]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/infiniband/ulp/srpt/ib_srpt.c
Merge remote-tracking branch 'wireless-next/master'
[karo-tx-linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME                "ib_srpt"
54 #define DRV_VERSION             "2.0.0"
55 #define DRV_RELDATE             "2011-02-14"
56
57 #define SRPT_ID_STRING  "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64                    "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68  * Global Variables
69  */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78                  "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83                  "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87         return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90                   0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92                  "Using this value for ioc_guid, id_ext, and cm_listen_id"
93                  " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106         switch (dir) {
107         case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
108         case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
109         default:                return dir;
110         }
111 }
112
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120         return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125         unsigned long flags;
126         enum rdma_ch_state state;
127
128         spin_lock_irqsave(&ch->spinlock, flags);
129         state = ch->state;
130         spin_unlock_irqrestore(&ch->spinlock, flags);
131         return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137         unsigned long flags;
138         enum rdma_ch_state prev;
139
140         spin_lock_irqsave(&ch->spinlock, flags);
141         prev = ch->state;
142         ch->state = new_state;
143         spin_unlock_irqrestore(&ch->spinlock, flags);
144         return prev;
145 }
146
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154                            enum rdma_ch_state new)
155 {
156         unsigned long flags;
157         enum rdma_ch_state prev;
158
159         spin_lock_irqsave(&ch->spinlock, flags);
160         prev = ch->state;
161         if (prev == old)
162                 ch->state = new;
163         spin_unlock_irqrestore(&ch->spinlock, flags);
164         return prev == old;
165 }
166
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176                                struct ib_event *event)
177 {
178         struct srpt_device *sdev;
179         struct srpt_port *sport;
180
181         sdev = ib_get_client_data(event->device, &srpt_client);
182         if (!sdev || sdev->device != event->device)
183                 return;
184
185         pr_debug("ASYNC event= %d on device= %s\n", event->event,
186                  srpt_sdev_name(sdev));
187
188         switch (event->event) {
189         case IB_EVENT_PORT_ERR:
190                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191                         sport = &sdev->port[event->element.port_num - 1];
192                         sport->lid = 0;
193                         sport->sm_lid = 0;
194                 }
195                 break;
196         case IB_EVENT_PORT_ACTIVE:
197         case IB_EVENT_LID_CHANGE:
198         case IB_EVENT_PKEY_CHANGE:
199         case IB_EVENT_SM_CHANGE:
200         case IB_EVENT_CLIENT_REREGISTER:
201                 /* Refresh port data asynchronously. */
202                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203                         sport = &sdev->port[event->element.port_num - 1];
204                         if (!sport->lid && !sport->sm_lid)
205                                 schedule_work(&sport->work);
206                 }
207                 break;
208         default:
209                 printk(KERN_ERR "received unrecognized IB event %d\n",
210                        event->event);
211                 break;
212         }
213 }
214
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220         printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228         pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229                  event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231         switch (event->event) {
232         case IB_EVENT_COMM_EST:
233                 ib_cm_notify(ch->cm_id, event->event);
234                 break;
235         case IB_EVENT_QP_LAST_WQE_REACHED:
236                 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237                                                CH_RELEASING))
238                         srpt_release_channel(ch);
239                 else
240                         pr_debug("%s: state %d - ignored LAST_WQE.\n",
241                                  ch->sess_name, srpt_get_ch_state(ch));
242                 break;
243         default:
244                 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245                        event->event);
246                 break;
247         }
248 }
249
250 /**
251  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252  *
253  * @slot: one-based slot number.
254  * @value: four-bit value.
255  *
256  * Copies the lowest four bits of value in element slot of the array of four
257  * bit elements called c_list (controller list). The index slot is one-based.
258  */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261         u16 id;
262         u8 tmp;
263
264         id = (slot - 1) / 2;
265         if (slot & 0x1) {
266                 tmp = c_list[id] & 0xf;
267                 c_list[id] = (value << 4) | tmp;
268         } else {
269                 tmp = c_list[id] & 0xf0;
270                 c_list[id] = (value & 0xf) | tmp;
271         }
272 }
273
274 /**
275  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276  *
277  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278  * Specification.
279  */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282         struct ib_class_port_info *cif;
283
284         cif = (struct ib_class_port_info *)mad->data;
285         memset(cif, 0, sizeof *cif);
286         cif->base_version = 1;
287         cif->class_version = 1;
288         cif->resp_time_value = 20;
289
290         mad->mad_hdr.status = 0;
291 }
292
293 /**
294  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295  *
296  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297  * Specification. See also section B.7, table B.6 in the SRP r16a document.
298  */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301         struct ib_dm_iou_info *ioui;
302         u8 slot;
303         int i;
304
305         ioui = (struct ib_dm_iou_info *)mad->data;
306         ioui->change_id = __constant_cpu_to_be16(1);
307         ioui->max_controllers = 16;
308
309         /* set present for slot 1 and empty for the rest */
310         srpt_set_ioc(ioui->controller_list, 1, 1);
311         for (i = 1, slot = 2; i < 16; i++, slot++)
312                 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314         mad->mad_hdr.status = 0;
315 }
316
317 /**
318  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325                          struct ib_dm_mad *mad)
326 {
327         struct srpt_device *sdev = sport->sdev;
328         struct ib_dm_ioc_profile *iocp;
329
330         iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332         if (!slot || slot > 16) {
333                 mad->mad_hdr.status
334                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335                 return;
336         }
337
338         if (slot > 2) {
339                 mad->mad_hdr.status
340                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341                 return;
342         }
343
344         memset(iocp, 0, sizeof *iocp);
345         strcpy(iocp->id_string, SRPT_ID_STRING);
346         iocp->guid = cpu_to_be64(srpt_service_guid);
347         iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348         iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349         iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350         iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351         iocp->subsys_device_id = 0x0;
352         iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353         iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354         iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355         iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356         iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357         iocp->rdma_read_depth = 4;
358         iocp->send_size = cpu_to_be32(srp_max_req_size);
359         iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360                                           1U << 24));
361         iocp->num_svc_entries = 1;
362         iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363                 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365         mad->mad_hdr.status = 0;
366 }
367
368 /**
369  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370  *
371  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372  * Specification. See also section B.7, table B.8 in the SRP r16a document.
373  */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375                                  u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377         struct ib_dm_svc_entries *svc_entries;
378
379         WARN_ON(!ioc_guid);
380
381         if (!slot || slot > 16) {
382                 mad->mad_hdr.status
383                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384                 return;
385         }
386
387         if (slot > 2 || lo > hi || hi > 1) {
388                 mad->mad_hdr.status
389                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390                 return;
391         }
392
393         svc_entries = (struct ib_dm_svc_entries *)mad->data;
394         memset(svc_entries, 0, sizeof *svc_entries);
395         svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396         snprintf(svc_entries->service_entries[0].name,
397                  sizeof(svc_entries->service_entries[0].name),
398                  "%s%016llx",
399                  SRP_SERVICE_NAME_PREFIX,
400                  ioc_guid);
401
402         mad->mad_hdr.status = 0;
403 }
404
405 /**
406  * srpt_mgmt_method_get() - Process a received management datagram.
407  * @sp:      source port through which the MAD has been received.
408  * @rq_mad:  received MAD.
409  * @rsp_mad: response MAD.
410  */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412                                  struct ib_dm_mad *rsp_mad)
413 {
414         u16 attr_id;
415         u32 slot;
416         u8 hi, lo;
417
418         attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419         switch (attr_id) {
420         case DM_ATTR_CLASS_PORT_INFO:
421                 srpt_get_class_port_info(rsp_mad);
422                 break;
423         case DM_ATTR_IOU_INFO:
424                 srpt_get_iou(rsp_mad);
425                 break;
426         case DM_ATTR_IOC_PROFILE:
427                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428                 srpt_get_ioc(sp, slot, rsp_mad);
429                 break;
430         case DM_ATTR_SVC_ENTRIES:
431                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432                 hi = (u8) ((slot >> 8) & 0xff);
433                 lo = (u8) (slot & 0xff);
434                 slot = (u16) ((slot >> 16) & 0xffff);
435                 srpt_get_svc_entries(srpt_service_guid,
436                                      slot, hi, lo, rsp_mad);
437                 break;
438         default:
439                 rsp_mad->mad_hdr.status =
440                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441                 break;
442         }
443 }
444
445 /**
446  * srpt_mad_send_handler() - Post MAD-send callback function.
447  */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449                                   struct ib_mad_send_wc *mad_wc)
450 {
451         ib_destroy_ah(mad_wc->send_buf->ah);
452         ib_free_send_mad(mad_wc->send_buf);
453 }
454
455 /**
456  * srpt_mad_recv_handler() - MAD reception callback function.
457  */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459                                   struct ib_mad_recv_wc *mad_wc)
460 {
461         struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462         struct ib_ah *ah;
463         struct ib_mad_send_buf *rsp;
464         struct ib_dm_mad *dm_mad;
465
466         if (!mad_wc || !mad_wc->recv_buf.mad)
467                 return;
468
469         ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470                                   mad_wc->recv_buf.grh, mad_agent->port_num);
471         if (IS_ERR(ah))
472                 goto err;
473
474         BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476         rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477                                  mad_wc->wc->pkey_index, 0,
478                                  IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479                                  GFP_KERNEL);
480         if (IS_ERR(rsp))
481                 goto err_rsp;
482
483         rsp->ah = ah;
484
485         dm_mad = rsp->mad;
486         memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487         dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488         dm_mad->mad_hdr.status = 0;
489
490         switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491         case IB_MGMT_METHOD_GET:
492                 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493                 break;
494         case IB_MGMT_METHOD_SET:
495                 dm_mad->mad_hdr.status =
496                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497                 break;
498         default:
499                 dm_mad->mad_hdr.status =
500                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501                 break;
502         }
503
504         if (!ib_post_send_mad(rsp, NULL)) {
505                 ib_free_recv_mad(mad_wc);
506                 /* will destroy_ah & free_send_mad in send completion */
507                 return;
508         }
509
510         ib_free_send_mad(rsp);
511
512 err_rsp:
513         ib_destroy_ah(ah);
514 err:
515         ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519  * srpt_refresh_port() - Configure a HCA port.
520  *
521  * Enable InfiniBand management datagram processing, update the cached sm_lid,
522  * lid and gid values, and register a callback function for processing MADs
523  * on the specified port.
524  *
525  * Note: It is safe to call this function more than once for the same port.
526  */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529         struct ib_mad_reg_req reg_req;
530         struct ib_port_modify port_modify;
531         struct ib_port_attr port_attr;
532         int ret;
533
534         memset(&port_modify, 0, sizeof port_modify);
535         port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536         port_modify.clr_port_cap_mask = 0;
537
538         ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539         if (ret)
540                 goto err_mod_port;
541
542         ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543         if (ret)
544                 goto err_query_port;
545
546         sport->sm_lid = port_attr.sm_lid;
547         sport->lid = port_attr.lid;
548
549         ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550         if (ret)
551                 goto err_query_port;
552
553         if (!sport->mad_agent) {
554                 memset(&reg_req, 0, sizeof reg_req);
555                 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556                 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557                 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558                 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560                 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561                                                          sport->port,
562                                                          IB_QPT_GSI,
563                                                          &reg_req, 0,
564                                                          srpt_mad_send_handler,
565                                                          srpt_mad_recv_handler,
566                                                          sport);
567                 if (IS_ERR(sport->mad_agent)) {
568                         ret = PTR_ERR(sport->mad_agent);
569                         sport->mad_agent = NULL;
570                         goto err_query_port;
571                 }
572         }
573
574         return 0;
575
576 err_query_port:
577
578         port_modify.set_port_cap_mask = 0;
579         port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580         ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584         return ret;
585 }
586
587 /**
588  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589  *
590  * Note: It is safe to call this function more than once for the same device.
591  */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594         struct ib_port_modify port_modify = {
595                 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596         };
597         struct srpt_port *sport;
598         int i;
599
600         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601                 sport = &sdev->port[i - 1];
602                 WARN_ON(sport->port != i);
603                 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604                         printk(KERN_ERR "disabling MAD processing failed.\n");
605                 if (sport->mad_agent) {
606                         ib_unregister_mad_agent(sport->mad_agent);
607                         sport->mad_agent = NULL;
608                 }
609         }
610 }
611
612 /**
613  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614  */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616                                            int ioctx_size, int dma_size,
617                                            enum dma_data_direction dir)
618 {
619         struct srpt_ioctx *ioctx;
620
621         ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622         if (!ioctx)
623                 goto err;
624
625         ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626         if (!ioctx->buf)
627                 goto err_free_ioctx;
628
629         ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630         if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631                 goto err_free_buf;
632
633         return ioctx;
634
635 err_free_buf:
636         kfree(ioctx->buf);
637 err_free_ioctx:
638         kfree(ioctx);
639 err:
640         return NULL;
641 }
642
643 /**
644  * srpt_free_ioctx() - Free an SRPT I/O context structure.
645  */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647                             int dma_size, enum dma_data_direction dir)
648 {
649         if (!ioctx)
650                 return;
651
652         ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653         kfree(ioctx->buf);
654         kfree(ioctx);
655 }
656
657 /**
658  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659  * @sdev:       Device to allocate the I/O context ring for.
660  * @ring_size:  Number of elements in the I/O context ring.
661  * @ioctx_size: I/O context size.
662  * @dma_size:   DMA buffer size.
663  * @dir:        DMA data direction.
664  */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666                                 int ring_size, int ioctx_size,
667                                 int dma_size, enum dma_data_direction dir)
668 {
669         struct srpt_ioctx **ring;
670         int i;
671
672         WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673                 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675         ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676         if (!ring)
677                 goto out;
678         for (i = 0; i < ring_size; ++i) {
679                 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680                 if (!ring[i])
681                         goto err;
682                 ring[i]->index = i;
683         }
684         goto out;
685
686 err:
687         while (--i >= 0)
688                 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689         kfree(ring);
690         ring = NULL;
691 out:
692         return ring;
693 }
694
695 /**
696  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697  */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699                                  struct srpt_device *sdev, int ring_size,
700                                  int dma_size, enum dma_data_direction dir)
701 {
702         int i;
703
704         for (i = 0; i < ring_size; ++i)
705                 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706         kfree(ioctx_ring);
707 }
708
709 /**
710  * srpt_get_cmd_state() - Get the state of a SCSI command.
711  */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714         enum srpt_command_state state;
715         unsigned long flags;
716
717         BUG_ON(!ioctx);
718
719         spin_lock_irqsave(&ioctx->spinlock, flags);
720         state = ioctx->state;
721         spin_unlock_irqrestore(&ioctx->spinlock, flags);
722         return state;
723 }
724
725 /**
726  * srpt_set_cmd_state() - Set the state of a SCSI command.
727  *
728  * Does not modify the state of aborted commands. Returns the previous command
729  * state.
730  */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732                                                   enum srpt_command_state new)
733 {
734         enum srpt_command_state previous;
735         unsigned long flags;
736
737         BUG_ON(!ioctx);
738
739         spin_lock_irqsave(&ioctx->spinlock, flags);
740         previous = ioctx->state;
741         if (previous != SRPT_STATE_DONE)
742                 ioctx->state = new;
743         spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745         return previous;
746 }
747
748 /**
749  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750  *
751  * Returns true if and only if the previous command state was equal to 'old'.
752  */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754                                         enum srpt_command_state old,
755                                         enum srpt_command_state new)
756 {
757         enum srpt_command_state previous;
758         unsigned long flags;
759
760         WARN_ON(!ioctx);
761         WARN_ON(old == SRPT_STATE_DONE);
762         WARN_ON(new == SRPT_STATE_NEW);
763
764         spin_lock_irqsave(&ioctx->spinlock, flags);
765         previous = ioctx->state;
766         if (previous == old)
767                 ioctx->state = new;
768         spin_unlock_irqrestore(&ioctx->spinlock, flags);
769         return previous == old;
770 }
771
772 /**
773  * srpt_post_recv() - Post an IB receive request.
774  */
775 static int srpt_post_recv(struct srpt_device *sdev,
776                           struct srpt_recv_ioctx *ioctx)
777 {
778         struct ib_sge list;
779         struct ib_recv_wr wr, *bad_wr;
780
781         BUG_ON(!sdev);
782         wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784         list.addr = ioctx->ioctx.dma;
785         list.length = srp_max_req_size;
786         list.lkey = sdev->mr->lkey;
787
788         wr.next = NULL;
789         wr.sg_list = &list;
790         wr.num_sge = 1;
791
792         return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796  * srpt_post_send() - Post an IB send request.
797  *
798  * Returns zero upon success and a non-zero value upon failure.
799  */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801                           struct srpt_send_ioctx *ioctx, int len)
802 {
803         struct ib_sge list;
804         struct ib_send_wr wr, *bad_wr;
805         struct srpt_device *sdev = ch->sport->sdev;
806         int ret;
807
808         atomic_inc(&ch->req_lim);
809
810         ret = -ENOMEM;
811         if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812                 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813                 goto out;
814         }
815
816         ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817                                       DMA_TO_DEVICE);
818
819         list.addr = ioctx->ioctx.dma;
820         list.length = len;
821         list.lkey = sdev->mr->lkey;
822
823         wr.next = NULL;
824         wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825         wr.sg_list = &list;
826         wr.num_sge = 1;
827         wr.opcode = IB_WR_SEND;
828         wr.send_flags = IB_SEND_SIGNALED;
829
830         ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833         if (ret < 0) {
834                 atomic_inc(&ch->sq_wr_avail);
835                 atomic_dec(&ch->req_lim);
836         }
837         return ret;
838 }
839
840 /**
841  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842  * @ioctx: Pointer to the I/O context associated with the request.
843  * @srp_cmd: Pointer to the SRP_CMD request data.
844  * @dir: Pointer to the variable to which the transfer direction will be
845  *   written.
846  * @data_len: Pointer to the variable to which the total data length of all
847  *   descriptors in the SRP_CMD request will be written.
848  *
849  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850  *
851  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852  * -ENOMEM when memory allocation fails and zero upon success.
853  */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855                              struct srp_cmd *srp_cmd,
856                              enum dma_data_direction *dir, u64 *data_len)
857 {
858         struct srp_indirect_buf *idb;
859         struct srp_direct_buf *db;
860         unsigned add_cdb_offset;
861         int ret;
862
863         /*
864          * The pointer computations below will only be compiled correctly
865          * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866          * whether srp_cmd::add_data has been declared as a byte pointer.
867          */
868         BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869                      && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871         BUG_ON(!dir);
872         BUG_ON(!data_len);
873
874         ret = 0;
875         *data_len = 0;
876
877         /*
878          * The lower four bits of the buffer format field contain the DATA-IN
879          * buffer descriptor format, and the highest four bits contain the
880          * DATA-OUT buffer descriptor format.
881          */
882         *dir = DMA_NONE;
883         if (srp_cmd->buf_fmt & 0xf)
884                 /* DATA-IN: transfer data from target to initiator (read). */
885                 *dir = DMA_FROM_DEVICE;
886         else if (srp_cmd->buf_fmt >> 4)
887                 /* DATA-OUT: transfer data from initiator to target (write). */
888                 *dir = DMA_TO_DEVICE;
889
890         /*
891          * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892          * CDB LENGTH' field are reserved and the size in bytes of this field
893          * is four times the value specified in bits 3..7. Hence the "& ~3".
894          */
895         add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896         if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897             ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898                 ioctx->n_rbuf = 1;
899                 ioctx->rbufs = &ioctx->single_rbuf;
900
901                 db = (struct srp_direct_buf *)(srp_cmd->add_data
902                                                + add_cdb_offset);
903                 memcpy(ioctx->rbufs, db, sizeof *db);
904                 *data_len = be32_to_cpu(db->len);
905         } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906                    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907                 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908                                                   + add_cdb_offset);
909
910                 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912                 if (ioctx->n_rbuf >
913                     (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914                         printk(KERN_ERR "received unsupported SRP_CMD request"
915                                " type (%u out + %u in != %u / %zu)\n",
916                                srp_cmd->data_out_desc_cnt,
917                                srp_cmd->data_in_desc_cnt,
918                                be32_to_cpu(idb->table_desc.len),
919                                sizeof(*db));
920                         ioctx->n_rbuf = 0;
921                         ret = -EINVAL;
922                         goto out;
923                 }
924
925                 if (ioctx->n_rbuf == 1)
926                         ioctx->rbufs = &ioctx->single_rbuf;
927                 else {
928                         ioctx->rbufs =
929                                 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930                         if (!ioctx->rbufs) {
931                                 ioctx->n_rbuf = 0;
932                                 ret = -ENOMEM;
933                                 goto out;
934                         }
935                 }
936
937                 db = idb->desc_list;
938                 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939                 *data_len = be32_to_cpu(idb->len);
940         }
941 out:
942         return ret;
943 }
944
945 /**
946  * srpt_init_ch_qp() - Initialize queue pair attributes.
947  *
948  * Initialized the attributes of queue pair 'qp' by allowing local write,
949  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950  */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953         struct ib_qp_attr *attr;
954         int ret;
955
956         attr = kzalloc(sizeof *attr, GFP_KERNEL);
957         if (!attr)
958                 return -ENOMEM;
959
960         attr->qp_state = IB_QPS_INIT;
961         attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962             IB_ACCESS_REMOTE_WRITE;
963         attr->port_num = ch->sport->port;
964         attr->pkey_index = 0;
965
966         ret = ib_modify_qp(qp, attr,
967                            IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968                            IB_QP_PKEY_INDEX);
969
970         kfree(attr);
971         return ret;
972 }
973
974 /**
975  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976  * @ch: channel of the queue pair.
977  * @qp: queue pair to change the state of.
978  *
979  * Returns zero upon success and a negative value upon failure.
980  *
981  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982  * If this structure ever becomes larger, it might be necessary to allocate
983  * it dynamically instead of on the stack.
984  */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987         struct ib_qp_attr qp_attr;
988         int attr_mask;
989         int ret;
990
991         qp_attr.qp_state = IB_QPS_RTR;
992         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993         if (ret)
994                 goto out;
995
996         qp_attr.max_dest_rd_atomic = 4;
997
998         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001         return ret;
1002 }
1003
1004 /**
1005  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006  * @ch: channel of the queue pair.
1007  * @qp: queue pair to change the state of.
1008  *
1009  * Returns zero upon success and a negative value upon failure.
1010  *
1011  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012  * If this structure ever becomes larger, it might be necessary to allocate
1013  * it dynamically instead of on the stack.
1014  */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017         struct ib_qp_attr qp_attr;
1018         int attr_mask;
1019         int ret;
1020
1021         qp_attr.qp_state = IB_QPS_RTS;
1022         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023         if (ret)
1024                 goto out;
1025
1026         qp_attr.max_rd_atomic = 4;
1027
1028         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031         return ret;
1032 }
1033
1034 /**
1035  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036  */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039         struct ib_qp_attr qp_attr;
1040
1041         qp_attr.qp_state = IB_QPS_ERR;
1042         return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047  */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049                                     struct srpt_send_ioctx *ioctx)
1050 {
1051         struct scatterlist *sg;
1052         enum dma_data_direction dir;
1053
1054         BUG_ON(!ch);
1055         BUG_ON(!ioctx);
1056         BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058         while (ioctx->n_rdma)
1059                 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061         kfree(ioctx->rdma_ius);
1062         ioctx->rdma_ius = NULL;
1063
1064         if (ioctx->mapped_sg_count) {
1065                 sg = ioctx->sg;
1066                 WARN_ON(!sg);
1067                 dir = ioctx->cmd.data_direction;
1068                 BUG_ON(dir == DMA_NONE);
1069                 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070                                 opposite_dma_dir(dir));
1071                 ioctx->mapped_sg_count = 0;
1072         }
1073 }
1074
1075 /**
1076  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077  */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079                                  struct srpt_send_ioctx *ioctx)
1080 {
1081         struct se_cmd *cmd;
1082         struct scatterlist *sg, *sg_orig;
1083         int sg_cnt;
1084         enum dma_data_direction dir;
1085         struct rdma_iu *riu;
1086         struct srp_direct_buf *db;
1087         dma_addr_t dma_addr;
1088         struct ib_sge *sge;
1089         u64 raddr;
1090         u32 rsize;
1091         u32 tsize;
1092         u32 dma_len;
1093         int count, nrdma;
1094         int i, j, k;
1095
1096         BUG_ON(!ch);
1097         BUG_ON(!ioctx);
1098         cmd = &ioctx->cmd;
1099         dir = cmd->data_direction;
1100         BUG_ON(dir == DMA_NONE);
1101
1102         ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103         ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105         count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106                               opposite_dma_dir(dir));
1107         if (unlikely(!count))
1108                 return -EAGAIN;
1109
1110         ioctx->mapped_sg_count = count;
1111
1112         if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113                 nrdma = ioctx->n_rdma_ius;
1114         else {
1115                 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116                         + ioctx->n_rbuf;
1117
1118                 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119                 if (!ioctx->rdma_ius)
1120                         goto free_mem;
1121
1122                 ioctx->n_rdma_ius = nrdma;
1123         }
1124
1125         db = ioctx->rbufs;
1126         tsize = cmd->data_length;
1127         dma_len = sg_dma_len(&sg[0]);
1128         riu = ioctx->rdma_ius;
1129
1130         /*
1131          * For each remote desc - calculate the #ib_sge.
1132          * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133          *      each remote desc rdma_iu is required a rdma wr;
1134          * else
1135          *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1136          *      another rdma wr
1137          */
1138         for (i = 0, j = 0;
1139              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140                 rsize = be32_to_cpu(db->len);
1141                 raddr = be64_to_cpu(db->va);
1142                 riu->raddr = raddr;
1143                 riu->rkey = be32_to_cpu(db->key);
1144                 riu->sge_cnt = 0;
1145
1146                 /* calculate how many sge required for this remote_buf */
1147                 while (rsize > 0 && tsize > 0) {
1148
1149                         if (rsize >= dma_len) {
1150                                 tsize -= dma_len;
1151                                 rsize -= dma_len;
1152                                 raddr += dma_len;
1153
1154                                 if (tsize > 0) {
1155                                         ++j;
1156                                         if (j < count) {
1157                                                 sg = sg_next(sg);
1158                                                 dma_len = sg_dma_len(sg);
1159                                         }
1160                                 }
1161                         } else {
1162                                 tsize -= rsize;
1163                                 dma_len -= rsize;
1164                                 rsize = 0;
1165                         }
1166
1167                         ++riu->sge_cnt;
1168
1169                         if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170                                 ++ioctx->n_rdma;
1171                                 riu->sge =
1172                                     kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173                                             GFP_KERNEL);
1174                                 if (!riu->sge)
1175                                         goto free_mem;
1176
1177                                 ++riu;
1178                                 riu->sge_cnt = 0;
1179                                 riu->raddr = raddr;
1180                                 riu->rkey = be32_to_cpu(db->key);
1181                         }
1182                 }
1183
1184                 ++ioctx->n_rdma;
1185                 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186                                    GFP_KERNEL);
1187                 if (!riu->sge)
1188                         goto free_mem;
1189         }
1190
1191         db = ioctx->rbufs;
1192         tsize = cmd->data_length;
1193         riu = ioctx->rdma_ius;
1194         sg = sg_orig;
1195         dma_len = sg_dma_len(&sg[0]);
1196         dma_addr = sg_dma_address(&sg[0]);
1197
1198         /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199         for (i = 0, j = 0;
1200              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201                 rsize = be32_to_cpu(db->len);
1202                 sge = riu->sge;
1203                 k = 0;
1204
1205                 while (rsize > 0 && tsize > 0) {
1206                         sge->addr = dma_addr;
1207                         sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209                         if (rsize >= dma_len) {
1210                                 sge->length =
1211                                         (tsize < dma_len) ? tsize : dma_len;
1212                                 tsize -= dma_len;
1213                                 rsize -= dma_len;
1214
1215                                 if (tsize > 0) {
1216                                         ++j;
1217                                         if (j < count) {
1218                                                 sg = sg_next(sg);
1219                                                 dma_len = sg_dma_len(sg);
1220                                                 dma_addr = sg_dma_address(sg);
1221                                         }
1222                                 }
1223                         } else {
1224                                 sge->length = (tsize < rsize) ? tsize : rsize;
1225                                 tsize -= rsize;
1226                                 dma_len -= rsize;
1227                                 dma_addr += rsize;
1228                                 rsize = 0;
1229                         }
1230
1231                         ++k;
1232                         if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233                                 ++riu;
1234                                 sge = riu->sge;
1235                                 k = 0;
1236                         } else if (rsize > 0 && tsize > 0)
1237                                 ++sge;
1238                 }
1239         }
1240
1241         return 0;
1242
1243 free_mem:
1244         srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246         return -ENOMEM;
1247 }
1248
1249 /**
1250  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251  */
1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253 {
1254         struct srpt_send_ioctx *ioctx;
1255         unsigned long flags;
1256
1257         BUG_ON(!ch);
1258
1259         ioctx = NULL;
1260         spin_lock_irqsave(&ch->spinlock, flags);
1261         if (!list_empty(&ch->free_list)) {
1262                 ioctx = list_first_entry(&ch->free_list,
1263                                          struct srpt_send_ioctx, free_list);
1264                 list_del(&ioctx->free_list);
1265         }
1266         spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268         if (!ioctx)
1269                 return ioctx;
1270
1271         BUG_ON(ioctx->ch != ch);
1272         spin_lock_init(&ioctx->spinlock);
1273         ioctx->state = SRPT_STATE_NEW;
1274         ioctx->n_rbuf = 0;
1275         ioctx->rbufs = NULL;
1276         ioctx->n_rdma = 0;
1277         ioctx->n_rdma_ius = 0;
1278         ioctx->rdma_ius = NULL;
1279         ioctx->mapped_sg_count = 0;
1280         init_completion(&ioctx->tx_done);
1281         ioctx->queue_status_only = false;
1282         /*
1283          * transport_init_se_cmd() does not initialize all fields, so do it
1284          * here.
1285          */
1286         memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1287         memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1288
1289         return ioctx;
1290 }
1291
1292 /**
1293  * srpt_abort_cmd() - Abort a SCSI command.
1294  * @ioctx:   I/O context associated with the SCSI command.
1295  * @context: Preferred execution context.
1296  */
1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1298 {
1299         enum srpt_command_state state;
1300         unsigned long flags;
1301
1302         BUG_ON(!ioctx);
1303
1304         /*
1305          * If the command is in a state where the target core is waiting for
1306          * the ib_srpt driver, change the state to the next state. Changing
1307          * the state of the command from SRPT_STATE_NEED_DATA to
1308          * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1309          * function a second time.
1310          */
1311
1312         spin_lock_irqsave(&ioctx->spinlock, flags);
1313         state = ioctx->state;
1314         switch (state) {
1315         case SRPT_STATE_NEED_DATA:
1316                 ioctx->state = SRPT_STATE_DATA_IN;
1317                 break;
1318         case SRPT_STATE_DATA_IN:
1319         case SRPT_STATE_CMD_RSP_SENT:
1320         case SRPT_STATE_MGMT_RSP_SENT:
1321                 ioctx->state = SRPT_STATE_DONE;
1322                 break;
1323         default:
1324                 break;
1325         }
1326         spin_unlock_irqrestore(&ioctx->spinlock, flags);
1327
1328         if (state == SRPT_STATE_DONE) {
1329                 struct srpt_rdma_ch *ch = ioctx->ch;
1330
1331                 BUG_ON(ch->sess == NULL);
1332
1333                 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1334                 goto out;
1335         }
1336
1337         pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1338                  ioctx->tag);
1339
1340         switch (state) {
1341         case SRPT_STATE_NEW:
1342         case SRPT_STATE_DATA_IN:
1343         case SRPT_STATE_MGMT:
1344                 /*
1345                  * Do nothing - defer abort processing until
1346                  * srpt_queue_response() is invoked.
1347                  */
1348                 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1349                 break;
1350         case SRPT_STATE_NEED_DATA:
1351                 /* DMA_TO_DEVICE (write) - RDMA read error. */
1352
1353                 /* XXX(hch): this is a horrible layering violation.. */
1354                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1355                 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1356                 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1357                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1358
1359                 complete(&ioctx->cmd.transport_lun_stop_comp);
1360                 break;
1361         case SRPT_STATE_CMD_RSP_SENT:
1362                 /*
1363                  * SRP_RSP sending failed or the SRP_RSP send completion has
1364                  * not been received in time.
1365                  */
1366                 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1368                 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1369                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1370                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1371                 break;
1372         case SRPT_STATE_MGMT_RSP_SENT:
1373                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1374                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1375                 break;
1376         default:
1377                 WARN(1, "Unexpected command state (%d)", state);
1378                 break;
1379         }
1380
1381 out:
1382         return state;
1383 }
1384
1385 /**
1386  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1387  */
1388 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1389 {
1390         struct srpt_send_ioctx *ioctx;
1391         enum srpt_command_state state;
1392         struct se_cmd *cmd;
1393         u32 index;
1394
1395         atomic_inc(&ch->sq_wr_avail);
1396
1397         index = idx_from_wr_id(wr_id);
1398         ioctx = ch->ioctx_ring[index];
1399         state = srpt_get_cmd_state(ioctx);
1400         cmd = &ioctx->cmd;
1401
1402         WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1403                 && state != SRPT_STATE_MGMT_RSP_SENT
1404                 && state != SRPT_STATE_NEED_DATA
1405                 && state != SRPT_STATE_DONE);
1406
1407         /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1408         if (state == SRPT_STATE_CMD_RSP_SENT
1409             || state == SRPT_STATE_MGMT_RSP_SENT)
1410                 atomic_dec(&ch->req_lim);
1411
1412         srpt_abort_cmd(ioctx);
1413 }
1414
1415 /**
1416  * srpt_handle_send_comp() - Process an IB send completion notification.
1417  */
1418 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1419                                   struct srpt_send_ioctx *ioctx)
1420 {
1421         enum srpt_command_state state;
1422
1423         atomic_inc(&ch->sq_wr_avail);
1424
1425         state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1426
1427         if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1428                     && state != SRPT_STATE_MGMT_RSP_SENT
1429                     && state != SRPT_STATE_DONE))
1430                 pr_debug("state = %d\n", state);
1431
1432         if (state != SRPT_STATE_DONE) {
1433                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1434                 transport_generic_free_cmd(&ioctx->cmd, 0);
1435         } else {
1436                 printk(KERN_ERR "IB completion has been received too late for"
1437                        " wr_id = %u.\n", ioctx->ioctx.index);
1438         }
1439 }
1440
1441 /**
1442  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1443  *
1444  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1445  * the data that has been transferred via IB RDMA had to be postponed until the
1446  * check_stop_free() callback.  None of this is necessary anymore and needs to
1447  * be cleaned up.
1448  */
1449 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1450                                   struct srpt_send_ioctx *ioctx,
1451                                   enum srpt_opcode opcode)
1452 {
1453         WARN_ON(ioctx->n_rdma <= 0);
1454         atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1455
1456         if (opcode == SRPT_RDMA_READ_LAST) {
1457                 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1458                                                 SRPT_STATE_DATA_IN))
1459                         target_execute_cmd(&ioctx->cmd);
1460                 else
1461                         printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1462                                __LINE__, srpt_get_cmd_state(ioctx));
1463         } else if (opcode == SRPT_RDMA_ABORT) {
1464                 ioctx->rdma_aborted = true;
1465         } else {
1466                 WARN(true, "unexpected opcode %d\n", opcode);
1467         }
1468 }
1469
1470 /**
1471  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1472  */
1473 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1474                                       struct srpt_send_ioctx *ioctx,
1475                                       enum srpt_opcode opcode)
1476 {
1477         struct se_cmd *cmd;
1478         enum srpt_command_state state;
1479         unsigned long flags;
1480
1481         cmd = &ioctx->cmd;
1482         state = srpt_get_cmd_state(ioctx);
1483         switch (opcode) {
1484         case SRPT_RDMA_READ_LAST:
1485                 if (ioctx->n_rdma <= 0) {
1486                         printk(KERN_ERR "Received invalid RDMA read"
1487                                " error completion with idx %d\n",
1488                                ioctx->ioctx.index);
1489                         break;
1490                 }
1491                 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1492                 if (state == SRPT_STATE_NEED_DATA)
1493                         srpt_abort_cmd(ioctx);
1494                 else
1495                         printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1496                                __func__, __LINE__, state);
1497                 break;
1498         case SRPT_RDMA_WRITE_LAST:
1499                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1500                 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1501                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1502                 break;
1503         default:
1504                 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1505                        __LINE__, opcode);
1506                 break;
1507         }
1508 }
1509
1510 /**
1511  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1512  * @ch: RDMA channel through which the request has been received.
1513  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1514  *   be built in the buffer ioctx->buf points at and hence this function will
1515  *   overwrite the request data.
1516  * @tag: tag of the request for which this response is being generated.
1517  * @status: value for the STATUS field of the SRP_RSP information unit.
1518  *
1519  * Returns the size in bytes of the SRP_RSP response.
1520  *
1521  * An SRP_RSP response contains a SCSI status or service response. See also
1522  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1523  * response. See also SPC-2 for more information about sense data.
1524  */
1525 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1526                               struct srpt_send_ioctx *ioctx, u64 tag,
1527                               int status)
1528 {
1529         struct srp_rsp *srp_rsp;
1530         const u8 *sense_data;
1531         int sense_data_len, max_sense_len;
1532
1533         /*
1534          * The lowest bit of all SAM-3 status codes is zero (see also
1535          * paragraph 5.3 in SAM-3).
1536          */
1537         WARN_ON(status & 1);
1538
1539         srp_rsp = ioctx->ioctx.buf;
1540         BUG_ON(!srp_rsp);
1541
1542         sense_data = ioctx->sense_data;
1543         sense_data_len = ioctx->cmd.scsi_sense_length;
1544         WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1545
1546         memset(srp_rsp, 0, sizeof *srp_rsp);
1547         srp_rsp->opcode = SRP_RSP;
1548         srp_rsp->req_lim_delta =
1549                 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1550         srp_rsp->tag = tag;
1551         srp_rsp->status = status;
1552
1553         if (sense_data_len) {
1554                 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1555                 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1556                 if (sense_data_len > max_sense_len) {
1557                         printk(KERN_WARNING "truncated sense data from %d to %d"
1558                                " bytes\n", sense_data_len, max_sense_len);
1559                         sense_data_len = max_sense_len;
1560                 }
1561
1562                 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1563                 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1564                 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1565         }
1566
1567         return sizeof(*srp_rsp) + sense_data_len;
1568 }
1569
1570 /**
1571  * srpt_build_tskmgmt_rsp() - Build a task management response.
1572  * @ch:       RDMA channel through which the request has been received.
1573  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1574  * @rsp_code: RSP_CODE that will be stored in the response.
1575  * @tag:      Tag of the request for which this response is being generated.
1576  *
1577  * Returns the size in bytes of the SRP_RSP response.
1578  *
1579  * An SRP_RSP response contains a SCSI status or service response. See also
1580  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1581  * response.
1582  */
1583 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1584                                   struct srpt_send_ioctx *ioctx,
1585                                   u8 rsp_code, u64 tag)
1586 {
1587         struct srp_rsp *srp_rsp;
1588         int resp_data_len;
1589         int resp_len;
1590
1591         resp_data_len = 4;
1592         resp_len = sizeof(*srp_rsp) + resp_data_len;
1593
1594         srp_rsp = ioctx->ioctx.buf;
1595         BUG_ON(!srp_rsp);
1596         memset(srp_rsp, 0, sizeof *srp_rsp);
1597
1598         srp_rsp->opcode = SRP_RSP;
1599         srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1600                                     + atomic_xchg(&ch->req_lim_delta, 0));
1601         srp_rsp->tag = tag;
1602
1603         srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1604         srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1605         srp_rsp->data[3] = rsp_code;
1606
1607         return resp_len;
1608 }
1609
1610 #define NO_SUCH_LUN ((uint64_t)-1LL)
1611
1612 /*
1613  * SCSI LUN addressing method. See also SAM-2 and the section about
1614  * eight byte LUNs.
1615  */
1616 enum scsi_lun_addr_method {
1617         SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1618         SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1619         SCSI_LUN_ADDR_METHOD_LUN          = 2,
1620         SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1621 };
1622
1623 /*
1624  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1625  *
1626  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1627  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1628  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1629  */
1630 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1631 {
1632         uint64_t res = NO_SUCH_LUN;
1633         int addressing_method;
1634
1635         if (unlikely(len < 2)) {
1636                 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1637                        "more", len);
1638                 goto out;
1639         }
1640
1641         switch (len) {
1642         case 8:
1643                 if ((*((__be64 *)lun) &
1644                      __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1645                         goto out_err;
1646                 break;
1647         case 4:
1648                 if (*((__be16 *)&lun[2]) != 0)
1649                         goto out_err;
1650                 break;
1651         case 6:
1652                 if (*((__be32 *)&lun[2]) != 0)
1653                         goto out_err;
1654                 break;
1655         case 2:
1656                 break;
1657         default:
1658                 goto out_err;
1659         }
1660
1661         addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1662         switch (addressing_method) {
1663         case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1664         case SCSI_LUN_ADDR_METHOD_FLAT:
1665         case SCSI_LUN_ADDR_METHOD_LUN:
1666                 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1667                 break;
1668
1669         case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1670         default:
1671                 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1672                        addressing_method);
1673                 break;
1674         }
1675
1676 out:
1677         return res;
1678
1679 out_err:
1680         printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1681                " implemented");
1682         goto out;
1683 }
1684
1685 static int srpt_check_stop_free(struct se_cmd *cmd)
1686 {
1687         struct srpt_send_ioctx *ioctx = container_of(cmd,
1688                                 struct srpt_send_ioctx, cmd);
1689
1690         return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1691 }
1692
1693 /**
1694  * srpt_handle_cmd() - Process SRP_CMD.
1695  */
1696 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1697                            struct srpt_recv_ioctx *recv_ioctx,
1698                            struct srpt_send_ioctx *send_ioctx)
1699 {
1700         struct se_cmd *cmd;
1701         struct srp_cmd *srp_cmd;
1702         uint64_t unpacked_lun;
1703         u64 data_len;
1704         enum dma_data_direction dir;
1705         sense_reason_t ret;
1706         int rc;
1707
1708         BUG_ON(!send_ioctx);
1709
1710         srp_cmd = recv_ioctx->ioctx.buf;
1711         cmd = &send_ioctx->cmd;
1712         send_ioctx->tag = srp_cmd->tag;
1713
1714         switch (srp_cmd->task_attr) {
1715         case SRP_CMD_SIMPLE_Q:
1716                 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1717                 break;
1718         case SRP_CMD_ORDERED_Q:
1719         default:
1720                 cmd->sam_task_attr = MSG_ORDERED_TAG;
1721                 break;
1722         case SRP_CMD_HEAD_OF_Q:
1723                 cmd->sam_task_attr = MSG_HEAD_TAG;
1724                 break;
1725         case SRP_CMD_ACA:
1726                 cmd->sam_task_attr = MSG_ACA_TAG;
1727                 break;
1728         }
1729
1730         if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1731                 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1732                        srp_cmd->tag);
1733                 ret = TCM_INVALID_CDB_FIELD;
1734                 goto send_sense;
1735         }
1736
1737         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1738                                        sizeof(srp_cmd->lun));
1739         rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1740                         &send_ioctx->sense_data[0], unpacked_lun, data_len,
1741                         MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1742         if (rc != 0) {
1743                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1744                 goto send_sense;
1745         }
1746         return 0;
1747
1748 send_sense:
1749         transport_send_check_condition_and_sense(cmd, ret, 0);
1750         return -1;
1751 }
1752
1753 /**
1754  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1755  * @ch: RDMA channel of the task management request.
1756  * @fn: Task management function to perform.
1757  * @req_tag: Tag of the SRP task management request.
1758  * @mgmt_ioctx: I/O context of the task management request.
1759  *
1760  * Returns zero if the target core will process the task management
1761  * request asynchronously.
1762  *
1763  * Note: It is assumed that the initiator serializes tag-based task management
1764  * requests.
1765  */
1766 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1767 {
1768         struct srpt_device *sdev;
1769         struct srpt_rdma_ch *ch;
1770         struct srpt_send_ioctx *target;
1771         int ret, i;
1772
1773         ret = -EINVAL;
1774         ch = ioctx->ch;
1775         BUG_ON(!ch);
1776         BUG_ON(!ch->sport);
1777         sdev = ch->sport->sdev;
1778         BUG_ON(!sdev);
1779         spin_lock_irq(&sdev->spinlock);
1780         for (i = 0; i < ch->rq_size; ++i) {
1781                 target = ch->ioctx_ring[i];
1782                 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1783                     target->tag == tag &&
1784                     srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1785                         ret = 0;
1786                         /* now let the target core abort &target->cmd; */
1787                         break;
1788                 }
1789         }
1790         spin_unlock_irq(&sdev->spinlock);
1791         return ret;
1792 }
1793
1794 static int srp_tmr_to_tcm(int fn)
1795 {
1796         switch (fn) {
1797         case SRP_TSK_ABORT_TASK:
1798                 return TMR_ABORT_TASK;
1799         case SRP_TSK_ABORT_TASK_SET:
1800                 return TMR_ABORT_TASK_SET;
1801         case SRP_TSK_CLEAR_TASK_SET:
1802                 return TMR_CLEAR_TASK_SET;
1803         case SRP_TSK_LUN_RESET:
1804                 return TMR_LUN_RESET;
1805         case SRP_TSK_CLEAR_ACA:
1806                 return TMR_CLEAR_ACA;
1807         default:
1808                 return -1;
1809         }
1810 }
1811
1812 /**
1813  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1814  *
1815  * Returns 0 if and only if the request will be processed by the target core.
1816  *
1817  * For more information about SRP_TSK_MGMT information units, see also section
1818  * 6.7 in the SRP r16a document.
1819  */
1820 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1821                                  struct srpt_recv_ioctx *recv_ioctx,
1822                                  struct srpt_send_ioctx *send_ioctx)
1823 {
1824         struct srp_tsk_mgmt *srp_tsk;
1825         struct se_cmd *cmd;
1826         struct se_session *sess = ch->sess;
1827         uint64_t unpacked_lun;
1828         uint32_t tag = 0;
1829         int tcm_tmr;
1830         int rc;
1831
1832         BUG_ON(!send_ioctx);
1833
1834         srp_tsk = recv_ioctx->ioctx.buf;
1835         cmd = &send_ioctx->cmd;
1836
1837         pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1838                  " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1839                  srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1840
1841         srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1842         send_ioctx->tag = srp_tsk->tag;
1843         tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1844         if (tcm_tmr < 0) {
1845                 send_ioctx->cmd.se_tmr_req->response =
1846                         TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1847                 goto fail;
1848         }
1849         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1850                                        sizeof(srp_tsk->lun));
1851
1852         if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1853                 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1854                 if (rc < 0) {
1855                         send_ioctx->cmd.se_tmr_req->response =
1856                                         TMR_TASK_DOES_NOT_EXIST;
1857                         goto fail;
1858                 }
1859                 tag = srp_tsk->task_tag;
1860         }
1861         rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1862                                 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1863                                 TARGET_SCF_ACK_KREF);
1864         if (rc != 0) {
1865                 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1866                 goto fail;
1867         }
1868         return;
1869 fail:
1870         transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1871 }
1872
1873 /**
1874  * srpt_handle_new_iu() - Process a newly received information unit.
1875  * @ch:    RDMA channel through which the information unit has been received.
1876  * @ioctx: SRPT I/O context associated with the information unit.
1877  */
1878 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1879                                struct srpt_recv_ioctx *recv_ioctx,
1880                                struct srpt_send_ioctx *send_ioctx)
1881 {
1882         struct srp_cmd *srp_cmd;
1883         enum rdma_ch_state ch_state;
1884
1885         BUG_ON(!ch);
1886         BUG_ON(!recv_ioctx);
1887
1888         ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1889                                    recv_ioctx->ioctx.dma, srp_max_req_size,
1890                                    DMA_FROM_DEVICE);
1891
1892         ch_state = srpt_get_ch_state(ch);
1893         if (unlikely(ch_state == CH_CONNECTING)) {
1894                 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1895                 goto out;
1896         }
1897
1898         if (unlikely(ch_state != CH_LIVE))
1899                 goto out;
1900
1901         srp_cmd = recv_ioctx->ioctx.buf;
1902         if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1903                 if (!send_ioctx)
1904                         send_ioctx = srpt_get_send_ioctx(ch);
1905                 if (unlikely(!send_ioctx)) {
1906                         list_add_tail(&recv_ioctx->wait_list,
1907                                       &ch->cmd_wait_list);
1908                         goto out;
1909                 }
1910         }
1911
1912         switch (srp_cmd->opcode) {
1913         case SRP_CMD:
1914                 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1915                 break;
1916         case SRP_TSK_MGMT:
1917                 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1918                 break;
1919         case SRP_I_LOGOUT:
1920                 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1921                 break;
1922         case SRP_CRED_RSP:
1923                 pr_debug("received SRP_CRED_RSP\n");
1924                 break;
1925         case SRP_AER_RSP:
1926                 pr_debug("received SRP_AER_RSP\n");
1927                 break;
1928         case SRP_RSP:
1929                 printk(KERN_ERR "Received SRP_RSP\n");
1930                 break;
1931         default:
1932                 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1933                        srp_cmd->opcode);
1934                 break;
1935         }
1936
1937         srpt_post_recv(ch->sport->sdev, recv_ioctx);
1938 out:
1939         return;
1940 }
1941
1942 static void srpt_process_rcv_completion(struct ib_cq *cq,
1943                                         struct srpt_rdma_ch *ch,
1944                                         struct ib_wc *wc)
1945 {
1946         struct srpt_device *sdev = ch->sport->sdev;
1947         struct srpt_recv_ioctx *ioctx;
1948         u32 index;
1949
1950         index = idx_from_wr_id(wc->wr_id);
1951         if (wc->status == IB_WC_SUCCESS) {
1952                 int req_lim;
1953
1954                 req_lim = atomic_dec_return(&ch->req_lim);
1955                 if (unlikely(req_lim < 0))
1956                         printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1957                 ioctx = sdev->ioctx_ring[index];
1958                 srpt_handle_new_iu(ch, ioctx, NULL);
1959         } else {
1960                 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1961                        index, wc->status);
1962         }
1963 }
1964
1965 /**
1966  * srpt_process_send_completion() - Process an IB send completion.
1967  *
1968  * Note: Although this has not yet been observed during tests, at least in
1969  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1970  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1971  * value in each response is set to one, and it is possible that this response
1972  * makes the initiator send a new request before the send completion for that
1973  * response has been processed. This could e.g. happen if the call to
1974  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1975  * if IB retransmission causes generation of the send completion to be
1976  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1977  * are queued on cmd_wait_list. The code below processes these delayed
1978  * requests one at a time.
1979  */
1980 static void srpt_process_send_completion(struct ib_cq *cq,
1981                                          struct srpt_rdma_ch *ch,
1982                                          struct ib_wc *wc)
1983 {
1984         struct srpt_send_ioctx *send_ioctx;
1985         uint32_t index;
1986         enum srpt_opcode opcode;
1987
1988         index = idx_from_wr_id(wc->wr_id);
1989         opcode = opcode_from_wr_id(wc->wr_id);
1990         send_ioctx = ch->ioctx_ring[index];
1991         if (wc->status == IB_WC_SUCCESS) {
1992                 if (opcode == SRPT_SEND)
1993                         srpt_handle_send_comp(ch, send_ioctx);
1994                 else {
1995                         WARN_ON(opcode != SRPT_RDMA_ABORT &&
1996                                 wc->opcode != IB_WC_RDMA_READ);
1997                         srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1998                 }
1999         } else {
2000                 if (opcode == SRPT_SEND) {
2001                         printk(KERN_INFO "sending response for idx %u failed"
2002                                " with status %d\n", index, wc->status);
2003                         srpt_handle_send_err_comp(ch, wc->wr_id);
2004                 } else if (opcode != SRPT_RDMA_MID) {
2005                         printk(KERN_INFO "RDMA t %d for idx %u failed with"
2006                                 " status %d", opcode, index, wc->status);
2007                         srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2008                 }
2009         }
2010
2011         while (unlikely(opcode == SRPT_SEND
2012                         && !list_empty(&ch->cmd_wait_list)
2013                         && srpt_get_ch_state(ch) == CH_LIVE
2014                         && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2015                 struct srpt_recv_ioctx *recv_ioctx;
2016
2017                 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2018                                               struct srpt_recv_ioctx,
2019                                               wait_list);
2020                 list_del(&recv_ioctx->wait_list);
2021                 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2022         }
2023 }
2024
2025 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2026 {
2027         struct ib_wc *const wc = ch->wc;
2028         int i, n;
2029
2030         WARN_ON(cq != ch->cq);
2031
2032         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2033         while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2034                 for (i = 0; i < n; i++) {
2035                         if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2036                                 srpt_process_rcv_completion(cq, ch, &wc[i]);
2037                         else
2038                                 srpt_process_send_completion(cq, ch, &wc[i]);
2039                 }
2040         }
2041 }
2042
2043 /**
2044  * srpt_completion() - IB completion queue callback function.
2045  *
2046  * Notes:
2047  * - It is guaranteed that a completion handler will never be invoked
2048  *   concurrently on two different CPUs for the same completion queue. See also
2049  *   Documentation/infiniband/core_locking.txt and the implementation of
2050  *   handle_edge_irq() in kernel/irq/chip.c.
2051  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2052  *   context instead of interrupt context.
2053  */
2054 static void srpt_completion(struct ib_cq *cq, void *ctx)
2055 {
2056         struct srpt_rdma_ch *ch = ctx;
2057
2058         wake_up_interruptible(&ch->wait_queue);
2059 }
2060
2061 static int srpt_compl_thread(void *arg)
2062 {
2063         struct srpt_rdma_ch *ch;
2064
2065         /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2066         current->flags |= PF_NOFREEZE;
2067
2068         ch = arg;
2069         BUG_ON(!ch);
2070         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2071                ch->sess_name, ch->thread->comm, current->pid);
2072         while (!kthread_should_stop()) {
2073                 wait_event_interruptible(ch->wait_queue,
2074                         (srpt_process_completion(ch->cq, ch),
2075                          kthread_should_stop()));
2076         }
2077         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2078                ch->sess_name, ch->thread->comm, current->pid);
2079         return 0;
2080 }
2081
2082 /**
2083  * srpt_create_ch_ib() - Create receive and send completion queues.
2084  */
2085 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2086 {
2087         struct ib_qp_init_attr *qp_init;
2088         struct srpt_port *sport = ch->sport;
2089         struct srpt_device *sdev = sport->sdev;
2090         u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2091         int ret;
2092
2093         WARN_ON(ch->rq_size < 1);
2094
2095         ret = -ENOMEM;
2096         qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2097         if (!qp_init)
2098                 goto out;
2099
2100         ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2101                               ch->rq_size + srp_sq_size, 0);
2102         if (IS_ERR(ch->cq)) {
2103                 ret = PTR_ERR(ch->cq);
2104                 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2105                        ch->rq_size + srp_sq_size, ret);
2106                 goto out;
2107         }
2108
2109         qp_init->qp_context = (void *)ch;
2110         qp_init->event_handler
2111                 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2112         qp_init->send_cq = ch->cq;
2113         qp_init->recv_cq = ch->cq;
2114         qp_init->srq = sdev->srq;
2115         qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2116         qp_init->qp_type = IB_QPT_RC;
2117         qp_init->cap.max_send_wr = srp_sq_size;
2118         qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2119
2120         ch->qp = ib_create_qp(sdev->pd, qp_init);
2121         if (IS_ERR(ch->qp)) {
2122                 ret = PTR_ERR(ch->qp);
2123                 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2124                 goto err_destroy_cq;
2125         }
2126
2127         atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2128
2129         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2130                  __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2131                  qp_init->cap.max_send_wr, ch->cm_id);
2132
2133         ret = srpt_init_ch_qp(ch, ch->qp);
2134         if (ret)
2135                 goto err_destroy_qp;
2136
2137         init_waitqueue_head(&ch->wait_queue);
2138
2139         pr_debug("creating thread for session %s\n", ch->sess_name);
2140
2141         ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2142         if (IS_ERR(ch->thread)) {
2143                 printk(KERN_ERR "failed to create kernel thread %ld\n",
2144                        PTR_ERR(ch->thread));
2145                 ch->thread = NULL;
2146                 goto err_destroy_qp;
2147         }
2148
2149 out:
2150         kfree(qp_init);
2151         return ret;
2152
2153 err_destroy_qp:
2154         ib_destroy_qp(ch->qp);
2155 err_destroy_cq:
2156         ib_destroy_cq(ch->cq);
2157         goto out;
2158 }
2159
2160 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2161 {
2162         if (ch->thread)
2163                 kthread_stop(ch->thread);
2164
2165         ib_destroy_qp(ch->qp);
2166         ib_destroy_cq(ch->cq);
2167 }
2168
2169 /**
2170  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2171  *
2172  * Reset the QP and make sure all resources associated with the channel will
2173  * be deallocated at an appropriate time.
2174  *
2175  * Note: The caller must hold ch->sport->sdev->spinlock.
2176  */
2177 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2178 {
2179         struct srpt_device *sdev;
2180         enum rdma_ch_state prev_state;
2181         unsigned long flags;
2182
2183         sdev = ch->sport->sdev;
2184
2185         spin_lock_irqsave(&ch->spinlock, flags);
2186         prev_state = ch->state;
2187         switch (prev_state) {
2188         case CH_CONNECTING:
2189         case CH_LIVE:
2190                 ch->state = CH_DISCONNECTING;
2191                 break;
2192         default:
2193                 break;
2194         }
2195         spin_unlock_irqrestore(&ch->spinlock, flags);
2196
2197         switch (prev_state) {
2198         case CH_CONNECTING:
2199                 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2200                                NULL, 0);
2201                 /* fall through */
2202         case CH_LIVE:
2203                 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2204                         printk(KERN_ERR "sending CM DREQ failed.\n");
2205                 break;
2206         case CH_DISCONNECTING:
2207                 break;
2208         case CH_DRAINING:
2209         case CH_RELEASING:
2210                 break;
2211         }
2212 }
2213
2214 /**
2215  * srpt_close_ch() - Close an RDMA channel.
2216  */
2217 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2218 {
2219         struct srpt_device *sdev;
2220
2221         sdev = ch->sport->sdev;
2222         spin_lock_irq(&sdev->spinlock);
2223         __srpt_close_ch(ch);
2224         spin_unlock_irq(&sdev->spinlock);
2225 }
2226
2227 /**
2228  * srpt_shutdown_session() - Whether or not a session may be shut down.
2229  */
2230 static int srpt_shutdown_session(struct se_session *se_sess)
2231 {
2232         struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2233         unsigned long flags;
2234
2235         spin_lock_irqsave(&ch->spinlock, flags);
2236         if (ch->in_shutdown) {
2237                 spin_unlock_irqrestore(&ch->spinlock, flags);
2238                 return true;
2239         }
2240
2241         ch->in_shutdown = true;
2242         target_sess_cmd_list_set_waiting(se_sess);
2243         spin_unlock_irqrestore(&ch->spinlock, flags);
2244
2245         return true;
2246 }
2247
2248 /**
2249  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2250  * @cm_id: Pointer to the CM ID of the channel to be drained.
2251  *
2252  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2253  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2254  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2255  * waits until all target sessions for the associated IB device have been
2256  * unregistered and target session registration involves a call to
2257  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2258  * this function has finished).
2259  */
2260 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2261 {
2262         struct srpt_device *sdev;
2263         struct srpt_rdma_ch *ch;
2264         int ret;
2265         bool do_reset = false;
2266
2267         WARN_ON_ONCE(irqs_disabled());
2268
2269         sdev = cm_id->context;
2270         BUG_ON(!sdev);
2271         spin_lock_irq(&sdev->spinlock);
2272         list_for_each_entry(ch, &sdev->rch_list, list) {
2273                 if (ch->cm_id == cm_id) {
2274                         do_reset = srpt_test_and_set_ch_state(ch,
2275                                         CH_CONNECTING, CH_DRAINING) ||
2276                                    srpt_test_and_set_ch_state(ch,
2277                                         CH_LIVE, CH_DRAINING) ||
2278                                    srpt_test_and_set_ch_state(ch,
2279                                         CH_DISCONNECTING, CH_DRAINING);
2280                         break;
2281                 }
2282         }
2283         spin_unlock_irq(&sdev->spinlock);
2284
2285         if (do_reset) {
2286                 if (ch->sess)
2287                         srpt_shutdown_session(ch->sess);
2288
2289                 ret = srpt_ch_qp_err(ch);
2290                 if (ret < 0)
2291                         printk(KERN_ERR "Setting queue pair in error state"
2292                                " failed: %d\n", ret);
2293         }
2294 }
2295
2296 /**
2297  * srpt_find_channel() - Look up an RDMA channel.
2298  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2299  *
2300  * Return NULL if no matching RDMA channel has been found.
2301  */
2302 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2303                                               struct ib_cm_id *cm_id)
2304 {
2305         struct srpt_rdma_ch *ch;
2306         bool found;
2307
2308         WARN_ON_ONCE(irqs_disabled());
2309         BUG_ON(!sdev);
2310
2311         found = false;
2312         spin_lock_irq(&sdev->spinlock);
2313         list_for_each_entry(ch, &sdev->rch_list, list) {
2314                 if (ch->cm_id == cm_id) {
2315                         found = true;
2316                         break;
2317                 }
2318         }
2319         spin_unlock_irq(&sdev->spinlock);
2320
2321         return found ? ch : NULL;
2322 }
2323
2324 /**
2325  * srpt_release_channel() - Release channel resources.
2326  *
2327  * Schedules the actual release because:
2328  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2329  *   trigger a deadlock.
2330  * - It is not safe to call TCM transport_* functions from interrupt context.
2331  */
2332 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2333 {
2334         schedule_work(&ch->release_work);
2335 }
2336
2337 static void srpt_release_channel_work(struct work_struct *w)
2338 {
2339         struct srpt_rdma_ch *ch;
2340         struct srpt_device *sdev;
2341         struct se_session *se_sess;
2342
2343         ch = container_of(w, struct srpt_rdma_ch, release_work);
2344         pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2345                  ch->release_done);
2346
2347         sdev = ch->sport->sdev;
2348         BUG_ON(!sdev);
2349
2350         se_sess = ch->sess;
2351         BUG_ON(!se_sess);
2352
2353         target_wait_for_sess_cmds(se_sess);
2354
2355         transport_deregister_session_configfs(se_sess);
2356         transport_deregister_session(se_sess);
2357         ch->sess = NULL;
2358
2359         ib_destroy_cm_id(ch->cm_id);
2360
2361         srpt_destroy_ch_ib(ch);
2362
2363         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2364                              ch->sport->sdev, ch->rq_size,
2365                              ch->rsp_size, DMA_TO_DEVICE);
2366
2367         spin_lock_irq(&sdev->spinlock);
2368         list_del(&ch->list);
2369         spin_unlock_irq(&sdev->spinlock);
2370
2371         if (ch->release_done)
2372                 complete(ch->release_done);
2373
2374         wake_up(&sdev->ch_releaseQ);
2375
2376         kfree(ch);
2377 }
2378
2379 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2380                                                u8 i_port_id[16])
2381 {
2382         struct srpt_node_acl *nacl;
2383
2384         list_for_each_entry(nacl, &sport->port_acl_list, list)
2385                 if (memcmp(nacl->i_port_id, i_port_id,
2386                            sizeof(nacl->i_port_id)) == 0)
2387                         return nacl;
2388
2389         return NULL;
2390 }
2391
2392 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2393                                              u8 i_port_id[16])
2394 {
2395         struct srpt_node_acl *nacl;
2396
2397         spin_lock_irq(&sport->port_acl_lock);
2398         nacl = __srpt_lookup_acl(sport, i_port_id);
2399         spin_unlock_irq(&sport->port_acl_lock);
2400
2401         return nacl;
2402 }
2403
2404 /**
2405  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2406  *
2407  * Ownership of the cm_id is transferred to the target session if this
2408  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2409  */
2410 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2411                             struct ib_cm_req_event_param *param,
2412                             void *private_data)
2413 {
2414         struct srpt_device *sdev = cm_id->context;
2415         struct srpt_port *sport = &sdev->port[param->port - 1];
2416         struct srp_login_req *req;
2417         struct srp_login_rsp *rsp;
2418         struct srp_login_rej *rej;
2419         struct ib_cm_rep_param *rep_param;
2420         struct srpt_rdma_ch *ch, *tmp_ch;
2421         struct srpt_node_acl *nacl;
2422         u32 it_iu_len;
2423         int i;
2424         int ret = 0;
2425
2426         WARN_ON_ONCE(irqs_disabled());
2427
2428         if (WARN_ON(!sdev || !private_data))
2429                 return -EINVAL;
2430
2431         req = (struct srp_login_req *)private_data;
2432
2433         it_iu_len = be32_to_cpu(req->req_it_iu_len);
2434
2435         printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2436                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2437                " (guid=0x%llx:0x%llx)\n",
2438                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2439                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2440                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2441                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2442                it_iu_len,
2443                param->port,
2444                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2445                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2446
2447         rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2448         rej = kzalloc(sizeof *rej, GFP_KERNEL);
2449         rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2450
2451         if (!rsp || !rej || !rep_param) {
2452                 ret = -ENOMEM;
2453                 goto out;
2454         }
2455
2456         if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2457                 rej->reason = __constant_cpu_to_be32(
2458                                 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2459                 ret = -EINVAL;
2460                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2461                        " length (%d bytes) is out of range (%d .. %d)\n",
2462                        it_iu_len, 64, srp_max_req_size);
2463                 goto reject;
2464         }
2465
2466         if (!sport->enabled) {
2467                 rej->reason = __constant_cpu_to_be32(
2468                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2469                 ret = -EINVAL;
2470                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2471                        " has not yet been enabled\n");
2472                 goto reject;
2473         }
2474
2475         if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2476                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2477
2478                 spin_lock_irq(&sdev->spinlock);
2479
2480                 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2481                         if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2482                             && !memcmp(ch->t_port_id, req->target_port_id, 16)
2483                             && param->port == ch->sport->port
2484                             && param->listen_id == ch->sport->sdev->cm_id
2485                             && ch->cm_id) {
2486                                 enum rdma_ch_state ch_state;
2487
2488                                 ch_state = srpt_get_ch_state(ch);
2489                                 if (ch_state != CH_CONNECTING
2490                                     && ch_state != CH_LIVE)
2491                                         continue;
2492
2493                                 /* found an existing channel */
2494                                 pr_debug("Found existing channel %s"
2495                                          " cm_id= %p state= %d\n",
2496                                          ch->sess_name, ch->cm_id, ch_state);
2497
2498                                 __srpt_close_ch(ch);
2499
2500                                 rsp->rsp_flags =
2501                                         SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2502                         }
2503                 }
2504
2505                 spin_unlock_irq(&sdev->spinlock);
2506
2507         } else
2508                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2509
2510         if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2511             || *(__be64 *)(req->target_port_id + 8) !=
2512                cpu_to_be64(srpt_service_guid)) {
2513                 rej->reason = __constant_cpu_to_be32(
2514                                 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2515                 ret = -ENOMEM;
2516                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2517                        " has an invalid target port identifier.\n");
2518                 goto reject;
2519         }
2520
2521         ch = kzalloc(sizeof *ch, GFP_KERNEL);
2522         if (!ch) {
2523                 rej->reason = __constant_cpu_to_be32(
2524                                         SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2525                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2526                 ret = -ENOMEM;
2527                 goto reject;
2528         }
2529
2530         INIT_WORK(&ch->release_work, srpt_release_channel_work);
2531         memcpy(ch->i_port_id, req->initiator_port_id, 16);
2532         memcpy(ch->t_port_id, req->target_port_id, 16);
2533         ch->sport = &sdev->port[param->port - 1];
2534         ch->cm_id = cm_id;
2535         /*
2536          * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2537          * for the SRP protocol to the command queue size.
2538          */
2539         ch->rq_size = SRPT_RQ_SIZE;
2540         spin_lock_init(&ch->spinlock);
2541         ch->state = CH_CONNECTING;
2542         INIT_LIST_HEAD(&ch->cmd_wait_list);
2543         ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2544
2545         ch->ioctx_ring = (struct srpt_send_ioctx **)
2546                 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2547                                       sizeof(*ch->ioctx_ring[0]),
2548                                       ch->rsp_size, DMA_TO_DEVICE);
2549         if (!ch->ioctx_ring)
2550                 goto free_ch;
2551
2552         INIT_LIST_HEAD(&ch->free_list);
2553         for (i = 0; i < ch->rq_size; i++) {
2554                 ch->ioctx_ring[i]->ch = ch;
2555                 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2556         }
2557
2558         ret = srpt_create_ch_ib(ch);
2559         if (ret) {
2560                 rej->reason = __constant_cpu_to_be32(
2561                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2562                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2563                        " a new RDMA channel failed.\n");
2564                 goto free_ring;
2565         }
2566
2567         ret = srpt_ch_qp_rtr(ch, ch->qp);
2568         if (ret) {
2569                 rej->reason = __constant_cpu_to_be32(
2570                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2571                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2572                        " RTR failed (error code = %d)\n", ret);
2573                 goto destroy_ib;
2574         }
2575         /*
2576          * Use the initator port identifier as the session name.
2577          */
2578         snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2579                         be64_to_cpu(*(__be64 *)ch->i_port_id),
2580                         be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2581
2582         pr_debug("registering session %s\n", ch->sess_name);
2583
2584         nacl = srpt_lookup_acl(sport, ch->i_port_id);
2585         if (!nacl) {
2586                 printk(KERN_INFO "Rejected login because no ACL has been"
2587                        " configured yet for initiator %s.\n", ch->sess_name);
2588                 rej->reason = __constant_cpu_to_be32(
2589                                 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2590                 goto destroy_ib;
2591         }
2592
2593         ch->sess = transport_init_session();
2594         if (IS_ERR(ch->sess)) {
2595                 rej->reason = __constant_cpu_to_be32(
2596                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2597                 pr_debug("Failed to create session\n");
2598                 goto deregister_session;
2599         }
2600         ch->sess->se_node_acl = &nacl->nacl;
2601         transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2602
2603         pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2604                  ch->sess_name, ch->cm_id);
2605
2606         /* create srp_login_response */
2607         rsp->opcode = SRP_LOGIN_RSP;
2608         rsp->tag = req->tag;
2609         rsp->max_it_iu_len = req->req_it_iu_len;
2610         rsp->max_ti_iu_len = req->req_it_iu_len;
2611         ch->max_ti_iu_len = it_iu_len;
2612         rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2613                                               | SRP_BUF_FORMAT_INDIRECT);
2614         rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2615         atomic_set(&ch->req_lim, ch->rq_size);
2616         atomic_set(&ch->req_lim_delta, 0);
2617
2618         /* create cm reply */
2619         rep_param->qp_num = ch->qp->qp_num;
2620         rep_param->private_data = (void *)rsp;
2621         rep_param->private_data_len = sizeof *rsp;
2622         rep_param->rnr_retry_count = 7;
2623         rep_param->flow_control = 1;
2624         rep_param->failover_accepted = 0;
2625         rep_param->srq = 1;
2626         rep_param->responder_resources = 4;
2627         rep_param->initiator_depth = 4;
2628
2629         ret = ib_send_cm_rep(cm_id, rep_param);
2630         if (ret) {
2631                 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2632                        " (error code = %d)\n", ret);
2633                 goto release_channel;
2634         }
2635
2636         spin_lock_irq(&sdev->spinlock);
2637         list_add_tail(&ch->list, &sdev->rch_list);
2638         spin_unlock_irq(&sdev->spinlock);
2639
2640         goto out;
2641
2642 release_channel:
2643         srpt_set_ch_state(ch, CH_RELEASING);
2644         transport_deregister_session_configfs(ch->sess);
2645
2646 deregister_session:
2647         transport_deregister_session(ch->sess);
2648         ch->sess = NULL;
2649
2650 destroy_ib:
2651         srpt_destroy_ch_ib(ch);
2652
2653 free_ring:
2654         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2655                              ch->sport->sdev, ch->rq_size,
2656                              ch->rsp_size, DMA_TO_DEVICE);
2657 free_ch:
2658         kfree(ch);
2659
2660 reject:
2661         rej->opcode = SRP_LOGIN_REJ;
2662         rej->tag = req->tag;
2663         rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2664                                               | SRP_BUF_FORMAT_INDIRECT);
2665
2666         ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2667                              (void *)rej, sizeof *rej);
2668
2669 out:
2670         kfree(rep_param);
2671         kfree(rsp);
2672         kfree(rej);
2673
2674         return ret;
2675 }
2676
2677 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2678 {
2679         printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2680         srpt_drain_channel(cm_id);
2681 }
2682
2683 /**
2684  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2685  *
2686  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2687  * and that the recipient may begin transmitting (RTU = ready to use).
2688  */
2689 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2690 {
2691         struct srpt_rdma_ch *ch;
2692         int ret;
2693
2694         ch = srpt_find_channel(cm_id->context, cm_id);
2695         BUG_ON(!ch);
2696
2697         if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2698                 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2699
2700                 ret = srpt_ch_qp_rts(ch, ch->qp);
2701
2702                 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2703                                          wait_list) {
2704                         list_del(&ioctx->wait_list);
2705                         srpt_handle_new_iu(ch, ioctx, NULL);
2706                 }
2707                 if (ret)
2708                         srpt_close_ch(ch);
2709         }
2710 }
2711
2712 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2713 {
2714         printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2715         srpt_drain_channel(cm_id);
2716 }
2717
2718 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2719 {
2720         printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2721         srpt_drain_channel(cm_id);
2722 }
2723
2724 /**
2725  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2726  */
2727 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2728 {
2729         struct srpt_rdma_ch *ch;
2730         unsigned long flags;
2731         bool send_drep = false;
2732
2733         ch = srpt_find_channel(cm_id->context, cm_id);
2734         BUG_ON(!ch);
2735
2736         pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2737
2738         spin_lock_irqsave(&ch->spinlock, flags);
2739         switch (ch->state) {
2740         case CH_CONNECTING:
2741         case CH_LIVE:
2742                 send_drep = true;
2743                 ch->state = CH_DISCONNECTING;
2744                 break;
2745         case CH_DISCONNECTING:
2746         case CH_DRAINING:
2747         case CH_RELEASING:
2748                 WARN(true, "unexpected channel state %d\n", ch->state);
2749                 break;
2750         }
2751         spin_unlock_irqrestore(&ch->spinlock, flags);
2752
2753         if (send_drep) {
2754                 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2755                         printk(KERN_ERR "Sending IB DREP failed.\n");
2756                 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2757                        ch->sess_name);
2758         }
2759 }
2760
2761 /**
2762  * srpt_cm_drep_recv() - Process reception of a DREP message.
2763  */
2764 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2765 {
2766         printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2767                cm_id);
2768         srpt_drain_channel(cm_id);
2769 }
2770
2771 /**
2772  * srpt_cm_handler() - IB connection manager callback function.
2773  *
2774  * A non-zero return value will cause the caller destroy the CM ID.
2775  *
2776  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2777  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2778  * a non-zero value in any other case will trigger a race with the
2779  * ib_destroy_cm_id() call in srpt_release_channel().
2780  */
2781 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2782 {
2783         int ret;
2784
2785         ret = 0;
2786         switch (event->event) {
2787         case IB_CM_REQ_RECEIVED:
2788                 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2789                                        event->private_data);
2790                 break;
2791         case IB_CM_REJ_RECEIVED:
2792                 srpt_cm_rej_recv(cm_id);
2793                 break;
2794         case IB_CM_RTU_RECEIVED:
2795         case IB_CM_USER_ESTABLISHED:
2796                 srpt_cm_rtu_recv(cm_id);
2797                 break;
2798         case IB_CM_DREQ_RECEIVED:
2799                 srpt_cm_dreq_recv(cm_id);
2800                 break;
2801         case IB_CM_DREP_RECEIVED:
2802                 srpt_cm_drep_recv(cm_id);
2803                 break;
2804         case IB_CM_TIMEWAIT_EXIT:
2805                 srpt_cm_timewait_exit(cm_id);
2806                 break;
2807         case IB_CM_REP_ERROR:
2808                 srpt_cm_rep_error(cm_id);
2809                 break;
2810         case IB_CM_DREQ_ERROR:
2811                 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2812                 break;
2813         case IB_CM_MRA_RECEIVED:
2814                 printk(KERN_INFO "Received IB MRA event\n");
2815                 break;
2816         default:
2817                 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2818                        event->event);
2819                 break;
2820         }
2821
2822         return ret;
2823 }
2824
2825 /**
2826  * srpt_perform_rdmas() - Perform IB RDMA.
2827  *
2828  * Returns zero upon success or a negative number upon failure.
2829  */
2830 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2831                               struct srpt_send_ioctx *ioctx)
2832 {
2833         struct ib_send_wr wr;
2834         struct ib_send_wr *bad_wr;
2835         struct rdma_iu *riu;
2836         int i;
2837         int ret;
2838         int sq_wr_avail;
2839         enum dma_data_direction dir;
2840         const int n_rdma = ioctx->n_rdma;
2841
2842         dir = ioctx->cmd.data_direction;
2843         if (dir == DMA_TO_DEVICE) {
2844                 /* write */
2845                 ret = -ENOMEM;
2846                 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2847                 if (sq_wr_avail < 0) {
2848                         printk(KERN_WARNING "IB send queue full (needed %d)\n",
2849                                n_rdma);
2850                         goto out;
2851                 }
2852         }
2853
2854         ioctx->rdma_aborted = false;
2855         ret = 0;
2856         riu = ioctx->rdma_ius;
2857         memset(&wr, 0, sizeof wr);
2858
2859         for (i = 0; i < n_rdma; ++i, ++riu) {
2860                 if (dir == DMA_FROM_DEVICE) {
2861                         wr.opcode = IB_WR_RDMA_WRITE;
2862                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2863                                                 SRPT_RDMA_WRITE_LAST :
2864                                                 SRPT_RDMA_MID,
2865                                                 ioctx->ioctx.index);
2866                 } else {
2867                         wr.opcode = IB_WR_RDMA_READ;
2868                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2869                                                 SRPT_RDMA_READ_LAST :
2870                                                 SRPT_RDMA_MID,
2871                                                 ioctx->ioctx.index);
2872                 }
2873                 wr.next = NULL;
2874                 wr.wr.rdma.remote_addr = riu->raddr;
2875                 wr.wr.rdma.rkey = riu->rkey;
2876                 wr.num_sge = riu->sge_cnt;
2877                 wr.sg_list = riu->sge;
2878
2879                 /* only get completion event for the last rdma write */
2880                 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2881                         wr.send_flags = IB_SEND_SIGNALED;
2882
2883                 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2884                 if (ret)
2885                         break;
2886         }
2887
2888         if (ret)
2889                 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2890                                  __func__, __LINE__, ret, i, n_rdma);
2891         if (ret && i > 0) {
2892                 wr.num_sge = 0;
2893                 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2894                 wr.send_flags = IB_SEND_SIGNALED;
2895                 while (ch->state == CH_LIVE &&
2896                         ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2897                         printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2898                                 ioctx->ioctx.index);
2899                         msleep(1000);
2900                 }
2901                 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2902                         printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2903                                 ioctx->ioctx.index);
2904                         msleep(1000);
2905                 }
2906         }
2907 out:
2908         if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2909                 atomic_add(n_rdma, &ch->sq_wr_avail);
2910         return ret;
2911 }
2912
2913 /**
2914  * srpt_xfer_data() - Start data transfer from initiator to target.
2915  */
2916 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2917                           struct srpt_send_ioctx *ioctx)
2918 {
2919         int ret;
2920
2921         ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2922         if (ret) {
2923                 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2924                 goto out;
2925         }
2926
2927         ret = srpt_perform_rdmas(ch, ioctx);
2928         if (ret) {
2929                 if (ret == -EAGAIN || ret == -ENOMEM)
2930                         printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2931                                    __func__, __LINE__, ret);
2932                 else
2933                         printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2934                                __func__, __LINE__, ret);
2935                 goto out_unmap;
2936         }
2937
2938 out:
2939         return ret;
2940 out_unmap:
2941         srpt_unmap_sg_to_ib_sge(ch, ioctx);
2942         goto out;
2943 }
2944
2945 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2946 {
2947         struct srpt_send_ioctx *ioctx;
2948
2949         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2950         return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2951 }
2952
2953 /*
2954  * srpt_write_pending() - Start data transfer from initiator to target (write).
2955  */
2956 static int srpt_write_pending(struct se_cmd *se_cmd)
2957 {
2958         struct srpt_rdma_ch *ch;
2959         struct srpt_send_ioctx *ioctx;
2960         enum srpt_command_state new_state;
2961         enum rdma_ch_state ch_state;
2962         int ret;
2963
2964         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2965
2966         new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2967         WARN_ON(new_state == SRPT_STATE_DONE);
2968
2969         ch = ioctx->ch;
2970         BUG_ON(!ch);
2971
2972         ch_state = srpt_get_ch_state(ch);
2973         switch (ch_state) {
2974         case CH_CONNECTING:
2975                 WARN(true, "unexpected channel state %d\n", ch_state);
2976                 ret = -EINVAL;
2977                 goto out;
2978         case CH_LIVE:
2979                 break;
2980         case CH_DISCONNECTING:
2981         case CH_DRAINING:
2982         case CH_RELEASING:
2983                 pr_debug("cmd with tag %lld: channel disconnecting\n",
2984                          ioctx->tag);
2985                 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2986                 ret = -EINVAL;
2987                 goto out;
2988         }
2989         ret = srpt_xfer_data(ch, ioctx);
2990
2991 out:
2992         return ret;
2993 }
2994
2995 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2996 {
2997         switch (tcm_mgmt_status) {
2998         case TMR_FUNCTION_COMPLETE:
2999                 return SRP_TSK_MGMT_SUCCESS;
3000         case TMR_FUNCTION_REJECTED:
3001                 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3002         }
3003         return SRP_TSK_MGMT_FAILED;
3004 }
3005
3006 /**
3007  * srpt_queue_response() - Transmits the response to a SCSI command.
3008  *
3009  * Callback function called by the TCM core. Must not block since it can be
3010  * invoked on the context of the IB completion handler.
3011  */
3012 static void srpt_queue_response(struct se_cmd *cmd)
3013 {
3014         struct srpt_rdma_ch *ch;
3015         struct srpt_send_ioctx *ioctx;
3016         enum srpt_command_state state;
3017         unsigned long flags;
3018         int ret;
3019         enum dma_data_direction dir;
3020         int resp_len;
3021         u8 srp_tm_status;
3022
3023         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3024         ch = ioctx->ch;
3025         BUG_ON(!ch);
3026
3027         spin_lock_irqsave(&ioctx->spinlock, flags);
3028         state = ioctx->state;
3029         switch (state) {
3030         case SRPT_STATE_NEW:
3031         case SRPT_STATE_DATA_IN:
3032                 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3033                 break;
3034         case SRPT_STATE_MGMT:
3035                 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3036                 break;
3037         default:
3038                 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3039                         ch, ioctx->ioctx.index, ioctx->state);
3040                 break;
3041         }
3042         spin_unlock_irqrestore(&ioctx->spinlock, flags);
3043
3044         if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3045                      || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3046                 atomic_inc(&ch->req_lim_delta);
3047                 srpt_abort_cmd(ioctx);
3048                 return;
3049         }
3050
3051         dir = ioctx->cmd.data_direction;
3052
3053         /* For read commands, transfer the data to the initiator. */
3054         if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3055             !ioctx->queue_status_only) {
3056                 ret = srpt_xfer_data(ch, ioctx);
3057                 if (ret) {
3058                         printk(KERN_ERR "xfer_data failed for tag %llu\n",
3059                                ioctx->tag);
3060                         return;
3061                 }
3062         }
3063
3064         if (state != SRPT_STATE_MGMT)
3065                 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3066                                               cmd->scsi_status);
3067         else {
3068                 srp_tm_status
3069                         = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3070                 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3071                                                  ioctx->tag);
3072         }
3073         ret = srpt_post_send(ch, ioctx, resp_len);
3074         if (ret) {
3075                 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3076                        ioctx->tag);
3077                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3078                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3079                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3080         }
3081 }
3082
3083 static int srpt_queue_data_in(struct se_cmd *cmd)
3084 {
3085         srpt_queue_response(cmd);
3086         return 0;
3087 }
3088
3089 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3090 {
3091         srpt_queue_response(cmd);
3092 }
3093
3094 static int srpt_queue_status(struct se_cmd *cmd)
3095 {
3096         struct srpt_send_ioctx *ioctx;
3097
3098         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3099         BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3100         if (cmd->se_cmd_flags &
3101             (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3102                 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3103         ioctx->queue_status_only = true;
3104         srpt_queue_response(cmd);
3105         return 0;
3106 }
3107
3108 static void srpt_refresh_port_work(struct work_struct *work)
3109 {
3110         struct srpt_port *sport = container_of(work, struct srpt_port, work);
3111
3112         srpt_refresh_port(sport);
3113 }
3114
3115 static int srpt_ch_list_empty(struct srpt_device *sdev)
3116 {
3117         int res;
3118
3119         spin_lock_irq(&sdev->spinlock);
3120         res = list_empty(&sdev->rch_list);
3121         spin_unlock_irq(&sdev->spinlock);
3122
3123         return res;
3124 }
3125
3126 /**
3127  * srpt_release_sdev() - Free the channel resources associated with a target.
3128  */
3129 static int srpt_release_sdev(struct srpt_device *sdev)
3130 {
3131         struct srpt_rdma_ch *ch, *tmp_ch;
3132         int res;
3133
3134         WARN_ON_ONCE(irqs_disabled());
3135
3136         BUG_ON(!sdev);
3137
3138         spin_lock_irq(&sdev->spinlock);
3139         list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3140                 __srpt_close_ch(ch);
3141         spin_unlock_irq(&sdev->spinlock);
3142
3143         res = wait_event_interruptible(sdev->ch_releaseQ,
3144                                        srpt_ch_list_empty(sdev));
3145         if (res)
3146                 printk(KERN_ERR "%s: interrupted.\n", __func__);
3147
3148         return 0;
3149 }
3150
3151 static struct srpt_port *__srpt_lookup_port(const char *name)
3152 {
3153         struct ib_device *dev;
3154         struct srpt_device *sdev;
3155         struct srpt_port *sport;
3156         int i;
3157
3158         list_for_each_entry(sdev, &srpt_dev_list, list) {
3159                 dev = sdev->device;
3160                 if (!dev)
3161                         continue;
3162
3163                 for (i = 0; i < dev->phys_port_cnt; i++) {
3164                         sport = &sdev->port[i];
3165
3166                         if (!strcmp(sport->port_guid, name))
3167                                 return sport;
3168                 }
3169         }
3170
3171         return NULL;
3172 }
3173
3174 static struct srpt_port *srpt_lookup_port(const char *name)
3175 {
3176         struct srpt_port *sport;
3177
3178         spin_lock(&srpt_dev_lock);
3179         sport = __srpt_lookup_port(name);
3180         spin_unlock(&srpt_dev_lock);
3181
3182         return sport;
3183 }
3184
3185 /**
3186  * srpt_add_one() - Infiniband device addition callback function.
3187  */
3188 static void srpt_add_one(struct ib_device *device)
3189 {
3190         struct srpt_device *sdev;
3191         struct srpt_port *sport;
3192         struct ib_srq_init_attr srq_attr;
3193         int i;
3194
3195         pr_debug("device = %p, device->dma_ops = %p\n", device,
3196                  device->dma_ops);
3197
3198         sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3199         if (!sdev)
3200                 goto err;
3201
3202         sdev->device = device;
3203         INIT_LIST_HEAD(&sdev->rch_list);
3204         init_waitqueue_head(&sdev->ch_releaseQ);
3205         spin_lock_init(&sdev->spinlock);
3206
3207         if (ib_query_device(device, &sdev->dev_attr))
3208                 goto free_dev;
3209
3210         sdev->pd = ib_alloc_pd(device);
3211         if (IS_ERR(sdev->pd))
3212                 goto free_dev;
3213
3214         sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3215         if (IS_ERR(sdev->mr))
3216                 goto err_pd;
3217
3218         sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3219
3220         srq_attr.event_handler = srpt_srq_event;
3221         srq_attr.srq_context = (void *)sdev;
3222         srq_attr.attr.max_wr = sdev->srq_size;
3223         srq_attr.attr.max_sge = 1;
3224         srq_attr.attr.srq_limit = 0;
3225         srq_attr.srq_type = IB_SRQT_BASIC;
3226
3227         sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3228         if (IS_ERR(sdev->srq))
3229                 goto err_mr;
3230
3231         pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3232                  __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3233                  device->name);
3234
3235         if (!srpt_service_guid)
3236                 srpt_service_guid = be64_to_cpu(device->node_guid);
3237
3238         sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3239         if (IS_ERR(sdev->cm_id))
3240                 goto err_srq;
3241
3242         /* print out target login information */
3243         pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3244                  "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3245                  srpt_service_guid, srpt_service_guid);
3246
3247         /*
3248          * We do not have a consistent service_id (ie. also id_ext of target_id)
3249          * to identify this target. We currently use the guid of the first HCA
3250          * in the system as service_id; therefore, the target_id will change
3251          * if this HCA is gone bad and replaced by different HCA
3252          */
3253         if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3254                 goto err_cm;
3255
3256         INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3257                               srpt_event_handler);
3258         if (ib_register_event_handler(&sdev->event_handler))
3259                 goto err_cm;
3260
3261         sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3262                 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3263                                       sizeof(*sdev->ioctx_ring[0]),
3264                                       srp_max_req_size, DMA_FROM_DEVICE);
3265         if (!sdev->ioctx_ring)
3266                 goto err_event;
3267
3268         for (i = 0; i < sdev->srq_size; ++i)
3269                 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3270
3271         WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3272
3273         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3274                 sport = &sdev->port[i - 1];
3275                 sport->sdev = sdev;
3276                 sport->port = i;
3277                 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3278                 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3279                 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3280                 INIT_WORK(&sport->work, srpt_refresh_port_work);
3281                 INIT_LIST_HEAD(&sport->port_acl_list);
3282                 spin_lock_init(&sport->port_acl_lock);
3283
3284                 if (srpt_refresh_port(sport)) {
3285                         printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3286                                srpt_sdev_name(sdev), i);
3287                         goto err_ring;
3288                 }
3289                 snprintf(sport->port_guid, sizeof(sport->port_guid),
3290                         "0x%016llx%016llx",
3291                         be64_to_cpu(sport->gid.global.subnet_prefix),
3292                         be64_to_cpu(sport->gid.global.interface_id));
3293         }
3294
3295         spin_lock(&srpt_dev_lock);
3296         list_add_tail(&sdev->list, &srpt_dev_list);
3297         spin_unlock(&srpt_dev_lock);
3298
3299 out:
3300         ib_set_client_data(device, &srpt_client, sdev);
3301         pr_debug("added %s.\n", device->name);
3302         return;
3303
3304 err_ring:
3305         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3306                              sdev->srq_size, srp_max_req_size,
3307                              DMA_FROM_DEVICE);
3308 err_event:
3309         ib_unregister_event_handler(&sdev->event_handler);
3310 err_cm:
3311         ib_destroy_cm_id(sdev->cm_id);
3312 err_srq:
3313         ib_destroy_srq(sdev->srq);
3314 err_mr:
3315         ib_dereg_mr(sdev->mr);
3316 err_pd:
3317         ib_dealloc_pd(sdev->pd);
3318 free_dev:
3319         kfree(sdev);
3320 err:
3321         sdev = NULL;
3322         printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3323         goto out;
3324 }
3325
3326 /**
3327  * srpt_remove_one() - InfiniBand device removal callback function.
3328  */
3329 static void srpt_remove_one(struct ib_device *device)
3330 {
3331         struct srpt_device *sdev;
3332         int i;
3333
3334         sdev = ib_get_client_data(device, &srpt_client);
3335         if (!sdev) {
3336                 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3337                        device->name);
3338                 return;
3339         }
3340
3341         srpt_unregister_mad_agent(sdev);
3342
3343         ib_unregister_event_handler(&sdev->event_handler);
3344
3345         /* Cancel any work queued by the just unregistered IB event handler. */
3346         for (i = 0; i < sdev->device->phys_port_cnt; i++)
3347                 cancel_work_sync(&sdev->port[i].work);
3348
3349         ib_destroy_cm_id(sdev->cm_id);
3350
3351         /*
3352          * Unregistering a target must happen after destroying sdev->cm_id
3353          * such that no new SRP_LOGIN_REQ information units can arrive while
3354          * destroying the target.
3355          */
3356         spin_lock(&srpt_dev_lock);
3357         list_del(&sdev->list);
3358         spin_unlock(&srpt_dev_lock);
3359         srpt_release_sdev(sdev);
3360
3361         ib_destroy_srq(sdev->srq);
3362         ib_dereg_mr(sdev->mr);
3363         ib_dealloc_pd(sdev->pd);
3364
3365         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3366                              sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3367         sdev->ioctx_ring = NULL;
3368         kfree(sdev);
3369 }
3370
3371 static struct ib_client srpt_client = {
3372         .name = DRV_NAME,
3373         .add = srpt_add_one,
3374         .remove = srpt_remove_one
3375 };
3376
3377 static int srpt_check_true(struct se_portal_group *se_tpg)
3378 {
3379         return 1;
3380 }
3381
3382 static int srpt_check_false(struct se_portal_group *se_tpg)
3383 {
3384         return 0;
3385 }
3386
3387 static char *srpt_get_fabric_name(void)
3388 {
3389         return "srpt";
3390 }
3391
3392 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3393 {
3394         return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3395 }
3396
3397 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3398 {
3399         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3400
3401         return sport->port_guid;
3402 }
3403
3404 static u16 srpt_get_tag(struct se_portal_group *tpg)
3405 {
3406         return 1;
3407 }
3408
3409 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3410 {
3411         return 1;
3412 }
3413
3414 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3415                                     struct se_node_acl *se_nacl,
3416                                     struct t10_pr_registration *pr_reg,
3417                                     int *format_code, unsigned char *buf)
3418 {
3419         struct srpt_node_acl *nacl;
3420         struct spc_rdma_transport_id *tr_id;
3421
3422         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3423         tr_id = (void *)buf;
3424         tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3425         memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3426         return sizeof(*tr_id);
3427 }
3428
3429 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3430                                         struct se_node_acl *se_nacl,
3431                                         struct t10_pr_registration *pr_reg,
3432                                         int *format_code)
3433 {
3434         *format_code = 0;
3435         return sizeof(struct spc_rdma_transport_id);
3436 }
3437
3438 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3439                                             const char *buf, u32 *out_tid_len,
3440                                             char **port_nexus_ptr)
3441 {
3442         struct spc_rdma_transport_id *tr_id;
3443
3444         *port_nexus_ptr = NULL;
3445         *out_tid_len = sizeof(struct spc_rdma_transport_id);
3446         tr_id = (void *)buf;
3447         return (char *)tr_id->i_port_id;
3448 }
3449
3450 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3451 {
3452         struct srpt_node_acl *nacl;
3453
3454         nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3455         if (!nacl) {
3456                 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3457                 return NULL;
3458         }
3459
3460         return &nacl->nacl;
3461 }
3462
3463 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3464                                     struct se_node_acl *se_nacl)
3465 {
3466         struct srpt_node_acl *nacl;
3467
3468         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3469         kfree(nacl);
3470 }
3471
3472 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3473 {
3474         return 1;
3475 }
3476
3477 static void srpt_release_cmd(struct se_cmd *se_cmd)
3478 {
3479         struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3480                                 struct srpt_send_ioctx, cmd);
3481         struct srpt_rdma_ch *ch = ioctx->ch;
3482         unsigned long flags;
3483
3484         WARN_ON(ioctx->state != SRPT_STATE_DONE);
3485         WARN_ON(ioctx->mapped_sg_count != 0);
3486
3487         if (ioctx->n_rbuf > 1) {
3488                 kfree(ioctx->rbufs);
3489                 ioctx->rbufs = NULL;
3490                 ioctx->n_rbuf = 0;
3491         }
3492
3493         spin_lock_irqsave(&ch->spinlock, flags);
3494         list_add(&ioctx->free_list, &ch->free_list);
3495         spin_unlock_irqrestore(&ch->spinlock, flags);
3496 }
3497
3498 /**
3499  * srpt_close_session() - Forcibly close a session.
3500  *
3501  * Callback function invoked by the TCM core to clean up sessions associated
3502  * with a node ACL when the user invokes
3503  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3504  */
3505 static void srpt_close_session(struct se_session *se_sess)
3506 {
3507         DECLARE_COMPLETION_ONSTACK(release_done);
3508         struct srpt_rdma_ch *ch;
3509         struct srpt_device *sdev;
3510         int res;
3511
3512         ch = se_sess->fabric_sess_ptr;
3513         WARN_ON(ch->sess != se_sess);
3514
3515         pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3516
3517         sdev = ch->sport->sdev;
3518         spin_lock_irq(&sdev->spinlock);
3519         BUG_ON(ch->release_done);
3520         ch->release_done = &release_done;
3521         __srpt_close_ch(ch);
3522         spin_unlock_irq(&sdev->spinlock);
3523
3524         res = wait_for_completion_timeout(&release_done, 60 * HZ);
3525         WARN_ON(res <= 0);
3526 }
3527
3528 /**
3529  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3530  *
3531  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3532  * This object represents an arbitrary integer used to uniquely identify a
3533  * particular attached remote initiator port to a particular SCSI target port
3534  * within a particular SCSI target device within a particular SCSI instance.
3535  */
3536 static u32 srpt_sess_get_index(struct se_session *se_sess)
3537 {
3538         return 0;
3539 }
3540
3541 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3542 {
3543 }
3544
3545 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3546 {
3547         struct srpt_send_ioctx *ioctx;
3548
3549         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3550         return ioctx->tag;
3551 }
3552
3553 /* Note: only used from inside debug printk's by the TCM core. */
3554 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3555 {
3556         struct srpt_send_ioctx *ioctx;
3557
3558         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3559         return srpt_get_cmd_state(ioctx);
3560 }
3561
3562 /**
3563  * srpt_parse_i_port_id() - Parse an initiator port ID.
3564  * @name: ASCII representation of a 128-bit initiator port ID.
3565  * @i_port_id: Binary 128-bit port ID.
3566  */
3567 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3568 {
3569         const char *p;
3570         unsigned len, count, leading_zero_bytes;
3571         int ret, rc;
3572
3573         p = name;
3574         if (strnicmp(p, "0x", 2) == 0)
3575                 p += 2;
3576         ret = -EINVAL;
3577         len = strlen(p);
3578         if (len % 2)
3579                 goto out;
3580         count = min(len / 2, 16U);
3581         leading_zero_bytes = 16 - count;
3582         memset(i_port_id, 0, leading_zero_bytes);
3583         rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3584         if (rc < 0)
3585                 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3586         ret = 0;
3587 out:
3588         return ret;
3589 }
3590
3591 /*
3592  * configfs callback function invoked for
3593  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3594  */
3595 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3596                                              struct config_group *group,
3597                                              const char *name)
3598 {
3599         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3600         struct se_node_acl *se_nacl, *se_nacl_new;
3601         struct srpt_node_acl *nacl;
3602         int ret = 0;
3603         u32 nexus_depth = 1;
3604         u8 i_port_id[16];
3605
3606         if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3607                 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3608                 ret = -EINVAL;
3609                 goto err;
3610         }
3611
3612         se_nacl_new = srpt_alloc_fabric_acl(tpg);
3613         if (!se_nacl_new) {
3614                 ret = -ENOMEM;
3615                 goto err;
3616         }
3617         /*
3618          * nacl_new may be released by core_tpg_add_initiator_node_acl()
3619          * when converting a node ACL from demo mode to explict
3620          */
3621         se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3622                                                   nexus_depth);
3623         if (IS_ERR(se_nacl)) {
3624                 ret = PTR_ERR(se_nacl);
3625                 goto err;
3626         }
3627         /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3628         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3629         memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3630         nacl->sport = sport;
3631
3632         spin_lock_irq(&sport->port_acl_lock);
3633         list_add_tail(&nacl->list, &sport->port_acl_list);
3634         spin_unlock_irq(&sport->port_acl_lock);
3635
3636         return se_nacl;
3637 err:
3638         return ERR_PTR(ret);
3639 }
3640
3641 /*
3642  * configfs callback function invoked for
3643  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3644  */
3645 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3646 {
3647         struct srpt_node_acl *nacl;
3648         struct srpt_device *sdev;
3649         struct srpt_port *sport;
3650
3651         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3652         sport = nacl->sport;
3653         sdev = sport->sdev;
3654         spin_lock_irq(&sport->port_acl_lock);
3655         list_del(&nacl->list);
3656         spin_unlock_irq(&sport->port_acl_lock);
3657         core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3658         srpt_release_fabric_acl(NULL, se_nacl);
3659 }
3660
3661 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3662         struct se_portal_group *se_tpg,
3663         char *page)
3664 {
3665         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3666
3667         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3668 }
3669
3670 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3671         struct se_portal_group *se_tpg,
3672         const char *page,
3673         size_t count)
3674 {
3675         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3676         unsigned long val;
3677         int ret;
3678
3679         ret = strict_strtoul(page, 0, &val);
3680         if (ret < 0) {
3681                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3682                 return -EINVAL;
3683         }
3684         if (val > MAX_SRPT_RDMA_SIZE) {
3685                 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3686                         MAX_SRPT_RDMA_SIZE);
3687                 return -EINVAL;
3688         }
3689         if (val < DEFAULT_MAX_RDMA_SIZE) {
3690                 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3691                         val, DEFAULT_MAX_RDMA_SIZE);
3692                 return -EINVAL;
3693         }
3694         sport->port_attrib.srp_max_rdma_size = val;
3695
3696         return count;
3697 }
3698
3699 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3700
3701 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3702         struct se_portal_group *se_tpg,
3703         char *page)
3704 {
3705         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3706
3707         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3708 }
3709
3710 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3711         struct se_portal_group *se_tpg,
3712         const char *page,
3713         size_t count)
3714 {
3715         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3716         unsigned long val;
3717         int ret;
3718
3719         ret = strict_strtoul(page, 0, &val);
3720         if (ret < 0) {
3721                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3722                 return -EINVAL;
3723         }
3724         if (val > MAX_SRPT_RSP_SIZE) {
3725                 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3726                         MAX_SRPT_RSP_SIZE);
3727                 return -EINVAL;
3728         }
3729         if (val < MIN_MAX_RSP_SIZE) {
3730                 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3731                         MIN_MAX_RSP_SIZE);
3732                 return -EINVAL;
3733         }
3734         sport->port_attrib.srp_max_rsp_size = val;
3735
3736         return count;
3737 }
3738
3739 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3740
3741 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3742         struct se_portal_group *se_tpg,
3743         char *page)
3744 {
3745         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3746
3747         return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3748 }
3749
3750 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3751         struct se_portal_group *se_tpg,
3752         const char *page,
3753         size_t count)
3754 {
3755         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3756         unsigned long val;
3757         int ret;
3758
3759         ret = strict_strtoul(page, 0, &val);
3760         if (ret < 0) {
3761                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3762                 return -EINVAL;
3763         }
3764         if (val > MAX_SRPT_SRQ_SIZE) {
3765                 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3766                         MAX_SRPT_SRQ_SIZE);
3767                 return -EINVAL;
3768         }
3769         if (val < MIN_SRPT_SRQ_SIZE) {
3770                 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3771                         MIN_SRPT_SRQ_SIZE);
3772                 return -EINVAL;
3773         }
3774         sport->port_attrib.srp_sq_size = val;
3775
3776         return count;
3777 }
3778
3779 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3780
3781 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3782         &srpt_tpg_attrib_srp_max_rdma_size.attr,
3783         &srpt_tpg_attrib_srp_max_rsp_size.attr,
3784         &srpt_tpg_attrib_srp_sq_size.attr,
3785         NULL,
3786 };
3787
3788 static ssize_t srpt_tpg_show_enable(
3789         struct se_portal_group *se_tpg,
3790         char *page)
3791 {
3792         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3793
3794         return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3795 }
3796
3797 static ssize_t srpt_tpg_store_enable(
3798         struct se_portal_group *se_tpg,
3799         const char *page,
3800         size_t count)
3801 {
3802         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3803         unsigned long tmp;
3804         int ret;
3805
3806         ret = strict_strtoul(page, 0, &tmp);
3807         if (ret < 0) {
3808                 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3809                 return -EINVAL;
3810         }
3811
3812         if ((tmp != 0) && (tmp != 1)) {
3813                 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3814                 return -EINVAL;
3815         }
3816         if (tmp == 1)
3817                 sport->enabled = true;
3818         else
3819                 sport->enabled = false;
3820
3821         return count;
3822 }
3823
3824 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3825
3826 static struct configfs_attribute *srpt_tpg_attrs[] = {
3827         &srpt_tpg_enable.attr,
3828         NULL,
3829 };
3830
3831 /**
3832  * configfs callback invoked for
3833  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3834  */
3835 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3836                                              struct config_group *group,
3837                                              const char *name)
3838 {
3839         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3840         int res;
3841
3842         /* Initialize sport->port_wwn and sport->port_tpg_1 */
3843         res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3844                         &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3845         if (res)
3846                 return ERR_PTR(res);
3847
3848         return &sport->port_tpg_1;
3849 }
3850
3851 /**
3852  * configfs callback invoked for
3853  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3854  */
3855 static void srpt_drop_tpg(struct se_portal_group *tpg)
3856 {
3857         struct srpt_port *sport = container_of(tpg,
3858                                 struct srpt_port, port_tpg_1);
3859
3860         sport->enabled = false;
3861         core_tpg_deregister(&sport->port_tpg_1);
3862 }
3863
3864 /**
3865  * configfs callback invoked for
3866  * mkdir /sys/kernel/config/target/$driver/$port
3867  */
3868 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3869                                       struct config_group *group,
3870                                       const char *name)
3871 {
3872         struct srpt_port *sport;
3873         int ret;
3874
3875         sport = srpt_lookup_port(name);
3876         pr_debug("make_tport(%s)\n", name);
3877         ret = -EINVAL;
3878         if (!sport)
3879                 goto err;
3880
3881         return &sport->port_wwn;
3882
3883 err:
3884         return ERR_PTR(ret);
3885 }
3886
3887 /**
3888  * configfs callback invoked for
3889  * rmdir /sys/kernel/config/target/$driver/$port
3890  */
3891 static void srpt_drop_tport(struct se_wwn *wwn)
3892 {
3893         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3894
3895         pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3896 }
3897
3898 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3899                                               char *buf)
3900 {
3901         return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3902 }
3903
3904 TF_WWN_ATTR_RO(srpt, version);
3905
3906 static struct configfs_attribute *srpt_wwn_attrs[] = {
3907         &srpt_wwn_version.attr,
3908         NULL,
3909 };
3910
3911 static struct target_core_fabric_ops srpt_template = {
3912         .get_fabric_name                = srpt_get_fabric_name,
3913         .get_fabric_proto_ident         = srpt_get_fabric_proto_ident,
3914         .tpg_get_wwn                    = srpt_get_fabric_wwn,
3915         .tpg_get_tag                    = srpt_get_tag,
3916         .tpg_get_default_depth          = srpt_get_default_depth,
3917         .tpg_get_pr_transport_id        = srpt_get_pr_transport_id,
3918         .tpg_get_pr_transport_id_len    = srpt_get_pr_transport_id_len,
3919         .tpg_parse_pr_out_transport_id  = srpt_parse_pr_out_transport_id,
3920         .tpg_check_demo_mode            = srpt_check_false,
3921         .tpg_check_demo_mode_cache      = srpt_check_true,
3922         .tpg_check_demo_mode_write_protect = srpt_check_true,
3923         .tpg_check_prod_mode_write_protect = srpt_check_false,
3924         .tpg_alloc_fabric_acl           = srpt_alloc_fabric_acl,
3925         .tpg_release_fabric_acl         = srpt_release_fabric_acl,
3926         .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3927         .release_cmd                    = srpt_release_cmd,
3928         .check_stop_free                = srpt_check_stop_free,
3929         .shutdown_session               = srpt_shutdown_session,
3930         .close_session                  = srpt_close_session,
3931         .sess_get_index                 = srpt_sess_get_index,
3932         .sess_get_initiator_sid         = NULL,
3933         .write_pending                  = srpt_write_pending,
3934         .write_pending_status           = srpt_write_pending_status,
3935         .set_default_node_attributes    = srpt_set_default_node_attrs,
3936         .get_task_tag                   = srpt_get_task_tag,
3937         .get_cmd_state                  = srpt_get_tcm_cmd_state,
3938         .queue_data_in                  = srpt_queue_data_in,
3939         .queue_status                   = srpt_queue_status,
3940         .queue_tm_rsp                   = srpt_queue_tm_rsp,
3941         /*
3942          * Setup function pointers for generic logic in
3943          * target_core_fabric_configfs.c
3944          */
3945         .fabric_make_wwn                = srpt_make_tport,
3946         .fabric_drop_wwn                = srpt_drop_tport,
3947         .fabric_make_tpg                = srpt_make_tpg,
3948         .fabric_drop_tpg                = srpt_drop_tpg,
3949         .fabric_post_link               = NULL,
3950         .fabric_pre_unlink              = NULL,
3951         .fabric_make_np                 = NULL,
3952         .fabric_drop_np                 = NULL,
3953         .fabric_make_nodeacl            = srpt_make_nodeacl,
3954         .fabric_drop_nodeacl            = srpt_drop_nodeacl,
3955 };
3956
3957 /**
3958  * srpt_init_module() - Kernel module initialization.
3959  *
3960  * Note: Since ib_register_client() registers callback functions, and since at
3961  * least one of these callback functions (srpt_add_one()) calls target core
3962  * functions, this driver must be registered with the target core before
3963  * ib_register_client() is called.
3964  */
3965 static int __init srpt_init_module(void)
3966 {
3967         int ret;
3968
3969         ret = -EINVAL;
3970         if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3971                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3972                        " srp_max_req_size -- must be at least %d.\n",
3973                        srp_max_req_size, MIN_MAX_REQ_SIZE);
3974                 goto out;
3975         }
3976
3977         if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3978             || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3979                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3980                        " srpt_srq_size -- must be in the range [%d..%d].\n",
3981                        srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3982                 goto out;
3983         }
3984
3985         srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3986         if (IS_ERR(srpt_target)) {
3987                 printk(KERN_ERR "couldn't register\n");
3988                 ret = PTR_ERR(srpt_target);
3989                 goto out;
3990         }
3991
3992         srpt_target->tf_ops = srpt_template;
3993
3994         /*
3995          * Set up default attribute lists.
3996          */
3997         srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3998         srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3999         srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4000         srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4001         srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4002         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4003         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4004         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4005         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4006
4007         ret = target_fabric_configfs_register(srpt_target);
4008         if (ret < 0) {
4009                 printk(KERN_ERR "couldn't register\n");
4010                 goto out_free_target;
4011         }
4012
4013         ret = ib_register_client(&srpt_client);
4014         if (ret) {
4015                 printk(KERN_ERR "couldn't register IB client\n");
4016                 goto out_unregister_target;
4017         }
4018
4019         return 0;
4020
4021 out_unregister_target:
4022         target_fabric_configfs_deregister(srpt_target);
4023         srpt_target = NULL;
4024 out_free_target:
4025         if (srpt_target)
4026                 target_fabric_configfs_free(srpt_target);
4027 out:
4028         return ret;
4029 }
4030
4031 static void __exit srpt_cleanup_module(void)
4032 {
4033         ib_unregister_client(&srpt_client);
4034         target_fabric_configfs_deregister(srpt_target);
4035         srpt_target = NULL;
4036 }
4037
4038 module_init(srpt_init_module);
4039 module_exit(srpt_cleanup_module);