054                 ret = 0;        /* success */
13055         }
13056
13057         return ret;
13058 }
13059
13060 /*
13061  * Set the device/port partition key table. The MAD code
13062  * will ensure that, at least, the partial management
13063  * partition key is present in the table.
13064  */
13065 static void set_partition_keys(struct hfi1_pportdata *ppd)
13066 {
13067         struct hfi1_devdata *dd = ppd->dd;
13068         u64 reg = 0;
13069         int i;
13070
13071         dd_dev_info(dd, "Setting partition keys\n");
13072         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13073                 reg |= (ppd->pkeys[i] &
13074                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13075                         ((i % 4) *
13076                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13077                 /* Each register holds 4 PKey values. */
13078                 if ((i % 4) == 3) {
13079                         write_csr(dd, RCV_PARTITION_KEY +
13080                                   ((i - 3) * 2), reg);
13081                         reg = 0;
13082                 }
13083         }
13084
13085         /* Always enable HW pkeys check when pkeys table is set */
13086         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13087 }
13088
13089 /*
13090  * These CSRs and memories are uninitialized on reset and must be
13091  * written before reading to set the ECC/parity bits.
13092  *
13093  * NOTE: All user context CSRs that are not mmaped write-only
13094  * (e.g. the TID flows) must be initialized even if the driver never
13095  * reads them.
13096  */
13097 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13098 {
13099         int i, j;
13100
13101         /* CceIntMap */
13102         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13103                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13104
13105         /* SendCtxtCreditReturnAddr */
13106         for (i = 0; i < dd->chip_send_contexts; i++)
13107                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13108
13109         /* PIO Send buffers */
13110         /* SDMA Send buffers */
13111         /*
13112          * These are not normally read, and (presently) have no method
13113          * to be read, so are not pre-initialized
13114          */
13115
13116         /* RcvHdrAddr */
13117         /* RcvHdrTailAddr */
13118         /* RcvTidFlowTable */
13119         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13120                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13121                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13122                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13123                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13124         }
13125
13126         /* RcvArray */
13127         for (i = 0; i < dd->chip_rcv_array_count; i++)
13128                 write_csr(dd, RCV_ARRAY + (8 * i),
13129                           RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13130
13131         /* RcvQPMapTable */
13132         for (i = 0; i < 32; i++)
13133                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13134 }
13135
13136 /*
13137  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13138  */
13139 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13140                              u64 ctrl_bits)
13141 {
13142         unsigned long timeout;
13143         u64 reg;
13144
13145         /* is the condition present? */
13146         reg = read_csr(dd, CCE_STATUS);
13147         if ((reg & status_bits) == 0)
13148                 return;
13149
13150         /* clear the condition */
13151         write_csr(dd, CCE_CTRL, ctrl_bits);
13152
13153         /* wait for the condition to clear */
13154         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13155         while (1) {
13156                 reg = read_csr(dd, CCE_STATUS);
13157                 if ((reg & status_bits) == 0)
13158                         return;
13159                 if (time_after(jiffies, timeout)) {
13160                         dd_dev_err(dd,
13161                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13162                                    status_bits, reg & status_bits);
13163                         return;
13164                 }
13165                 udelay(1);
13166         }
13167 }
13168
13169 /* set CCE CSRs to chip reset defaults */
13170 static void reset_cce_csrs(struct hfi1_devdata *dd)
13171 {
13172         int i;
13173
13174         /* CCE_REVISION read-only */
13175         /* CCE_REVISION2 read-only */
13176         /* CCE_CTRL - bits clear automatically */
13177         /* CCE_STATUS read-only, use CceCtrl to clear */
13178         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13179         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13180         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13181         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13182                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13183         /* CCE_ERR_STATUS read-only */
13184         write_csr(dd, CCE_ERR_MASK, 0);
13185         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13186         /* CCE_ERR_FORCE leave alone */
13187         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13188                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13189         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13190         /* CCE_PCIE_CTRL leave alone */
13191         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13192                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13193                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13194                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13195         }
13196         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13197                 /* CCE_MSIX_PBA read-only */
13198                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13199                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13200         }
13201         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13202                 write_csr(dd, CCE_INT_MAP, 0);
13203         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13204                 /* CCE_INT_STATUS read-only */
13205                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13206                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13207                 /* CCE_INT_FORCE leave alone */
13208                 /* CCE_INT_BLOCKED read-only */
13209         }
13210         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13211                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13212 }
13213
13214 /* set MISC CSRs to chip reset defaults */
13215 static void reset_misc_csrs(struct hfi1_devdata *dd)
13216 {
13217         int i;
13218
13219         for (i = 0; i < 32; i++) {
13220                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13221                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13222                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13223         }
13224         /*
13225          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13226          * only be written 128-byte chunks
13227          */
13228         /* init RSA engine to clear lingering errors */
13229         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13230         write_csr(dd, MISC_CFG_RSA_MU, 0);
13231         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13232         /* MISC_STS_8051_DIGEST read-only */
13233         /* MISC_STS_SBM_DIGEST read-only */
13234         /* MISC_STS_PCIE_DIGEST read-only */
13235         /* MISC_STS_FAB_DIGEST read-only */
13236         /* MISC_ERR_STATUS read-only */
13237         write_csr(dd, MISC_ERR_MASK, 0);
13238         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13239         /* MISC_ERR_FORCE leave alone */
13240 }
13241
13242 /* set TXE CSRs to chip reset defaults */
13243 static void reset_txe_csrs(struct hfi1_devdata *dd)
13244 {
13245         int i;
13246
13247         /*
13248          * TXE Kernel CSRs
13249          */
13250         write_csr(dd, SEND_CTRL, 0);
13251         __cm_reset(dd, 0);      /* reset CM internal state */
13252         /* SEND_CONTEXTS read-only */
13253         /* SEND_DMA_ENGINES read-only */
13254         /* SEND_PIO_MEM_SIZE read-only */
13255         /* SEND_DMA_MEM_SIZE read-only */
13256         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13257         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13258         /* SEND_PIO_ERR_STATUS read-only */
13259         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13260         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13261         /* SEND_PIO_ERR_FORCE leave alone */
13262         /* SEND_DMA_ERR_STATUS read-only */
13263         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13264         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13265         /* SEND_DMA_ERR_FORCE leave alone */
13266         /* SEND_EGRESS_ERR_STATUS read-only */
13267         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13268         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13269         /* SEND_EGRESS_ERR_FORCE leave alone */
13270         write_csr(dd, SEND_BTH_QP, 0);
13271         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13272         write_csr(dd, SEND_SC2VLT0, 0);
13273         write_csr(dd, SEND_SC2VLT1, 0);
13274         write_csr(dd, SEND_SC2VLT2, 0);
13275         write_csr(dd, SEND_SC2VLT3, 0);
13276         write_csr(dd, SEND_LEN_CHECK0, 0);
13277         write_csr(dd, SEND_LEN_CHECK1, 0);
13278         /* SEND_ERR_STATUS read-only */
13279         write_csr(dd, SEND_ERR_MASK, 0);
13280         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13281         /* SEND_ERR_FORCE read-only */
13282         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13283                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13284         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13285                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13286         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13287                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13288         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13289                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13290         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13291                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13292         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13293         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13294         /* SEND_CM_CREDIT_USED_STATUS read-only */
13295         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13296         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13297         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13298         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13299         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13300         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13301                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13302         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13303         /* SEND_CM_CREDIT_USED_VL read-only */
13304         /* SEND_CM_CREDIT_USED_VL15 read-only */
13305         /* SEND_EGRESS_CTXT_STATUS read-only */
13306         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13307         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13308         /* SEND_EGRESS_ERR_INFO read-only */
13309         /* SEND_EGRESS_ERR_SOURCE read-only */
13310
13311         /*
13312          * TXE Per-Context CSRs
13313          */
13314         for (i = 0; i < dd->chip_send_contexts; i++) {
13315                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13316                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13317                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13318                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13319                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13320                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13321                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13322                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13323                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13324                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13325                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13326                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13327         }
13328
13329         /*
13330          * TXE Per-SDMA CSRs
13331          */
13332         for (i = 0; i < dd->chip_sdma_engines; i++) {
13333                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13334                 /* SEND_DMA_STATUS read-only */
13335                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13336                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13337                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13338                 /* SEND_DMA_HEAD read-only */
13339                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13340                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13341                 /* SEND_DMA_IDLE_CNT read-only */
13342                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13343                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13344                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13345                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13346                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13347                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13348                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13349                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13350                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13351                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13352                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13353                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13354                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13355                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13356         }
13357 }
13358
13359 /*
13360  * Expect on entry:
13361  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13362  */
13363 static void init_rbufs(struct hfi1_devdata *dd)
13364 {
13365         u64 reg;
13366         int count;
13367
13368         /*
13369          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13370          * clear.
13371          */
13372         count = 0;
13373         while (1) {
13374                 reg = read_csr(dd, RCV_STATUS);
13375                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13376                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13377                         break;
13378                 /*
13379                  * Give up after 1ms - maximum wait time.
13380                  *
13381                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13382                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13383                  *      136 KB / (66% * 250MB/s) = 844us
13384                  */
13385                 if (count++ > 500) {
13386                         dd_dev_err(dd,
13387                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13388                                    __func__, reg);
13389                         break;
13390                 }
13391                 udelay(2); /* do not busy-wait the CSR */
13392         }
13393
13394         /* start the init - expect RcvCtrl to be 0 */
13395         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13396
13397         /*
13398          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13399          * period after the write before RcvStatus.RxRbufInitDone is valid.
13400          * The delay in the first run through the loop below is sufficient and
13401          * required before the first read of RcvStatus.RxRbufInintDone.
13402          */
13403         read_csr(dd, RCV_CTRL);
13404
13405         /* wait for the init to finish */
13406         count = 0;
13407         while (1) {
13408                 /* delay is required first time through - see above */
13409                 udelay(2); /* do not busy-wait the CSR */
13410                 reg = read_csr(dd, RCV_STATUS);
13411                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13412                         break;
13413
13414                 /* give up after 100us - slowest possible at 33MHz is 73us */
13415                 if (count++ > 50) {
13416                         dd_dev_err(dd,
13417                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13418                                    __func__);
13419                         break;
13420                 }
13421         }
13422 }
13423
13424 /* set RXE CSRs to chip reset defaults */
13425 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13426 {
13427         int i, j;
13428
13429         /*
13430          * RXE Kernel CSRs
13431          */
13432         write_csr(dd, RCV_CTRL, 0);
13433         init_rbufs(dd);
13434         /* RCV_STATUS read-only */
13435         /* RCV_CONTEXTS read-only */
13436         /* RCV_ARRAY_CNT read-only */
13437         /* RCV_BUF_SIZE read-only */
13438         write_csr(dd, RCV_BTH_QP, 0);
13439         write_csr(dd, RCV_MULTICAST, 0);
13440         write_csr(dd, RCV_BYPASS, 0);
13441         write_csr(dd, RCV_VL15, 0);
13442         /* this is a clear-down */
13443         write_csr(dd, RCV_ERR_INFO,
13444                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13445         /* RCV_ERR_STATUS read-only */
13446         write_csr(dd, RCV_ERR_MASK, 0);
13447         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13448         /* RCV_ERR_FORCE leave alone */
13449         for (i = 0; i < 32; i++)
13450                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13451         for (i = 0; i < 4; i++)
13452                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13453         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13454                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13455         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13456                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13457         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13458                 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13459                 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13460                 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13461         }
13462         for (i = 0; i < 32; i++)
13463                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13464
13465         /*
13466          * RXE Kernel and User Per-Context CSRs
13467          */
13468         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13469                 /* kernel */
13470                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13471                 /* RCV_CTXT_STATUS read-only */
13472                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13473                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13474                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13475                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13476                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13477                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13478                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13479                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13480                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13481                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13482
13483                 /* user */
13484                 /* RCV_HDR_TAIL read-only */
13485                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13486                 /* RCV_EGR_INDEX_TAIL read-only */
13487                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13488                 /* RCV_EGR_OFFSET_TAIL read-only */
13489                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13490                         write_uctxt_csr(dd, i,
13491                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13492                 }
13493         }
13494 }
13495
13496 /*
13497  * Set sc2vl tables.
13498  *
13499  * They power on to zeros, so to avoid send context errors
13500  * they need to be set:
13501  *
13502  * SC 0-7 -> VL 0-7 (respectively)
13503  * SC 15  -> VL 15
13504  * otherwise
13505  *        -> VL 0
13506  */
13507 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13508 {
13509         int i;
13510         /* init per architecture spec, constrained by hardware capability */
13511
13512         /* HFI maps sent packets */
13513         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13514                 0,
13515                 0, 0, 1, 1,
13516                 2, 2, 3, 3,
13517                 4, 4, 5, 5,
13518                 6, 6, 7, 7));
13519         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13520                 1,
13521                 8, 0, 9, 0,
13522                 10, 0, 11, 0,
13523                 12, 0, 13, 0,
13524                 14, 0, 15, 15));
13525         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13526                 2,
13527                 16, 0, 17, 0,
13528                 18, 0, 19, 0,
13529                 20, 0, 21, 0,
13530                 22, 0, 23, 0));
13531         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13532                 3,
13533                 24, 0, 25, 0,
13534                 26, 0, 27, 0,
13535                 28, 0, 29, 0,
13536                 30, 0, 31, 0));
13537
13538         /* DC maps received packets */
13539         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13540                 15_0,
13541                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13542                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13543         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13544                 31_16,
13545                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13546                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13547
13548         /* initialize the cached sc2vl values consistently with h/w */
13549         for (i = 0; i < 32; i++) {
13550                 if (i < 8 || i == 15)
13551                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
13552                 else
13553                         *((u8 *)(dd->sc2vl) + i) = 0;
13554         }
13555 }
13556
13557 /*
13558  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13559  * depend on the chip going through a power-on reset - a driver may be loaded
13560  * and unloaded many times.
13561  *
13562  * Do not write any CSR values to the chip in this routine - there may be
13563  * a reset following the (possible) FLR in this routine.
13564  *
13565  */
13566 static void init_chip(struct hfi1_devdata *dd)
13567 {
13568         int i;
13569
13570         /*
13571          * Put the HFI CSRs in a known state.
13572          * Combine this with a DC reset.
13573          *
13574          * Stop the device from doing anything while we do a
13575          * reset.  We know there are no other active users of
13576          * the device since we are now in charge.  Turn off
13577          * off all outbound and inbound traffic and make sure
13578          * the device does not generate any interrupts.
13579          */
13580
13581         /* disable send contexts and SDMA engines */
13582         write_csr(dd, SEND_CTRL, 0);
13583         for (i = 0; i < dd->chip_send_contexts; i++)
13584                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13585         for (i = 0; i < dd->chip_sdma_engines; i++)
13586                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13587         /* disable port (turn off RXE inbound traffic) and contexts */
13588         write_csr(dd, RCV_CTRL, 0);
13589         for (i = 0; i < dd->chip_rcv_contexts; i++)
13590                 write_csr(dd, RCV_CTXT_CTRL, 0);
13591         /* mask all interrupt sources */
13592         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13593                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13594
13595         /*
13596          * DC Reset: do a full DC reset before the register clear.
13597          * A recommended length of time to hold is one CSR read,
13598          * so reread the CceDcCtrl.  Then, hold the DC in reset
13599          * across the clear.
13600          */
13601         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13602         (void)read_csr(dd, CCE_DC_CTRL);
13603
13604         if (use_flr) {
13605                 /*
13606                  * A FLR will reset the SPC core and part of the PCIe.
13607                  * The parts that need to be restored have already been
13608                  * saved.
13609                  */
13610                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13611
13612                 /* do the FLR, the DC reset will remain */
13613                 pcie_flr(dd->pcidev);
13614
13615                 /* restore command and BARs */
13616                 restore_pci_variables(dd);
13617
13618                 if (is_ax(dd)) {
13619                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
13620                         pcie_flr(dd->pcidev);
13621                         restore_pci_variables(dd);
13622                 }
13623         } else {
13624                 dd_dev_info(dd, "Resetting CSRs with writes\n");
13625                 reset_cce_csrs(dd);
13626                 reset_txe_csrs(dd);
13627                 reset_rxe_csrs(dd);
13628                 reset_misc_csrs(dd);
13629         }
13630         /* clear the DC reset */
13631         write_csr(dd, CCE_DC_CTRL, 0);
13632
13633         /* Set the LED off */
13634         setextled(dd, 0);
13635
13636         /*
13637          * Clear the QSFP reset.
13638          * An FLR enforces a 0 on all out pins. The driver does not touch
13639          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13640          * anything plugged constantly in reset, if it pays attention
13641          * to RESET_N.
13642          * Prime examples of this are optical cables. Set all pins high.
13643          * I2CCLK and I2CDAT will change per direction, and INT_N and
13644          * MODPRS_N are input only and their value is ignored.
13645          */
13646         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13647         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13648         init_chip_resources(dd);
13649 }
13650
13651 static void init_early_variables(struct hfi1_devdata *dd)
13652 {
13653         int i;
13654
13655         /* assign link credit variables */
13656         dd->vau = CM_VAU;
13657         dd->link_credits = CM_GLOBAL_CREDITS;
13658         if (is_ax(dd))
13659                 dd->link_credits--;
13660         dd->vcu = cu_to_vcu(hfi1_cu);
13661         /* enough room for 8 MAD packets plus header - 17K */
13662         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13663         if (dd->vl15_init > dd->link_credits)
13664                 dd->vl15_init = dd->link_credits;
13665
13666         write_uninitialized_csrs_and_memories(dd);
13667
13668         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13669                 for (i = 0; i < dd->num_pports; i++) {
13670                         struct hfi1_pportdata *ppd = &dd->pport[i];
13671
13672                         set_partition_keys(ppd);
13673                 }
13674         init_sc2vl_tables(dd);
13675 }
13676
13677 static void init_kdeth_qp(struct hfi1_devdata *dd)
13678 {
13679         /* user changed the KDETH_QP */
13680         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13681                 /* out of range or illegal value */
13682                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13683                 kdeth_qp = 0;
13684         }
13685         if (kdeth_qp == 0)      /* not set, or failed range check */
13686                 kdeth_qp = DEFAULT_KDETH_QP;
13687
13688         write_csr(dd, SEND_BTH_QP,
13689                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13690                   SEND_BTH_QP_KDETH_QP_SHIFT);
13691
13692         write_csr(dd, RCV_BTH_QP,
13693                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13694                   RCV_BTH_QP_KDETH_QP_SHIFT);
13695 }
13696
13697 /**
13698  * init_qpmap_table
13699  * @dd - device data
13700  * @first_ctxt - first context
13701  * @last_ctxt - first context
13702  *
13703  * This return sets the qpn mapping table that
13704  * is indexed by qpn[8:1].
13705  *
13706  * The routine will round robin the 256 settings
13707  * from first_ctxt to last_ctxt.
13708  *
13709  * The first/last looks ahead to having specialized
13710  * receive contexts for mgmt and bypass.  Normal
13711  * verbs traffic will assumed to be on a range
13712  * of receive contexts.
13713  */
13714 static void init_qpmap_table(struct hfi1_devdata *dd,
13715                              u32 first_ctxt,
13716                              u32 last_ctxt)
13717 {
13718         u64 reg = 0;
13719         u64 regno = RCV_QP_MAP_TABLE;
13720         int i;
13721         u64 ctxt = first_ctxt;
13722
13723         for (i = 0; i < 256; i++) {
13724                 reg |= ctxt << (8 * (i % 8));
13725                 ctxt++;
13726                 if (ctxt > last_ctxt)
13727                         ctxt = first_ctxt;
13728                 if (i % 8 == 7) {
13729                         write_csr(dd, regno, reg);
13730                         reg = 0;
13731                         regno += 8;
13732                 }
13733         }
13734
13735         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13736                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13737 }
13738
13739 struct rsm_map_table {
13740         u64 map[NUM_MAP_REGS];
13741         unsigned int used;
13742 };
13743
13744 struct rsm_rule_data {
13745         u8 offset;
13746         u8 pkt_type;
13747         u32 field1_off;
13748         u32 field2_off;
13749         u32 index1_off;
13750         u32 index1_width;
13751         u32 index2_off;
13752         u32 index2_width;
13753         u32 mask1;
13754         u32 value1;
13755         u32 mask2;
13756         u32 value2;
13757 };
13758
13759 /*
13760  * Return an initialized RMT map table for users to fill in.  OK if it
13761  * returns NULL, indicating no table.
13762  */
13763 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13764 {
13765         struct rsm_map_table *rmt;
13766         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13767
13768         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13769         if (rmt) {
13770                 memset(rmt->map, rxcontext, sizeof(rmt->map));
13771                 rmt->used = 0;
13772         }
13773
13774         return rmt;
13775 }
13776
13777 /*
13778  * Write the final RMT map table to the chip and free the table.  OK if
13779  * table is NULL.
13780  */
13781 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13782                                    struct rsm_map_table *rmt)
13783 {
13784         int i;
13785
13786         if (rmt) {
13787                 /* write table to chip */
13788                 for (i = 0; i < NUM_MAP_REGS; i++)
13789                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13790
13791                 /* enable RSM */
13792                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13793         }
13794 }
13795
13796 /*
13797  * Add a receive side mapping rule.
13798  */
13799 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13800                          struct rsm_rule_data *rrd)
13801 {
13802         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13803                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13804                   1ull << rule_index | /* enable bit */
13805                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13806         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13807                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13808                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13809                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13810                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13811                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13812                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13813         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13814                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13815                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13816                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13817                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13818 }
13819
13820 /* return the number of RSM map table entries that will be used for QOS */
13821 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13822                            unsigned int *np)
13823 {
13824         int i;
13825         unsigned int m, n;
13826         u8 max_by_vl = 0;
13827
13828         /* is QOS active at all? */
13829         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13830             num_vls == 1 ||
13831             krcvqsset <= 1)
13832                 goto no_qos;
13833
13834         /* determine bits for qpn */
13835         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13836                 if (krcvqs[i] > max_by_vl)
13837                         max_by_vl = krcvqs[i];
13838         if (max_by_vl > 32)
13839                 goto no_qos;
13840         m = ilog2(__roundup_pow_of_two(max_by_vl));
13841
13842         /* determine bits for vl */
13843         n = ilog2(__roundup_pow_of_two(num_vls));
13844
13845         /* reject if too much is used */
13846         if ((m + n) > 7)
13847                 goto no_qos;
13848
13849         if (mp)
13850                 *mp = m;
13851         if (np)
13852                 *np = n;
13853
13854         return 1 << (m + n);
13855
13856 no_qos:
13857         if (mp)
13858                 *mp = 0;
13859         if (np)
13860                 *np = 0;
13861         return 0;
13862 }
13863
13864 /**
13865  * init_qos - init RX qos
13866  * @dd - device data
13867  * @rmt - RSM map table
13868  *
13869  * This routine initializes Rule 0 and the RSM map table to implement
13870  * quality of service (qos).
13871  *
13872  * If all of the limit tests succeed, qos is applied based on the array
13873  * interpretation of krcvqs where entry 0 is VL0.
13874  *
13875  * The number of vl bits (n) and the number of qpn bits (m) are computed to
13876  * feed both the RSM map table and the single rule.
13877  */
13878 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13879 {
13880         struct rsm_rule_data rrd;
13881         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13882         unsigned int rmt_entries;
13883         u64 reg;
13884
13885         if (!rmt)
13886                 goto bail;
13887         rmt_entries = qos_rmt_entries(dd, &m, &n);
13888         if (rmt_entries == 0)
13889                 goto bail;
13890         qpns_per_vl = 1 << m;
13891
13892         /* enough room in the map table? */
13893         rmt_entries = 1 << (m + n);
13894         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13895                 goto bail;
13896
13897         /* add qos entries to the the RSM map table */
13898         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13899                 unsigned tctxt;
13900
13901                 for (qpn = 0, tctxt = ctxt;
13902                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13903                         unsigned idx, regoff, regidx;
13904
13905                         /* generate the index the hardware will produce */
13906                         idx = rmt->used + ((qpn << n) ^ i);
13907                         regoff = (idx % 8) * 8;
13908                         regidx = idx / 8;
13909                         /* replace default with context number */
13910                         reg = rmt->map[regidx];
13911                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13912                                 << regoff);
13913                         reg |= (u64)(tctxt++) << regoff;
13914                         rmt->map[regidx] = reg;
13915                         if (tctxt == ctxt + krcvqs[i])
13916                                 tctxt = ctxt;
13917                 }
13918                 ctxt += krcvqs[i];
13919         }
13920
13921         rrd.offset = rmt->used;
13922         rrd.pkt_type = 2;
13923         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13924         rrd.field2_off = LRH_SC_MATCH_OFFSET;
13925         rrd.index1_off = LRH_SC_SELECT_OFFSET;
13926         rrd.index1_width = n;
13927         rrd.index2_off = QPN_SELECT_OFFSET;
13928         rrd.index2_width = m + n;
13929         rrd.mask1 = LRH_BTH_MASK;
13930         rrd.value1 = LRH_BTH_VALUE;
13931         rrd.mask2 = LRH_SC_MASK;
13932         rrd.value2 = LRH_SC_VALUE;
13933
13934         /* add rule 0 */
13935         add_rsm_rule(dd, 0, &rrd);
13936
13937         /* mark RSM map entries as used */
13938         rmt->used += rmt_entries;
13939         /* map everything else to the mcast/err/vl15 context */
13940         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13941         dd->qos_shift = n + 1;
13942         return;
13943 bail:
13944         dd->qos_shift = 1;
13945         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13946 }
13947
13948 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13949                                     struct rsm_map_table *rmt)
13950 {
13951         struct rsm_rule_data rrd;
13952         u64 reg;
13953         int i, idx, regoff, regidx;
13954         u8 offset;
13955
13956         /* there needs to be enough room in the map table */
13957         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13958                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13959                 return;
13960         }
13961
13962         /*
13963          * RSM will extract the destination context as an index into the
13964          * map table.  The destination contexts are a sequential block
13965          * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13966          * Map entries are accessed as offset + extracted value.  Adjust
13967          * the added offset so this sequence can be placed anywhere in
13968          * the table - as long as the entries themselves do not wrap.
13969          * There are only enough bits in offset for the table size, so
13970          * start with that to allow for a "negative" offset.
13971          */
13972         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13973                                                 (int)dd->first_user_ctxt);
13974
13975         for (i = dd->first_user_ctxt, idx = rmt->used;
13976                                 i < dd->num_rcv_contexts; i++, idx++) {
13977                 /* replace with identity mapping */
13978                 regoff = (idx % 8) * 8;
13979                 regidx = idx / 8;
13980                 reg = rmt->map[regidx];
13981                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13982                 reg |= (u64)i << regoff;
13983                 rmt->map[regidx] = reg;
13984         }
13985
13986         /*
13987          * For RSM intercept of Expected FECN packets:
13988          * o packet type 0 - expected
13989          * o match on F (bit 95), using select/match 1, and
13990          * o match on SH (bit 133), using select/match 2.
13991          *
13992          * Use index 1 to extract the 8-bit receive context from DestQP
13993          * (start at bit 64).  Use that as the RSM map table index.
13994          */
13995         rrd.offset = offset;
13996         rrd.pkt_type = 0;
13997         rrd.field1_off = 95;
13998         rrd.field2_off = 133;
13999         rrd.index1_off = 64;
14000         rrd.index1_width = 8;
14001         rrd.index2_off = 0;
14002         rrd.index2_width = 0;
14003         rrd.mask1 = 1;
14004         rrd.value1 = 1;
14005         rrd.mask2 = 1;
14006         rrd.value2 = 1;
14007
14008         /* add rule 1 */
14009         add_rsm_rule(dd, 1, &rrd);
14010
14011         rmt->used += dd->num_user_contexts;
14012 }
14013
14014 static void init_rxe(struct hfi1_devdata *dd)
14015 {
14016         struct rsm_map_table *rmt;
14017
14018         /* enable all receive errors */
14019         write_csr(dd, RCV_ERR_MASK, ~0ull);
14020
14021         rmt = alloc_rsm_map_table(dd);
14022         /* set up QOS, including the QPN map table */
14023         init_qos(dd, rmt);
14024         init_user_fecn_handling(dd, rmt);
14025         complete_rsm_map_table(dd, rmt);
14026         kfree(rmt);
14027
14028         /*
14029          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14030          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14031          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14032          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14033          * Max_PayLoad_Size set to its minimum of 128.
14034          *
14035          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14036          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14037          * tune_pcie_caps() which is called after this routine.
14038          */
14039 }
14040
14041 static void init_other(struct hfi1_devdata *dd)
14042 {
14043         /* enable all CCE errors */
14044         write_csr(dd, CCE_ERR_MASK, ~0ull);
14045         /* enable *some* Misc errors */
14046         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14047         /* enable all DC errors, except LCB */
14048         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14049         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14050 }
14051
14052 /*
14053  * Fill out the given AU table using the given CU.  A CU is defined in terms
14054  * AUs.  The table is a an encoding: given the index, how many AUs does that
14055  * represent?
14056  *
14057  * NOTE: Assumes that the register layout is the same for the
14058  * local and remote tables.
14059  */
14060 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14061                                u32 csr0to3, u32 csr4to7)
14062 {
14063         write_csr(dd, csr0to3,
14064                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14065                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14066                   2ull * cu <<
14067                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14068                   4ull * cu <<
14069                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14070         write_csr(dd, csr4to7,
14071                   8ull * cu <<
14072                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14073                   16ull * cu <<
14074                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14075                   32ull * cu <<
14076                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14077                   64ull * cu <<
14078                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14079 }
14080
14081 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14082 {
14083         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14084                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14085 }
14086
14087 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14088 {
14089         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14090                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14091 }
14092
14093 static void init_txe(struct hfi1_devdata *dd)
14094 {
14095         int i;
14096
14097         /* enable all PIO, SDMA, general, and Egress errors */
14098         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14099         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14100         write_csr(dd, SEND_ERR_MASK, ~0ull);
14101         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14102
14103         /* enable all per-context and per-SDMA engine errors */
14104         for (i = 0; i < dd->chip_send_contexts; i++)
14105                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14106         for (i = 0; i < dd->chip_sdma_engines; i++)
14107                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14108
14109         /* set the local CU to AU mapping */
14110         assign_local_cm_au_table(dd, dd->vcu);
14111
14112         /*
14113          * Set reasonable default for Credit Return Timer
14114          * Don't set on Simulator - causes it to choke.
14115          */
14116         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14117                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14118 }
14119
14120 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14121 {
14122         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14123         unsigned sctxt;
14124         int ret = 0;
14125         u64 reg;
14126
14127         if (!rcd || !rcd->sc) {
14128                 ret = -EINVAL;
14129                 goto done;
14130         }
14131         sctxt = rcd->sc->hw_context;
14132         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14133                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14134                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14135         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14136         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14137                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14138         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14139         /*
14140          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14141          */
14142         if (!is_ax(dd)) {
14143                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14144                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14145                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14146         }
14147
14148         /* Enable J_KEY check on receive context. */
14149         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14150                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14151                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14152         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14153 done:
14154         return ret;
14155 }
14156
14157 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14158 {
14159         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14160         unsigned sctxt;
14161         int ret = 0;
14162         u64 reg;
14163
14164         if (!rcd || !rcd->sc) {
14165                 ret = -EINVAL;
14166                 goto done;
14167         }
14168         sctxt = rcd->sc->hw_context;
14169         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14170         /*
14171          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14172          * This check would not have been enabled for A0 h/w, see
14173          * set_ctxt_jkey().
14174          */
14175         if (!is_ax(dd)) {
14176                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14177                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14178                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14179         }
14180         /* Turn off the J_KEY on the receive side */
14181         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14182 done:
14183         return ret;
14184 }
14185
14186 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14187 {
14188         struct hfi1_ctxtdata *rcd;
14189         unsigned sctxt;
14190         int ret = 0;
14191         u64 reg;
14192
14193         if (ctxt < dd->num_rcv_contexts) {
14194                 rcd = dd->rcd[ctxt];
14195         } else {
14196                 ret = -EINVAL;
14197                 goto done;
14198         }
14199         if (!rcd || !rcd->sc) {
14200                 ret = -EINVAL;
14201                 goto done;
14202         }
14203         sctxt = rcd->sc->hw_context;
14204         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14205                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14206         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14207         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14208         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14209         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14210         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14211 done:
14212         return ret;
14213 }
14214
14215 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14216 {
14217         struct hfi1_ctxtdata *rcd;
14218         unsigned sctxt;
14219         int ret = 0;
14220         u64 reg;
14221
14222         if (ctxt < dd->num_rcv_contexts) {
14223                 rcd = dd->rcd[ctxt];
14224         } else {
14225                 ret = -EINVAL;
14226                 goto done;
14227         }
14228         if (!rcd || !rcd->sc) {
14229                 ret = -EINVAL;
14230                 goto done;
14231         }
14232         sctxt = rcd->sc->hw_context;
14233         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14234         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14235         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14236         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14237 done:
14238         return ret;
14239 }
14240
14241 /*
14242  * Start doing the clean up the the chip. Our clean up happens in multiple
14243  * stages and this is just the first.
14244  */
14245 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14246 {
14247         aspm_exit(dd);
14248         free_cntrs(dd);
14249         free_rcverr(dd);
14250         clean_up_interrupts(dd);
14251         finish_chip_resources(dd);
14252 }
14253
14254 #define HFI_BASE_GUID(dev) \
14255         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14256
14257 /*
14258  * Information can be shared between the two HFIs on the same ASIC
14259  * in the same OS.  This function finds the peer device and sets
14260  * up a shared structure.
14261  */
14262 static int init_asic_data(struct hfi1_devdata *dd)
14263 {
14264         unsigned long flags;
14265         struct hfi1_devdata *tmp, *peer = NULL;
14266         struct hfi1_asic_data *asic_data;
14267         int ret = 0;
14268
14269         /* pre-allocate the asic structure in case we are the first device */
14270         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14271         if (!asic_data)
14272                 return -ENOMEM;
14273
14274         spin_lock_irqsave(&hfi1_devs_lock, flags);
14275         /* Find our peer device */
14276         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14277                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14278                     dd->unit != tmp->unit) {
14279                         peer = tmp;
14280                         break;
14281                 }
14282         }
14283
14284         if (peer) {
14285                 /* use already allocated structure */
14286                 dd->asic_data = peer->asic_data;
14287                 kfree(asic_data);
14288         } else {
14289                 dd->asic_data = asic_data;
14290                 mutex_init(&dd->asic_data->asic_resource_mutex);
14291         }
14292         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14293         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14294
14295         /* first one through - set up i2c devices */
14296         if (!peer)
14297                 ret = set_up_i2c(dd, dd->asic_data);
14298
14299         return ret;
14300 }
14301
14302 /*
14303  * Set dd->boardname.  Use a generic name if a name is not returned from
14304  * EFI variable space.
14305  *
14306  * Return 0 on success, -ENOMEM if space could not be allocated.
14307  */
14308 static int obtain_boardname(struct hfi1_devdata *dd)
14309 {
14310         /* generic board description */
14311         const char generic[] =
14312                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14313         unsigned long size;
14314         int ret;
14315
14316         ret = read_hfi1_efi_var(dd, "description", &size,
14317                                 (void **)&dd->boardname);
14318         if (ret) {
14319                 dd_dev_info(dd, "Board description not found\n");
14320                 /* use generic description */
14321                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14322                 if (!dd->boardname)
14323                         return -ENOMEM;
14324         }
14325         return 0;
14326 }
14327
14328 /*
14329  * Check the interrupt registers to make sure that they are mapped correctly.
14330  * It is intended to help user identify any mismapping by VMM when the driver
14331  * is running in a VM. This function should only be called before interrupt
14332  * is set up properly.
14333  *
14334  * Return 0 on success, -EINVAL on failure.
14335  */
14336 static int check_int_registers(struct hfi1_devdata *dd)
14337 {
14338         u64 reg;
14339         u64 all_bits = ~(u64)0;
14340         u64 mask;
14341
14342         /* Clear CceIntMask[0] to avoid raising any interrupts */
14343         mask = read_csr(dd, CCE_INT_MASK);
14344         write_csr(dd, CCE_INT_MASK, 0ull);
14345         reg = read_csr(dd, CCE_INT_MASK);
14346         if (reg)
14347                 goto err_exit;
14348
14349         /* Clear all interrupt status bits */
14350         write_csr(dd, CCE_INT_CLEAR, all_bits);
14351         reg = read_csr(dd, CCE_INT_STATUS);
14352         if (reg)
14353                 goto err_exit;
14354
14355         /* Set all interrupt status bits */
14356         write_csr(dd, CCE_INT_FORCE, all_bits);
14357         reg = read_csr(dd, CCE_INT_STATUS);
14358         if (reg != all_bits)
14359                 goto err_exit;
14360
14361         /* Restore the interrupt mask */
14362         write_csr(dd, CCE_INT_CLEAR, all_bits);
14363         write_csr(dd, CCE_INT_MASK, mask);
14364
14365         return 0;
14366 err_exit:
14367         write_csr(dd, CCE_INT_MASK, mask);
14368         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14369         return -EINVAL;
14370 }
14371
14372 /**
14373  * Allocate and initialize the device structure for the hfi.
14374  * @dev: the pci_dev for hfi1_ib device
14375  * @ent: pci_device_id struct for this dev
14376  *
14377  * Also allocates, initializes, and returns the devdata struct for this
14378  * device instance
14379  *
14380  * This is global, and is called directly at init to set up the
14381  * chip-specific function pointers for later use.
14382  */
14383 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14384                                   const struct pci_device_id *ent)
14385 {
14386         struct hfi1_devdata *dd;
14387         struct hfi1_pportdata *ppd;
14388         u64 reg;
14389         int i, ret;
14390         static const char * const inames[] = { /* implementation names */
14391                 "RTL silicon",
14392                 "RTL VCS simulation",
14393                 "RTL FPGA emulation",
14394                 "Functional simulator"
14395         };
14396         struct pci_dev *parent = pdev->bus->self;
14397
14398         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14399                                 sizeof(struct hfi1_pportdata));
14400         if (IS_ERR(dd))
14401                 goto bail;
14402         ppd = dd->pport;
14403         for (i = 0; i < dd->num_pports; i++, ppd++) {
14404                 int vl;
14405                 /* init common fields */
14406                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14407                 /* DC supports 4 link widths */
14408                 ppd->link_width_supported =
14409                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14410                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14411                 ppd->link_width_downgrade_supported =
14412                         ppd->link_width_supported;
14413                 /* start out enabling only 4X */
14414                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14415                 ppd->link_width_downgrade_enabled =
14416                                         ppd->link_width_downgrade_supported;
14417                 /* link width active is 0 when link is down */
14418                 /* link width downgrade active is 0 when link is down */
14419
14420                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14421                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14422                         hfi1_early_err(&pdev->dev,
14423                                        "Invalid num_vls %u, using %u VLs\n",
14424                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14425                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14426                 }
14427                 ppd->vls_supported = num_vls;
14428                 ppd->vls_operational = ppd->vls_supported;
14429                 ppd->actual_vls_operational = ppd->vls_supported;
14430                 /* Set the default MTU. */
14431                 for (vl = 0; vl < num_vls; vl++)
14432                         dd->vld[vl].mtu = hfi1_max_mtu;
14433                 dd->vld[15].mtu = MAX_MAD_PACKET;
14434                 /*
14435                  * Set the initial values to reasonable default, will be set
14436                  * for real when link is up.
14437                  */
14438                 ppd->lstate = IB_PORT_DOWN;
14439                 ppd->overrun_threshold = 0x4;
14440                 ppd->phy_error_threshold = 0xf;
14441                 ppd->port_crc_mode_enabled = link_crc_mask;
14442                 /* initialize supported LTP CRC mode */
14443                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14444                 /* initialize enabled LTP CRC mode */
14445                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14446                 /* start in offline */
14447                 ppd->host_link_state = HLS_DN_OFFLINE;
14448                 init_vl_arb_caches(ppd);
14449                 ppd->last_pstate = 0xff; /* invalid value */
14450         }
14451
14452         dd->link_default = HLS_DN_POLL;
14453
14454         /*
14455          * Do remaining PCIe setup and save PCIe values in dd.
14456          * Any error printing is already done by the init code.
14457          * On return, we have the chip mapped.
14458          */
14459         ret = hfi1_pcie_ddinit(dd, pdev);
14460         if (ret < 0)
14461                 goto bail_free;
14462
14463         /* verify that reads actually work, save revision for reset check */
14464         dd->revision = read_csr(dd, CCE_REVISION);
14465         if (dd->revision == ~(u64)0) {
14466                 dd_dev_err(dd, "cannot read chip CSRs\n");
14467                 ret = -EINVAL;
14468                 goto bail_cleanup;
14469         }
14470         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14471                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14472         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14473                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
14474
14475         /*
14476          * Check interrupt registers mapping if the driver has no access to
14477          * the upstream component. In this case, it is likely that the driver
14478          * is running in a VM.
14479          */
14480         if (!parent) {
14481                 ret = check_int_registers(dd);
14482                 if (ret)
14483                         goto bail_cleanup;
14484         }
14485
14486         /*
14487          * obtain the hardware ID - NOT related to unit, which is a
14488          * software enumeration
14489          */
14490         reg = read_csr(dd, CCE_REVISION2);
14491         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14492                                         & CCE_REVISION2_HFI_ID_MASK;
14493         /* the variable size will remove unwanted bits */
14494         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14495         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14496         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14497                     dd->icode < ARRAY_SIZE(inames) ?
14498                     inames[dd->icode] : "unknown", (int)dd->irev);
14499
14500         /* speeds the hardware can support */
14501         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14502         /* speeds allowed to run at */
14503         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14504         /* give a reasonable active value, will be set on link up */
14505         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14506
14507         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14508         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14509         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14510         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14511         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14512         /* fix up link widths for emulation _p */
14513         ppd = dd->pport;
14514         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14515                 ppd->link_width_supported =
14516                         ppd->link_width_enabled =
14517                         ppd->link_width_downgrade_supported =
14518                         ppd->link_width_downgrade_enabled =
14519                                 OPA_LINK_WIDTH_1X;
14520         }
14521         /* insure num_vls isn't larger than number of sdma engines */
14522         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14523                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14524                            num_vls, dd->chip_sdma_engines);
14525                 num_vls = dd->chip_sdma_engines;
14526                 ppd->vls_supported = dd->chip_sdma_engines;
14527                 ppd->vls_operational = ppd->vls_supported;
14528         }
14529
14530         /*
14531          * Convert the ns parameter to the 64 * cclocks used in the CSR.
14532          * Limit the max if larger than the field holds.  If timeout is
14533          * non-zero, then the calculated field will be at least 1.
14534          *
14535          * Must be after icode is set up - the cclock rate depends
14536          * on knowing the hardware being used.
14537          */
14538         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14539         if (dd->rcv_intr_timeout_csr >
14540                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14541                 dd->rcv_intr_timeout_csr =
14542                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14543         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14544                 dd->rcv_intr_timeout_csr = 1;
14545
14546         /* needs to be done before we look for the peer device */
14547         read_guid(dd);
14548
14549         /* set up shared ASIC data with peer device */
14550         ret = init_asic_data(dd);
14551         if (ret)
14552                 goto bail_cleanup;
14553
14554         /* obtain chip sizes, reset chip CSRs */
14555         init_chip(dd);
14556
14557         /* read in the PCIe link speed information */
14558         ret = pcie_speeds(dd);
14559         if (ret)
14560                 goto bail_cleanup;
14561
14562         /* call before get_platform_config(), after init_chip_resources() */
14563         ret = eprom_init(dd);
14564         if (ret)
14565                 goto bail_free_rcverr;
14566
14567         /* Needs to be called before hfi1_firmware_init */
14568         get_platform_config(dd);
14569
14570         /* read in firmware */
14571         ret = hfi1_firmware_init(dd);
14572         if (ret)
14573                 goto bail_cleanup;
14574
14575         /*
14576          * In general, the PCIe Gen3 transition must occur after the
14577          * chip has been idled (so it won't initiate any PCIe transactions
14578          * e.g. an interrupt) and before the driver changes any registers
14579          * (the transition will reset the registers).
14580          *
14581          * In particular, place this call after:
14582          * - init_chip()     - the chip will not initiate any PCIe transactions
14583          * - pcie_speeds()   - reads the current link speed
14584          * - hfi1_firmware_init() - the needed firmware is ready to be
14585          *                          downloaded
14586          */
14587         ret = do_pcie_gen3_transition(dd);
14588         if (ret)
14589                 goto bail_cleanup;
14590
14591         /* start setting dd values and adjusting CSRs */
14592         init_early_variables(dd);
14593
14594         parse_platform_config(dd);
14595
14596         ret = obtain_boardname(dd);
14597         if (ret)
14598                 goto bail_cleanup;
14599
14600         snprintf(dd->boardversion, BOARD_VERS_MAX,
14601                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14602                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14603                  (u32)dd->majrev,
14604                  (u32)dd->minrev,
14605                  (dd->revision >> CCE_REVISION_SW_SHIFT)
14606                     & CCE_REVISION_SW_MASK);
14607
14608         ret = set_up_context_variables(dd);
14609         if (ret)
14610                 goto bail_cleanup;
14611
14612         /* set initial RXE CSRs */
14613         init_rxe(dd);
14614         /* set initial TXE CSRs */
14615         init_txe(dd);
14616         /* set initial non-RXE, non-TXE CSRs */
14617         init_other(dd);
14618         /* set up KDETH QP prefix in both RX and TX CSRs */
14619         init_kdeth_qp(dd);
14620
14621         ret = hfi1_dev_affinity_init(dd);
14622         if (ret)
14623                 goto bail_cleanup;
14624
14625         /* send contexts must be set up before receive contexts */
14626         ret = init_send_contexts(dd);
14627         if (ret)
14628                 goto bail_cleanup;
14629
14630         ret = hfi1_create_ctxts(dd);
14631         if (ret)
14632                 goto bail_cleanup;
14633
14634         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14635         /*
14636          * rcd[0] is guaranteed to be valid by this point. Also, all
14637          * context are using the same value, as per the module parameter.
14638          */
14639         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14640
14641         ret = init_pervl_scs(dd);
14642         if (ret)
14643                 goto bail_cleanup;
14644
14645         /* sdma init */
14646         for (i = 0; i < dd->num_pports; ++i) {
14647                 ret = sdma_init(dd, i);
14648                 if (ret)
14649                         goto bail_cleanup;
14650         }
14651
14652         /* use contexts created by hfi1_create_ctxts */
14653         ret = set_up_interrupts(dd);
14654         if (ret)
14655                 goto bail_cleanup;
14656
14657         /* set up LCB access - must be after set_up_interrupts() */
14658         init_lcb_access(dd);
14659
14660         /*
14661          * Serial number is created from the base guid:
14662          * [27:24] = base guid [38:35]
14663          * [23: 0] = base guid [23: 0]
14664          */
14665         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14666                  (dd->base_guid & 0xFFFFFF) |
14667                      ((dd->base_guid >> 11) & 0xF000000));
14668
14669         dd->oui1 = dd->base_guid >> 56 & 0xFF;
14670         dd->oui2 = dd->base_guid >> 48 & 0xFF;
14671         dd->oui3 = dd->base_guid >> 40 & 0xFF;
14672
14673         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14674         if (ret)
14675                 goto bail_clear_intr;
14676
14677         thermal_init(dd);
14678
14679         ret = init_cntrs(dd);
14680         if (ret)
14681                 goto bail_clear_intr;
14682
14683         ret = init_rcverr(dd);
14684         if (ret)
14685                 goto bail_free_cntrs;
14686
14687         init_completion(&dd->user_comp);
14688
14689         /* The user refcount starts with one to inidicate an active device */
14690         atomic_set(&dd->user_refcount, 1);
14691
14692         goto bail;
14693
14694 bail_free_rcverr:
14695         free_rcverr(dd);
14696 bail_free_cntrs:
14697         free_cntrs(dd);
14698 bail_clear_intr:
14699         clean_up_interrupts(dd);
14700 bail_cleanup:
14701         hfi1_pcie_ddcleanup(dd);
14702 bail_free:
14703         hfi1_free_devdata(dd);
14704         dd = ERR_PTR(ret);
14705 bail:
14706         return dd;
14707 }
14708
14709 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14710                         u32 dw_len)
14711 {
14712         u32 delta_cycles;
14713         u32 current_egress_rate = ppd->current_egress_rate;
14714         /* rates here are in units of 10^6 bits/sec */
14715
14716         if (desired_egress_rate == -1)
14717                 return 0; /* shouldn't happen */
14718
14719         if (desired_egress_rate >= current_egress_rate)
14720                 return 0; /* we can't help go faster, only slower */
14721
14722         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14723                         egress_cycles(dw_len * 4, current_egress_rate);
14724
14725         return (u16)delta_cycles;
14726 }
14727
14728 /**
14729  * create_pbc - build a pbc for transmission
14730  * @flags: special case flags or-ed in built pbc
14731  * @srate: static rate
14732  * @vl: vl
14733  * @dwlen: dword length (header words + data words + pbc words)
14734  *
14735  * Create a PBC with the given flags, rate, VL, and length.
14736  *
14737  * NOTE: The PBC created will not insert any HCRC - all callers but one are
14738  * for verbs, which does not use this PSM feature.  The lone other caller
14739  * is for the diagnostic interface which calls this if the user does not
14740  * supply their own PBC.
14741  */
14742 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14743                u32 dw_len)
14744 {
14745         u64 pbc, delay = 0;
14746
14747         if (unlikely(srate_mbs))
14748                 delay = delay_cycles(ppd, srate_mbs, dw_len);
14749
14750         pbc = flags
14751                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14752                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14753                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14754                 | (dw_len & PBC_LENGTH_DWS_MASK)
14755                         << PBC_LENGTH_DWS_SHIFT;
14756
14757         return pbc;
14758 }
14759
14760 #define SBUS_THERMAL    0x4f
14761 #define SBUS_THERM_MONITOR_MODE 0x1
14762
14763 #define THERM_FAILURE(dev, ret, reason) \
14764         dd_dev_err((dd),                                                \
14765                    "Thermal sensor initialization failed: %s (%d)\n",   \
14766                    (reason), (ret))
14767
14768 /*
14769  * Initialize the thermal sensor.
14770  *
14771  * After initialization, enable polling of thermal sensor through
14772  * SBus interface. In order for this to work, the SBus Master
14773  * firmware has to be loaded due to the fact that the HW polling
14774  * logic uses SBus interrupts, which are not supported with
14775  * default firmware. Otherwise, no data will be returned through
14776  * the ASIC_STS_THERM CSR.
14777  */
14778 static int thermal_init(struct hfi1_devdata *dd)
14779 {
14780         int ret = 0;
14781
14782         if (dd->icode != ICODE_RTL_SILICON ||
14783             check_chip_resource(dd, CR_THERM_INIT, NULL))
14784                 return ret;
14785
14786         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14787         if (ret) {
14788                 THERM_FAILURE(dd, ret, "Acquire SBus");
14789                 return ret;
14790         }
14791
14792         dd_dev_info(dd, "Initializing thermal sensor\n");
14793         /* Disable polling of thermal readings */
14794         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14795         msleep(100);
14796         /* Thermal Sensor Initialization */
14797         /*    Step 1: Reset the Thermal SBus Receiver */
14798         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14799                                 RESET_SBUS_RECEIVER, 0);
14800         if (ret) {
14801                 THERM_FAILURE(dd, ret, "Bus Reset");
14802                 goto done;
14803         }
14804         /*    Step 2: Set Reset bit in Thermal block */
14805         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14806                                 WRITE_SBUS_RECEIVER, 0x1);
14807         if (ret) {
14808                 THERM_FAILURE(dd, ret, "Therm Block Reset");
14809                 goto done;
14810         }
14811         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
14812         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14813                                 WRITE_SBUS_RECEIVER, 0x32);
14814         if (ret) {
14815                 THERM_FAILURE(dd, ret, "Write Clock Div");
14816                 goto done;
14817         }
14818         /*    Step 4: Select temperature mode */
14819         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14820                                 WRITE_SBUS_RECEIVER,
14821                                 SBUS_THERM_MONITOR_MODE);
14822         if (ret) {
14823                 THERM_FAILURE(dd, ret, "Write Mode Sel");
14824                 goto done;
14825         }
14826         /*    Step 5: De-assert block reset and start conversion */
14827         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14828                                 WRITE_SBUS_RECEIVER, 0x2);
14829         if (ret) {
14830                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14831                 goto done;
14832         }
14833         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
14834         msleep(22);
14835
14836         /* Enable polling of thermal readings */
14837         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14838
14839         /* Set initialized flag */
14840         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14841         if (ret)
14842                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14843
14844 done:
14845         release_chip_resource(dd, CR_SBUS);
14846         return ret;
14847 }
14848
14849 static void handle_temp_err(struct hfi1_devdata *dd)
14850 {
14851         struct hfi1_pportdata *ppd = &dd->pport[0];
14852         /*
14853          * Thermal Critical Interrupt
14854          * Put the device into forced freeze mode, take link down to
14855          * offline, and put DC into reset.
14856          */
14857         dd_dev_emerg(dd,
14858                      "Critical temperature reached! Forcing device into freeze mode!\n");
14859         dd->flags |= HFI1_FORCED_FREEZE;
14860         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14861         /*
14862          * Shut DC down as much and as quickly as possible.
14863          *
14864          * Step 1: Take the link down to OFFLINE. This will cause the
14865          *         8051 to put the Serdes in reset. However, we don't want to
14866          *         go through the entire link state machine since we want to
14867          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
14868          *         but rather an attempt to save the chip.
14869          *         Code below is almost the same as quiet_serdes() but avoids
14870          *         all the extra work and the sleeps.
14871          */
14872         ppd->driver_link_ready = 0;
14873         ppd->link_enabled = 0;
14874         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14875                                 PLS_OFFLINE);
14876         /*
14877          * Step 2: Shutdown LCB and 8051
14878          *         After shutdown, do not restore DC_CFG_RESET value.
14879          */
14880         dc_shutdown(dd);
14881 }