]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/infiniband/hw/hfi1/sdma.c
Merge tag 'perf-urgent-for-mingo-4.11-20170317' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->hfi1_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (wait && iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(unsigned long data)
495 {
496         unsigned index;
497         struct sdma_engine *sde = (struct sdma_engine *)data;
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         smp_read_barrier_depends(); /* see sdma_update_tail() */
557         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558 }
559
560 /*
561  * flush ring for recovery
562  */
563 static void sdma_flush_descq(struct sdma_engine *sde)
564 {
565         u16 head, tail;
566         int progress = 0;
567         struct sdma_txreq *txp = get_txhead(sde);
568
569         /* The reason for some of the complexity of this code is that
570          * not all descriptors have corresponding txps.  So, we have to
571          * be able to skip over descs until we wander into the range of
572          * the next txp on the list.
573          */
574         head = sde->descq_head & sde->sdma_mask;
575         tail = sde->descq_tail & sde->sdma_mask;
576         while (head != tail) {
577                 /* advance head, wrap if needed */
578                 head = ++sde->descq_head & sde->sdma_mask;
579                 /* if now past this txp's descs, do the callback */
580                 if (txp && txp->next_descq_idx == head) {
581                         /* remove from list */
582                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
583                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
584                         trace_hfi1_sdma_progress(sde, head, tail, txp);
585                         txp = get_txhead(sde);
586                 }
587                 progress++;
588         }
589         if (progress)
590                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591 }
592
593 static void sdma_sw_clean_up_task(unsigned long opaque)
594 {
595         struct sdma_engine *sde = (struct sdma_engine *)opaque;
596         unsigned long flags;
597
598         spin_lock_irqsave(&sde->tail_lock, flags);
599         write_seqlock(&sde->head_lock);
600
601         /*
602          * At this point, the following should always be true:
603          * - We are halted, so no more descriptors are getting retired.
604          * - We are not running, so no one is submitting new work.
605          * - Only we can send the e40_sw_cleaned, so we can't start
606          *   running again until we say so.  So, the active list and
607          *   descq are ours to play with.
608          */
609
610         /*
611          * In the error clean up sequence, software clean must be called
612          * before the hardware clean so we can use the hardware head in
613          * the progress routine.  A hardware clean or SPC unfreeze will
614          * reset the hardware head.
615          *
616          * Process all retired requests. The progress routine will use the
617          * latest physical hardware head - we are not running so speed does
618          * not matter.
619          */
620         sdma_make_progress(sde, 0);
621
622         sdma_flush(sde);
623
624         /*
625          * Reset our notion of head and tail.
626          * Note that the HW registers have been reset via an earlier
627          * clean up.
628          */
629         sde->descq_tail = 0;
630         sde->descq_head = 0;
631         sde->desc_avail = sdma_descq_freecnt(sde);
632         *sde->head_dma = 0;
633
634         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636         write_sequnlock(&sde->head_lock);
637         spin_unlock_irqrestore(&sde->tail_lock, flags);
638 }
639
640 static void sdma_sw_tear_down(struct sdma_engine *sde)
641 {
642         struct sdma_state *ss = &sde->state;
643
644         /* Releasing this reference means the state machine has stopped. */
645         sdma_put(ss);
646
647         /* stop waiting for all unfreeze events to complete */
648         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650 }
651
652 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653 {
654         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655 }
656
657 static void sdma_set_state(struct sdma_engine *sde,
658                            enum sdma_states next_state)
659 {
660         struct sdma_state *ss = &sde->state;
661         const struct sdma_set_state_action *action = sdma_action_table;
662         unsigned op = 0;
663
664         trace_hfi1_sdma_state(
665                 sde,
666                 sdma_state_names[ss->current_state],
667                 sdma_state_names[next_state]);
668
669         /* debugging bookkeeping */
670         ss->previous_state = ss->current_state;
671         ss->previous_op = ss->current_op;
672         ss->current_state = next_state;
673
674         if (ss->previous_state != sdma_state_s99_running &&
675             next_state == sdma_state_s99_running)
676                 sdma_flush(sde);
677
678         if (action[next_state].op_enable)
679                 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681         if (action[next_state].op_intenable)
682                 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684         if (action[next_state].op_halt)
685                 op |= SDMA_SENDCTRL_OP_HALT;
686
687         if (action[next_state].op_cleanup)
688                 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690         if (action[next_state].go_s99_running_tofalse)
691                 ss->go_s99_running = 0;
692
693         if (action[next_state].go_s99_running_totrue)
694                 ss->go_s99_running = 1;
695
696         ss->current_op = op;
697         sdma_sendctrl(sde, ss->current_op);
698 }
699
700 /**
701  * sdma_get_descq_cnt() - called when device probed
702  *
703  * Return a validated descq count.
704  *
705  * This is currently only used in the verbs initialization to build the tx
706  * list.
707  *
708  * This will probably be deleted in favor of a more scalable approach to
709  * alloc tx's.
710  *
711  */
712 u16 sdma_get_descq_cnt(void)
713 {
714         u16 count = sdma_descq_cnt;
715
716         if (!count)
717                 return SDMA_DESCQ_CNT;
718         /* count must be a power of 2 greater than 64 and less than
719          * 32768.   Otherwise return default.
720          */
721         if (!is_power_of_2(count))
722                 return SDMA_DESCQ_CNT;
723         if (count < 64 || count > 32768)
724                 return SDMA_DESCQ_CNT;
725         return count;
726 }
727
728 /**
729  * sdma_engine_get_vl() - return vl for a given sdma engine
730  * @sde: sdma engine
731  *
732  * This function returns the vl mapped to a given engine, or an error if
733  * the mapping can't be found. The mapping fields are protected by RCU.
734  */
735 int sdma_engine_get_vl(struct sdma_engine *sde)
736 {
737         struct hfi1_devdata *dd = sde->dd;
738         struct sdma_vl_map *m;
739         u8 vl;
740
741         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
742                 return -EINVAL;
743
744         rcu_read_lock();
745         m = rcu_dereference(dd->sdma_map);
746         if (unlikely(!m)) {
747                 rcu_read_unlock();
748                 return -EINVAL;
749         }
750         vl = m->engine_to_vl[sde->this_idx];
751         rcu_read_unlock();
752
753         return vl;
754 }
755
756 /**
757  * sdma_select_engine_vl() - select sdma engine
758  * @dd: devdata
759  * @selector: a spreading factor
760  * @vl: this vl
761  *
762  *
763  * This function returns an engine based on the selector and a vl.  The
764  * mapping fields are protected by RCU.
765  */
766 struct sdma_engine *sdma_select_engine_vl(
767         struct hfi1_devdata *dd,
768         u32 selector,
769         u8 vl)
770 {
771         struct sdma_vl_map *m;
772         struct sdma_map_elem *e;
773         struct sdma_engine *rval;
774
775         /* NOTE This should only happen if SC->VL changed after the initial
776          *      checks on the QP/AH
777          *      Default will return engine 0 below
778          */
779         if (vl >= num_vls) {
780                 rval = NULL;
781                 goto done;
782         }
783
784         rcu_read_lock();
785         m = rcu_dereference(dd->sdma_map);
786         if (unlikely(!m)) {
787                 rcu_read_unlock();
788                 return &dd->per_sdma[0];
789         }
790         e = m->map[vl & m->mask];
791         rval = e->sde[selector & e->mask];
792         rcu_read_unlock();
793
794 done:
795         rval =  !rval ? &dd->per_sdma[0] : rval;
796         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
797         return rval;
798 }
799
800 /**
801  * sdma_select_engine_sc() - select sdma engine
802  * @dd: devdata
803  * @selector: a spreading factor
804  * @sc5: the 5 bit sc
805  *
806  *
807  * This function returns an engine based on the selector and an sc.
808  */
809 struct sdma_engine *sdma_select_engine_sc(
810         struct hfi1_devdata *dd,
811         u32 selector,
812         u8 sc5)
813 {
814         u8 vl = sc_to_vlt(dd, sc5);
815
816         return sdma_select_engine_vl(dd, selector, vl);
817 }
818
819 struct sdma_rht_map_elem {
820         u32 mask;
821         u8 ctr;
822         struct sdma_engine *sde[0];
823 };
824
825 struct sdma_rht_node {
826         unsigned long cpu_id;
827         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
828         struct rhash_head node;
829 };
830
831 #define NR_CPUS_HINT 192
832
833 static const struct rhashtable_params sdma_rht_params = {
834         .nelem_hint = NR_CPUS_HINT,
835         .head_offset = offsetof(struct sdma_rht_node, node),
836         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
837         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
838         .max_size = NR_CPUS,
839         .min_size = 8,
840         .automatic_shrinking = true,
841 };
842
843 /*
844  * sdma_select_user_engine() - select sdma engine based on user setup
845  * @dd: devdata
846  * @selector: a spreading factor
847  * @vl: this vl
848  *
849  * This function returns an sdma engine for a user sdma request.
850  * User defined sdma engine affinity setting is honored when applicable,
851  * otherwise system default sdma engine mapping is used. To ensure correct
852  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853  */
854 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
855                                             u32 selector, u8 vl)
856 {
857         struct sdma_rht_node *rht_node;
858         struct sdma_engine *sde = NULL;
859         const struct cpumask *current_mask = tsk_cpus_allowed(current);
860         unsigned long cpu_id;
861
862         /*
863          * To ensure that always the same sdma engine(s) will be
864          * selected make sure the process is pinned to this CPU only.
865          */
866         if (cpumask_weight(current_mask) != 1)
867                 goto out;
868
869         cpu_id = smp_processor_id();
870         rcu_read_lock();
871         rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu_id,
872                                           sdma_rht_params);
873
874         if (rht_node && rht_node->map[vl]) {
875                 struct sdma_rht_map_elem *map = rht_node->map[vl];
876
877                 sde = map->sde[selector & map->mask];
878         }
879         rcu_read_unlock();
880
881         if (sde)
882                 return sde;
883
884 out:
885         return sdma_select_engine_vl(dd, selector, vl);
886 }
887
888 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889 {
890         int i;
891
892         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
893                 map->sde[map->ctr + i] = map->sde[i];
894 }
895
896 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
897                                  struct sdma_engine *sde)
898 {
899         unsigned int i, pow;
900
901         /* only need to check the first ctr entries for a match */
902         for (i = 0; i < map->ctr; i++) {
903                 if (map->sde[i] == sde) {
904                         memmove(&map->sde[i], &map->sde[i + 1],
905                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
906                         map->ctr--;
907                         pow = roundup_pow_of_two(map->ctr ? : 1);
908                         map->mask = pow - 1;
909                         sdma_populate_sde_map(map);
910                         break;
911                 }
912         }
913 }
914
915 /*
916  * Prevents concurrent reads and writes of the sdma engine cpu_mask
917  */
918 static DEFINE_MUTEX(process_to_sde_mutex);
919
920 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
921                                 size_t count)
922 {
923         struct hfi1_devdata *dd = sde->dd;
924         cpumask_var_t mask, new_mask;
925         unsigned long cpu;
926         int ret, vl, sz;
927
928         vl = sdma_engine_get_vl(sde);
929         if (unlikely(vl < 0))
930                 return -EINVAL;
931
932         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933         if (!ret)
934                 return -ENOMEM;
935
936         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937         if (!ret) {
938                 free_cpumask_var(mask);
939                 return -ENOMEM;
940         }
941         ret = cpulist_parse(buf, mask);
942         if (ret)
943                 goto out_free;
944
945         if (!cpumask_subset(mask, cpu_online_mask)) {
946                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947                 ret = -EINVAL;
948                 goto out_free;
949         }
950
951         sz = sizeof(struct sdma_rht_map_elem) +
952                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954         mutex_lock(&process_to_sde_mutex);
955
956         for_each_cpu(cpu, mask) {
957                 struct sdma_rht_node *rht_node;
958
959                 /* Check if we have this already mapped */
960                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
961                         cpumask_set_cpu(cpu, new_mask);
962                         continue;
963                 }
964
965                 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
966                                                   sdma_rht_params);
967                 if (!rht_node) {
968                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
969                         if (!rht_node) {
970                                 ret = -ENOMEM;
971                                 goto out;
972                         }
973
974                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
975                         if (!rht_node->map[vl]) {
976                                 kfree(rht_node);
977                                 ret = -ENOMEM;
978                                 goto out;
979                         }
980                         rht_node->cpu_id = cpu;
981                         rht_node->map[vl]->mask = 0;
982                         rht_node->map[vl]->ctr = 1;
983                         rht_node->map[vl]->sde[0] = sde;
984
985                         ret = rhashtable_insert_fast(&dd->sdma_rht,
986                                                      &rht_node->node,
987                                                      sdma_rht_params);
988                         if (ret) {
989                                 kfree(rht_node->map[vl]);
990                                 kfree(rht_node);
991                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
992                                            cpu);
993                                 goto out;
994                         }
995
996                 } else {
997                         int ctr, pow;
998
999                         /* Add new user mappings */
1000                         if (!rht_node->map[vl])
1001                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1002
1003                         if (!rht_node->map[vl]) {
1004                                 ret = -ENOMEM;
1005                                 goto out;
1006                         }
1007
1008                         rht_node->map[vl]->ctr++;
1009                         ctr = rht_node->map[vl]->ctr;
1010                         rht_node->map[vl]->sde[ctr - 1] = sde;
1011                         pow = roundup_pow_of_two(ctr);
1012                         rht_node->map[vl]->mask = pow - 1;
1013
1014                         /* Populate the sde map table */
1015                         sdma_populate_sde_map(rht_node->map[vl]);
1016                 }
1017                 cpumask_set_cpu(cpu, new_mask);
1018         }
1019
1020         /* Clean up old mappings */
1021         for_each_cpu(cpu, cpu_online_mask) {
1022                 struct sdma_rht_node *rht_node;
1023
1024                 /* Don't cleanup sdes that are set in the new mask */
1025                 if (cpumask_test_cpu(cpu, mask))
1026                         continue;
1027
1028                 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
1029                                                   sdma_rht_params);
1030                 if (rht_node) {
1031                         bool empty = true;
1032                         int i;
1033
1034                         /* Remove mappings for old sde */
1035                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1036                                 if (rht_node->map[i])
1037                                         sdma_cleanup_sde_map(rht_node->map[i],
1038                                                              sde);
1039
1040                         /* Free empty hash table entries */
1041                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1042                                 if (!rht_node->map[i])
1043                                         continue;
1044
1045                                 if (rht_node->map[i]->ctr) {
1046                                         empty = false;
1047                                         break;
1048                                 }
1049                         }
1050
1051                         if (empty) {
1052                                 ret = rhashtable_remove_fast(&dd->sdma_rht,
1053                                                              &rht_node->node,
1054                                                              sdma_rht_params);
1055                                 WARN_ON(ret);
1056
1057                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1058                                         kfree(rht_node->map[i]);
1059
1060                                 kfree(rht_node);
1061                         }
1062                 }
1063         }
1064
1065         cpumask_copy(&sde->cpu_mask, new_mask);
1066 out:
1067         mutex_unlock(&process_to_sde_mutex);
1068 out_free:
1069         free_cpumask_var(mask);
1070         free_cpumask_var(new_mask);
1071         return ret ? : strnlen(buf, PAGE_SIZE);
1072 }
1073
1074 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1075 {
1076         mutex_lock(&process_to_sde_mutex);
1077         if (cpumask_empty(&sde->cpu_mask))
1078                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1079         else
1080                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1081         mutex_unlock(&process_to_sde_mutex);
1082         return strnlen(buf, PAGE_SIZE);
1083 }
1084
1085 static void sdma_rht_free(void *ptr, void *arg)
1086 {
1087         struct sdma_rht_node *rht_node = ptr;
1088         int i;
1089
1090         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1091                 kfree(rht_node->map[i]);
1092
1093         kfree(rht_node);
1094 }
1095
1096 /**
1097  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1098  * @s: seq file
1099  * @dd: hfi1_devdata
1100  * @cpuid: cpu id
1101  *
1102  * This routine dumps the process to sde mappings per cpu
1103  */
1104 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1105                                 struct hfi1_devdata *dd,
1106                                 unsigned long cpuid)
1107 {
1108         struct sdma_rht_node *rht_node;
1109         int i, j;
1110
1111         rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpuid,
1112                                           sdma_rht_params);
1113         if (!rht_node)
1114                 return;
1115
1116         seq_printf(s, "cpu%3lu: ", cpuid);
1117         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1118                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1119                         continue;
1120
1121                 seq_printf(s, " vl%d: [", i);
1122
1123                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1124                         if (!rht_node->map[i]->sde[j])
1125                                 continue;
1126
1127                         if (j > 0)
1128                                 seq_puts(s, ",");
1129
1130                         seq_printf(s, " sdma%2d",
1131                                    rht_node->map[i]->sde[j]->this_idx);
1132                 }
1133                 seq_puts(s, " ]");
1134         }
1135
1136         seq_puts(s, "\n");
1137 }
1138
1139 /*
1140  * Free the indicated map struct
1141  */
1142 static void sdma_map_free(struct sdma_vl_map *m)
1143 {
1144         int i;
1145
1146         for (i = 0; m && i < m->actual_vls; i++)
1147                 kfree(m->map[i]);
1148         kfree(m);
1149 }
1150
1151 /*
1152  * Handle RCU callback
1153  */
1154 static void sdma_map_rcu_callback(struct rcu_head *list)
1155 {
1156         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1157
1158         sdma_map_free(m);
1159 }
1160
1161 /**
1162  * sdma_map_init - called when # vls change
1163  * @dd: hfi1_devdata
1164  * @port: port number
1165  * @num_vls: number of vls
1166  * @vl_engines: per vl engine mapping (optional)
1167  *
1168  * This routine changes the mapping based on the number of vls.
1169  *
1170  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1171  * implies auto computing the loading and giving each VLs a uniform
1172  * distribution of engines per VL.
1173  *
1174  * The auto algorithm computes the sde_per_vl and the number of extra
1175  * engines.  Any extra engines are added from the last VL on down.
1176  *
1177  * rcu locking is used here to control access to the mapping fields.
1178  *
1179  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1180  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1181  * up to the next highest power of 2 and the first entry is reused
1182  * in a round robin fashion.
1183  *
1184  * If an error occurs the map change is not done and the mapping is
1185  * not changed.
1186  *
1187  */
1188 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1189 {
1190         int i, j;
1191         int extra, sde_per_vl;
1192         int engine = 0;
1193         u8 lvl_engines[OPA_MAX_VLS];
1194         struct sdma_vl_map *oldmap, *newmap;
1195
1196         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1197                 return 0;
1198
1199         if (!vl_engines) {
1200                 /* truncate divide */
1201                 sde_per_vl = dd->num_sdma / num_vls;
1202                 /* extras */
1203                 extra = dd->num_sdma % num_vls;
1204                 vl_engines = lvl_engines;
1205                 /* add extras from last vl down */
1206                 for (i = num_vls - 1; i >= 0; i--, extra--)
1207                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1208         }
1209         /* build new map */
1210         newmap = kzalloc(
1211                 sizeof(struct sdma_vl_map) +
1212                         roundup_pow_of_two(num_vls) *
1213                         sizeof(struct sdma_map_elem *),
1214                 GFP_KERNEL);
1215         if (!newmap)
1216                 goto bail;
1217         newmap->actual_vls = num_vls;
1218         newmap->vls = roundup_pow_of_two(num_vls);
1219         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1220         /* initialize back-map */
1221         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1222                 newmap->engine_to_vl[i] = -1;
1223         for (i = 0; i < newmap->vls; i++) {
1224                 /* save for wrap around */
1225                 int first_engine = engine;
1226
1227                 if (i < newmap->actual_vls) {
1228                         int sz = roundup_pow_of_two(vl_engines[i]);
1229
1230                         /* only allocate once */
1231                         newmap->map[i] = kzalloc(
1232                                 sizeof(struct sdma_map_elem) +
1233                                         sz * sizeof(struct sdma_engine *),
1234                                 GFP_KERNEL);
1235                         if (!newmap->map[i])
1236                                 goto bail;
1237                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1238                         /* assign engines */
1239                         for (j = 0; j < sz; j++) {
1240                                 newmap->map[i]->sde[j] =
1241                                         &dd->per_sdma[engine];
1242                                 if (++engine >= first_engine + vl_engines[i])
1243                                         /* wrap back to first engine */
1244                                         engine = first_engine;
1245                         }
1246                         /* assign back-map */
1247                         for (j = 0; j < vl_engines[i]; j++)
1248                                 newmap->engine_to_vl[first_engine + j] = i;
1249                 } else {
1250                         /* just re-use entry without allocating */
1251                         newmap->map[i] = newmap->map[i % num_vls];
1252                 }
1253                 engine = first_engine + vl_engines[i];
1254         }
1255         /* newmap in hand, save old map */
1256         spin_lock_irq(&dd->sde_map_lock);
1257         oldmap = rcu_dereference_protected(dd->sdma_map,
1258                                            lockdep_is_held(&dd->sde_map_lock));
1259
1260         /* publish newmap */
1261         rcu_assign_pointer(dd->sdma_map, newmap);
1262
1263         spin_unlock_irq(&dd->sde_map_lock);
1264         /* success, free any old map after grace period */
1265         if (oldmap)
1266                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1267         return 0;
1268 bail:
1269         /* free any partial allocation */
1270         sdma_map_free(newmap);
1271         return -ENOMEM;
1272 }
1273
1274 /*
1275  * Clean up allocated memory.
1276  *
1277  * This routine is can be called regardless of the success of sdma_init()
1278  *
1279  */
1280 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282         size_t i;
1283         struct sdma_engine *sde;
1284
1285         if (dd->sdma_pad_dma) {
1286                 dma_free_coherent(&dd->pcidev->dev, 4,
1287                                   (void *)dd->sdma_pad_dma,
1288                                   dd->sdma_pad_phys);
1289                 dd->sdma_pad_dma = NULL;
1290                 dd->sdma_pad_phys = 0;
1291         }
1292         if (dd->sdma_heads_dma) {
1293                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294                                   (void *)dd->sdma_heads_dma,
1295                                   dd->sdma_heads_phys);
1296                 dd->sdma_heads_dma = NULL;
1297                 dd->sdma_heads_phys = 0;
1298         }
1299         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300                 sde = &dd->per_sdma[i];
1301
1302                 sde->head_dma = NULL;
1303                 sde->head_phys = 0;
1304
1305                 if (sde->descq) {
1306                         dma_free_coherent(
1307                                 &dd->pcidev->dev,
1308                                 sde->descq_cnt * sizeof(u64[2]),
1309                                 sde->descq,
1310                                 sde->descq_phys
1311                         );
1312                         sde->descq = NULL;
1313                         sde->descq_phys = 0;
1314                 }
1315                 kvfree(sde->tx_ring);
1316                 sde->tx_ring = NULL;
1317         }
1318         spin_lock_irq(&dd->sde_map_lock);
1319         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320         RCU_INIT_POINTER(dd->sdma_map, NULL);
1321         spin_unlock_irq(&dd->sde_map_lock);
1322         synchronize_rcu();
1323         kfree(dd->per_sdma);
1324         dd->per_sdma = NULL;
1325 }
1326
1327 /**
1328  * sdma_init() - called when device probed
1329  * @dd: hfi1_devdata
1330  * @port: port number (currently only zero)
1331  *
1332  * sdma_init initializes the specified number of engines.
1333  *
1334  * The code initializes each sde, its csrs.  Interrupts
1335  * are not required to be enabled.
1336  *
1337  * Returns:
1338  * 0 - success, -errno on failure
1339  */
1340 int sdma_init(struct hfi1_devdata *dd, u8 port)
1341 {
1342         unsigned this_idx;
1343         struct sdma_engine *sde;
1344         u16 descq_cnt;
1345         void *curr_head;
1346         struct hfi1_pportdata *ppd = dd->pport + port;
1347         u32 per_sdma_credits;
1348         uint idle_cnt = sdma_idle_cnt;
1349         size_t num_engines = dd->chip_sdma_engines;
1350
1351         if (!HFI1_CAP_IS_KSET(SDMA)) {
1352                 HFI1_CAP_CLEAR(SDMA_AHG);
1353                 return 0;
1354         }
1355         if (mod_num_sdma &&
1356             /* can't exceed chip support */
1357             mod_num_sdma <= dd->chip_sdma_engines &&
1358             /* count must be >= vls */
1359             mod_num_sdma >= num_vls)
1360                 num_engines = mod_num_sdma;
1361
1362         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1363         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1364         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1365                     dd->chip_sdma_mem_size);
1366
1367         per_sdma_credits =
1368                 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1369
1370         /* set up freeze waitqueue */
1371         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1372         atomic_set(&dd->sdma_unfreeze_count, 0);
1373
1374         descq_cnt = sdma_get_descq_cnt();
1375         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1376                     num_engines, descq_cnt);
1377
1378         /* alloc memory for array of send engines */
1379         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1380         if (!dd->per_sdma)
1381                 return -ENOMEM;
1382
1383         idle_cnt = ns_to_cclock(dd, idle_cnt);
1384         if (!sdma_desct_intr)
1385                 sdma_desct_intr = SDMA_DESC_INTR;
1386
1387         /* Allocate memory for SendDMA descriptor FIFOs */
1388         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1389                 sde = &dd->per_sdma[this_idx];
1390                 sde->dd = dd;
1391                 sde->ppd = ppd;
1392                 sde->this_idx = this_idx;
1393                 sde->descq_cnt = descq_cnt;
1394                 sde->desc_avail = sdma_descq_freecnt(sde);
1395                 sde->sdma_shift = ilog2(descq_cnt);
1396                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1397
1398                 /* Create a mask specifically for each interrupt source */
1399                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1400                                            this_idx);
1401                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1402                                                 this_idx);
1403                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1404                                             this_idx);
1405                 /* Create a combined mask to cover all 3 interrupt sources */
1406                 sde->imask = sde->int_mask | sde->progress_mask |
1407                              sde->idle_mask;
1408
1409                 spin_lock_init(&sde->tail_lock);
1410                 seqlock_init(&sde->head_lock);
1411                 spin_lock_init(&sde->senddmactrl_lock);
1412                 spin_lock_init(&sde->flushlist_lock);
1413                 /* insure there is always a zero bit */
1414                 sde->ahg_bits = 0xfffffffe00000000ULL;
1415
1416                 sdma_set_state(sde, sdma_state_s00_hw_down);
1417
1418                 /* set up reference counting */
1419                 kref_init(&sde->state.kref);
1420                 init_completion(&sde->state.comp);
1421
1422                 INIT_LIST_HEAD(&sde->flushlist);
1423                 INIT_LIST_HEAD(&sde->dmawait);
1424
1425                 sde->tail_csr =
1426                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1427
1428                 if (idle_cnt)
1429                         dd->default_desc1 =
1430                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1431                 else
1432                         dd->default_desc1 =
1433                                 SDMA_DESC1_INT_REQ_FLAG;
1434
1435                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1436                              (unsigned long)sde);
1437
1438                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1439                              (unsigned long)sde);
1440                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1441                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1442
1443                 sde->progress_check_head = 0;
1444
1445                 setup_timer(&sde->err_progress_check_timer,
1446                             sdma_err_progress_check, (unsigned long)sde);
1447
1448                 sde->descq = dma_zalloc_coherent(
1449                         &dd->pcidev->dev,
1450                         descq_cnt * sizeof(u64[2]),
1451                         &sde->descq_phys,
1452                         GFP_KERNEL
1453                 );
1454                 if (!sde->descq)
1455                         goto bail;
1456                 sde->tx_ring =
1457                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1458                                 GFP_KERNEL);
1459                 if (!sde->tx_ring)
1460                         sde->tx_ring =
1461                                 vzalloc(
1462                                         sizeof(struct sdma_txreq *) *
1463                                         descq_cnt);
1464                 if (!sde->tx_ring)
1465                         goto bail;
1466         }
1467
1468         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1469         /* Allocate memory for DMA of head registers to memory */
1470         dd->sdma_heads_dma = dma_zalloc_coherent(
1471                 &dd->pcidev->dev,
1472                 dd->sdma_heads_size,
1473                 &dd->sdma_heads_phys,
1474                 GFP_KERNEL
1475         );
1476         if (!dd->sdma_heads_dma) {
1477                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1478                 goto bail;
1479         }
1480
1481         /* Allocate memory for pad */
1482         dd->sdma_pad_dma = dma_zalloc_coherent(
1483                 &dd->pcidev->dev,
1484                 sizeof(u32),
1485                 &dd->sdma_pad_phys,
1486                 GFP_KERNEL
1487         );
1488         if (!dd->sdma_pad_dma) {
1489                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1490                 goto bail;
1491         }
1492
1493         /* assign each engine to different cacheline and init registers */
1494         curr_head = (void *)dd->sdma_heads_dma;
1495         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1496                 unsigned long phys_offset;
1497
1498                 sde = &dd->per_sdma[this_idx];
1499
1500                 sde->head_dma = curr_head;
1501                 curr_head += L1_CACHE_BYTES;
1502                 phys_offset = (unsigned long)sde->head_dma -
1503                               (unsigned long)dd->sdma_heads_dma;
1504                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1505                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1506         }
1507         dd->flags |= HFI1_HAS_SEND_DMA;
1508         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1509         dd->num_sdma = num_engines;
1510         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1511                 goto bail;
1512
1513         if (rhashtable_init(&dd->sdma_rht, &sdma_rht_params))
1514                 goto bail;
1515
1516         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1517         return 0;
1518
1519 bail:
1520         sdma_clean(dd, num_engines);
1521         return -ENOMEM;
1522 }
1523
1524 /**
1525  * sdma_all_running() - called when the link goes up
1526  * @dd: hfi1_devdata
1527  *
1528  * This routine moves all engines to the running state.
1529  */
1530 void sdma_all_running(struct hfi1_devdata *dd)
1531 {
1532         struct sdma_engine *sde;
1533         unsigned int i;
1534
1535         /* move all engines to running */
1536         for (i = 0; i < dd->num_sdma; ++i) {
1537                 sde = &dd->per_sdma[i];
1538                 sdma_process_event(sde, sdma_event_e30_go_running);
1539         }
1540 }
1541
1542 /**
1543  * sdma_all_idle() - called when the link goes down
1544  * @dd: hfi1_devdata
1545  *
1546  * This routine moves all engines to the idle state.
1547  */
1548 void sdma_all_idle(struct hfi1_devdata *dd)
1549 {
1550         struct sdma_engine *sde;
1551         unsigned int i;
1552
1553         /* idle all engines */
1554         for (i = 0; i < dd->num_sdma; ++i) {
1555                 sde = &dd->per_sdma[i];
1556                 sdma_process_event(sde, sdma_event_e70_go_idle);
1557         }
1558 }
1559
1560 /**
1561  * sdma_start() - called to kick off state processing for all engines
1562  * @dd: hfi1_devdata
1563  *
1564  * This routine is for kicking off the state processing for all required
1565  * sdma engines.  Interrupts need to be working at this point.
1566  *
1567  */
1568 void sdma_start(struct hfi1_devdata *dd)
1569 {
1570         unsigned i;
1571         struct sdma_engine *sde;
1572
1573         /* kick off the engines state processing */
1574         for (i = 0; i < dd->num_sdma; ++i) {
1575                 sde = &dd->per_sdma[i];
1576                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1577         }
1578 }
1579
1580 /**
1581  * sdma_exit() - used when module is removed
1582  * @dd: hfi1_devdata
1583  */
1584 void sdma_exit(struct hfi1_devdata *dd)
1585 {
1586         unsigned this_idx;
1587         struct sdma_engine *sde;
1588
1589         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1590                         ++this_idx) {
1591                 sde = &dd->per_sdma[this_idx];
1592                 if (!list_empty(&sde->dmawait))
1593                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1594                                    sde->this_idx);
1595                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1596
1597                 del_timer_sync(&sde->err_progress_check_timer);
1598
1599                 /*
1600                  * This waits for the state machine to exit so it is not
1601                  * necessary to kill the sdma_sw_clean_up_task to make sure
1602                  * it is not running.
1603                  */
1604                 sdma_finalput(&sde->state);
1605         }
1606         sdma_clean(dd, dd->num_sdma);
1607         rhashtable_free_and_destroy(&dd->sdma_rht, sdma_rht_free, NULL);
1608 }
1609
1610 /*
1611  * unmap the indicated descriptor
1612  */
1613 static inline void sdma_unmap_desc(
1614         struct hfi1_devdata *dd,
1615         struct sdma_desc *descp)
1616 {
1617         switch (sdma_mapping_type(descp)) {
1618         case SDMA_MAP_SINGLE:
1619                 dma_unmap_single(
1620                         &dd->pcidev->dev,
1621                         sdma_mapping_addr(descp),
1622                         sdma_mapping_len(descp),
1623                         DMA_TO_DEVICE);
1624                 break;
1625         case SDMA_MAP_PAGE:
1626                 dma_unmap_page(
1627                         &dd->pcidev->dev,
1628                         sdma_mapping_addr(descp),
1629                         sdma_mapping_len(descp),
1630                         DMA_TO_DEVICE);
1631                 break;
1632         }
1633 }
1634
1635 /*
1636  * return the mode as indicated by the first
1637  * descriptor in the tx.
1638  */
1639 static inline u8 ahg_mode(struct sdma_txreq *tx)
1640 {
1641         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1642                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1643 }
1644
1645 /**
1646  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1647  * @dd: hfi1_devdata for unmapping
1648  * @tx: tx request to clean
1649  *
1650  * This is used in the progress routine to clean the tx or
1651  * by the ULP to toss an in-process tx build.
1652  *
1653  * The code can be called multiple times without issue.
1654  *
1655  */
1656 void __sdma_txclean(
1657         struct hfi1_devdata *dd,
1658         struct sdma_txreq *tx)
1659 {
1660         u16 i;
1661
1662         if (tx->num_desc) {
1663                 u8 skip = 0, mode = ahg_mode(tx);
1664
1665                 /* unmap first */
1666                 sdma_unmap_desc(dd, &tx->descp[0]);
1667                 /* determine number of AHG descriptors to skip */
1668                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1669                         skip = mode >> 1;
1670                 for (i = 1 + skip; i < tx->num_desc; i++)
1671                         sdma_unmap_desc(dd, &tx->descp[i]);
1672                 tx->num_desc = 0;
1673         }
1674         kfree(tx->coalesce_buf);
1675         tx->coalesce_buf = NULL;
1676         /* kmalloc'ed descp */
1677         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1678                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1679                 kfree(tx->descp);
1680         }
1681 }
1682
1683 static inline u16 sdma_gethead(struct sdma_engine *sde)
1684 {
1685         struct hfi1_devdata *dd = sde->dd;
1686         int use_dmahead;
1687         u16 hwhead;
1688
1689 #ifdef CONFIG_SDMA_VERBOSITY
1690         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1691                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1692 #endif
1693
1694 retry:
1695         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1696                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1697         hwhead = use_dmahead ?
1698                 (u16)le64_to_cpu(*sde->head_dma) :
1699                 (u16)read_sde_csr(sde, SD(HEAD));
1700
1701         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1702                 u16 cnt;
1703                 u16 swtail;
1704                 u16 swhead;
1705                 int sane;
1706
1707                 swhead = sde->descq_head & sde->sdma_mask;
1708                 /* this code is really bad for cache line trading */
1709                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1710                 cnt = sde->descq_cnt;
1711
1712                 if (swhead < swtail)
1713                         /* not wrapped */
1714                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1715                 else if (swhead > swtail)
1716                         /* wrapped around */
1717                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1718                                 (hwhead <= swtail);
1719                 else
1720                         /* empty */
1721                         sane = (hwhead == swhead);
1722
1723                 if (unlikely(!sane)) {
1724                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1725                                    sde->this_idx,
1726                                    use_dmahead ? "dma" : "kreg",
1727                                    hwhead, swhead, swtail, cnt);
1728                         if (use_dmahead) {
1729                                 /* try one more time, using csr */
1730                                 use_dmahead = 0;
1731                                 goto retry;
1732                         }
1733                         /* proceed as if no progress */
1734                         hwhead = swhead;
1735                 }
1736         }
1737         return hwhead;
1738 }
1739
1740 /*
1741  * This is called when there are send DMA descriptors that might be
1742  * available.
1743  *
1744  * This is called with head_lock held.
1745  */
1746 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1747 {
1748         struct iowait *wait, *nw;
1749         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1750         unsigned i, n = 0, seq;
1751         struct sdma_txreq *stx;
1752         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1753
1754 #ifdef CONFIG_SDMA_VERBOSITY
1755         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1756                    slashstrip(__FILE__), __LINE__, __func__);
1757         dd_dev_err(sde->dd, "avail: %u\n", avail);
1758 #endif
1759
1760         do {
1761                 seq = read_seqbegin(&dev->iowait_lock);
1762                 if (!list_empty(&sde->dmawait)) {
1763                         /* at least one item */
1764                         write_seqlock(&dev->iowait_lock);
1765                         /* Harvest waiters wanting DMA descriptors */
1766                         list_for_each_entry_safe(
1767                                         wait,
1768                                         nw,
1769                                         &sde->dmawait,
1770                                         list) {
1771                                 u16 num_desc = 0;
1772
1773                                 if (!wait->wakeup)
1774                                         continue;
1775                                 if (n == ARRAY_SIZE(waits))
1776                                         break;
1777                                 if (!list_empty(&wait->tx_head)) {
1778                                         stx = list_first_entry(
1779                                                 &wait->tx_head,
1780                                                 struct sdma_txreq,
1781                                                 list);
1782                                         num_desc = stx->num_desc;
1783                                 }
1784                                 if (num_desc > avail)
1785                                         break;
1786                                 avail -= num_desc;
1787                                 list_del_init(&wait->list);
1788                                 waits[n++] = wait;
1789                         }
1790                         write_sequnlock(&dev->iowait_lock);
1791                         break;
1792                 }
1793         } while (read_seqretry(&dev->iowait_lock, seq));
1794
1795         for (i = 0; i < n; i++)
1796                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1797 }
1798
1799 /* head_lock must be held */
1800 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1801 {
1802         struct sdma_txreq *txp = NULL;
1803         int progress = 0;
1804         u16 hwhead, swhead;
1805         int idle_check_done = 0;
1806
1807         hwhead = sdma_gethead(sde);
1808
1809         /* The reason for some of the complexity of this code is that
1810          * not all descriptors have corresponding txps.  So, we have to
1811          * be able to skip over descs until we wander into the range of
1812          * the next txp on the list.
1813          */
1814
1815 retry:
1816         txp = get_txhead(sde);
1817         swhead = sde->descq_head & sde->sdma_mask;
1818         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1819         while (swhead != hwhead) {
1820                 /* advance head, wrap if needed */
1821                 swhead = ++sde->descq_head & sde->sdma_mask;
1822
1823                 /* if now past this txp's descs, do the callback */
1824                 if (txp && txp->next_descq_idx == swhead) {
1825                         /* remove from list */
1826                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1827                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1828                         /* see if there is another txp */
1829                         txp = get_txhead(sde);
1830                 }
1831                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1832                 progress++;
1833         }
1834
1835         /*
1836          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1837          * to updates to the the dma_head location in host memory. The head
1838          * value read might not be fully up to date. If there are pending
1839          * descriptors and the SDMA idle interrupt fired then read from the
1840          * CSR SDMA head instead to get the latest value from the hardware.
1841          * The hardware SDMA head should be read at most once in this invocation
1842          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1843          */
1844         if ((status & sde->idle_mask) && !idle_check_done) {
1845                 u16 swtail;
1846
1847                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1848                 if (swtail != hwhead) {
1849                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1850                         idle_check_done = 1;
1851                         goto retry;
1852                 }
1853         }
1854
1855         sde->last_status = status;
1856         if (progress)
1857                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1858 }
1859
1860 /*
1861  * sdma_engine_interrupt() - interrupt handler for engine
1862  * @sde: sdma engine
1863  * @status: sdma interrupt reason
1864  *
1865  * Status is a mask of the 3 possible interrupts for this engine.  It will
1866  * contain bits _only_ for this SDMA engine.  It will contain at least one
1867  * bit, it may contain more.
1868  */
1869 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1870 {
1871         trace_hfi1_sdma_engine_interrupt(sde, status);
1872         write_seqlock(&sde->head_lock);
1873         sdma_set_desc_cnt(sde, sdma_desct_intr);
1874         if (status & sde->idle_mask)
1875                 sde->idle_int_cnt++;
1876         else if (status & sde->progress_mask)
1877                 sde->progress_int_cnt++;
1878         else if (status & sde->int_mask)
1879                 sde->sdma_int_cnt++;
1880         sdma_make_progress(sde, status);
1881         write_sequnlock(&sde->head_lock);
1882 }
1883
1884 /**
1885  * sdma_engine_error() - error handler for engine
1886  * @sde: sdma engine
1887  * @status: sdma interrupt reason
1888  */
1889 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1890 {
1891         unsigned long flags;
1892
1893 #ifdef CONFIG_SDMA_VERBOSITY
1894         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1895                    sde->this_idx,
1896                    (unsigned long long)status,
1897                    sdma_state_names[sde->state.current_state]);
1898 #endif
1899         spin_lock_irqsave(&sde->tail_lock, flags);
1900         write_seqlock(&sde->head_lock);
1901         if (status & ALL_SDMA_ENG_HALT_ERRS)
1902                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1903         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1904                 dd_dev_err(sde->dd,
1905                            "SDMA (%u) engine error: 0x%llx state %s\n",
1906                            sde->this_idx,
1907                            (unsigned long long)status,
1908                            sdma_state_names[sde->state.current_state]);
1909                 dump_sdma_state(sde);
1910         }
1911         write_sequnlock(&sde->head_lock);
1912         spin_unlock_irqrestore(&sde->tail_lock, flags);
1913 }
1914
1915 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1916 {
1917         u64 set_senddmactrl = 0;
1918         u64 clr_senddmactrl = 0;
1919         unsigned long flags;
1920
1921 #ifdef CONFIG_SDMA_VERBOSITY
1922         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1923                    sde->this_idx,
1924                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1925                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1926                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1927                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1928 #endif
1929
1930         if (op & SDMA_SENDCTRL_OP_ENABLE)
1931                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1932         else
1933                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1934
1935         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1936                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1937         else
1938                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1939
1940         if (op & SDMA_SENDCTRL_OP_HALT)
1941                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1942         else
1943                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1944
1945         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1946
1947         sde->p_senddmactrl |= set_senddmactrl;
1948         sde->p_senddmactrl &= ~clr_senddmactrl;
1949
1950         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1951                 write_sde_csr(sde, SD(CTRL),
1952                               sde->p_senddmactrl |
1953                               SD(CTRL_SDMA_CLEANUP_SMASK));
1954         else
1955                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1956
1957         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1958
1959 #ifdef CONFIG_SDMA_VERBOSITY
1960         sdma_dumpstate(sde);
1961 #endif
1962 }
1963
1964 static void sdma_setlengen(struct sdma_engine *sde)
1965 {
1966 #ifdef CONFIG_SDMA_VERBOSITY
1967         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1968                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1969 #endif
1970
1971         /*
1972          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1973          * count to enable generation checking and load the internal
1974          * generation counter.
1975          */
1976         write_sde_csr(sde, SD(LEN_GEN),
1977                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1978         write_sde_csr(sde, SD(LEN_GEN),
1979                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1980                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1981 }
1982
1983 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1984 {
1985         /* Commit writes to memory and advance the tail on the chip */
1986         smp_wmb(); /* see get_txhead() */
1987         writeq(tail, sde->tail_csr);
1988 }
1989
1990 /*
1991  * This is called when changing to state s10_hw_start_up_halt_wait as
1992  * a result of send buffer errors or send DMA descriptor errors.
1993  */
1994 static void sdma_hw_start_up(struct sdma_engine *sde)
1995 {
1996         u64 reg;
1997
1998 #ifdef CONFIG_SDMA_VERBOSITY
1999         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2000                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2001 #endif
2002
2003         sdma_setlengen(sde);
2004         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2005         *sde->head_dma = 0;
2006
2007         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2008               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2009         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2010 }
2011
2012 /*
2013  * set_sdma_integrity
2014  *
2015  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2016  */
2017 static void set_sdma_integrity(struct sdma_engine *sde)
2018 {
2019         struct hfi1_devdata *dd = sde->dd;
2020
2021         write_sde_csr(sde, SD(CHECK_ENABLE),
2022                       hfi1_pkt_base_sdma_integrity(dd));
2023 }
2024
2025 static void init_sdma_regs(
2026         struct sdma_engine *sde,
2027         u32 credits,
2028         uint idle_cnt)
2029 {
2030         u8 opval, opmask;
2031 #ifdef CONFIG_SDMA_VERBOSITY
2032         struct hfi1_devdata *dd = sde->dd;
2033
2034         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2035                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2036 #endif
2037
2038         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2039         sdma_setlengen(sde);
2040         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2041         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2042         write_sde_csr(sde, SD(DESC_CNT), 0);
2043         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2044         write_sde_csr(sde, SD(MEMORY),
2045                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2046                       ((u64)(credits * sde->this_idx) <<
2047                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2048         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2049         set_sdma_integrity(sde);
2050         opmask = OPCODE_CHECK_MASK_DISABLED;
2051         opval = OPCODE_CHECK_VAL_DISABLED;
2052         write_sde_csr(sde, SD(CHECK_OPCODE),
2053                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2054                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2055 }
2056
2057 #ifdef CONFIG_SDMA_VERBOSITY
2058
2059 #define sdma_dumpstate_helper0(reg) do { \
2060                 csr = read_csr(sde->dd, reg); \
2061                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2062         } while (0)
2063
2064 #define sdma_dumpstate_helper(reg) do { \
2065                 csr = read_sde_csr(sde, reg); \
2066                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2067                         #reg, sde->this_idx, csr); \
2068         } while (0)
2069
2070 #define sdma_dumpstate_helper2(reg) do { \
2071                 csr = read_csr(sde->dd, reg + (8 * i)); \
2072                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2073                                 #reg, i, csr); \
2074         } while (0)
2075
2076 void sdma_dumpstate(struct sdma_engine *sde)
2077 {
2078         u64 csr;
2079         unsigned i;
2080
2081         sdma_dumpstate_helper(SD(CTRL));
2082         sdma_dumpstate_helper(SD(STATUS));
2083         sdma_dumpstate_helper0(SD(ERR_STATUS));
2084         sdma_dumpstate_helper0(SD(ERR_MASK));
2085         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2086         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2087
2088         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2089                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2090                 sdma_dumpstate_helper2(CCE_INT_MASK);
2091                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2092         }
2093
2094         sdma_dumpstate_helper(SD(TAIL));
2095         sdma_dumpstate_helper(SD(HEAD));
2096         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2097         sdma_dumpstate_helper(SD(IDLE_CNT));
2098         sdma_dumpstate_helper(SD(RELOAD_CNT));
2099         sdma_dumpstate_helper(SD(DESC_CNT));
2100         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2101         sdma_dumpstate_helper(SD(MEMORY));
2102         sdma_dumpstate_helper0(SD(ENGINES));
2103         sdma_dumpstate_helper0(SD(MEM_SIZE));
2104         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2105         sdma_dumpstate_helper(SD(BASE_ADDR));
2106         sdma_dumpstate_helper(SD(LEN_GEN));
2107         sdma_dumpstate_helper(SD(HEAD_ADDR));
2108         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2109         sdma_dumpstate_helper(SD(CHECK_VL));
2110         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2111         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2112         sdma_dumpstate_helper(SD(CHECK_SLID));
2113         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2114 }
2115 #endif
2116
2117 static void dump_sdma_state(struct sdma_engine *sde)
2118 {
2119         struct hw_sdma_desc *descq;
2120         struct hw_sdma_desc *descqp;
2121         u64 desc[2];
2122         u64 addr;
2123         u8 gen;
2124         u16 len;
2125         u16 head, tail, cnt;
2126
2127         head = sde->descq_head & sde->sdma_mask;
2128         tail = sde->descq_tail & sde->sdma_mask;
2129         cnt = sdma_descq_freecnt(sde);
2130         descq = sde->descq;
2131
2132         dd_dev_err(sde->dd,
2133                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2134                    sde->this_idx, head, tail, cnt,
2135                    !list_empty(&sde->flushlist));
2136
2137         /* print info for each entry in the descriptor queue */
2138         while (head != tail) {
2139                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2140
2141                 descqp = &sde->descq[head];
2142                 desc[0] = le64_to_cpu(descqp->qw[0]);
2143                 desc[1] = le64_to_cpu(descqp->qw[1]);
2144                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2145                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2146                                 'H' : '-';
2147                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2148                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2149                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2150                         & SDMA_DESC0_PHY_ADDR_MASK;
2151                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2152                         & SDMA_DESC1_GENERATION_MASK;
2153                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2154                         & SDMA_DESC0_BYTE_COUNT_MASK;
2155                 dd_dev_err(sde->dd,
2156                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2157                            head, flags, addr, gen, len);
2158                 dd_dev_err(sde->dd,
2159                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2160                            desc[0], desc[1]);
2161                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2162                         dd_dev_err(sde->dd,
2163                                    "\taidx: %u amode: %u alen: %u\n",
2164                                    (u8)((desc[1] &
2165                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2166                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2167                                    (u8)((desc[1] &
2168                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2169                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2170                                    (u8)((desc[1] &
2171                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2172                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2173                 head++;
2174                 head &= sde->sdma_mask;
2175         }
2176 }
2177
2178 #define SDE_FMT \
2179         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2180 /**
2181  * sdma_seqfile_dump_sde() - debugfs dump of sde
2182  * @s: seq file
2183  * @sde: send dma engine to dump
2184  *
2185  * This routine dumps the sde to the indicated seq file.
2186  */
2187 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2188 {
2189         u16 head, tail;
2190         struct hw_sdma_desc *descqp;
2191         u64 desc[2];
2192         u64 addr;
2193         u8 gen;
2194         u16 len;
2195
2196         head = sde->descq_head & sde->sdma_mask;
2197         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
2198         seq_printf(s, SDE_FMT, sde->this_idx,
2199                    sde->cpu,
2200                    sdma_state_name(sde->state.current_state),
2201                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2202                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2203                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2204                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2205                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2206                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2207                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2208                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2209                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2210                    (unsigned long long)sde->last_status,
2211                    (unsigned long long)sde->ahg_bits,
2212                    sde->tx_tail,
2213                    sde->tx_head,
2214                    sde->descq_tail,
2215                    sde->descq_head,
2216                    !list_empty(&sde->flushlist),
2217                    sde->descq_full_count,
2218                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2219
2220         /* print info for each entry in the descriptor queue */
2221         while (head != tail) {
2222                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2223
2224                 descqp = &sde->descq[head];
2225                 desc[0] = le64_to_cpu(descqp->qw[0]);
2226                 desc[1] = le64_to_cpu(descqp->qw[1]);
2227                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2228                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2229                                 'H' : '-';
2230                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2231                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2232                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2233                         & SDMA_DESC0_PHY_ADDR_MASK;
2234                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2235                         & SDMA_DESC1_GENERATION_MASK;
2236                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2237                         & SDMA_DESC0_BYTE_COUNT_MASK;
2238                 seq_printf(s,
2239                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2240                            head, flags, addr, gen, len);
2241                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2242                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2243                                    (u8)((desc[1] &
2244                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2245                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2246                                    (u8)((desc[1] &
2247                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2248                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2249                 head = (head + 1) & sde->sdma_mask;
2250         }
2251 }
2252
2253 /*
2254  * add the generation number into
2255  * the qw1 and return
2256  */
2257 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2258 {
2259         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2260
2261         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2262         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2263                         << SDMA_DESC1_GENERATION_SHIFT;
2264         return qw1;
2265 }
2266
2267 /*
2268  * This routine submits the indicated tx
2269  *
2270  * Space has already been guaranteed and
2271  * tail side of ring is locked.
2272  *
2273  * The hardware tail update is done
2274  * in the caller and that is facilitated
2275  * by returning the new tail.
2276  *
2277  * There is special case logic for ahg
2278  * to not add the generation number for
2279  * up to 2 descriptors that follow the
2280  * first descriptor.
2281  *
2282  */
2283 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2284 {
2285         int i;
2286         u16 tail;
2287         struct sdma_desc *descp = tx->descp;
2288         u8 skip = 0, mode = ahg_mode(tx);
2289
2290         tail = sde->descq_tail & sde->sdma_mask;
2291         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2292         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2293         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2294                                    tail, &sde->descq[tail]);
2295         tail = ++sde->descq_tail & sde->sdma_mask;
2296         descp++;
2297         if (mode > SDMA_AHG_APPLY_UPDATE1)
2298                 skip = mode >> 1;
2299         for (i = 1; i < tx->num_desc; i++, descp++) {
2300                 u64 qw1;
2301
2302                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2303                 if (skip) {
2304                         /* edits don't have generation */
2305                         qw1 = descp->qw[1];
2306                         skip--;
2307                 } else {
2308                         /* replace generation with real one for non-edits */
2309                         qw1 = add_gen(sde, descp->qw[1]);
2310                 }
2311                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2312                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2313                                            tail, &sde->descq[tail]);
2314                 tail = ++sde->descq_tail & sde->sdma_mask;
2315         }
2316         tx->next_descq_idx = tail;
2317 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2318         tx->sn = sde->tail_sn++;
2319         trace_hfi1_sdma_in_sn(sde, tx->sn);
2320         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2321 #endif
2322         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2323         sde->desc_avail -= tx->num_desc;
2324         return tail;
2325 }
2326
2327 /*
2328  * Check for progress
2329  */
2330 static int sdma_check_progress(
2331         struct sdma_engine *sde,
2332         struct iowait *wait,
2333         struct sdma_txreq *tx)
2334 {
2335         int ret;
2336
2337         sde->desc_avail = sdma_descq_freecnt(sde);
2338         if (tx->num_desc <= sde->desc_avail)
2339                 return -EAGAIN;
2340         /* pulse the head_lock */
2341         if (wait && wait->sleep) {
2342                 unsigned seq;
2343
2344                 seq = raw_seqcount_begin(
2345                         (const seqcount_t *)&sde->head_lock.seqcount);
2346                 ret = wait->sleep(sde, wait, tx, seq);
2347                 if (ret == -EAGAIN)
2348                         sde->desc_avail = sdma_descq_freecnt(sde);
2349         } else {
2350                 ret = -EBUSY;
2351         }
2352         return ret;
2353 }
2354
2355 /**
2356  * sdma_send_txreq() - submit a tx req to ring
2357  * @sde: sdma engine to use
2358  * @wait: wait structure to use when full (may be NULL)
2359  * @tx: sdma_txreq to submit
2360  *
2361  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2362  * the packet will be queued to the list in wait.
2363  *
2364  * Return:
2365  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2366  * ring (wait == NULL)
2367  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2368  */
2369 int sdma_send_txreq(struct sdma_engine *sde,
2370                     struct iowait *wait,
2371                     struct sdma_txreq *tx)
2372 {
2373         int ret = 0;
2374         u16 tail;
2375         unsigned long flags;
2376
2377         /* user should have supplied entire packet */
2378         if (unlikely(tx->tlen))
2379                 return -EINVAL;
2380         tx->wait = wait;
2381         spin_lock_irqsave(&sde->tail_lock, flags);
2382 retry:
2383         if (unlikely(!__sdma_running(sde)))
2384                 goto unlock_noconn;
2385         if (unlikely(tx->num_desc > sde->desc_avail))
2386                 goto nodesc;
2387         tail = submit_tx(sde, tx);
2388         if (wait)
2389                 iowait_sdma_inc(wait);
2390         sdma_update_tail(sde, tail);
2391 unlock:
2392         spin_unlock_irqrestore(&sde->tail_lock, flags);
2393         return ret;
2394 unlock_noconn:
2395         if (wait)
2396                 iowait_sdma_inc(wait);
2397         tx->next_descq_idx = 0;
2398 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2399         tx->sn = sde->tail_sn++;
2400         trace_hfi1_sdma_in_sn(sde, tx->sn);
2401 #endif
2402         spin_lock(&sde->flushlist_lock);
2403         list_add_tail(&tx->list, &sde->flushlist);
2404         spin_unlock(&sde->flushlist_lock);
2405         if (wait) {
2406                 wait->tx_count++;
2407                 wait->count += tx->num_desc;
2408         }
2409         schedule_work(&sde->flush_worker);
2410         ret = -ECOMM;
2411         goto unlock;
2412 nodesc:
2413         ret = sdma_check_progress(sde, wait, tx);
2414         if (ret == -EAGAIN) {
2415                 ret = 0;
2416                 goto retry;
2417         }
2418         sde->descq_full_count++;
2419         goto unlock;
2420 }
2421
2422 /**
2423  * sdma_send_txlist() - submit a list of tx req to ring
2424  * @sde: sdma engine to use
2425  * @wait: wait structure to use when full (may be NULL)
2426  * @tx_list: list of sdma_txreqs to submit
2427  * @count: pointer to a u32 which, after return will contain the total number of
2428  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2429  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2430  *         which are added to SDMA engine flush list if the SDMA engine state is
2431  *         not running.
2432  *
2433  * The call submits the list into the ring.
2434  *
2435  * If the iowait structure is non-NULL and not equal to the iowait list
2436  * the unprocessed part of the list  will be appended to the list in wait.
2437  *
2438  * In all cases, the tx_list will be updated so the head of the tx_list is
2439  * the list of descriptors that have yet to be transmitted.
2440  *
2441  * The intent of this call is to provide a more efficient
2442  * way of submitting multiple packets to SDMA while holding the tail
2443  * side locking.
2444  *
2445  * Return:
2446  * 0 - Success,
2447  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2448  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2449  */
2450 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2451                      struct list_head *tx_list, u32 *count_out)
2452 {
2453         struct sdma_txreq *tx, *tx_next;
2454         int ret = 0;
2455         unsigned long flags;
2456         u16 tail = INVALID_TAIL;
2457         u32 submit_count = 0, flush_count = 0, total_count;
2458
2459         spin_lock_irqsave(&sde->tail_lock, flags);
2460 retry:
2461         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2462                 tx->wait = wait;
2463                 if (unlikely(!__sdma_running(sde)))
2464                         goto unlock_noconn;
2465                 if (unlikely(tx->num_desc > sde->desc_avail))
2466                         goto nodesc;
2467                 if (unlikely(tx->tlen)) {
2468                         ret = -EINVAL;
2469                         goto update_tail;
2470                 }
2471                 list_del_init(&tx->list);
2472                 tail = submit_tx(sde, tx);
2473                 submit_count++;
2474                 if (tail != INVALID_TAIL &&
2475                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2476                         sdma_update_tail(sde, tail);
2477                         tail = INVALID_TAIL;
2478                 }
2479         }
2480 update_tail:
2481         total_count = submit_count + flush_count;
2482         if (wait)
2483                 iowait_sdma_add(wait, total_count);
2484         if (tail != INVALID_TAIL)
2485                 sdma_update_tail(sde, tail);
2486         spin_unlock_irqrestore(&sde->tail_lock, flags);
2487         *count_out = total_count;
2488         return ret;
2489 unlock_noconn:
2490         spin_lock(&sde->flushlist_lock);
2491         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2492                 tx->wait = wait;
2493                 list_del_init(&tx->list);
2494                 tx->next_descq_idx = 0;
2495 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2496                 tx->sn = sde->tail_sn++;
2497                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2498 #endif
2499                 list_add_tail(&tx->list, &sde->flushlist);
2500                 flush_count++;
2501                 if (wait) {
2502                         wait->tx_count++;
2503                         wait->count += tx->num_desc;
2504                 }
2505         }
2506         spin_unlock(&sde->flushlist_lock);
2507         schedule_work(&sde->flush_worker);
2508         ret = -ECOMM;
2509         goto update_tail;
2510 nodesc:
2511         ret = sdma_check_progress(sde, wait, tx);
2512         if (ret == -EAGAIN) {
2513                 ret = 0;
2514                 goto retry;
2515         }
2516         sde->descq_full_count++;
2517         goto update_tail;
2518 }
2519
2520 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2521 {
2522         unsigned long flags;
2523
2524         spin_lock_irqsave(&sde->tail_lock, flags);
2525         write_seqlock(&sde->head_lock);
2526
2527         __sdma_process_event(sde, event);
2528
2529         if (sde->state.current_state == sdma_state_s99_running)
2530                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2531
2532         write_sequnlock(&sde->head_lock);
2533         spin_unlock_irqrestore(&sde->tail_lock, flags);
2534 }
2535
2536 static void __sdma_process_event(struct sdma_engine *sde,
2537                                  enum sdma_events event)
2538 {
2539         struct sdma_state *ss = &sde->state;
2540         int need_progress = 0;
2541
2542         /* CONFIG SDMA temporary */
2543 #ifdef CONFIG_SDMA_VERBOSITY
2544         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2545                    sdma_state_names[ss->current_state],
2546                    sdma_event_names[event]);
2547 #endif
2548
2549         switch (ss->current_state) {
2550         case sdma_state_s00_hw_down:
2551                 switch (event) {
2552                 case sdma_event_e00_go_hw_down:
2553                         break;
2554                 case sdma_event_e30_go_running:
2555                         /*
2556                          * If down, but running requested (usually result
2557                          * of link up, then we need to start up.
2558                          * This can happen when hw down is requested while
2559                          * bringing the link up with traffic active on
2560                          * 7220, e.g.
2561                          */
2562                         ss->go_s99_running = 1;
2563                         /* fall through and start dma engine */
2564                 case sdma_event_e10_go_hw_start:
2565                         /* This reference means the state machine is started */
2566                         sdma_get(&sde->state);
2567                         sdma_set_state(sde,
2568                                        sdma_state_s10_hw_start_up_halt_wait);
2569                         break;
2570                 case sdma_event_e15_hw_halt_done:
2571                         break;
2572                 case sdma_event_e25_hw_clean_up_done:
2573                         break;
2574                 case sdma_event_e40_sw_cleaned:
2575                         sdma_sw_tear_down(sde);
2576                         break;
2577                 case sdma_event_e50_hw_cleaned:
2578                         break;
2579                 case sdma_event_e60_hw_halted:
2580                         break;
2581                 case sdma_event_e70_go_idle:
2582                         break;
2583                 case sdma_event_e80_hw_freeze:
2584                         break;
2585                 case sdma_event_e81_hw_frozen:
2586                         break;
2587                 case sdma_event_e82_hw_unfreeze:
2588                         break;
2589                 case sdma_event_e85_link_down:
2590                         break;
2591                 case sdma_event_e90_sw_halted:
2592                         break;
2593                 }
2594                 break;
2595
2596         case sdma_state_s10_hw_start_up_halt_wait:
2597                 switch (event) {
2598                 case sdma_event_e00_go_hw_down:
2599                         sdma_set_state(sde, sdma_state_s00_hw_down);
2600                         sdma_sw_tear_down(sde);
2601                         break;
2602                 case sdma_event_e10_go_hw_start:
2603                         break;
2604                 case sdma_event_e15_hw_halt_done:
2605                         sdma_set_state(sde,
2606                                        sdma_state_s15_hw_start_up_clean_wait);
2607                         sdma_start_hw_clean_up(sde);
2608                         break;
2609                 case sdma_event_e25_hw_clean_up_done:
2610                         break;
2611                 case sdma_event_e30_go_running:
2612                         ss->go_s99_running = 1;
2613                         break;
2614                 case sdma_event_e40_sw_cleaned:
2615                         break;
2616                 case sdma_event_e50_hw_cleaned:
2617                         break;
2618                 case sdma_event_e60_hw_halted:
2619                         schedule_work(&sde->err_halt_worker);
2620                         break;
2621                 case sdma_event_e70_go_idle:
2622                         ss->go_s99_running = 0;
2623                         break;
2624                 case sdma_event_e80_hw_freeze:
2625                         break;
2626                 case sdma_event_e81_hw_frozen:
2627                         break;
2628                 case sdma_event_e82_hw_unfreeze:
2629                         break;
2630                 case sdma_event_e85_link_down:
2631                         break;
2632                 case sdma_event_e90_sw_halted:
2633                         break;
2634                 }
2635                 break;
2636
2637         case sdma_state_s15_hw_start_up_clean_wait:
2638                 switch (event) {
2639                 case sdma_event_e00_go_hw_down:
2640                         sdma_set_state(sde, sdma_state_s00_hw_down);
2641                         sdma_sw_tear_down(sde);
2642                         break;
2643                 case sdma_event_e10_go_hw_start:
2644                         break;
2645                 case sdma_event_e15_hw_halt_done:
2646                         break;
2647                 case sdma_event_e25_hw_clean_up_done:
2648                         sdma_hw_start_up(sde);
2649                         sdma_set_state(sde, ss->go_s99_running ?
2650                                        sdma_state_s99_running :
2651                                        sdma_state_s20_idle);
2652                         break;
2653                 case sdma_event_e30_go_running:
2654                         ss->go_s99_running = 1;
2655                         break;
2656                 case sdma_event_e40_sw_cleaned:
2657                         break;
2658                 case sdma_event_e50_hw_cleaned:
2659                         break;
2660                 case sdma_event_e60_hw_halted:
2661                         break;
2662                 case sdma_event_e70_go_idle:
2663                         ss->go_s99_running = 0;
2664                         break;
2665                 case sdma_event_e80_hw_freeze:
2666                         break;
2667                 case sdma_event_e81_hw_frozen:
2668                         break;
2669                 case sdma_event_e82_hw_unfreeze:
2670                         break;
2671                 case sdma_event_e85_link_down:
2672                         break;
2673                 case sdma_event_e90_sw_halted:
2674                         break;
2675                 }
2676                 break;
2677
2678         case sdma_state_s20_idle:
2679                 switch (event) {
2680                 case sdma_event_e00_go_hw_down:
2681                         sdma_set_state(sde, sdma_state_s00_hw_down);
2682                         sdma_sw_tear_down(sde);
2683                         break;
2684                 case sdma_event_e10_go_hw_start:
2685                         break;
2686                 case sdma_event_e15_hw_halt_done:
2687                         break;
2688                 case sdma_event_e25_hw_clean_up_done:
2689                         break;
2690                 case sdma_event_e30_go_running:
2691                         sdma_set_state(sde, sdma_state_s99_running);
2692                         ss->go_s99_running = 1;
2693                         break;
2694                 case sdma_event_e40_sw_cleaned:
2695                         break;
2696                 case sdma_event_e50_hw_cleaned:
2697                         break;
2698                 case sdma_event_e60_hw_halted:
2699                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2700                         schedule_work(&sde->err_halt_worker);
2701                         break;
2702                 case sdma_event_e70_go_idle:
2703                         break;
2704                 case sdma_event_e85_link_down:
2705                         /* fall through */
2706                 case sdma_event_e80_hw_freeze:
2707                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2708                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2709                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2710                         break;
2711                 case sdma_event_e81_hw_frozen:
2712                         break;
2713                 case sdma_event_e82_hw_unfreeze:
2714                         break;
2715                 case sdma_event_e90_sw_halted:
2716                         break;
2717                 }
2718                 break;
2719
2720         case sdma_state_s30_sw_clean_up_wait:
2721                 switch (event) {
2722                 case sdma_event_e00_go_hw_down:
2723                         sdma_set_state(sde, sdma_state_s00_hw_down);
2724                         break;
2725                 case sdma_event_e10_go_hw_start:
2726                         break;
2727                 case sdma_event_e15_hw_halt_done:
2728                         break;
2729                 case sdma_event_e25_hw_clean_up_done:
2730                         break;
2731                 case sdma_event_e30_go_running:
2732                         ss->go_s99_running = 1;
2733                         break;
2734                 case sdma_event_e40_sw_cleaned:
2735                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2736                         sdma_start_hw_clean_up(sde);
2737                         break;
2738                 case sdma_event_e50_hw_cleaned:
2739                         break;
2740                 case sdma_event_e60_hw_halted:
2741                         break;
2742                 case sdma_event_e70_go_idle:
2743                         ss->go_s99_running = 0;
2744                         break;
2745                 case sdma_event_e80_hw_freeze:
2746                         break;
2747                 case sdma_event_e81_hw_frozen:
2748                         break;
2749                 case sdma_event_e82_hw_unfreeze:
2750                         break;
2751                 case sdma_event_e85_link_down:
2752                         ss->go_s99_running = 0;
2753                         break;
2754                 case sdma_event_e90_sw_halted:
2755                         break;
2756                 }
2757                 break;
2758
2759         case sdma_state_s40_hw_clean_up_wait:
2760                 switch (event) {
2761                 case sdma_event_e00_go_hw_down:
2762                         sdma_set_state(sde, sdma_state_s00_hw_down);
2763                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2764                         break;
2765                 case sdma_event_e10_go_hw_start:
2766                         break;
2767                 case sdma_event_e15_hw_halt_done:
2768                         break;
2769                 case sdma_event_e25_hw_clean_up_done:
2770                         sdma_hw_start_up(sde);
2771                         sdma_set_state(sde, ss->go_s99_running ?
2772                                        sdma_state_s99_running :
2773                                        sdma_state_s20_idle);
2774                         break;
2775                 case sdma_event_e30_go_running:
2776                         ss->go_s99_running = 1;
2777                         break;
2778                 case sdma_event_e40_sw_cleaned:
2779                         break;
2780                 case sdma_event_e50_hw_cleaned:
2781                         break;
2782                 case sdma_event_e60_hw_halted:
2783                         break;
2784                 case sdma_event_e70_go_idle:
2785                         ss->go_s99_running = 0;
2786                         break;
2787                 case sdma_event_e80_hw_freeze:
2788                         break;
2789                 case sdma_event_e81_hw_frozen:
2790                         break;
2791                 case sdma_event_e82_hw_unfreeze:
2792                         break;
2793                 case sdma_event_e85_link_down:
2794                         ss->go_s99_running = 0;
2795                         break;
2796                 case sdma_event_e90_sw_halted:
2797                         break;
2798                 }
2799                 break;
2800
2801         case sdma_state_s50_hw_halt_wait:
2802                 switch (event) {
2803                 case sdma_event_e00_go_hw_down:
2804                         sdma_set_state(sde, sdma_state_s00_hw_down);
2805                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2806                         break;
2807                 case sdma_event_e10_go_hw_start:
2808                         break;
2809                 case sdma_event_e15_hw_halt_done:
2810                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2811                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2812                         break;
2813                 case sdma_event_e25_hw_clean_up_done:
2814                         break;
2815                 case sdma_event_e30_go_running:
2816                         ss->go_s99_running = 1;
2817                         break;
2818                 case sdma_event_e40_sw_cleaned:
2819                         break;
2820                 case sdma_event_e50_hw_cleaned:
2821                         break;
2822                 case sdma_event_e60_hw_halted:
2823                         schedule_work(&sde->err_halt_worker);
2824                         break;
2825                 case sdma_event_e70_go_idle:
2826                         ss->go_s99_running = 0;
2827                         break;
2828                 case sdma_event_e80_hw_freeze:
2829                         break;
2830                 case sdma_event_e81_hw_frozen:
2831                         break;
2832                 case sdma_event_e82_hw_unfreeze:
2833                         break;
2834                 case sdma_event_e85_link_down:
2835                         ss->go_s99_running = 0;
2836                         break;
2837                 case sdma_event_e90_sw_halted:
2838                         break;
2839                 }
2840                 break;
2841
2842         case sdma_state_s60_idle_halt_wait:
2843                 switch (event) {
2844                 case sdma_event_e00_go_hw_down:
2845                         sdma_set_state(sde, sdma_state_s00_hw_down);
2846                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2847                         break;
2848                 case sdma_event_e10_go_hw_start:
2849                         break;
2850                 case sdma_event_e15_hw_halt_done:
2851                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2852                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2853                         break;
2854                 case sdma_event_e25_hw_clean_up_done:
2855                         break;
2856                 case sdma_event_e30_go_running:
2857                         ss->go_s99_running = 1;
2858                         break;
2859                 case sdma_event_e40_sw_cleaned:
2860                         break;
2861                 case sdma_event_e50_hw_cleaned:
2862                         break;
2863                 case sdma_event_e60_hw_halted:
2864                         schedule_work(&sde->err_halt_worker);
2865                         break;
2866                 case sdma_event_e70_go_idle:
2867                         ss->go_s99_running = 0;
2868                         break;
2869                 case sdma_event_e80_hw_freeze:
2870                         break;
2871                 case sdma_event_e81_hw_frozen:
2872                         break;
2873                 case sdma_event_e82_hw_unfreeze:
2874                         break;
2875                 case sdma_event_e85_link_down:
2876                         break;
2877                 case sdma_event_e90_sw_halted:
2878                         break;
2879                 }
2880                 break;
2881
2882         case sdma_state_s80_hw_freeze:
2883                 switch (event) {
2884                 case sdma_event_e00_go_hw_down:
2885                         sdma_set_state(sde, sdma_state_s00_hw_down);
2886                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2887                         break;
2888                 case sdma_event_e10_go_hw_start:
2889                         break;
2890                 case sdma_event_e15_hw_halt_done:
2891                         break;
2892                 case sdma_event_e25_hw_clean_up_done:
2893                         break;
2894                 case sdma_event_e30_go_running:
2895                         ss->go_s99_running = 1;
2896                         break;
2897                 case sdma_event_e40_sw_cleaned:
2898                         break;
2899                 case sdma_event_e50_hw_cleaned:
2900                         break;
2901                 case sdma_event_e60_hw_halted:
2902                         break;
2903                 case sdma_event_e70_go_idle:
2904                         ss->go_s99_running = 0;
2905                         break;
2906                 case sdma_event_e80_hw_freeze:
2907                         break;
2908                 case sdma_event_e81_hw_frozen:
2909                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2910                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2911                         break;
2912                 case sdma_event_e82_hw_unfreeze:
2913                         break;
2914                 case sdma_event_e85_link_down:
2915                         break;
2916                 case sdma_event_e90_sw_halted:
2917                         break;
2918                 }
2919                 break;
2920
2921         case sdma_state_s82_freeze_sw_clean:
2922                 switch (event) {
2923                 case sdma_event_e00_go_hw_down:
2924                         sdma_set_state(sde, sdma_state_s00_hw_down);
2925                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2926                         break;
2927                 case sdma_event_e10_go_hw_start:
2928                         break;
2929                 case sdma_event_e15_hw_halt_done:
2930                         break;
2931                 case sdma_event_e25_hw_clean_up_done:
2932                         break;
2933                 case sdma_event_e30_go_running:
2934                         ss->go_s99_running = 1;
2935                         break;
2936                 case sdma_event_e40_sw_cleaned:
2937                         /* notify caller this engine is done cleaning */
2938                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2939                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2940                         break;
2941                 case sdma_event_e50_hw_cleaned:
2942                         break;
2943                 case sdma_event_e60_hw_halted:
2944                         break;
2945                 case sdma_event_e70_go_idle:
2946                         ss->go_s99_running = 0;
2947                         break;
2948                 case sdma_event_e80_hw_freeze:
2949                         break;
2950                 case sdma_event_e81_hw_frozen:
2951                         break;
2952                 case sdma_event_e82_hw_unfreeze:
2953                         sdma_hw_start_up(sde);
2954                         sdma_set_state(sde, ss->go_s99_running ?
2955                                        sdma_state_s99_running :
2956                                        sdma_state_s20_idle);
2957                         break;
2958                 case sdma_event_e85_link_down:
2959                         break;
2960                 case sdma_event_e90_sw_halted:
2961                         break;
2962                 }
2963                 break;
2964
2965         case sdma_state_s99_running:
2966                 switch (event) {
2967                 case sdma_event_e00_go_hw_down:
2968                         sdma_set_state(sde, sdma_state_s00_hw_down);
2969                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2970                         break;
2971                 case sdma_event_e10_go_hw_start:
2972                         break;
2973                 case sdma_event_e15_hw_halt_done:
2974                         break;
2975                 case sdma_event_e25_hw_clean_up_done:
2976                         break;
2977                 case sdma_event_e30_go_running:
2978                         break;
2979                 case sdma_event_e40_sw_cleaned:
2980                         break;
2981                 case sdma_event_e50_hw_cleaned:
2982                         break;
2983                 case sdma_event_e60_hw_halted:
2984                         need_progress = 1;
2985                         sdma_err_progress_check_schedule(sde);
2986                 case sdma_event_e90_sw_halted:
2987                         /*
2988                         * SW initiated halt does not perform engines
2989                         * progress check
2990                         */
2991                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2992                         schedule_work(&sde->err_halt_worker);
2993                         break;
2994                 case sdma_event_e70_go_idle:
2995                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2996                         break;
2997                 case sdma_event_e85_link_down:
2998                         ss->go_s99_running = 0;
2999                         /* fall through */
3000                 case sdma_event_e80_hw_freeze:
3001                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3002                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3003                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3004                         break;
3005                 case sdma_event_e81_hw_frozen:
3006                         break;
3007                 case sdma_event_e82_hw_unfreeze:
3008                         break;
3009                 }
3010                 break;
3011         }
3012
3013         ss->last_event = event;
3014         if (need_progress)
3015                 sdma_make_progress(sde, 0);
3016 }
3017
3018 /*
3019  * _extend_sdma_tx_descs() - helper to extend txreq
3020  *
3021  * This is called once the initial nominal allocation
3022  * of descriptors in the sdma_txreq is exhausted.
3023  *
3024  * The code will bump the allocation up to the max
3025  * of MAX_DESC (64) descriptors. There doesn't seem
3026  * much point in an interim step. The last descriptor
3027  * is reserved for coalesce buffer in order to support
3028  * cases where input packet has >MAX_DESC iovecs.
3029  *
3030  */
3031 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3032 {
3033         int i;
3034
3035         /* Handle last descriptor */
3036         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3037                 /* if tlen is 0, it is for padding, release last descriptor */
3038                 if (!tx->tlen) {
3039                         tx->desc_limit = MAX_DESC;
3040                 } else if (!tx->coalesce_buf) {
3041                         /* allocate coalesce buffer with space for padding */
3042                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3043                                                    GFP_ATOMIC);
3044                         if (!tx->coalesce_buf)
3045                                 goto enomem;
3046                         tx->coalesce_idx = 0;
3047                 }
3048                 return 0;
3049         }
3050
3051         if (unlikely(tx->num_desc == MAX_DESC))
3052                 goto enomem;
3053
3054         tx->descp = kmalloc_array(
3055                         MAX_DESC,
3056                         sizeof(struct sdma_desc),
3057                         GFP_ATOMIC);
3058         if (!tx->descp)
3059                 goto enomem;
3060
3061         /* reserve last descriptor for coalescing */
3062         tx->desc_limit = MAX_DESC - 1;
3063         /* copy ones already built */
3064         for (i = 0; i < tx->num_desc; i++)
3065                 tx->descp[i] = tx->descs[i];
3066         return 0;
3067 enomem:
3068         __sdma_txclean(dd, tx);
3069         return -ENOMEM;
3070 }
3071
3072 /*
3073  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3074  *
3075  * This is called once the initial nominal allocation of descriptors
3076  * in the sdma_txreq is exhausted.
3077  *
3078  * This function calls _extend_sdma_tx_descs to extend or allocate
3079  * coalesce buffer. If there is a allocated coalesce buffer, it will
3080  * copy the input packet data into the coalesce buffer. It also adds
3081  * coalesce buffer descriptor once when whole packet is received.
3082  *
3083  * Return:
3084  * <0 - error
3085  * 0 - coalescing, don't populate descriptor
3086  * 1 - continue with populating descriptor
3087  */
3088 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3089                            int type, void *kvaddr, struct page *page,
3090                            unsigned long offset, u16 len)
3091 {
3092         int pad_len, rval;
3093         dma_addr_t addr;
3094
3095         rval = _extend_sdma_tx_descs(dd, tx);
3096         if (rval) {
3097                 __sdma_txclean(dd, tx);
3098                 return rval;
3099         }
3100
3101         /* If coalesce buffer is allocated, copy data into it */
3102         if (tx->coalesce_buf) {
3103                 if (type == SDMA_MAP_NONE) {
3104                         __sdma_txclean(dd, tx);
3105                         return -EINVAL;
3106                 }
3107
3108                 if (type == SDMA_MAP_PAGE) {
3109                         kvaddr = kmap(page);
3110                         kvaddr += offset;
3111                 } else if (WARN_ON(!kvaddr)) {
3112                         __sdma_txclean(dd, tx);
3113                         return -EINVAL;
3114                 }
3115
3116                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3117                 tx->coalesce_idx += len;
3118                 if (type == SDMA_MAP_PAGE)
3119                         kunmap(page);
3120
3121                 /* If there is more data, return */
3122                 if (tx->tlen - tx->coalesce_idx)
3123                         return 0;
3124
3125                 /* Whole packet is received; add any padding */
3126                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3127                 if (pad_len) {
3128                         pad_len = sizeof(u32) - pad_len;
3129                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3130                         /* padding is taken care of for coalescing case */
3131                         tx->packet_len += pad_len;
3132                         tx->tlen += pad_len;
3133                 }
3134
3135                 /* dma map the coalesce buffer */
3136                 addr = dma_map_single(&dd->pcidev->dev,
3137                                       tx->coalesce_buf,
3138                                       tx->tlen,
3139                                       DMA_TO_DEVICE);
3140
3141                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3142                         __sdma_txclean(dd, tx);
3143                         return -ENOSPC;
3144                 }
3145
3146                 /* Add descriptor for coalesce buffer */
3147                 tx->desc_limit = MAX_DESC;
3148                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3149                                          addr, tx->tlen);
3150         }
3151
3152         return 1;
3153 }
3154
3155 /* Update sdes when the lmc changes */
3156 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3157 {
3158         struct sdma_engine *sde;
3159         int i;
3160         u64 sreg;
3161
3162         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3163                 SD(CHECK_SLID_MASK_SHIFT)) |
3164                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3165                 SD(CHECK_SLID_VALUE_SHIFT));
3166
3167         for (i = 0; i < dd->num_sdma; i++) {
3168                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3169                           i, (u32)sreg);
3170                 sde = &dd->per_sdma[i];
3171                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3172         }
3173 }
3174
3175 /* tx not dword sized - pad */
3176 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3177 {
3178         int rval = 0;
3179
3180         tx->num_desc++;
3181         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3182                 rval = _extend_sdma_tx_descs(dd, tx);
3183                 if (rval) {
3184                         __sdma_txclean(dd, tx);
3185                         return rval;
3186                 }
3187         }
3188         /* finish the one just added */
3189         make_tx_sdma_desc(
3190                 tx,
3191                 SDMA_MAP_NONE,
3192                 dd->sdma_pad_phys,
3193                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3194         _sdma_close_tx(dd, tx);
3195         return rval;
3196 }
3197
3198 /*
3199  * Add ahg to the sdma_txreq
3200  *
3201  * The logic will consume up to 3
3202  * descriptors at the beginning of
3203  * sdma_txreq.
3204  */
3205 void _sdma_txreq_ahgadd(
3206         struct sdma_txreq *tx,
3207         u8 num_ahg,
3208         u8 ahg_entry,
3209         u32 *ahg,
3210         u8 ahg_hlen)
3211 {
3212         u32 i, shift = 0, desc = 0;
3213         u8 mode;
3214
3215         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3216         /* compute mode */
3217         if (num_ahg == 1)
3218                 mode = SDMA_AHG_APPLY_UPDATE1;
3219         else if (num_ahg <= 5)
3220                 mode = SDMA_AHG_APPLY_UPDATE2;
3221         else
3222                 mode = SDMA_AHG_APPLY_UPDATE3;
3223         tx->num_desc++;
3224         /* initialize to consumed descriptors to zero */
3225         switch (mode) {
3226         case SDMA_AHG_APPLY_UPDATE3:
3227                 tx->num_desc++;
3228                 tx->descs[2].qw[0] = 0;
3229                 tx->descs[2].qw[1] = 0;
3230                 /* FALLTHROUGH */
3231         case SDMA_AHG_APPLY_UPDATE2:
3232                 tx->num_desc++;
3233                 tx->descs[1].qw[0] = 0;
3234                 tx->descs[1].qw[1] = 0;
3235                 break;
3236         }
3237         ahg_hlen >>= 2;
3238         tx->descs[0].qw[1] |=
3239                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3240                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3241                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3242                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3243                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3244                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3245                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3246                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3247         for (i = 0; i < (num_ahg - 1); i++) {
3248                 if (!shift && !(i & 2))
3249                         desc++;
3250                 tx->descs[desc].qw[!!(i & 2)] |=
3251                         (((u64)ahg[i + 1])
3252                                 << shift);
3253                 shift = (shift + 32) & 63;
3254         }
3255 }
3256
3257 /**
3258  * sdma_ahg_alloc - allocate an AHG entry
3259  * @sde: engine to allocate from
3260  *
3261  * Return:
3262  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3263  * -ENOSPC if an entry is not available
3264  */
3265 int sdma_ahg_alloc(struct sdma_engine *sde)
3266 {
3267         int nr;
3268         int oldbit;
3269
3270         if (!sde) {
3271                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3272                 return -EINVAL;
3273         }
3274         while (1) {
3275                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
3276                 if (nr > 31) {
3277                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3278                         return -ENOSPC;
3279                 }
3280                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3281                 if (!oldbit)
3282                         break;
3283                 cpu_relax();
3284         }
3285         trace_hfi1_ahg_allocate(sde, nr);
3286         return nr;
3287 }
3288
3289 /**
3290  * sdma_ahg_free - free an AHG entry
3291  * @sde: engine to return AHG entry
3292  * @ahg_index: index to free
3293  *
3294  * This routine frees the indicate AHG entry.
3295  */
3296 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3297 {
3298         if (!sde)
3299                 return;
3300         trace_hfi1_ahg_deallocate(sde, ahg_index);
3301         if (ahg_index < 0 || ahg_index > 31)
3302                 return;
3303         clear_bit(ahg_index, &sde->ahg_bits);
3304 }
3305
3306 /*
3307  * SPC freeze handling for SDMA engines.  Called when the driver knows
3308  * the SPC is going into a freeze but before the freeze is fully
3309  * settled.  Generally an error interrupt.
3310  *
3311  * This event will pull the engine out of running so no more entries can be
3312  * added to the engine's queue.
3313  */
3314 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3315 {
3316         int i;
3317         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3318                                              sdma_event_e80_hw_freeze;
3319
3320         /* set up the wait but do not wait here */
3321         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3322
3323         /* tell all engines to stop running and wait */
3324         for (i = 0; i < dd->num_sdma; i++)
3325                 sdma_process_event(&dd->per_sdma[i], event);
3326
3327         /* sdma_freeze() will wait for all engines to have stopped */
3328 }
3329
3330 /*
3331  * SPC freeze handling for SDMA engines.  Called when the driver knows
3332  * the SPC is fully frozen.
3333  */
3334 void sdma_freeze(struct hfi1_devdata *dd)
3335 {
3336         int i;
3337         int ret;
3338
3339         /*
3340          * Make sure all engines have moved out of the running state before
3341          * continuing.
3342          */
3343         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3344                                        atomic_read(&dd->sdma_unfreeze_count) <=
3345                                        0);
3346         /* interrupted or count is negative, then unloading - just exit */
3347         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3348                 return;
3349
3350         /* set up the count for the next wait */
3351         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3352
3353         /* tell all engines that the SPC is frozen, they can start cleaning */
3354         for (i = 0; i < dd->num_sdma; i++)
3355                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3356
3357         /*
3358          * Wait for everyone to finish software clean before exiting.  The
3359          * software clean will read engine CSRs, so must be completed before
3360          * the next step, which will clear the engine CSRs.
3361          */
3362         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3363                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3364         /* no need to check results - done no matter what */
3365 }
3366
3367 /*
3368  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3369  *
3370  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3371  * that is left is a software clean.  We could do it after the SPC is fully
3372  * frozen, but then we'd have to add another state to wait for the unfreeze.
3373  * Instead, just defer the software clean until the unfreeze step.
3374  */
3375 void sdma_unfreeze(struct hfi1_devdata *dd)
3376 {
3377         int i;
3378
3379         /* tell all engines start freeze clean up */
3380         for (i = 0; i < dd->num_sdma; i++)
3381                 sdma_process_event(&dd->per_sdma[i],
3382                                    sdma_event_e82_hw_unfreeze);
3383 }
3384
3385 /**
3386  * _sdma_engine_progress_schedule() - schedule progress on engine
3387  * @sde: sdma_engine to schedule progress
3388  *
3389  */
3390 void _sdma_engine_progress_schedule(
3391         struct sdma_engine *sde)
3392 {
3393         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3394         /* assume we have selected a good cpu */
3395         write_csr(sde->dd,
3396                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3397                   sde->progress_mask);
3398 }